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Abstract— OFDM channel prediction algorithms have been
proposed to combat feedback delay in adaptive OFDM systems.
However, no simple closed-form expression that relates prediction
mean-square error (MSE) with the design parameters in OFDM
channel prediction has been reported in the literature. This
paper attempts to fill that gap by deriving simple closed-
form asymptotic lower bounds of the MSE for OFDM channel
prediction in deterministic doubly-selective fading channels. The
bounds relate the best-achievable MSE with the predictor design
parameters in a simple manner, thus providing important insight
into the design of OFDM channel predictors. We compare the
bounds to the deterministic Cramer-Rao bound for parameters
consistent with IEEE 802.16e, and show that the asymptotic
bounds are reasonably tight for practical scenarios.

I. I NTRODUCTION

Adaptive OFDM systems overcome the limitation of con-
ventional OFDM by allowing the transmitter to vary the power,
modulation, and code rate on each subcarrier depending on the
current channel state information (CSI) [1]. This requiresthe
transmitter to have knowledge of the CSI, which can be ob-
tained through feedback from the receiver’s channel estimates,
or through its own estimates in a time division duplex (TDD)
reciprocal channel. In high mobility environments, in which
the Doppler frequency is high and the channel changes rapidly,
the CSI used by the transmitter would be outdated due to the
processing and feedback delays, thereby causing significant
performance degradation [2].

One possible solution to the feedback delay problem is the
concept ofchannel prediction, whereby previous estimates of
the time-varying channel is used to predict the fading valueat a
future time instant. In recent years, OFDM channel prediction
algorithms [3][4][5][6] have been proposed to combat the feed-
back delay problem for closed-loop link adaptation in OFDM
systems. In the design of these channel prediction algorithms,
the ability to compute upper bounds on the performance (or
lower bounds on the error) of channel prediction as a function
of these parameters is a very useful tool for the systems
engineer to make appropriate design decisions. Furthermore,
these bounds can also be used as a benchmark for all the
different algorithms that have been proposed in the literature.

In [7], approximate mean-square error (MSE) bounds have
been derived using a first-order Taylor approximation of the
channel prediction MSE expression for a parametric time- and
frequency-selective channel model. The Cramer-Rao bound

(CRB) is then used to derive a lower bound on this MSE,
and a simple approximate expression when the prediction
length is large was derived. The effect of the number of time-
domain pilot blocks on the MSE was investigated using these
expressions. However, the effect of the pilot subcarriers in the
frequency domain, and the pilot spacings in both time and
frequency dimensions, is not apparent in their expressions.

In this paper, we extend the work of [7] by considering the
channel estimation and prediction problem as a 2-dimensional
frequency estimation problem. This approach is attractivein
OFDM systems where pilot subcarriers in both the time and
frequency domains are used. By using a two-dimensional
parameterization, we are able to assess the prediction per-
formance for a particular subcarrier and prediction lengthon
4 parameters – the number of pilots in the time/frequency
domains (Nt andNf ), and their corresponding pilot spacings
(Dt and Df ). Also in contrast to [7], we use the invariance
property of the maximum likelihood estimator (MLE)1 to
derive a simple expression for the CRB on the prediction error,
without explicitly resorting to first-order Taylor approxima-
tions to the MSE. Interestingly, the resulting expression using
either method is identical, thus confirming the result of the
previous work in a more rigorous manner.

Although useful in its own right, conventional CRB analysis
requires Monte-Carlo generation of channel realizations to
obtain results independent of a particular channel. And with
the objective of investigating the effect of various channel
prediction parameter configurations, this requires performing
a Monte-carlo simulation for each parameter configuration.
This is a heavy computational burden even for the case of
offline analysis, especially whenNt and Nf are large. This
motivated us to derive a simple closed-form expression for
the lower bound on prediction MSE in the asymptotic case of
largeNt andNf . This expression relates the lowest-achievable
MSE for an unbiased estimator with the predictor design
parameters in a simple manner, which is independent of any
particular channel realization. This provides important insight
into the design of OFDM channel predictors, without the
need for expensive Monte-Carlo numerical calculations. Itis

1The invariance property for ML allows us to construct the MLEfor a
function of parametersθ, i.e. f = F (θ), by computing the MLE of the
parameters and using it in the function, i.e.f̂ = F (θ̂) [8, Ch. 6.3].



also shown through numerical examples that the asymptotic
expression is reasonably tight for typical channel parameters
with moderate values forNt and Nf , further motivating the
use of these simple expressions.

II. SYSTEM MODEL

A. Time- and Frequency-Selective Wireless Channel

The continuous-time impulse response of a time- and
frequency-selective wireless channel can be modeled as the
superposition of a discrete number of resolvable paths [9]

hc(t, η) =

L−1∑

p=0

γp(t)δ(η − ηp(t)) (1)

whereηp(t) andγp(t) are the time-varying delay and complex
gain corresponding to thepth path, andL is the number of
propagation paths.

We assume that the wireless propagation environment has
reflectors and scatterers that are far enough from the receiver,
such that the waves incident on the receiving antenna areplane
waves having a common angle of incidence. We also assume
that the receiver travels in a linear motion and with constant
velocity, such that the Doppler frequency is time independent.2

These assumptions allow us to expressγp(t) to be fitted by a
linear combination of complex sinusoidal rays

γp(t) =

Mp−1∑

r=0

αr,pe
jνr,pej2πξr,pt (2)

where Mp is the number of rays contributing to thepth
path, αr,p is the amplitude,νr,p is the phase, andξr,p is
the Doppler frequency, respectively, for therth ray in thepth
path. A similar model has been used by various researchers
for wireless channel characterization and prediction [7] [10]
[11].

Substituting (2) into (1), combining indices, and taking its
Fourier transform, we get the frequency response of the time-
varying channel as

Hc(t, f) =

M∑

i=1

αie
jνiej2π(ξit−ηif) (3)

where M =
L−1∑
p=0

Mp is the total number of complex sinu-

soidal rays, and each ray is characterized by the quadruplet
{αi, νi, ξi, ηi}. We assume that no two rays share the same
pair of time-delay and Doppler frequency values{ξi, ηi} (oth-
erwise they can be combined to form one ray), but different
rays may share the same delay or Doppler frequency. Since
practical values ofξi andηi are bounded, i.e.0 ≤ ξi < ξmax

and0 ≤ ηi < ηmax, (3) has finite support in both Doppler and
delay domains. Assuming that the OFDM system with symbol
period Tsym and subcarrier spacing∆f has proper cyclic
extension and sample timing, the sampled channel frequency

2These assumptions are valid in outdoor propagation scenarios, e.g mobile
cellular environments; and in considering small time windows of interest, i.e.
a few wavelengths.

response at thekth tone of thenth OFDM block can be
expressed as a linear combination of 2-dimensional complex
sinusoidal rays

H(n, k) , Hc(nTsym, k∆f)

=

M−1∑

i=0

αie
jνiej2π(fin−τik)

(4)

wherefi = ξiTsym is the normalized Doppler frequency in
radians, andτi = ηi∆f is the normalized frequency shift due
to the time delay.

B. OFDM Baseband Model

We assume an OFDM system where the cyclic-prefix time
Tcp is greater than the maximum delay spread of the channel
τmax, the timing and carrier synchronization is perfect, and
the used subcarriers are within the flat region of the frequency
response of both transmit and receiver pulse-shaping filters,
such that the received signal at thekth subcarrier of thenth
symbol can be written as

Y (n, k) = H(n, k)X(n, k) + W (n, k)

− Nused/2 ≤ k ≤ Nused/2, k 6= 0
(5)

whereW (n, k) is a circular-symmetric complex additive white
Gaussian noise (AWGN) with varianceσ2.

Furthermore, we assume that there areNf equally spaced
pilot subcarriers in every OFDM symbol inserted within the
Nused used subcarriers. LetDf = ⌊Nused/Nf⌋ denote the
frequency spacing in terms of the number of subcarriers
between two adjacent pilot subcarriers, where

Df ≤ 1/(∆fτmax) (6)

to avoid aliasing in the frequency domain. We also letK ,

{k0, . . . , kNf−1} denote the set of pilot subcarrier indices,
where

kq =

(
Nf

2
− q

)
Df , q = 0, . . . , Nf − 1 (7)

We also assume that a block ofNt current and previous
OFDM symbols (which we call pilot symbols) equally spaced
in time are available for the channel prediction algorithm.Let
Dt denote the time spacing in terms of the number of OFDM
symbols between pilot symbols, and where

Dt ≤ 1/(2Tsymfmax) (8)

in order to avoid aliasing in the time domain. We also let
N , {n0, . . . , nNt−1} denote the set of pilot symbol indices,
where

nl = lDt, l = 0, . . . , Nt − 1 (9)

Using theseNt × Nf pilot subcarriers, we can perform a
least-squares estimate of the channel at the pilot locations
using the received signalY (nl, kq) and the known pilot
symbolsX(nl, kq), given as

ĤLS(l, q) =

M−1∑

i=0

αie
jφiej(ωil+ϕiq) + W̃ (l, q), (10)

l = 0, . . . , Nt − 1 q = 0, . . . , Nf − 1



where

φi = νi − 2πτiDf

Nf − 1

2
ωi = 2πfiDt

ϕi = 2πτiDf

The basic premise in OFDM channel prediction is to simply
use the least squares estimates of the channel (10) to in turn
estimate the parameters in the channel model, i.e.αi, φi, ωi,
andϕi. Channel prediction is then performed through simply
extrapolating this model. Note that this idea has been used by
several researchers [12] [11], albeit for narrowband, flat-fading
channels. In the following section, we derive bounds on the
MSE using this approach to OFDM channel prediction.

III. PREDICTION MEAN-SQUARE ERROR BOUNDS

Observe that (10) is in the standard form of a two-
dimensional complex sum-of-sinusoids in additive white Gaus-
sian noise. Estimating the parameters of this model is a
classical problem, and is very well studied in the radar, sonar
imaging, and other array signal processing literature [13].
Hence, we can use classical results on the CRB for 2-D
sinusoidal estimation to derive the CRB for OFDM channel
prediction.

A. OFDM Channel Prediction CRB

Let

θ = [θT
0 , . . . , θT

M−1]
T (11)

with

θi = [αi, φi, ωi, ϕi]
T (12)

denote the4M -length vector of channel parameters which we
estimate from (10).

Let us rewrite the physical channel model (4) in terms of
the parameters we estimate, i.e.

H(n, k, θ) =

M−1∑

i=0

Hi(n, k, θi) (13)

with

Hi(n, k, θi) = αie
j
(

φi+ϕi

Nf−1

2

)

e
j
(

ωi
Dt

n−
ϕi
Df

k
)

(14)

Note that the dependence of the channel response on the
parameter vectors (11) is made explicit in our notation.

Since our channel model is a continuous function of the
unknown parameters, by the invariance principle of the maxi-
mum likelihood estimate, we can bound the prediction mean-
square error using the Cramér-Rao lower bound for function
of parameters [8, Ch. 6.4], i.e.

e(n, k) = E

{∣∣∣H(n, k, θ)− H(n, k, θ̂)
∣∣∣
2
}

≥
∂H(n, k, θ)

∂θ

H

I
−1
2D(θ)

∂H(n, k, θ)

∂θ

(15)

where

∂H(n, k, θ)

∂θ
=




∂H1(n,k,θ1)
∂θ1

...
∂HM−1(n,k,θM−1)

∂θM−1


 (16)

with

∂Hi(n, k, θi)

∂θi

= Hi(n, k, θi)




1
αi

j
j n

Dt

−j k−k̄
Df


 (17)

where k̄ =
(

Nf−1
2

)
Df and I

−1
2D(θ) is the well-known

Cramér-Rao bound matrix for 2-dimensional sinusoidal pa-
rameter estimation, which can be found in [14, Appendix A].
An interesting point to note is that [7] and [11] came up with a
similar MSE bound as (15), using a different and more tedious
approach (first-order Taylor expansion for the MSE function).
Thus, using the invariance principle, we were able to verify
their result using a simpler approach.

B. Asymptotic CRB

Although the bound (15) can be used to study the effects of
various parameters on the prediction MSE, its expression isnot
readily interpretable. Furthermore, since the bound depends
on the actual parameter vectorθ, Monte-Carlo simulations
that generate realizations of this parameter vector assuming
a certain probability distribution is required to assess the
performance. And with the objective of investigating the effect
of various channel prediction parameter configurations, this
requires performing a Monte-carlo simulation for each pa-
rameter configuration. Note that approximately8M2NtNf +
O((4M)3) operations are required to compute the CRB for
each channel realization. This is a heavy computational burden
even for the case of offline analysis, specially whenM , Nt,
andNf are large. This motivated us to derive a simple closed-
form expression for the lower bound on prediction MSE in the
asymptotic case of largeNt andNf .

Thus, we consider the asymptotic MSE given as

ǫ̃(n, k) ≥ lim
min(Nt,Nf )→∞

ǫ(n, k)

=
∂H(n, k, θ)

∂θ

H

Ĩ
−1
2D

∂H(n, k, θ)

∂θ

(18)

where

Ĩ
−1
2D =




K1 0 · · · 0

0 K2 · · · 0

...
...

. . .
...

0 0 · · · KM


 (19)

is the block diagonal asymptotic CRB for 2-D superimposed
exponential signals, with diagonal elements given by [15]

Ki =




σ2

2NtNf
0 0 0

0 7σ2

2α2

i NtNf

−3σ2

α2

i N2

t Nf

−3σ2

α2

i NtN
2

f

0 −3σ2

α2

i N2

t Nf

6σ2

α2

i N3

t Nf
0

0 −3σ2

α2

i NtN
2

f

0 6σ2

α2

i NtN
3

f




(20)



After further simplification, we have

ǫ̃(n, k) ≥ σ2M

(
4

NtNf

−
6n

N2
t NfDt

+
6n2

N3
t NfD2

t

+
6

(
k − k̄

)

NtN2
f Df

+
6

(
k − k̄

)2

NtN3
f D2

f

) (21)

Note that this bound is tightest whenNt and Nf are large,
or equivalently the spacing of the frequencies are much larger
than the resolution limit, i.e.|τi−τj | ≫ 1/Nf and|fi−fj| ≫
1/Nt. Note also that this bound is actually achievable by the
maximum likelihood method [15] and nonlinear-least squares
method [16] in the large sample limit.

Using this simple expression for the lower bound on MSE,
we could easily deduce the impact of the various parameters
on the MSE, e.g.

• The bound increases linearly with increasing noise vari-
anceσ2 and number of 2-D sinusoidal raysM . This is
intuitively satisfying, and agrees with previous results that
dense multipath channel environments, i.e.M large, are
the hardest to predict [11].

• The contribution to the overall MSE from the error
variances corresponding to the estimate of frequenciesωi

and ϕi grow quadratically withn and |k|, emphasizing
the importance of estimating these accurately.

• In general,Nt andNf and the downsampling factorsDt

andDf should be chosen as large as possible to decrease
the MSE bound, but are of course subject to limitations
imposed by other system consideration like complexity,
training overhead, validity of the linear model, etc.

IV. N UMERICAL RESULTS

The purpose of this section is to study the effect of the
various parameters on the OFDM prediction MSE bounds
using numerical evaluation on a computer. In order to be as
concrete and as realistic as possible, we provide numerical
results for an outdoor mobile OFDM system based on the
IEEE 802.16e mobile broadband wireless access standard [17],
whose parameters are given in Table I.

We consider a wireless channel based on the ITU Vehicular
A [18] power delay profile, which is a sparse multipath model
with 6 taps, each tap having Clarke’s classical U-shaped
spectrum [9]. We assume that each path is composed of 16
complex sinusoidal rays, whose amplitude, phase, and Doppler
frequency parameters are generated using the modified Jake’s
simulation model [19].

TABLE I

SIMULATION PARAMETERS

Parameter Value
Bandwidth (B) 5 MHz

Sampling Frequency (fs) 5.712 Ms/s
Carrier Frequency (fc) 2.4 GHz

Mobile Velocity (v) 75 km/hr
Maximum Doppler Frequency (fmax) 166.67 Hz

Nfft 512
Nused 426

Using the above channel parameters, the downsampling
factors should be chosen asDf ≤ 35 (6) andDt ≤ 29 (8)
to avoid aliasing in both domains. We also require the pilot
subcarriers in the frequency domain to be within the used
subcarriersNfDf ≤ Nused = 426. The restriction onNtDt

however, requires more knowledge on the exact scattering
environment, since this value should be confined to the interval
over which the linear approximation (2) is valid. In [20], a
rough approximation to this interval based on the accumulated
phase error in the sinusoidal model is given as

T =

√
λr

3v2
(22)

whereλ is the wavelength,r is the distance of the mobile to
the closest scatterer, andv is the mobile velocity. We estimate
the distance of the scatter asr = τrmsc where τrms is the
root-mean-square delay spread [9], andc = 3 × 108 m/s is
the speed of light. Using these approximations, the interval
over which the channel model is valid is approximately17λ
or 1024 OFDM symbols. Thus, we requireNtDt +n ≤ 1024,
wheren is the prediction length.

Figure 1 shows the MSE bounds for subcarrierk = Nused/2
and prediction lengthn = Dt versus the number of pilots used
in time (Nt) and frequency (Nf ) domains. The upper surface
is the CRB, and the lower surface is the Asymptotic CRB.
We setNtDt = 1024 andNfDf = 426 to satisfy parameter
restrictions, relaxing the integer requirement onDt and Df .
The MSE clearly decreases as we increase bothNt andNf .
For values ofNt < 40 and for values ofNf < 10, the surface
is not plotted since the Fisher information matrix in this case
is singular. This is because we have4M = 4 × 6× 16 = 384
parameters to estimate, requiringNtNf > 384 in order for the
problem to be statistically well-posed. Furthermore, notethat
for reasonable values ofNt andNf , the asymptotic Cramer-
Rao bound is close to the CRB, and the two bounds become
closer as we increaseNt andNf as expected.

Figure 2 shows the MSE bounds for all the used subcarriers
versus theDt, where the prediction lengthn = 60 (≈ 1λ), and
Nt = 50, Nf = 42, Df = 10. Once again, the upper surface is
the CRB, and the lower surface is the asymptotic CRB. Note
that increasingDt while holdingNt fixed decreases the MSE
as expected. This is an important concept since increasingDt

does not cost extra in terms of computations, and is thus a
good tool to improve MSE performance without increasing
complexity. The asymptotic CRB is also tight in this case.

Figure 3 shows the MSE bounds for all subcarriers versus
prediction length expressed in wavelengths, where the upper
and lower surfaces correspond to the CRB and asymptotic
CRB respectively. We setNt = 100, Dt = 19, Nf = 141, and
Df = 3. These parameters coincide with the 2 ms frame size
for IEEE 802.16e, and assuming that we perform an estimate
in every preamble of the frame which has 141 pilots spaced
3 subcarriers apart. Note the quadratic nature of the MSE
versus subcarrier index, showing that the edge subcarriershave
the highest prediction MSE. This can be thought of as an
alternative explanation for the so callededge effect in OFDM
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Fig. 1. MSE bounds for subcarrierk = Nused/2 and prediction length
n = Dt versus the number of pilots used in time (Nt) and frequency (Nf )
domains. The upper surface is the Cramer-Rao bound, and the lower surface
is the asymptotic CRB. We setNtDt = 1024 andNf Df = 426 to satisfy
parameter restrictions, relaxing the integer requirementon Dt andDf .
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Fig. 2. MSE bounds for all subcarriers for variousDt, for a prediction
length n = 60 (≈ 1λ) and Nt = 100, Nf = 42, Df = 10. The upper
surface is the CRB, and the lower surface is the Asymptotic CRB.

channel estimation. We also note the quadratic increase of the
MSE bound with prediction length.
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