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Abstract— In this paper, we compare the capacities achieved
by space-time water-filling and spatial water-filling for MIMO
fading channels. Both the effects of fast fading and shadowing
are considered. It is found that for Rayleigh fast fading MIMO
channels, the spectral efficiency per antenna achieved by one-
dimensional spatial water-filling is close to two-dimensional
space-time water-filling. However, with log-normal shadowing,
space-time water-filling achieves significantly higher capacity
per antenna than spatial water-filling at low to moderate SNR
regimes. Furthermore, space-time water-filling has lower com-
putational complexity than spatial water-filling. It is also shown
that space-time water-filling requires a priori knowledge of the
channel gain distribution, and for Rayleigh channels with log-
normal shadowing, the spectral efficiency advantage over spatial
water-filling comes with an increased channel outage probability.

I. INTRODUCTION

MIMO communication systems exploit the degrees of free-
dom introduced by multiple transmit and receive antennas to
offer high spectral efficiency. In narrowband channels, when
channel state information is available at the transmitter and
instantaneous adaptation is possible, the capacity achieving
distribution is found by using the well-known water-filling
algorithm [1] [2]. With only average power constraints, a
two-dimensional water-filling in both the temporal and spatial
domains is required [3] [4]. By studying the empirical distribu-
tion of the eigenvalues of Gaussian random matrices [1], two-
dimensional water-filling for Rayleigh MIMO channels [3] [4]
can be transformed into one-dimensional water-filling for a
time-varying SISO channel [5]. Although the ergodic capacity
in MIMO Rayleigh fading channels is well understood, the
capacity in MIMO Rayleigh fading channels with shadowing
effects has not been evaluated. Furthermore, while [1]-[4] have
studied either spatial or space-time water-filling, the capacity
gain of space-time water-filling over spatial water-filling has
not been studied.

In this paper, we perform a comparison between space-
time water-filling and spatial water-filling for certain MIMO
fading channels. We consider the Rayleigh fading channel
as well as a mixed channel that includes both Rayleigh
fading and shadowing effects. It is shown that for Rayleigh
channels without shadowing, space-time water-filling gains
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little in capacity over spatial water-filling, while for Rayleigh
channels with shadowing, space-time water-filling achieves
higher spectral efficiency per antenna over spatial water-filling.
Space-time water-filling, however, improves the spectral effi-
ciency with a tradeoff of significantly increased channel outage
probability. In either case, space-time water-filling has lower
computational complexity than spatial water-filling.

II. SYSTEM MODEL

The symbolwise discrete-time input-output relationship of a
narrowband MIMO system can be simplified as

y = Hx + v (1)

where x and y are the transmitted and received symbol vector,
respectively; v is the additive white Gaussian noise vector,
with variance E[vv†] = σ2I, and (·)† denotes the operation of
matrix complex conjugate transpose; H is a MIMO channel
of size M ×N , where M and N are the numbers of antennas
at the receiver and transmitter; and hm,n denotes the channel
between transmitter antenna n and receiver antenna m. In rich-
scattering environments, when the antenna spacing is larger
than the coherence distance, hm,n can be modeled as i.i.d.
complex Gaussian random variables [1]. Such complex MIMO
channels are named Rayleigh fading channels. Other non-
physical and physical MIMO channel models can be found
in [6]. In this paper, we only consider MIMO systems with
equal numbers of transmit and receive antennas, i.e. M = N .

III. WATER-FILLING IN SPACE

Spatial water-filling for MIMO Rayleigh fading channels
was presented in [1]. Channel state information is assumed to
be available at the transmitter and power adaption is performed
with a total power constraint for each channel realization. The
capacity problem can be represented as

max
Q

log
∣∣∣∣I +

1
σ2

HQH†
∣∣∣∣ (2)

subject to tr(Q) ≤ P

where H is the MIMO channel; Q is the autocorrelation matrix
of the input vector x, defined as Q = E[xx†]; P is the
instantaneous power limit; and |A| denotes the determinant
of A.



Notice that
∣∣I + 1

σ2 HQH†∣∣ = ∣∣I + 1
σ2 QH†H

∣∣ and H†H can
be diagonalized as H†H = U†ΛU, where U is a unitary matrix,
Λ = diag{λ1, · · · , λM}, and λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0. It is
pointed out in [1] that the optimization in (2) can be carried out
over Q̃ = UQU† and the capacity-achieving Q̃ is a diagonal
matrix. Let Q̃ = diag{q1, q2, · · · , qM}, then the optimal value

for qi is qi =
(
Γ0 − σ2

λi

)+

, where σ2 is the noise variance;

a+ denotes max{0, a}; and Γ0 is solved iteratively to satisfy∑M
i=1 qi = P .

IV. SPACE-TIME WATER-FILLING

The water-filling algorithm for time-varying single-input-
single-output (SISO) channels is fully discussed in [5]. The
problem can be expressed as

max
p(η)

∫
η

log
(

1 +
p(η)η
σ2

)
h(η)dη (3)

subject to
∫
η

p(η)h(η)dη = P

where η is the channel gain; h(η) is the probability density
function of η in time domain; σ2 is the AWGN noise vari-
ance; and P is the average power limit. The optimal power
adaptation p(η) is

p(η) =

{
Γ(h)

0 − σ2

η if η > σ2

Γ
(h)
0

0 otherwise
(4)

where the value of Γ(h)
0 can be found by numerically solving

∞∫
σ2/Γ

(h)
0

(
Γ(h)

0 − σ2

η

)
h(η)dη = P . (5)

The problem of two-dimensional space-time water-filling
for Rayleigh MIMO channels was presented in [3] [4], and
can be formulated as

max
Q

EH

[
log
∣∣∣∣I +

1
σ2

HQH†
∣∣∣∣] (6)

subject to E [tr(Q)] ≤ P

where H and Q have the same meanings as in (2); P is
the average power constraint; and EH [·] denotes that the
expectation is carried over H. In the rest of the paper, we
will omit the random variable in the expectation notation for
simplicity and the random variable to which the expectation
is performed can be inferred from context.

Notice that

E

[
log
∣∣∣∣I +

1
σ2

HQH†
∣∣∣∣] = E

[
M∑

k=1

log
(

1 +
p(λk)λk

σ2

)]

= ME

[
log
(

1 +
p(λ)λ

σ2

)]
(7)

where λk is the kth unordered eigenvalue of H†H; λ denotes
any of them; and p(λ) denotes the power adaption as a function

of λ. Hence (6) can be transformed to a similar problem as in
(3) as following

max
p(λ)

M

∫
λ

log
(

1 +
p(λ)λ

σ2

)
f(λ)dλ (8)

subject to M

∫
λ

p(λ)f(λ)dλ = P

where f(λ) is the empirical eigenvalue probability density
function, which is given in [1]. The optimal power adaption

is p(λ) =
(
Γ(f)

0 − σ2

λ

)+

, where Γ(f)
0 is found numerically to

satisfy the average power constraint in (8).
The empirical eigenvalue distribution of H†H is available

in the literature [1] as

f(λ) =
1
M

M−1∑
i=0

L2
i (λ) (9)

where Lk(λ) = 1
k!e

λ dk

dλk

(
e−λλk

)
. Telatar derived (9) by

integrating out all other eigenvalues in the unordered joint
eigenvalue distribution of H†H [1], where H is a complex
Gaussian random matrix. In this paper, we provide an alter-
native approach to get the empirical eigenvalue distribution.

Our approach starts from the ordered joint eigenvalue dis-
tribution of H†H, which is given in [9] [1] as

fordered(λ1, λ2, · · · , λM ) = KMe−
∑

i
λi
∏
i<j

(λi−λj)2 (10)

where λ1 ≥ λ2 ≥ · · · ≥ λM and KM is a normalizing factor.
The empirical distribution is defined to be the probability

that an eigenvalue is smaller than a certain threshold z. Its
CDF can be expressed as

Fλ(z) = P (λ ≤ z)

=
M∑

k=1

k

M
P (k eigenvalues ≤ z)

=
M∑

k=1

k

M

∞∫
z

λ1∫
z

· · ·
λM−k−1∫

z

z∫
0

z∫
λM

· · ·
z∫

λM−k+2

KM ·

e−
∑

i
λi
∏
i<j

(λi − λj)2dλM−k+1dλM−k+2 · · · dλM

dλM−kdλM−k−1 · · · dλ1. (11)

Closed form result for (11) exists and symbolic software such
as Mathematica can help to perform the integration, followed
by differentiation to get the pdf f(λ). For example, when M =
2, we get f(λ) = e−λ

(
1
2λ2 − λ + 1

)
, which agrees with (9).

V. SPACE-TIME WATER-FILLING WITH SHADOWING

A typical wireless channel model can be decomposed into
three factors: pathloss, shadowing, and fast fading. Pathloss
describes the average received signal power. Shadowing mod-
els the effects of large objects in the far field. Fast fading
mainly results from the constructive and destructive waves
from objects that are wavelengths away from the receiver.



Since pathloss is relatively constant if the location of the
mobile doesn’t change much, the channel variation comes
mostly from shadowing and fast fading.

A Rayleigh MIMO channel with shadowing effects can be
modeled as

Hc =
√

sH (12)

where H is the Rayleigh MIMO channel, which captures
the characteristics of fast fading; s is a log-normal random
variable representing the shadowing effect; and Hc denotes the
composite channel. Notice that log-normal shadowing models
the channel power variation from objects on large spatial
scales, hence the square root of s is used in (12). Furthermore,
it is assumed that the shadowing value s equally effects all
elements of H, and s is assumed to be independent of H.

With the MIMO channel modeled as in (12), the ergodic
capacity can be expressed as

C = E [I(x; y|Hc)]

= E

[
log det

(
I +

1
σ2

HcQH†
c

)]
= E

[
log det

(
I +

s

σ2
HQH†

)]
. (13)

The space-time water-filling algorithm needs to use the effec-
tive channel gain, defined as t = sλ, to find the optimal power
adaptation.

Since 10 log10 s ∼ N (
0, ρ2

)
, by a simple change of

variables, the pdf of s can be written as

r(s) =
10

log 10
√

2πρ

1
s
e
− (10 log10 s)2

2ρ2 . (14)

Furthermore, s is independent of H, hence s is independent
of λ. The cdf of t can be calculated as

G(t) =

∞∫
0

t/s∫
0

r(s)f(λ)dλds. (15)

Differentiating G(t) with respect to t, we obtain the pdf of t,
which includes both large and small scale fading effects.

g(t) =
10

log 10
√

2πρ

∞∫
0

f

(
t

s

)
1
s2

e
− (10 log10 s)2

2ρ2 ds. (16)

With g(t) available, the optimal cutoff value Γ(g)
0 can be found

by numerically solving

M

∞∫
σ2/Γ

(g)
0

(
Γ(g)

0 − σ2

t

)
g(t)dt = P . (17)

and the ergodic capacity can be expressed as

E

[
log
∣∣∣∣I +

1
σ2

HcQH†
c

∣∣∣∣] = M

∞∫
σ2/Γ

(g)
0

log

(
Γ(g)

0 t

σ2

)
g(t)dt.

(18)
Fig. 1 shows the pdf of λ and t for a 2 × 2 MIMO

system with and without log-normal shadowing (ρ = 8). For
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Fig. 1. Part of the probability density functions of the effective channel gain
for 2× 2 Rayleigh MIMO channels with and without log-normal shadowing.

notational simplicity, we denote the pure Rayleigh fading case
as ρ = 0. For MIMO channels with shadowing, the distribution
of the effective channel gain t has a much heavier tail than the
distribution of λ. So larger spectral efficiency can be achieved
with g(t), because the likelihood of having good channels is
higher.

From (15) and (16), the calculation of g(t) requires the
empirical eigenvalue distribution f(λ). However, even for
medium-sized MIMO systems, e.g. M = 4 or 6, the calcu-
lation of f(λ) in (9) for H†H is computationally intensive,
and the resultant f(λ) is too complicated to handle in closed
form. Therefore, an approximation to f(λ) shall be utilized
to simplify the calculation of Γ(g)

0 . An interesting property
of Gaussian random matrices is that the distribution of λ/M
has a limit as the number of antennas increases [1]. In
other words, the empirical eigenvalue distribution f(λ) can
be approximated as

f(λ) ≈ 1
2π

√
4

λM
− 1

M2
λ ∈ (0, 4M) (19)

as M → ∞. Simulations show that this approximation holds
well even for medium-sized MIMO systems, e.g. M = 4 or
6. With (19), for Rayleigh fading channel with shadowing
variance ρ, Γ(g)

0 can be found by numerically solving

10M

(2π)(3/2)ρ log 10

∞∫
σ2/Γ

(g)
0

∞∫
t/4M

(
Γ(g)

0 − σ2

t

)
√

4s

tM
− 1

M2

1
s2

e
− (10 log10 s)2

2ρ2 dsdt = P . (20)

VI. SIMULATION RESULTS AND DISCUSSION

In this section, the achievable spectral efficiencies per
antenna of the following three cases are compared by Monte
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Fig. 2. Capacity of 2 × 2 MIMO channels.

TABLE I

CUTOFF VALUE Γ
(f)
0 FOR GAUSSIAN CHANNEL WITHOUT LOG-NORMAL

SHADOWING, AVERAGE POWER CONSTRAINT P = 1

SNR M = 2 M = 30

(1/σ2) (dB) Γ
(f)
0 P sim Γ

(f)
0 P sim

-5 2.0935 0.9998 0.1404 0.9995
0 1.2907 0.9998 0.0859 0.9999
5 0.9075 0.9999 0.0604 0.9993
10 0.7005 0.9999 0.0477 0.9980
15 0.5918 0.9999 0.0412 1.0000
20 0.5392 0.9998 0.0376 0.9979
25 0.5158 0.9999 0.0357 0.9989
30 0.5061 0.9999 0.0346 0.9975

Carlo simulations: (1) space-time water-filling; (2) water-
filling in space only; and (3) equal power distribution. In all
simulations, the total instantaneous or average power P is set
to be 1; the Rayleigh MIMO channel has variance of 1

2 for
both real and imaginary parts; and shadowing effect is log-
normally distributed with standard deviation of ρ = 8 [8].

Fig. 2 shows the spectral efficiency per antenna for a
2 × 2 MIMO system in Rayleigh channels with and without
shadowing. For Rayleigh channels without shadowing, spatial
water-filling achieves almost the same capacity as space-
time water-filling. For Rayleigh channels with shadowing,
the space-time water-filling algorithm achieves approximately
0.15 bits/s/Hz/antenna over spatial water-filling for low SNR,
and has a 1.7 dB SNR gain over equal power distribution at
spectral efficiency of 2 bits/s/Hz/antenna. We also simulated
for larger size MIMO systems such as M= 30. The capacity
per antenna for the 30 × 30 system is very close to those
in Fig. 2. Notice that the average channel power is increased
with the introduction of shadowing, but this does not effect
the comparison between space-time and spatial water-filling.
Tables I and II list the optimal cutoff thresholds for 2 × 2
and 30 × 30 Rayleigh channels with and without log-normal

TABLE II

CUTOFF VALUE Γ
(g)
0 FOR GAUSSIAN CHANNEL WITH LOG-NORMAL

SHADOWING, ρ = 8, AND AVERAGE POWER CONSTRAINT P = 1

SNR M = 2 M = 30

(1/σ2) (dB) Γ
(g)
0 P sim Γ

(g)
0 P sim

-5 1.8233 1.0000 0.1224 0.9993
0 1.2774 1.0005 0.0862 0.9995
5 0.9526 0.9999 0.0647 0.9995

10 0.7576 1.0001 0.0518 0.9992
15 0.6411 0.9999 0.0441 0.9994
20 0.5732 1.0000 0.0395 0.9984
25 0.5356 1.0001 0.0369 1.0006
30 0.5161 0.9999 0.0353 0.9993

shadowing at different SNRs. These cutoff values are obtained
from the numerical method NIntegrate in Mathematica 5.0. In
Tables I and II, the columns P sim show the average power
obtained in Monte Carlo simulations. If the cutoff value Γ0

is calculated exactly, then P sim shall equal P . For the 2 × 2
system, the exact empirical eigenvalue distribution in (9) is
used to calculate the cutoff value, while for the 30× 30 case,
the approximated empirical eigenvalue distribution in (19) is
utilized to simplify the calculation of Γ0. In either case, the
cutoff values are very accurate from the fact that the simulated
P sim has less than 0.25% relative error compared to P .

Fig. 3 shows the ergodic capacity for MIMO systems
of different sizes. The cutoff values are evaluated with the
approximated empirical eigenvalue distribution in (19), and
they are shown in Table III, along with the simulated average
power P sim. Again, P sim is close to P with relative error
less than 1.25%.

We also compare the main advantages and disadvantages
of space-time water-filling vs. spatial water-filling, which are
summarized in Table IV. Space-time water-filling has lower
computational complexity than spatial water-filling, because
for space-time water-filling, only the cutoff threshold needs
to be pre-computed, while for spatial water-filling, the opti-
mal power distribution needs to be found for each channel
realization. On the other hand, the two-dimensional algorithm
requires a priori knowledge of the channel eigenvalue dis-
tribution in order to calculate the optimal cutoff threshold.
Furthermore, the higher capacity achieved by two-dimensional
water-filling comes with the tradeoff of a larger channel outage
probability [3], which is defined as the probability that the
largest eigenvalue of H†H is smaller than σ2/Γ0. Fig. 4 shows
the channel outage probability for 2 × 2 Rayleigh channels
with and without shadowing, and 30 × 30 Rayleigh channels
with shadowing effects. The simulation is performed over
107 channel realizations. A general observation is that when
the number antennas increases, the channel outage probabil-
ity decreases. The outage probability for 30 × 30 Rayleigh
channels is zero from simulations and hence is not shown
in Fig. 4. Another observation is that for Rayleigh channels
with log-normal shadowing, the outage probability increases
significantly compared to the pure Rayleigh fading case. The
reason is that shadowing changes much slower than fast fading
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and it effects all eigenvalues of H†H. Hence the distribution
of the shadowing variable dominates the outage probability.
Due to the high channel outage probability, the transmission
of space-time water-filling is similar to block transmission.
For spatial water-filling, the transmission mode is continuous
since for every channel realization, the transmitter always has
power to transmit.

VII. CONCLUSION

In this paper, we compare the capacity performance of
two-dimensional space-time water-filling vs. one-dimensional
spatial water-filling. Numerical results illustrate that while the
capacity difference is negligible for Rayleigh fading channels,
space-time water-filling has an advantage when large-scale
fading is taken into account. In all cases it is simpler to
compute the solution for space-time water-filling because it

TABLE III

CUTOFF VALUE FOR M=4,6,8,10. AVERAGE POWER CONSTRAINT IS

P = 1.

M ρ SNR=−5 dB SNR=5 dB SNR=15 dB
Γ0 P sim Γ0 P sim Γ0 P sim

4 0 1.0532 1.0011 0.4532 1.0049 0.3090 1.0070
8 0.9185 1.0020 0.4854 1.0055 0.3310 1.0124

6 0 0.7021 0.9997 0.3021 0.9999 0.2060 0.9998
8 0.6123 1.0010 0.3236 1.0019 0.2206 1.0053

8 0 0.5266 0.9997 0.2266 1.0008 0.1545 1.0008
8 0.4592 1.0002 0.2427 1.0011 1655 1.0030

10 0 0.4212 0.9993 0.1812 0.9995 0.1236 1.0014
8 0.3674 1.0004 0.1941 1.0001 0.1324 1.0018

TABLE IV

COMPARISON OF SPACE-TIME WATER-FILLING AND SPATIAL

WATER-FILLING

space-time water-filling spatial water-filling

spectral efficiency optimal suboptimal
complexity low high

eigenvalue distribution required not required
transmission mode block continuous

avoids the cutoff value calculation for each channel realization,
but it requires knowledge of the channel distribution. The
spectral efficiency gain of space-time water-filling over spatial
water-filling is also shown to be associated with a higher
channel outage probability. Hence space-time water-filling is
more suitable for burst mode transmission when the channel
gain distribution has a heavy tail, and spatial water-filling is
preferred for continuous transmission when the channel gain
distribution is close to Rayleigh or is unknown.
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