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Abstract— This paper studies the codebook design problem
for noncoherent multiple input multiple output (MIMO) com-
munications. Each codeword in the codebook is considered to be
a point in a Grassmann manifold. In this paper, the codebook
design is formulated as an inverse eigenvalue problem. A new
algorithm using reflection matrices is proposed to obtain the
optimal codebook for noncoherent block fading channels where
the channel state information (CSI) is unknown at both the
receiver and transmitter. The key contribution of this paper is
that our algorithm is able to construct an optimal codebook via
a sequence of reflection matrices.

I. INTRODUCTION

Multiple antennas at the transmitter and receiver have been
shown to yield higher data rates in wireless communications
systems. In these multiple-input multiple-output (MIMO) ap-
proaches, reliable knowledge of channel state information
(CSI) plays an vital role in achieving the higher data rates.
CSI can be used in precoding at the transmitter or (space-
time) equalization in the receiver.

For slowly varying channels, CSI can be estimated in the
receiver using training data, or in the transmitter through
reciprocity or feedback from the receiver. If the channel varies
rapidly or the number of antennas is very large, then the
receiver may not have enough time to reliably estimate the
CSI before the CSI has significantly changed. In this case, one
solution is to jointly estimate and predict the CSI. Another
solution is to design the transmitter and receiver without
assuming knowledge of the CSI. The latter is the approach
taken in this paper.

When the CSI is not known at either the transmitter or re-
ceiver, the communication system is noncoherent. The choice
of codebook used in the transmitter and receiver is critical
for signal detection at the receiver. With a certain detection
criterion, the receiver chooses one codeword from the code-
book as the decoded transmitted signal. This paper proposes
a codebook design via a finite sequence of reflection matrices
for noncoherent communication with multiple transmit and
receive antennas. We compare our proposed method with
previous methods in terms of the computational complexity
to create the codebook and the computational complexity to
decode received signals.

A noncoherent block fading model in [1] is used in this
paper. This model assumes that the propagation coefficients

Algorithm Searching complexity Notes

DFT [4] O(2RTMt )
Coherent codes [5] O(2RT (T − Mt))
PSK [6] O(2RT Mt) T = 2Mt

Orthogonal matrices [6] O(2RT log2 Mt) T = 2Mt, Mt ∈
{1, 2, 4, 8}

Training [7] O(2RT T )

TABLE I

NONCOHERENT CODEBOOK DESIGN FOR MIMO COMMUNICATIONS. R:

TRANSMIT DATA RATE IN UNITS OF BITS/SYMBOL PERIOD. T : COHERENCE

TIME OF THE CHANNEL IN UNITS OF SYMBOL PERIODS. Mt: NUMBER OF

TRANSMIT ANTENNAS.

between transmit and receive antennas are statistically in-
dependent and unknown. The Grassmann manifold and its
application in noncoherent communications was exploited in
[2]. A design criterion for space-time unitary codebooks have
been proposed in [3]. This design criterion requires that
rows of each codeword are orthogonal if each codeword is
represented by a matrix. The codebook design for noncoherent
MIMO communications employs this criterion. The previous
methods as well as our proposed algorithm all comply with
this criterion.

A simple systematic code construction by the discrete
Fourier transform (DFT) method was proposed in [4]. A
method to use existing coherent codes to design noncoherent
codewords was proposed in [5]. Phase-shift keying (PSK) con-
stellations were used to construct the noncoherent codebook in
[6]. Another method in [6] to design the noncoherent codebook
was based on orthogonal matrices. There is a training method
to design the noncoherent codebook in [7].

We consider the search complexity to obtain an entire
codebook, i.e. how many steps we must take to find all
codewords. We compare these methods in Table I. R is the
transmit data rate in units of bits/symbol period, T is the
coherence time of the channel in units of symbol periods, M t

is the number of transmit antennas and Mr is the number
of receive antennas. Here, T ≥ 2Mt as explained in Section
II. As seen in Table I, “DFT” method needs an exhaustive
search. The “PSK” and “Orthogonal matrices” methods have
the second lowest and lowest search complexity, respectively



but limit values of T and Mt. This motivates us to propose
a design method that has low search complexity but supports
arbitrary numbers of transmit antennas and channel coherence
time.

Two numerical algorithms using the plane rotation matrices
on the inverse eigenvalue problem in matrix analysis were
presented in [8]. They presented pure math algorithms on
matrix analysis and did not explicity solve the noncoherent
MIMO codebook design problem. We notice that two rotation
operations with rotating angle θ are equivalent to one reflection
operation with reflecting angle 2θ. Thus, this motivates us
to make use of reflection operations to solve the inverse
eigenvalue problem.

In this paper, we formulate the codebook design for non-
coherent MIMO communications as an inverse eigenvalue
problem. We propose an algorithm using the reflection ma-
trices to solve the corresponding inverse eigenvalue problem.
The algorithm reduces the search complexity compared to
other algorithms with arbitrary numbers of transmitter anten-
nas and channel coherence time. We analyze and compare
the searching and decoding computational complexity among
these different algorithms, including our algorithm, in Section
IV.

The outline of the paper is given as follows. In Section
II, the necessary background and definitions are provided.
Section III introduces the necessary theorem and presents the
algorithm. In Section IV, the simulation results are provided.
We conclude and suggest the future work in Section V.

II. BACKGROUND

Throughout this paper, we denote (.)H as the conjugate
transpose of a matrix; ‖.‖F as the Frobenius norm of the
matrix; CT as a T-dimensional complex vector; and CM×T as
an M × T complex matrix.

A. System Model

We assume the system has Mt transmit and Mr receive
antennas. We also assume the Mr × Mt MIMO channel
matrix remains constant for T consecutive symbol periods,
and changes to another independent realization in the next
T symbol periods, where T is denoted as the coherence time
of the channel. Within the coherence time, the system model
is

Y = HX + W (1)

where X ∈ CMt×T and Y ∈ CMr×T. H ∈ CMr×Mt is
the channel matrix and the entries of W ∈ CMr×T are
i.i.d. Additive White Gaussian Noise(AWGN) is distributed
according to CN (0, N0).

B. Grassmann Manifold

In [2], the geometric of the Stiefel and Grassmann mani-
folds are applied for noncoherent communications. The Stiefel
manifold S(T,M) is the set of all M-dimensional subspaces
in a T-dimensional space. We present one element, an M-
dimensional subspace in S(T,M), as an M × T matrix. Two
elements in S(T,M) are equivalent if their rows span the same

subspace. We classify all elements of S(T,M) into a same one
class if they are equivalent.

The Grassmann manifold G(T,M) is defined as the set of
all M-dimensional classes in S(T,M). Thus, any one point in
G(T,M) represents a class of M×T unitary matrices. An Mt×T
transmitted block X is represented as the product of Xg, a point
in G(T, Mt) spanned by the rows of X, with a Mt×Mt matrix
Cx [2], i.e. X = CxXg. The transformation X → (Cx, Xg) is a
change of coordinates CMt×T → CMt×Mt × G(T, Mt). When
the signal to noise ratio (SNR) is high, it has been shown
that the channel matrix H only changes Cx and keeps Xg

fixed in noncoherent communications [2]. Thus, codewords
can be regarded as points in G(T, Mt) [2]. Since G(T, Mt)
and G(T, T − Mt) are complementary, we can assume that
Mt ≤ T

2 .
If the distance measure between matrices P and Q is

differentiable everywhere, then it gives structure to an op-
timization problem or adaptive formulation that uses it. A
relevant distance measure on a Grassmann manifold is the
chordal distance between P and Q in [9] is given by

dc(P, Q) =

√√√√ Mt∑
i=0

sin2 θi. (2)

θi, for i = 1, .., M where 0 ≤ θi ≤ π
2 , is the principal angles

between two points P and Q in G(T, Mt).
The square of chordal distance is differentiable everywhere.

In [9], it has been also shown that the chordal distance can be
expressed as

dc(P, Q) =

√
Mt −

∥∥∥PQH
∥∥∥2

F
. (3)

The computational complexity in (3) is dominated by the
matrix product PQH , which is relatively simple to compute.

C. Codebook Model

A codebook with N codewords on Grassmann manifold is
defined as

S = {Xi, i = 1, 2, ..., N} (4)

The codeword Xi ∈ CMt×T is a point in G(T, Mt). To achieve
low pairwise error probability in [10], any two distinct X i and
Xj should be as far apart as possible. This indicates that the
minimum distance should be as large as possible. Thus, an
optimal codebook is defined as

S = arg max
S⊆G(T,Mt)

{min dc(Xi, Xj)} (5)

= arg min
S⊆G(T,Mt)

{
max

∥∥XiXH
j

∥∥2

F

}
(6)

where i �= j and 1 ≤ i, j ≤ N.

D. Gram Matrix

A Gram matrix denoted by G for a codebook S in (4) is
defined as

Xs =
[

XH
1 XH

2 · · · XH
N

]H
(7)

G = XsXH
s (8)



where Xs is the MtN × T matrix formed by stacking all
elements in the codebook. With (8), G is an MtN × MtN
matrix containing N2 block matrices. Each block matrix in G
is denoted as Gi,j = XiX

H
j . Notice that the rank of G is T.

Since any Xi, 1 ≤ i ≤ N is a unitary matrix, Gi,i is an Mt×Mt

matrix with identical diagonal elements, and the trace of G
equals MtN . Further, G is a Hermitian matrix.

E. Total Squared Correlation

To find a codebook with the maximum minimum distance
between two different codewords, we define the Total Squared
Correlation (TSC) of a matrix Xs in (7) which is defined as

TSC(Xs) =
∥∥XsXH

s

∥∥2

F
= ‖G‖2

F = MtN + 2
∑
i�=j

∥∥XiXH
j

∥∥2

F

(9)
Thus, one way to minimize the maximum value of∥∥XiXH

j

∥∥2

F
,where i �= j and 1 ≤ i, j ≤ N is to minimize

TSC(Xs). The codebook design now is reduced to the design
of a Gram Matrix G such that TSC(Xs) is minimized. Notice
that the rank of Xs is T. The T non-zero eigenvalues of G are
denoted as λ1, λ2, .., λT. Assuming that the total transmission
power P for the entire codebook is fixed, we have

P =
T∑

i=1

λi. (10)

On the other hand, we assume that each codeword is equally
likely and each single dimension of each codeword is allocated
with the same power p. The power of each codeword is equal
to pMt since each codeword has Mt dimensions. The total
transmission power of the entire codebook

P = Trace {G} = pMtN. (11)

Using (9), (10) and (11), we write

TSC(Xs) =
∥∥XsXH

s

∥∥2

F
(12)

=
T∑

i=1

λ2
i (13)

=
T∑

i=1

(λi − P

T
)2 +

2P 2

T
− P 2

T2 (14)

≥ 2P 2

T
− P 2

T2 (15)

The equality holds in the last inequality when λi = P
T for

i = 1, ..., T. Therefore, the Gram matrix G for the optimal
codebook should have T identical non-zero eigenvalues, which
are all equal to P

T . Let λ denote the vector containing all the
eigenvalues of G in ascending order, i.e.

λ =

⎡
⎢⎣ 0 0 · · · 0︸ ︷︷ ︸

MtN−T

P
T

P
T · · · P

T︸ ︷︷ ︸
T

⎤
⎥⎦ . (16)

Meanwhile, notice that G contains N diagonal block matrices
and the diagonal entries of any diagonal block matrix G i,i,

1 ≤ i ≤ N are powers for single dimensions, and equal to p =
P

MtN in (11) by the assumption of equally likely codewords.
We denote the diagonal vector of G as

ω =
[

P
MtN

P
MtN · · · P

MtN

]︸ ︷︷ ︸
MtN

. (17)

Hence, the codebook design can be considered as an inverse
eigenvalue problem for a given P, i.e. how to construct a
Hermitian matrix G given its eigenvalues in (16) and diagonal
elements in (17). An algorithm to solve this problem will be
discussed in the next section.

III. CONSTRUCTING THE CODEBOOK

A. Majorization

Before we discuss the algorithm, we first refer to a relation-
ship between two vectors called Majorization in [11].

Definition “Let α and β be two given M-dimensional
vectors. The vector β is said to majorize the

vector α if min

{
k∑

j=1

βij : 1 ≤ i1 < · · · < ik ≤ M

}
≥

min

{
k∑

j=1

αij : 1 ≤ i1 < · · · < ik ≤ M

}
for all k = 1, 2, ..., M

with equality for k = M.”

It turns out that majorization precisely defines the relationship
between the diagonal vector of a Hermitian matrix and the
vector composed of its eigenvalues in [11]. We can see that
ω in (17) majorizes λ in (16).

(Schur-Horn’s Theorem) “The diagonal entries of a Her-
mitian matrix majorizes its eigenvalues. Conversely, if ω
majorizes λ, there exists a Hermitian matrix with diagonal
elements listed by ω and eigenvalues listed by λ” [11].

It can be verified that the Gram matrix G for the optimal
codebook satisfies the Schur-Horn’s theorem. Further, ω ma-
jorizes any other vector with sum of all elements being P.

B. Reflection Matrix

A reflection matrix can be used to modify the specified
diagonal entries of a Hermitian matrix while preserving its
eigenvalues. A 2 × 2 reflection matrix is defined by

F =
[

cos θ sin θ
sin θ − cos θ

]
(18)

where θ ∈ (
0, π

2

)
is a reflection angle. Obviously, F is a

unitary symmetric matrix. For any given four non-negative

numbers x1 ≤ y1 ≤ y2 ≤ x2 and a matrix A,

[
x1 x∗

12

x12 x2

]
, a

reflection matrix F can be explicitly constructed so that the first
diagonal element of FAF is equal to y1. The matrix equation
is shown by

FAF =
[

y1 y∗
12

y12 ŷ2

]
(19)

=
[

cos θ sin θ
sin θ − cos θ

] [
x1 x∗

12

x12 x2

] [
cos θ sin θ
sin θ − cos θ

]
(20)



Thus, we have that following equations:

y1 = x1 cos2 θ + 2Re {x12} sin θ cos θ + x2 sin2 θ (21)

=
x1 − x2

2
cos 2θ + Re {x12} sin 2θ +

x1 + x2

2
(22)

and
ŷ2 = x1 + x2 − y1 (23)

The equation (22) is a second-order equation with one variable
cos 2θ. Solving (22), we can obtain θ where 0 ≤ cos 2θ ≤ 1
and θ ∈ (0, π

2 ). Then the reflection matrix F can be constructed
with (18) using θ.

In the next subsection, we propose an algorithm to construct
a Hermitian matrix given its diagonal entries and eigenvalues
for codebook design in noncoherent communications.

C. Algorithm

Assuming that ω and λ are two arbitrary vectors with their
elements in ascending order, and ω majorizes λ. To construct
G, we use a diagonal matrix with diagonal vector λ as the
initial matrix. With a majorization relationship, we can find
the indices i < j so that λi < ωi ≤ ωj < λj . From (20), we
can apply a reflection matrix to transform λ i to ωi and λj to
λi + λj − ωi with the rest of the diagonal entries unchanged.
A permutation matrix can be used to rearrange the rest of the
diagonal entries in ascending order. The permutation matrix
is also a unitary matrix that preserves the eigenvalues of a
Hermitian matrix. It can be verified that ω still majorizes the
updated λ and the updated λ majorizes the old one because
λi < {ωi, λi + λj − ωi} < λj ; i.e., the difference between
two elements becomes smaller. Thus, based on this criterion,
we can update λ by finite steps until λ = ω finally. We use
one reflection matrix and a set of permutation matrices in each
step. The algorithm is described as follows:

Algorithm Suppose that the codebook S is defined in (4) and
each codeword has identical power p = P

MtN , where P is
the total transmission power for the codebook. Let G be an
initial MtN ×MtN diagonal Hermitian matrix. The algorithm
in Table II obtains an optimal codebook from the initial matrix
G.

IV. SIMULATION

First, we compare the codebook generated by our algorithm
with the codebook in [12]. For the case M t = 1, N = 4,
P = 4 and T = 3, Xs from our codebook design algorithm is
generated as:

Xs =

⎡
⎢⎢⎣

−1.0000 0.0000 0.0000
0.3333 0.5369 −0.7750
0.3333 −0.9396 −0.0775
0.3333 0.4027 0.8525

⎤
⎥⎥⎦

The codebook in [12] is

X̂s =

⎡
⎢⎢⎣

−0.7416 0.1716 −0.6485
−0.1266 0.5723 0.8102
0.8759 0.2195 −0.4296
−0.0077 −0.9634 0.2680

⎤
⎥⎥⎦ .

Step Operations
1 Set i = 1 and G=diag(λ) where λ is given by (16)
2 Find the smallest j > i such thatλj−1 ≤ p ≤ λj .
3 Swap λi+1 and λj in G by a permutation matrix.

4 Reflect

�
λi λ∗

i,i+1
λi+1,i λj

�
to

�
p λ̂∗

i,i+1

λ̂i+1,i λi + λj − 1

�
by a

Reflection Matrix F defined in (18).
5 Arrange the rest of the diagonal entries of G,

[ λi + λj − 1 λi+2 · · · λj−1 λi+1 λj+1 · · · λMtN ]
in ascending order by multiplying symmetric permutation matrices.

6 i := i + 1. If i ≤ MtN − 1, go to the Step 2.
7 Decompose G = ΣΞΣH by the eigenvalue decomposition since G

is a square Hermitian matrix. Take Xs = ΣΞ
1
2 .

8 Split Xs by rows into N codewords Xi ∈ CMt×T, for i = 1, ..., N
which provides the codebook for noncoherent MIMO communica-
tions we desire.

TABLE II

CODEBOOK DESIGN FOR NONCOHERENT MIMO COMMUNICATIONS VIA

REFLECTION MATRICES

Algorithm Searching complexity Notes

DFT [4] O(2RTMt )
Coherent codes [5] O(2RT (T − Mt))
PSK [6] O(2RT Mt) T = 2Mt

Orthogonal matrices [6] O(2RT log2 Mt) T = 2Mt, Mt ∈
{1, 2, 4, 8}

Training [7] O(2RT T )
Reflection matrices O(2RT Mt)

TABLE III

THE COMPARISON FOR THE SEARCH COMPLEXITY. R: TRANSMIT DATA

RATE IN UNITS OF BITS/SYMBOL PERIOD. T : COHERENCE TIME OF THE

CHANNEL IN UNITS OF SYMBOL PERIODS. Mt : NUMBER OF TRANSMIT

ANTENNAS. NOTE THAT T ≥ 2Mt .

Here, XsQ = X̂s, where Q is a unitary matrix. Thus, Xs

and X̂s are equivalent in that Xs and X̂s span the same space.
For the case, Mt = 2, N = 4, P = 8 and T = 8, our

algorithm finds Xs for our codebook to be equal to an I8, an
8 × 8 identity matrix. This simple result tells us that we only
need to group the standard basis for 8-dimensional Euclidean
space into four groups; i.e., each group has two bases. The
optimal codebook for this case consists of these four groups.

Second, we compare the search and computational com-
plexity among different design algorithms. R is the transmit
data rate in units of bits per symbol period. N is the size
of codebook and equals

⌈
2RT

⌉
. We first discuss the search

complexity, i.e. how many steps to construct a codebook. Since
our algorithm only needs to compute at most M tN reflection
matrices, the search complexity for the entire codebook is
O(2RT Mt) which is the second lowest in these methods shown
in Table III. The lowest one is “Orthogonal matrices” method
but it limits Mt ∈ {1, 2, 4, 8}. Our method does not have this
limit.

Finally, the computational complexity of decoding is dis-
cussed. The generalized likelihood ratio test (GLRT) detection
for noncoherent communications at the receiver was derived
in [13]. In our method, we use the GLRT detection and obtain



Algorithm Decoding method Computational complexity

DFT [4] GLRT O(2RT )
Coherent codes [5] GLRT O(2RT )
PSK [6] ML O(MtMr)
Orthogonal matrices [6] ML O(M2

t Mr)
Training [7] MMSE O(M3

t M3
r )

Reflection matrices GLRT O(2RT )

TABLE IV

THE COMPARISON FOR THE COMPUTATIONAL COMPLEXITY IN DECODING.

R: TRANSMIT DATA RATE IN UNITS OF BITS/SYMBOL PERIOD. T :

COHERENCE TIME OF THE CHANNEL IN UNITS OF SYMBOL PERIODS. Mt:

NUMBER OF TRANSMIT ANTENNAS. Mr : NUMBER OF RECEIVE

ANTENNAS. NOTE THAT T ≥ 2Mt .

the decoder decision in [13] as follows

X̂ = arg max
X∈codebook S

Trace
(
YHYXHX

)
(24)

Compared with other methods in Table IV, our method does
not have low computational complexity in decoding. We hope
to improve it in future. The “PSK” method has the lowest
computational complexity but limits T = 2Mt as shown in
Table III.

V. CONCLUSION

In this paper, we analyze the codebook design for nonco-
herent MIMO communications using a Grassmann manifold.
We show that designing a codebook for noncoherent MIMO
communications is equivalent to finding an optimal Gram
matrix with given diagonal entries and eigenvalues. Hence,
the problem can be considered as an inverse eigenvalue
problem. A sequence of reflection matrices can be used to
construct the Gram matrix. An algorithm using reflection
matrices is proposed to generate the optimal codebook. We
compare search complexity for constructing a codebook and
computational complexity for decoding at the receiver for
noncoherent MIMO communications of different codebook
design methods.
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