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ABSTRACT

Perceptual image hashing maps an image to a fixed length
binary string based on the image’s appearance to the hu-
man eye, and has applications in image indexing, authenti-
cation, and watermarking. In this paper, we present a gen-
eral framework for perceptual image hashing using feature
points. The feature points should be largely invariant un-
der perceptually insignificant distortions. To satisfy this, we
propose an iterative feature detector to extract significant
geometry preserving feature points. We apply probabilis-
tic quantization on the derived features to further enhance
perceptual robustness. The proposed hash algorithm with-
stands standard benchmark (e.g. Stirmark) attacks includ-
ing compression, geometric distortions of scaling and small
angle rotation, and common signal processing operations.
Content changing (malicious) manipulations of image data
are also accurately detected.

1. INTRODUCTION

In cryptography, hash functions are typically used for dig-
ital signatures to authenticate the message being sent so
that the recipient can verify its source. A key feature of
conventional hashing algorithms such as MD5 and SHA-1
is that they are extremely sensitive to the message [1]; i.e.,
a one bit change in the input changes the output dramati-
cally. Data such as digital images, however, undergo various
manipulations such as compression and enhancement.

An image hash function takes into account changes in
the visual domain. In particular, a perceptual image hash
is required to be invariant under image manipulations that
do not alter the image appearance significantly. Such a
function could be useful for identification/search of images
in large databases. Other applications of image hashing lie
in the area of authentication and watermarking [2].

Significant attention has been given to generating dig-
ital signatures for image authentication under certain at-
tacks. This includes methods based on statistics of the im-
age (or its transformed version) [3,4], relation-based meth-
ods that use information about the DCT/Wavelet coeffi-
cients of the image [5,6], and methods based on extraction
of low-level image features such as edges and corners [7, 8].
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A common characteristic of the methods in [3]– [8] is that
while they authenticate the image under special forms of
manipulation, e.g. JPEG compression, they are still vulner-
able to several incidental modifications that do not cause
perceptually significant changes.

Robust image hashing methods that tolerate a wider
range of perceptually insignificant distortions have been
proposed recently [9–12]. The methods in in [9] and [10]
are relation based. In [11] Venkatesan et al. form a hash
based on an image statistics vector extracted from subbands
in a wavelet decomposition of the image. Mihcak et al. [12]
develop another hash by using an iterative approach to bi-
narize the DC subband.

We present a framework for perceptual image hashing
using feature-points. Current approaches based on feature
points have limited utility as they have poor robustness
properties. We extract significant image features by us-
ing a wavelet based feature detection algorithm based on
the characteristics of the visual system [13]. Further, an
iterative procedure based on observations in [12] is used
to lock onto a set of image feature-points with excellent
invariance properties to perceptually insignificant pertur-
bations. Unlike, the use of public-key encryption schemes
in [7], [8] probabilistic quantization is used to binarize the
extracted feature vector. Previous work on image hashing
has focussed extensively on the problem of capturing image
characteristics but performance trade-offs such as those be-
tween perceptual robustness, fragility and randomization of
the hash are not explicitly analyzed. These trade-offs are
directly addressed via parameters in our hash algorithm.

2. FEATURE EXTRACTION

2.1. End-Stopped Wavelets

Psychovisual studies have identified the presence of certain
cells, called hypercomplex or end-stopped cells, in the pri-
mary visual cortex [13]. For real-world scenes, these cells
respond strongly to extremely robust image features such
as corner like stimuli and points of high curvature in gen-
eral [14], [15]. Bhattacherjee et al. [15] constructed “end-
stopped” wavelets to capture this behavior. Morlet wavelets
can be used to detect linear structures having a specific
orientation. In spatial domain, the two dimensional (2-D)



Morlet wavelet is given by [16]
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where x = (x, y) represents 2-D spatial co-ordinates, and
k0 = (k0, k1) is the wave-vector of the mother wavelet,
which determines scale-resolving power (SRP) and angular-
resolving power (ARP) of the wavelet [16]. The frequency
domain representation, ψM (k), of a Morlet wavelet is
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Here, k represents the 2-D frequency variable (u, v). In two
dimensions, the end points of linear structures can be de-
tected by applying the first-derivative of Gaussian (FDoG)
filter parallel to the orientation of structures in question.
The two filtering stages, the first to detect lines having a
specific orientation and the second to detect the end-points
of such lines, can be combined into a single filter. This re-
sults in an “end-stopped” wavelet [15]. An example of an
end-stopped wavelet and its 2-D Fourier transform follow:
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Equation (4) shows that ψ̂E is a product of two components.
The first is a Morlet wavelet oriented along the u−axis.
The second factor is a FDoG operator applied along the
frequency-axis v, that is in the direction perpendicular to
the Morlet wavelet. Hence, this wavelet detects line ends
and high curvature points in the vertical direction.

2.2. Proposed feature detection method

Our approach to feature detection computes a wavelet trans-
form based on an end-stopped wavelet obtained by applying
the FDoG operator to the Morlet wavelet:

ψE(x, y, θ) = (FDoG) o(ψM (x, y, θ)) (5)

Orientation tuning is given by θ = tan−1( k1
k0

). Let the
orientation range [0, π] be discretized into M intervals and
the scale parameter α be sampled exponentially as αi, i ∈
Z. This results in the wavelet family(

ψE(αi(x, y, θk)
)
, α ∈ R, i ∈ Z (6)

where θk = (kπ)/M , k = 0,...,M -1. The transform is

Wi(x, y, θ) =

∫
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)
dx1dy1

(7)
The sampling parameter α is chosen to be 2.

Fig. 1 describes the proposed feature detection method.
The method has two free parameters: integer scale i and
real threshold T . We adapt the threshold T to select a
fixed number (P ) of feature points from the image. The
length P feature vector is labeled as f .

————————————–
1. Compute the wavelet transform in (7) at a suitably

chosen scale i for several different orientations. The
coarsest scale (i = 1) is not selected as it is too
sensitive to global variations. Finer the scale, the
more sensitive it is to distortions such as quantiza-
tion noise. We choose i = 3.

2. Locations (x, y) in the image that are identified as
candidate feature points satisfy

Wi(x, y, θ) = max
(x′,y′)∈N(x,y)

|Wi(x
′, y′, θ)| (8)

where N(x,y) represents the local neighborhood of
(x, y) within which the search is conducted.

3. From the candidate points selected in step 2, qualify
a location as final feature point if

max
θ
Wi(x, y, θ) > T (9)

where T is a user-defined threshold.

————————————–

Figure 1: Feature detection method that preserves signifi-
cant image geometry feature points of an image.

Previous approaches [3, 7, 8] have used public-key en-
cryption methods on image features to arrive at a digital
signature. Such a signature would be very sensitive to small
perturbations in the feature points. The feature points de-
tected for perceptually similar images may not always be
identical but “close”. For example, a small angle rotation
would result in the original feature points shifted slightly
based on the rotation. More generally, we observe that
under perceptually insignificant distortions to the image,
the feature points are preserved in a “probabilistic” sense.
To maintain perceptual robustness, we quantize the fea-
ture vector based on the probability distribution of feature
points extracted from the image. In particular, we use the
normalized histogram of f as an estimate of its distribution.
The normalized histogram appears to be largely insensitive
to attacks that do not cause significant perceptual changes.

3. HASH ALGORITHMS

The hash function for image I is represented as H(I) and let
DH(·, ·) denote the normalized Hamming distance between
its arguments (binary strings).

3.1. Algorithm 1 – Deterministic

Mihcak et al. [12] observe that primary geometric features
of the image are largely invariant under small perturbations
to the image. They propose an iterative filtering scheme
that minimizes the presence of “geometrically weak compo-
nents” and enhances “geometrically strong components” by



means of region growing. We adapt the algorithm in [12] to
lock onto a set of feature-points that are largely preserved
in perceptually similar versions of the image. The stopping
criterion for our proposed iterative algorithm is achieving
a fixed point for the binary string obtained on quantizing
the vector of feature points f . The algorithm follows:

1. Get parameters MaxIter, ε and P , set count = 1

2. Use the feature detector in Fig. 1 to extract the length
P vector of feature points f

3. Quantize f in a probabilistic sense to obtain a binary
string b1

f

4. Perform order-statistics filtering. Let Ios = OS(I; p, q, r)
which is the 2-D order statistics filtering of the input
I. For a 2-D input X, Y = OS(X; p, q, r) where ∀i, j,
Y (i, j) is equal to the rth element of the sorted set
of X(i′, j′), where i′ ∈ {i− p, i− p+ 1, ..., i+ p} and
j′ ∈ {j − q, j − q + 1, ..., j + q}.

5. Perform low-pass linear shift invariant filtering on Ios

to obtain Ilp.

6. Repeat steps (2) and (3) with Ilp to obtain b2
f

7. If (count = maxIter) go to step 8.
else if DH(b1

f ,b
2
f ) < ε go to step 8.

else set I = Ilp and go to step 2.

8. Set H(I) = b2
f

Step 4 eliminates isolated significant components. Step 5
preserves the “geometrically strong” components by low-
pass filtering (which introduces blurred regions). The suc-
cess of the deterministic algorithm relies upon the self-
correcting nature of the iterative algorithm as well as the
robustness of the feature detector. The above iterative al-
gorithm is fairly general in that any feature detector that
extracts visually robust image features may be used.

3.2. Algorithm 2 – Randomized

Randomizing the hash output is desirable not only for se-
curity against inputs designed by an adversary (malicious
attacks) but also for scalability, i.e. the ability to work with
large data sets while keeping the collision probability for
distinct inputs in check. Randomness results from using
the secret key K to generate N random locations (row-
column pairs) in the image. A partitioning of an image into
N regions {Ri}N

i=1 is then obtained using k−means clus-
tering [17]. The random locations serve as initial guesses
for the cluster centers. Finally, feature points are extracted
from each randomly selected region (sub-image) and com-
bined to form the complete feature vector.

We employ k-means clustering to partition the image
for two major reasons. First, the clustering achieved by k-
means depends heavily on the initial choice of cluster cen-
ters [18]. Since the initial centers are generated randomly by
the secret key, this makes the partioning also random and
in general the same partioning cannot be achieved (with a
high probability) unless the secret key is available. Second,
the resulting clusters have few or no regions that are very
small. It is important to avoid very small regions since they

Attack Lena Bridge Peppers
JPEG, QF = 10 0.04 0.04 0.06
AWGN, σ = 20 0.04 0.03 0.02
Contrast enhancement 0.00 0.06 0.04
Gaussian smoothing 0.01 0.03 0.05
Median filter (3 × 3) 0.02 0.03 0.07
Scaling by 60% 0.02 0.04 0.05
Shearing by 5% 0.08 0.14 0.10
Rotation by 3o 0.13 0.15 0.15
Rotation by 5o 0.18 0.20 0.19
Cropping by 10% 0.12 0.13 0.15
Cropping by 20% 0.21 0.22 0.24

Table 1: Normalized Hamming distance between hash val-
ues of original and attacked (similar) images.

would not yield interesting and robust image features. As
long as most of the Ri are big enough the geometric robust-
ness properties of Algorithm 1 are retained in Algorithm 2.

4. RESULTS

We compare the hash values obtained from two different im-
ages for closeness (but not equality) in Hamming distance.
Let Isim represents the class of images such that Isim is
perceptually similar to I. Likewise, a perceptually distinct
image will be denoted by Idiff . Then, we require

DH(H(I),H(Isim)) < 0.2 (10)

DH(H(I),H(Idiff )) > 0.3 (11)

This is a reasonable approach as perceptual similarity is not
transitive. Perceptual similarity of a pair of objects A and
B and of another pair B and C does not imply the similar-
ity of A and C. However, modeling of perceptual similarity
by equality of hash values would lead to a transitive rela-
tionship. A similar approach was taken in [12].

Fig. 2 shows three perceptually similar images and the
extracted feature points at algorithm convergence. The
original bridge image is shown in Fig. 2 (a). Figs. 2(c) and
(e), respectively, are the image in (a) attacked by JPEG
compression with quality factor (QF) of 10 and additive
white Gaussian noise (AWGN) with σ = 20. The final fea-
ture points for the three images (Figs. 2(b), (d) and (f)) are
largely the same (or close). Table 1 tabulates the quantita-
tive deviation as the normalized Hamming distance between
the hash values of the original and manipulated images for
various attacks. The attacked images were generated us-
ing the Stirmark benchmark software [19]. The deviation
is less than 0.2 except for large rotation (greater than 5o)
and cropping (more than 20%). We also tested under
several content changing attacks including object insertion
and removal, addition of excessive noise, alteration of the
position of image elements, and alteration of a significant
image characteristic such as texture and structure. In all
cases, the detection was accurate. That is, the normal-
ized Hamming distance between the image and its attacked



(a) Original Image (b) Feature Points

(c) JPEG,QF=10 (d) Feature Points

(e) AWGN, σ = 20 (f) Feature Points

Figure 2: Original/attacked images with feature points at
algorithm convergence. Feature points overlaid on images

version was found to be greater than 0.3. The perceptual
significance of the hash is hence validated.

5. PERFORMANCE TRADE-OFFS

As the number of feature points P increases, the specifica-
tion of image characteristics becomes more precise and the
fragility to perceptually distinct inputs improves as well.
However, the class of perceptually similar inputs becomes
smaller. The parameter P facilitates a perceptual robust-
ness vs. fragility trade-off. P is in turn determined by the
size of the search neighborhood and the threshold parame-
ter T (e.g. a small T implies more feature points).

When the number of random partitions N is one, no
randomness is involved and algorithms 1 and 2 are the same.
If N is very large, then the random regions shrink to an ex-
tent that they do not contain significant chunks of geomet-
rically strong components and hence the resulting features
are not robust. The parameter N facilitates a randomness
vs. perceptual robustness trade-off.

The choice of algorithm parameters is governed largely

by the application. For image indexing, there is no moti-
vation to randomize (N = 1). Also in indexing, the hash
computation should be fast, whereas randomization as in
Algorithm 2 comes at the cost of partitioning the image
prior to feature extraction. For security applications, it may
be desirable to randomize as much as possible to minimize
the vulnerability against malicious attacks.
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