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Abstract—At the time of image acquisition, professional pho- subject should be placed at one of the four places: at 1/3 or
tographers apply many rules of thumb to improve the com- 2/3 of the picture width from the left edge, and 1/3 or 2/3 of

position of their photographs. This paper develops a joint ha picture height from the top edge. After segmentatioa, th
optical-digital processing framework for automating composition . biect i | ted to follow th le-of-third !
rules during image acquisition for photographs with one main main subject Is rejocated 1o tollow the rule-ol-thirds.

subject. Within the framework, we automate three photographic ~ Background blurringis either introduced to enhance the
composition rules: repositioning the main subject, making the sense of motion where the main subject is moving or decrease

main subject more prominent, and making objects that merge the depth-of-field of the picture where the main subjectas st

with the main subject less prominent. The idea is to provide 0 onapy After main subject segmentation, backgroundriigr
the user alternate pictures obtained by applying photographic is implemented using region-of-interest filterin
composition rules in addition to the original picture taken by the P g reg g.

user. The proposed algorithms do not depend on prior knowledge A merger occurs when equally focused foreground and
of the indoor/outdoor setting or scene content. The proposed background regions merge as one object in a two-dimensional

algorithms are also designed to be amenable to software imple- picture of a three-dimensional world. Examples of mergers
mentation on fixed-point programmable digital signal processors jnciyde a horizontal line shooting through the main sutsect
available in digital still cameras. . . .
ears, and trees appearing to grow out of the main subject’s
Index terms— main subject segmentation, photographihead. Professional photographers change camera settings s
composition rules, raster image processing, digital digna that the main subject is in focus, while the objects in the

cessors, digital still cameras background that merge with the main subject are blurred [1].
This preserves the sense of distance between the objetis in t
I. INTRODUCTION photograph. After segmentation, the background objedt tha

O make a photograph more appealing, professional pH9€r9es with the main subject is automatically identified and
tographers apply a wealth of photographic compositio_t?{“”’?d- Themerger mitigationapproach could be e_xtended to

rules [1]. This paper proposes a joint optical-digital feamork 1d€ntify and blur more than one background object merging
for a digital still camera for automating selected photpgia With the main subject. _ _ _
composition rules to improve the composition of pictures The framework relies on segmentation of the main subject.
taken by amateur photographers. The framework would apply Performing segmentation of the main subject, a supple-
photographic composition rules to the user-intended pactdMentary picture is taken by the camera immediately before
to generate additional alternate pictures of the same sceffe/mMmediately after the user takes the intended picture. In
The camera would then provide the alternate pictures afftf SuPplementary picture, we assume that the auto-focus
the user-intended picture to the user for evaluation. Beyoft€' IS focused on the main subject. During the acquisition
personal use, such a smart camera system might be useflftgh® supplementary picture, the shutter aperture is fully
professionals who need to take pictures for documentati@P€ned to allow the lens optics to blur anything not in the
such as realtors and architects. plane of focus, where the main subject is assumed to be.

Within the proposed framework, photographic compositiohiS Supplementary picture has the main subject in focus,
is improved by (i) segmenting the main subject(s) in the photaf‘d the rest of the picture blurred with dlffuse_d Ilgh_t. The
graph, and (i) automating selected photographic comiposit difference in frquency content between the main subjedt an
rules. This paper proposes an unsupervised automated anefiff Packground is exploited by the proposed unsupervised
for identifying the main subject in the photograph that idigital image segmentation method, largely by applying the
assisted by optical pre-processing in the camera. Based dpropriate filtering. In this case, the optical subsystes h
segmentation of the main subject, we automate three phoRg!formed most of the computation needed to perform the
graphic composition rulesule-of-thirds background blurring S€gmentation. Other digital image segmentation methoels ar
and merger mitigation described in Section II.

To place the main subject, theile-of-thirds can be fol- " this paper, we develop algorithms for the proposed
lowed. Here the canvas is divided into three equal partsgalofjamework intended for implementation on a programmable

the width and height, respectively. The center of the majf€d-point digital signal processor in a digital still carae
Such processors have fast 16-bit by 16-bit hardware migltgl
S. Banerjee conducted this research while at The Univewsitfiexas (with single instruction throughput) but very limited ohip

at Austin, and is now with HP Research Labs, in Bangalorejalnd nrogram memory (32-256 kB) and data memory (32-256 kB).
serene.banerjee@hp.com. B. L. Evans is with the Embedded|$igncessing brog Y ( ) Y ( )

Laboratory, Center for Perceptual Systems, The Universitfesas, Austin, Algthm_s develqped f_or these processors S_hOU|d not only
TX 78712. bevans@ece.utexas.edu. avoid using floating-point data and arithmetic, but should
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for each user-acquired picturdo consisted of variety of pictures having human or inani-
Acquire supplementary low depth-of-field picture;  mate main subjects and were taken under different light-
Compute main subject mask with supplementary  jng conditions and scene settings (indoor/outdoor). THe so
low-depth-of-field picture; ware and color images for this paper are available at
Perform image registration between the http://www.ece.utexas.edu/ bevans/projects/dsc/
supplementary picture and user-acquired picture; The rest of the paper is organized as follows. Section II
Compute proposed alternate picturehat follows discusses related research in main subject detectiorioSeit
rule-of-thirds; describes the main subject detection process. Section IV
Compute proposed alternate pictirevith automates the rule-of-thirds. Section V simulates baakguio
background blurring; blurring. Section VI presents merger detection and miiigat
Compute proposed alternate picturevith mitigated  Section VIl analyzes segmentation accuracy and implemen-
mergers, tation complexity of the proposed algorithms. Section VIl
begin concludes the paper.

Segment image background based on color;
Evaluate degree of merger for each background

object; Il. RELATED WORK
Mitigate effect of most prominently merged Previous work on main subject detection has been generally
eng 2ckaround object; targeted towards detecting the main subject in offline regsti

Luo, Etz, Singhal, and Gray [2], [3] propose a Bayes neural
proposed alternate picturas 2, and3); net\_/vork to detect_the main subject. Their method involvgs (a
end region segmentation, (b) perceptual grouping, (c) featxre
Algorithm 1: Pseudo-code for in-camera automation dfaction, and (d) probabilistic reasoning and training.iAitial
photographic composition rules segmentation is obtained based on the homogeneous pesperti
of the image such as color and texture. False boundaries
are removed with perceptual grouping of identifiable region
such as flesh tones, sky, and trees. Then, geometric features
also avoid using fixed-point operations with large dynamig. extracted, including centrality, borderness, shape, a
range_in intermediate calculatio_n_s such as eigen decotiposi ¢ mmetry. A probability density function for the main sutije
and singular value decomposition. Due to small amount Rfcation is estimated from the training data. The probsbili
on-chip memory, algorithms developed for these processefgnsity function estimate can be applied to the unknown test
should rely on neighborhood operations and not on globgdt to guess what and where the main subject is. Their method
operations on the entire image. To reduce execution t'"}’équires supervised learning, which limits its ability tdat
algorithms that perform its operations in one pass throtgh tio changing conditions in the field. Also, as this is a Bayds ne
entire image should be favored over algorithms that perforgygeq approach, the system performance will be poor if ste te
iterative operations where the entire image must be readdg js very different from the training examples. With thetva
each iteration. Further, in the context of a digital stilea, nymber of possibilities of scene content, scene settinys, a
real-ti_me p_rocessing means fast er_lough_ for the user notjigy, preferences, developing a good set of training example
grow impatient to see the results, which is in order of a séconp order to guarantee that the network would perform well for
The first contribution of this paper is a joint optical-a varied number of circumstances is difficult.
digital framework for improving photographic compositioh  |n a wavelet-domain approach, Wang, Li, Gray, and Wieder-
digital pictures. The second contribution is the autonmatithold [4], [5] analyze the statistics of the high-frequency
of segmentation of the main subject in a single still picturgavelet coefficients to segment the focused regions in an im-
using a low-complexity digital image processing algorithrage, thereby detecting the object of interest. Initialg image
assisted by optical pre-processing. The third contrilbui® s coarsely classified into object-of-interest and backgth
the automation of main subject placement, artistic baakgtlo regions by using the average intensity of each image block
blur, and merger mitigation to improve the composition oind the variance of wavelet coefficients in the high frequenc
the photograph. We show that the computational complexiands. The variance is higher for the focused regions in the
of digital processing in the joint framework (main subjecimage. Blocks are clustered using theneans algorithm [6] by
segmentation plus the three composition rules) is comparwting that blocks from a homogeneous image region will have
ble with the computational complexity of performing JPEGimilar average intensities. Each block is further sulstidi
compression and decompression. The pseudo-code combinjitg child blocks, and a multiscale context-dependentsélas
all three contributions is given in Algo. 1. fication is performed for further refinement. Finally, a post
The images used for testing the proposed algorithmpsocessing step removes small isolated regions and snmoothe
in this paper were low-depth-of-field pictures downloadethe boundaries. The method uses Haar wavelets, which have
from the World Wide Web or acquired with a Canortransfer functions that are scaled versionslof ! and
Powershot G3 camera. The shutter aperture was varied- 2!, for the lowpass and highpass filters, respectively.
from F2 through F2.8 to make sure that the acquiréthe Haar wavelets and feature extraction can be implemented
images are low-depth-of-field photographs. The test datfixed-point arithmetic. Nonetheless, the multiscale elat

Output 4 pictures (User-acquired picture and
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domain method is computationally intensive. Section VII [1l. M AIN SUBJECTSEGMENTATION
compares this wavelet-domain and our proposed approach. 14 getect the main subject on the fly, we propose an

In a spatial-domain approach, Won, Pyan, and Gray [fl camera main subject segmentation algorithm [11]. The
develop an iterative algorithm based on variance maps. & 10¢,on6sed approach utilizes digital still camera contrsissh
variance map is used to measure the pixel-wise high frequeng 1he auto-focus filter and the software-controlled shutte

distribution in the image. This variance map has blob-likgyertre and speed. Assuming the user points to the main sub-

errors both in the foreground (where the image is relative ¥ct, the auto-focus filter puts the main subject in focug{12
smooth) and the background (where the background is highly,

i e ]. We then open the shutter aperture all the way and the
textured) regions. To eliminate these errors, the autho@®  gptter speed is automatically adjusted so that the lighh fr

a block-wise maximum a posteriori image segmentation iy oyt-of-focus objects does not converge as sharply as fro
requires recursion over image blocks and is computatipnal},e gpjects in focus and finally, we acquire a supplementary
demanding. Their method yields more accurate segmentatiap; e The resulting blur in the out-of-focus objects &d
compared to the aforementioned wavelet-based approagh @] detect the focused main subject by using filtering, edge

[5]. Section VII compares this spatial-domain approactwilyeection, and contour smoothing. The sole purpose of gakin

our proposed approach. _ the supplementary picture is to determine the main subject
Other recent offline region-based segmentation methodS tion in the user-acquired photograph.

include min-cut segmentation methods [8], mean-shiftyanal

sis [9], and segmentation of blobs using expectation madami

tion [10]. In the min-cut method [8], the image is defined if\- Implementation of main subject detection

terms of its affinity matrix. The segmentation problem isthe In the proposed image acquisition framework, the main
formulated as a graph theoretic min-cut max flow problersubject is in focus, and the background is blurred by widgnin
First the eigenvalues and eigenvectors are computed usihg shutter aperture. So the main subject in focus will have
singular value decomposition of a large matrix in floatingsrominent gradient features and the background that is fout o
point arithmetic, and then seed regions are calculatedsesubfocus will have blurred features. Thus, the segmentatiaghef
quently, minimum cuts are computed between source and sinkin subject and the corresponding background is induced by
regions and the regions are later merged. The authors rephi$ difference of gradient information. The goal is to dita
segmentation times of 3 to 7 minutes per image of sizes upth® intensity distribution pertaining to the high frequgcom-

239 x 138 on a 2.5 GHz Pentium IV platform. In mean-shiftoponent in image in contrast to the blur background compgnent
analysis [9], the image is segmented based on the following., extract the sharp features of the image.

steps: (i) it estimates the density function for the image @ The obtained images from the camera is first processed with
it shifts each feature point to the nearest stationary monig an image sharpening filter as modeled in Fig. 1. So,

the gradient of the estimated density function. The comflex

of the algorithm is quite high as it computes a Euclidean norm 9(x,y) = 1(2,y) = Lsmootn(2,y) @)

a Hessian function, and a line search. In the third methof [1Q,,4

the image is segmented first into parts based on color aralysi

in the CIELab space and texture analysis at different scales

and then the parts are grouped into blobs using expectatibmerefore,
maximization. The processing involved is a RGB to CIELab 1
color conversion, evaluating textures using gradientsaait v I(x,y) = P
ous scales and subsequently using expectation maximizatio

algorithm for regrouping, which by itself is computatiolyal and

complex. The authors report segmentation times of 5 to 7 _ _
minutes per320 x 240 image on a 300 MHz Pentium Il Leharp(@,y)—1 (2, y) =
platform. As the proposed framework is intended for remleti
implementation on fixed-point digital signal processorshwi

Isharp(xvy) = I(l‘,y) + k’g(l’,y) (2)

Isharp (xa y) + Ismooth (177 y) (3)

k+1

k(ISharp(fL', y) - Ismooth(x7 y))
(k+1) )

Subtracting the smoothed user-intended image from the
e L ._sharpened image generates an edge map in which the edges
small amounts of on-chip memory, these floating-point, hlgiround the main subject are sharper than the background

memory usage methods are eliminated from consideration. . . :
; . . . edges. Hence, the problem of segmenting the main subject re-
Previous research to detect the main subject with a cog]—

uces to separating the regions with the sharper edges ffrem t
regions with smeared ones. In earlier work [11], we show that

i . . . . Sy combining the sharpening operation, difference catmna
retrieval, object-based image compression for image egrve . ! : o
. : and the edge detection for detecting the main subject into a

and content grouping for automatic album layout. However ) . . : :
o - single neighborhood operation, the implementation corifyle
providing in-camera feedback to the photographer while:a = . :
is_similar to that of & x 5 filter.

picture is being acquired must happen in a matter of seconds__ . . e )
This paper proposes to detect the main subject with a Iow-FOr image sharpening, &3 sharpening filter is employed:

implementation complexity algorithm that can be implenaeint —a a—-1 -«
in fixed-point arithmetic in the digital signal processors i a—1 a+p a-1 (5)
digital still cameras. I+a —a a-1 -«
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Parametera and define the shape of the frequency responsB. Modification of Mask Based on Difference Between Orig-
We chosea = 0.2 and 3 = 5. An integer implementation inal and Supplementary Picture

could choosen = 0.2 and 3 = 5, remove thep%a factor,  One of the drawbacks of taking a supplementary picture
and scale the coefficients iy For the lowpass filter, @ X 3 \ith a shallow depth of field is that the subject or the camera
Gaussian blur filter is used. However, the filter charadiess ~qo,1d have moved while the supplementary picture is taken.
could be adapted according to the strength of the imaggijs grawback could be reduced by mounting the camera on
features. For example, an image having relatively weak edgéyinod. However, to compensate for small ranges of mo-
features could be processed by a filter having a lower cut-gff e employ a computationally simple image registratio
and greater span in the spatial domain, e.g.xd filter. Also, method [21], [22] to adjust the position of the main subject
the filter coefficients can be modified for implementation. 35k in the supplementary image to line up with the main
In detecting the strong edges from the optically presubject in the user-acquired image.
processsed and digitally filtered image, the Canny edgedete Once the mask in the supplementary image has been gen-
tor [15] gives good results in identifying the strong eddes, erated, a difference is computed between the original and
first smoothing the difference image with a Gaussian filtel atthe supplementary images. Now, the difference image will
then detecting the gradient of the smoothed difference émagontain pixels where the main subject has moved and pixels
To separate the strong edges in the focused parts from tiighe background that are in different focus compared to the
weak edges in the out-of-focus parts, the hysteresis thléshsupplementary picture. However, any change in main subject
of 0.3 for the Canny edge detector worked well for the testotion shows up more significantly compared to the change
images shown in Figs. 2 through 6 and Fig. 12. This selectedfocus. So, by using a threshold on the absolute value of
hysteresis threshold depends on the amount of blurringen tthe difference image, one can identify if the main subjec ha
acquired image, i.e. the amount of background blur obtainetbved. A second mask is then generated that identifies the
from the lens in the camera. So, for each camera, the hystergsxels in the difference image lying above this thresholdr F
threshold could be set to work for a range of natural imageabke proposed application, this threshold is chosen to bei70 f
However, with any preselected threshold, the strong edge 8-bit image. This second mask is added to the generated
detection step would still pick background edges for sommain subject mask to create the mask that will be used on the
acquired images where there is not enough background bdwiginal image. Thus, the generated main subject mask from
or strong edges in the main subject. the supplementary image is aligned with the main subject.

Another popular edge detector, the Laplacian of Gaussian
edge detector [16] could be tuned to preserve strong edgé¥. RULE-OF-THIRDS: AUTOMATED PLACEMENT OF THE
and suppress weak edges, but it did not perform as well as MAIN SUBJECT
the Canny edge detector. The non-directional derivatiseslu  The post-segmentation objective is to automatically place
in the Laplacian of Gaussian edge detector produces resporthe main subject following the rule-of-thirds. The rule-of
both parallel and perpendicular directions to a given et@ige. thirds says to place the main subject in one of four places:
drawback could have been improved by using directional firat 1/3 or 2/3 of the picture width from left edge, and 1/3 or
and second derivatives. Nonetheless, the Laplacian ofsgaus 2/3 of the picture height from the top edge. A mathematical
edge detector would still not preserve the edge directitie Tmeasure is defined to check how close the picture follows the
Canny edge detector also performs better than Roberts],Sohde-of-thirds, and to reposition the main subject [23].
and Prewitt edge detectors [17].

The output of edge detection can be fed to a conto& Mathematical Formulation
detection framework to close the boundary. To determine the| et § pe the scene domain of the main subject where
closed boundary, the traditional snake [18] algorithm asd i
direct descendants fail to track the concavities in theaant S € {v|v € Main subjec}, v = {(z1,51), (¥2,42). -, (%, ¥i)}
or require the initial control points to be placed near the (6)
actual contour. This limits its automated application fatural S the set of pixel positions. Then, the center of mass is eefin
images. Instead, the gradient vector flow [19], [20] aldorif @S the weighted sum of the components and cardinality of the
which is guided by the diffusion of the gradient vectors frongcene domain. Consider that there arenain subjects. The
the edge map of the image, is a better choice as it requife@ter of mass for each of them is computed independently.
no initialization in terms of control points and has a higheft two-dimensional functionf(z,y) is defined such that it
capture range in its ability to track image contour congesit reaches a minimum when a center of mass is at the one-

In Figs. 2(a), 3(a) and 4(a), the main subjects are third position in the canvas both along theandy axis. The

focus, while the background blur is achieved by a wid%ﬁcuve will be to minimize the summation of the value of
T

shutter aperture. Figs. 2(b), 3(b) and 4(b), show that aftlc function generated by the center of mass positiofsy,,)

sharpening the image and taking the difference, the macfnthen main subjects.

subject edges are stronger. With further edge detectian, th )

results of locating the main subjects before contour ctpsie B- Implementation

shown in Figs. 2(c), 3(c) and 4(c), respectively. Figs. 28¢)) For the current implementation, we assume one main subject
and 4(d) show the detected main subject mask. (i.,e. n = 1), and the functionf(x,y) is a product of the
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Euclidean distance from the four one-third corners on thperformed on the masked image, so that the main subject
canvas. Letzy, y1), (z2,y2), (3,y3), and(z4, y4) be the four pixels remain unaltered, whereas artistic effects can loedd
one-third corners. Andz,y) is the position of the center of to the background.
the mass of the main subject. Then, We convolve the images with a motion blur filter that
B 5 5 12 5 simulates linear and radial blurs produced by horizontal an
flay) = (@ —21)" + (y —41)") (& = 22)" + (¥ =92)°)  rotational movement of the camera. The filtering involves
(=232 4+ (—u3))((x — )+ (y—wa)?)  (7) convglving the image yvith a series of filters and compositing
' o ~ the filtered images. Figs. 2(f), 3(f) and 4(f) show simulated
So,_f(a:,y) > 0 with frin(z,y) = 0, and the minimum is background blurring that could have resulted from camera
attained when the center of mass is at one of the one-thgenning. The current example simulates linear motion of the

corners. Thus, after computation of the center of mass, thgmera by 10 pixels. Other values of linear, radial, or zabme
image pixels are shifted so that they fall at a one-third eorn motion blurs can also be simulated.

The center of mass is computed along the rows and columns
respectively. For each row (or column) i, is the number v|  |mprovE PERSPECTIVERULE: MERGERDETECTION
of “ON” pixels in the main subject mask, then the center of AND MITIGATION
mass is defined as:

i The method proposed in Section Il generates a main subject
wy, *x row (or column) location

®) mask that divides the picture into foreground and backgioun
Ywn regions. Fig. 6(b) is the generated main subject mask for

After computing the center of mass, a comparison is madefg. 6(a). The goals will be to segment the background,

to which of the four one-third corners is closest to the aurreidentify merging objects, and blur the picture. The forntioia

position of the center of mass. The picture is then shifted, §f the steps follow [24].

that the center of mass falls at the closest one-third corner

Another approach is to crop the picture so that the center &f Background segmentation
mass of the main subject falls on one of the one-third COMerStha color information is used for segmentation of the

This is pompgtat_ionally very simple. Duriqg cropping theotw background objects. The red, green, and blue (RGB) image
competing criteria to optimize argl) moving the center of rovided by the camera is transformed to the hue channel
mass as close to one of the four one-third points as possilﬁﬁmd in the hue, saturation, value (HSV) space. In HSV
_and(2) minimizing the _number of rows and columns CrOppegpace, hue corresponds to color perception, saturation pro
in the picture to retalln the most plcture content. poss'p'@'rdes a purity measure, and value provides the intensity. A
subject to (tjhe constraint that no pixels of the main subjefiioqram in the hue space is then utilized for segmentation
are cropped. N ) . of the background region. Although hue does not model the
The original pictures in Figs. 2-4(a) have the main subjegh o herception of the human visual system as accurately as
closer to 'the canvas center. Figs. 2_4(d,) show the detec@l‘%Lab, it is chosen because the transformation from RGB
main SUbJeCt. masks, the 1/3 and _2/3 lines on the_(_:anvt%shue has lower implementation complexity [25]. RGB to
along the height and width, respectively, and the positibn @) o requires calculation of cube roots. However, Lin-
the center of mass of the detected main subject. Figs. éarized CIELab space [26] could be used instead of the hue

4(e) show the main subjects repositioned following the-rulg,, .o o the complexity of calculating cube roots in CIELab
of-thirds. For simulation purposes either mirror reflentiocou|d be reduced by using a lookup table.

(for textured .boun'daries) or boundary pixel' extension (fpr Let the hue values be on the interya)255]
smoother regions) is used for the undefined pixels. Thenarisi
artifacts could be reduced by capturing an image by usin

wide-angled lens camera. The user could also be signale . e
9 9 IS ?he count corresponding to each bin &@nds the total count

move the camera in a particular direction. of values in all bins. By modeling the background picture as a
For multiple main subjects in the photograph, the propos%gj e g g b

algorithm could be extended for automation of thee-of- aussian mixture of hue values, the task is to further segmen

triangles[1]. The rule-of-triangles states that if there is mor(tehesem'bm$ Inton-groups, where each group will identify a
different object.

than one main subject in the picture, then their centers abma The term% gives the average of the hue values. Any hue

should not lie on the same line in the canvas, but should form ; . :
. . ._value above this average is marked as a dominant hue. Based
triangles on the canvas. This can be automated by addin

. . L %nathe available dominant hues, thegroups are determined

constraint during minimization so that no two center of reass : : ;

lie on the same row in the canvas. automatically so that each group contains only one dom!nant
hue. Each group boundary lies halfway between two dominant

hues. This ensures that the local maxima of the probability

distribution, P(hue,,), is captured in each group. Pixels with

hue values falling in each of the identifiedgroups form

For simulating background blur, the original image is firadifferent background objects.
masked with the main subject mask detected by the method-or the proposed algorithmn is chosen to be&d4, as it
proposed in Section Ill. Then region of interest filtering iss assumed that a difference in four hue levels (266/64

center =

and broken into
m-bins. The discrete probability distribution for hue vaue

goglonging to each bin i®(hue,,) = % wherec(hue,,)

V. MOTION EFFECTSRULE: SIMULATING BACKGROUND
BLUR
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levels) would correspond to approximately the same pegdeivin Fig. 7. To increase the amount of smoothing, masking can
color [27]. Fig. 8 shows the color histogram for the hue valude extended to higher levels of the Gaussian pyramid.
with the average and the peaks for the background of Fig. 6(a)Cardoset al. [32] develop an algorithm for ranking various
Based on the color histogram and the average value,10 segmentation algorithms. In their approach, they use auneas
background objects are automatically identified for Figa)6( of distance between the segmented objects to identify if the
Fig. 9 shows three of these identified background objects. are parts of the same object or different objects. In merger
detection, also we use a weighted distance measure tofidenti
the merged object and reduce this weighted distance measure
to mitigate the mergers. So, in a sense it is making two
Based on the background segmentation, the background diistinctly classified objects, as one, and reducing the htei
age can be modeled as a linear combination of the backgroutistance between them.
objects. Thus,S, = ;—, O;, where S, is the background
image andO;, are the identifiedh background objects. Now, Vi
one or more of these background objects may merge with the
main subject. We choose the background object that has thd he proposed algorithm is shown in Fig. 5. After main sub-
largest high frequency energy and is touching the main stibjdect detection, the post-segmentation complexity will efep
To automatically identify the merged object, each obje@" the number of rules that are automated. A digital still cam
0; is transformed to a feature space representafionwhere €ra uses approximately 160 digital signal processor instmi
0, € I. Tis defined as a weighted sum of the high frequenci€¥cles per pixel. Main subject detection, automation of the
contained in the spatial region of each object. High fregyenfule-of-thirds and background blurring, or merger detetti
coefficients are obtained from the first level of the two@nd mitigation requires fewer digital signal processingley
dimensional Gaussian pyramid [28] of the intensity imagéaS explained below). The proposed algorithms are amenable
Gaussian pyramids are localized in space. The Gaussian pyP4 implementation in fixed-point data types and arithmetic
mid could be replaced with a Laplacian pyramid, for the added
implementation complexity of one subtraction per pixel. A Main Subject Detection
The high frequency coefficients are weighted with the . . . .
inverse of the distance in space to the main subject mask. T ) Implem(_antatlo_n ComplexityThe RGB color image is
compute the inverse distance transform, the distanceftrans converted to intensity by
coefficients are storeql as a_grays_cale imqge, and are sietrac I=(R+G+B)/3orI=(R+2G+ B)/4 9)
from 255 before multiplication with the high frequency coef
ficients. This assigns more penalty to the higher frequanci€he former step requires 2 additions and 1 multiplication,
closer to the main subject. Figs. 10(a) and (b) show tlas alternately 2 multiply-accumulates, which matches a pro
Euclidean distance transform [29]-[31] and high frequengpammable digital signal processor well. The later, which
coefficients obtained from the first level of the Gaussiarequires 2 adds, a shift left by one bit (multiplication by 2)
pyramid, respectively. In Section VII, we will reduce theand a shift right by two bits (division by 4), matches a digita
computational complexity of the inverse distance measure.hardware implementation well. Shifts can be used here Isecau
An object O; is detected to be merged with the mairRGB values are non-negative.
subject if its feature space representatiéh, is more than  The sharpening operation convolves the image wigh-a3
a threshold. This threshold could be selected by the usH#iter, which would require9 multiply-accumulates per pixel
This paper presents an unsupervised approach in which the the sharpening and difference calculation. Canny edge
object O; yielding the maximum value of the feature spacdetection first smoothes the image in order to lower the noise
representationf);, is identified to be the merged objectsensitivity, then computes a gradient, and finally supm®ss
This unsupervised approach detects the object producimg the non-maximum pixels using two thresholds. The smoothing
strongest merger and blurs the produced artifact. For &), 6 and the gradient computation takesmultiply-accumulates,
the tree object shown in Fig. 9(b), produces the maximum agsuming a3 x 3 pre-computed filter kernel that is the
the weighted sum of high frequencies, identifying that tee t derivative of a Gaussian mask. The nonmaximum suppression
merges with the main subject. step require® comparisons per pixel. The twix 3 filters can
be cascaded to @x 5 filter to reduce the number of memory
accesses per pixel, ® memory reads per pixel.

As the exact implementation of the gradient vector flow
The detected merged obje@;, has feature a space reprealgorithm to close the contour is computationally inteasiv
sentationf)!. To reduce the effect of the mergél; needs to we propose to use an approximation. From the map of the
be reduced. A$); is the weighted sum of the high frequenciesjetected sharper edges, the pixel position of the first “ON”
the high frequency coefficients are masked when the imagepisel from the left and the right boundaries of the image is
reconstructed from the Gaussian pyramid representation.chlculated. Every pixel between these two pixels is turned

Fig. 6(a), the high frequency coefficients of the first level d'ON”. This approximation detects the convex parts corsectl
the Gaussian pyramid are masked out using the approximbtg fails at the concavities in the shape of the main subject.
shape of the detected tree object. The resulting image grshorhe approximate procedure requirsomparisons per pixel.

B. Merger detection

. RESULTS ANDIMPLEMENTATION COMPLEXITY

C. Selective blurring
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[ Image | Resolution| Sensitivity | Specificity | Error rate |

Man & child [ 280 x 350 88.0 % 972 % 41% k-means clustering algorithm. The process is repeated for
Man | 246 x 276 778%| 903%] 80% multiple wavelet levels. Generating the wavelet coeffitsen
Doll | 316 x 422 82.2% 94.6 % 6.3 % Vol flteri he | ith | d hiah il
Merger | 282 x 200 806 % 87.9 8.9 Involves iltering the image Wlt_ ow and highpass iters,
respectively. Also, the computationally intensive partred k-
TABLE | means clustering lies in computing the Euclidean distarice o
SEGMENTATION ACCURACY MEASURES FOR THE MAIN SUBJECT each point from the neighboring clusters. Taking into aotou

DETECTION ALGORITHM FOR IMAGES INFIGS. 2— 6 .
all these factors, the wavelet-based method will at least be

2 x n x k more complex than the proposed method, where
The generated mask is written back withmemory access is the number of wavelet levels computed d@nid the number
operation per pixel. of clusters.

Thus, the main subject mask can be generated wi&h The iterative spatial-domain approach [7] starts fromadtivi
multiply-accumulates4 comparisons and memory accessesing the image into non-overlapping blocks. A few probabil-
per pixel. This has low implementation complexity on a d@ibit ity measurements are computed from the image variance to
signal processor in the digital still camera. classify each block as foreground or background. The block

2) Accuracy of segmentationiThe accuracy of segmenta-classification is further refined into pixel-level classafion
tion is determined by the sensitivity, specificity, and thee using recursion and the watershed algorithm. So, if tharalg
rate measures [33]. The sensitivity is defined as the ratibeof image in divided intaB x B blocks, this method would be at
area of the detected main subject to the total area of the migast B times as complex than the proposed method. For the
subject in the image. The specificity is the ratio of the area results in Figs. 12(d), Woet al. [7] substitute the grey level
the detected background to the total area of the backgrouralues from the original image onto the generated mask for
in the image. Here the total area of the main subject or thiésual inspection.
background are the number of pixels that actually reprabent The proposed method generates a reasonable mask of the
main subject or the background, respectively, as would harmin subject at a much lower complexity than the afore-
been observed by a human. The error rate is the ratio of timentioned methods. Also, the proposed algorithm can be
number of pixels that are misclassified to the total area ®f timplemented in fixed-point arithmetic. A senior design stoid
image. Here the segmentation ground truth was obtained dtyThe University of Texas at Austin, Mayank Gupta, in collab
averaging the segmentation masks of three human subjectsration with the authors implemented the proposed algoisth

For the segmented images given in Figs. 2(d), 3(d), 4(dn a Texas Instruments digital still camera chip, TMS320C55
and 6(b) the sensitivity, specificity, and the error rate aend was able to obtain real-time performance [34]. As the
given in Table I. The inaccuracy in segmentation as seproposed pixel-based approach to detect the main subject
in Table | is within the tolerable limit as a trade off forproduces comparable results with the more complex wavelet-
low-complexity in detecting the main subject for subsequebased method [4], [5], the following subsection compares th
automation of the photographic composition rules. Theltesutwo paradigms.
also are comparable with Wangés al. [4], [5] reported values  4) Comparison of Multiresolution-based (Wavelets) and
for the three quantifiable measures for low depth of fielHixel-based Main Subject Detectio@omparing the multires-
images. For their test images, sensitivity, specificity arror olution wavelet-based [4], [5] and pixel-based [7], [1133],
rate varied from73.7% to 97.5%, 80.1% to 97.5%, and3.4% [24] approaches to segment the main subject, it can be seen
to 5.5%, respectively. that any wavelet or filter-based multiresolution approagh t

3) Comparison with prevalent segmentation methods:segment an image would be better at representing regional
Figs. 12 compare the proposed main subject segmentatieatures of the image. Depending on the filter length and
algorithm with a wavelet-based method [4], [5], and Won’the resolution which is being used for analysis, the rediona
et al. iterative method [7]. As described earlier, our proposqatoperties of the image would show up in the frequency trans-
method takes 18 multiply-accumulates, 4 comparisons, andoBmed domain. So, any analysis based on regional propertie
memory accesses per pixel, and does not requireagmyori  will have estimation errors depending on the length of the
training. used filter and the resolution at which it is being viewed at.

Similar studies were conducted for 30 images. The infhe pixel-based approaches however analyze the image on a
ages were either downloaded from the World Wide Wehixel-by- pixel basis, and the errors will depend on how well
in the year2001 or acquired with a Canon Powershot GZach pixel is classified. Thus, in this research, we present a
camera. The shutter aperture was varied from F2 throughxel-based approach that is fast and classifies the pixiths w
F2.8 to make sure that the acquired images are low deptblerable accuracy required for this application.
of-field photographs. The test set consisted of variety of So, for images with substantially large smooth regions
pictures having human or inanimate main subjects wettleat are separated by well defined edges, both the wavelet-
taken under different light conditions and scene settingsed or pixel-based algorithms would provide similar ltesu
(indoor/outdoor). The original pictures are available atiowever, in images with many edges and texture, the pixel-
http://www.ece.utexas.edu/"bevans/projects/dsc. based approach would be more accurate. Also, in Wang, Li,

The multiscale wavelet-based method [4], [5] generates tli@gay and Wiederhold's [4], [5] wavelet-based approach, the
wavelet coefficients for each stage and classifies the imagggmentation accuracy is further reduced when the autisers u
based on the variance of the wavelet coefficients, using taédlock-based approach, in which in the subsequent iteigtio
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the class of a subblock is switched, depending on the sukbl@ame amount so that the center of mass of the main subject
neighborhood. occurs at one of the one-third corners. After shifting thage,

For simplicity, we choose three model images to companeany pixel values along two of the edges of the image would
the proposed pixel-based and a multiresolution approaeh. We undefined. These pixels could be given values through pixe
use a Laplacian pyramid for the multiresolution analysise T replication along the boundary of known pixel values. The
first image is a plain image with no edge and is generatetlifting approach requires one memory read and write per
as f(z,y) = 0. The second is an image with a white circlepixel.
on a black background, and it has a defined strong edge. Ilin the best case, the center of mass falls at one of the one-
is generated ag(r,y) = 1 if 22 + 3?> < r? wherer is the third corners so that the image does not have to be altered.
radius of the circle. The third image is a ramp modeling an the worst case, the center of mass is at one of the corners
image with a very blunt edge. This image is generated a&the picture, so that one-third of the rows and one-third of
Fz,y) = - \/(zfmmq‘,d)z+(y*ymid,)2 . Where (Zumids Ymid) columns would be croppe_d or negd to Ipe given new yalues.

V (@maz—Tmia)*+(Ymas —Ymida)? ) i In the average case, e.g. if the main subject were origimally
are the mid points an@z,.az,yma:) are the dimensions of \he middie of the picture, one-sixth of the rows and columns

the image. _ _ _ would be cropped or be given new values.
Both the pixel-based and multiresolution Laplacian pyami

based approaches identify that there is no edge in the figst Simulated Background Blurring

'mage. T.h66 levels of the Laplafuan pyramid deC(_)m.posmon Using the main subject mask, background blurring realized
are considered for .the second image. NOW’. as th!s |mage.t6 Sa3 x 3 filter takes 9 multiply-accumulates and 4 memory
a sharp edge the highest frequency octave identifies thie CIre. cesses per pixel.

correctly. However, as more and more lower resolutionshvell

considered to segment the image, the accuracy of segnumtagi Merger Detection and Mitigation

would reduce. But, the regional properties of the image is Background segmentation starts with a conversion from

present' across all the octaves. Similarly, for the famp BNa% 5B to hue. The hue value calculation uses an intermediate
depending on the chosen thresholds the proposed pixettbase

approach either chooses none of the image or almost the Wh\()%lable’ H', which is in the intervall-255, 1275 and can be

of the image. Here also the segmentation would depend r??rpresented_ by a 12'9” signed integer. The pseudo-che for
. . . the conversion follows: In the worst case, the conversion to
which levels are being considered.
Now in a natural image, the strength of the edges cannotb ;
) egin
be predetermined, and the strength of all the edges would not ",y = min(R, G, B);
likely be the same. So, a multiresolution approach would be  ,5x = max(R, G, B):

better at representing the regional properties of the intage § = max - min:

the segmentation accuracy would depend on which frequency ¢ (R == max) then

level is being considered for segmentation. The accuracy of H’ = G-B (within yellow & magenta)

the pixel-based approach on the other hand will depend on g|se

how well each pixel is classified. Post-segmentation, thegen if (G == max) then

registration step requires, one subtraction, one thresiml H' = 26+B-R (within cyan & yellow)

and one addition operations and 2 memory accesses to modify else

the detected main subject mask. H' = 45+R-G (within magenta & cyan)
end

B. Automation of the Rule-of-Thirds end

Using the main subject mask, the rule-of-thirds algorithm gpg '~ 1+ 222 >> 3

requires 2 mqupIy-accymuIates, 1 comparison, and 1 or ilgorithm 2: Pseudo-code for low-complexity hue determi-
memory access per pixel, plus four comparisons and one_ion from red green, blue planes

division (explained below) for the entire image. One memory

access per pixel is needed to calculate the center of mass. AHn

additional two memory accesses per pixels is needed onl)}1 e requires 2 §h|fts, 3 adQS, 6 compares, and 4 pyte memory
the picture is shifted instead of cropped. accesses per pixel. The .hlstogram and thresholding reguwe
For automated placement of the main subject following thaedd Iand 1]$om§;1re pek;.plxel. 'I;jhe hbu?cfvalu;\?]\z}r;a storéb:l. i
rule-of-thirds, the center of mass for the detected maifjestib PIXEIS (t%r . >f< Xt.8 |t?)t,han abu ?rdo bi ngK} |tsf
mask is computed with 2 multiply-accumulates and 1 memo ores the information ot Iné segmented objects. Wow, Tor
read per pixel, and 1 division. The closest one-third corser | practical applications, the number of segmented object

computed with 4 comparisons. The next step is to alter tffe will b.e less thgn28. So,n < 2% or loan < 8 So, the .

picture so that the center of mass is at closest one-thimkcor information regar.d|.ng the segmented objects can be stored i
One approach is to crop the picture so that the center tBP buff_er thaf[ orlglnally_ had the h_ue \_/alues.

mass of the main subject falls on one of the one-third corners The |nten§|ty Ggus_smn pyran_ud first converts the - color

This is computationally very simple. Instead of cropping th'Mmage to an intensity image by either

picture, every pixel in the entire image could be shifted oy t I=(R+G+B)/3orI=(R+2G+ B)/4 (10)



BANERJEE AND EVANS: COMPOSITION RULES AUTOMATION 9

The former step requiring 2 adds and 1 multiply is suitable Block | x [<< [ + [> [ m ]
for programmable digital signal processors. For a hardware Segment background 2 4714
.0 prog ) g 9 P > - “ntensity Gaussian pyramid 1 910 4
implementation, we could use the later, which requires Zadd Tnverse distance transform 2 1] 2
a shift left by one bit (multiplication by 2) and a shift righy Detect merging object 1 1] 1)1
two bits (division by 4). Shifts can be used because the RGB CO"F’{ Gaussian pyramig 27 | 24 9
econstruct pyrami 1 27 | 24 3

values are non-negative. The intensity image is stored id r
pixels. Any level of the Gaussian pyramid can be computed by
Convolvmg the graysca.lle Imag.e Wlthga<3 fllter Wlth power- PER PIXEL IMPLEMENTATION COMPLEXITY OF THE PROPOSED
of-two coefficients, which requires 9 shifts, 8 adds and &byt MERGER MITIGATION ALGORITHM IN NUMBER OF
memory accesses per pixel. Thereads in image values to MULTIPLICA{;O)NS (X),SHIFTS(<<),ADDITION(S (;r)+

. : . : COMPARISONS(>), AND BYTE MEMORY ACCESSES(m). THE
compute the convolution can be stored in reglsters in qlmiert LAST TWO STEPS ARE ONLY APPLIED TO THE MERGING
reduce the number of memory reads3ter pixel. The first BackGROUND OBJECT THE OTHER STEPS ARE APPLIED ONLY
level of coefficients are stored iN M pixels, and the intensity TO THE BACKGROUND.

image may be overwritten in a sequential implementation of |

Total | 3| 65 65] 9] 23|
TABLE I

2 Block| X [<<[ +[ >]m|
merger_mltlgatlor_m . Main subject detectiorj 18 47 6
The inverse distance transform could be determined from Mask registration 20 1] 2
the Euclidean distance transform [29]-[31] by subtraciisg Rule-of-thirds | 2 1] 3
value from 255. In this case, the inverse distance transform Background biurring| 9 4
Merger mitigation| 3 65| 65] 9] 23

would be computationally intensive. We propose an approxi-
mate, lower complexity, inverse distance measure. Alort ea
row (column) the distance of each “off” pixel from the neares TABLE Il
. . . ER PIXEL IMPLEMENTATION COMPLEXITY OF MAIN SUBJECT
“on” one is computed and a ramp function is generated. The  perecTion, AUTOMATING RULE-OF-THIRDS, BACKGROUND
maximum of the horizontal (row) distance and the vertical BLURRING, AND MERGER DETECTION AND MITIGATION IN
(column) distance is taken as the distance from the nearest Tih)ﬂ,BcEgMOPFAhRA|ZLJLZ?IZC;TL%ESB(YXT)E fﬂ';';;isia EASDSDE';&N)S
“on” pixel. In order to assign more penalty to the high
frequency coefficients close to the main subject, the pixels VIIl. CONCLUSION
closer to the main subject mask have a higher weight. The
weights are stored VM pixels. This measure requires 2 This paper proposes a joint optical-digital framework for
adds, 1 compare, and 2 byte memory accesses per pixel. helping the amateur photographers take pictures with hette
For each background object, the intensity Gaussian pyranfiiotographic composition. The framework, which is shown
coefficients are weighted by the inverse distance transfoim Fig. 5, acquires the user-intended image as well as a
coefficients and summed. The background object with tisgpplementary image. This supplementary image is taken
highest sum is chosen as the background merging object, mghediately before or after the user-intended picture and
the corresponding background object mask is the output. Thges the same autofocus settings. In the supplementargjmag
background object mask can be stored in the main subjéewever, the shutter aperture is fully opened and shutegdp
mask buffer so as to reuse memory. All totaled, 1 multiply, I8 automatically adjusted so that objects not in the plane
add, and 1 compare are required per pixel. of focus are blurred by the optical subsystem. This supple-
In the final step, the color Gaussian pyramid and recomentary blurry image is then digitally processed to locate
struction only have to be applied to those pixels in the lyinathe main subject. With the main subject identified, selected
mask input correspondingly. For each pixel in the binafghotographic composition rules may be automated to gemerat
mask input, the first level of the color Gaussian pyramidew alternate pictures with better photographic compmsiti
transformation is calculated separably for each RGB planddiree photographic compositions rules are automated utitho
For each color plane, 9 shifts, 8 adds, and 3 byte memadngaking assumptions on scene setting or content.
accesses are required for 3ax 3 filter kernel. The high  This paper also moves towards the goal of implementing
frequency coefficients for the merging background objeet athe framework in a digital still camera. A digital still canae
masked with 1 compare and 1 memory access per pixihplements a variety of digital image processing algorghm
The output (merger reduced) image takes 9 shifts, 8 adds, a fixed-point programmable processor with little on-chip
1 compare, and 1 byte memory access per pixel, and woalggmory and relatively slow clock speeds and off-chip data
be stored iIBN M pixels. transfers. We present low-complexity, non-iterative, upes-
The computational requirements for each block in mergeised algorithms for automatic main subject detection and
mitigation are given in Table Il. For merger mitigation, tie  for automating three photographic composition rules: -rule
blocks, except the main subject detection and color Gaussi-thirds, artistic background blurring, and blurring mer
pyramid/reconstruction, work only on the background imagag background objects. With the proposed low-complexity
Hence, the complexity will depend on the percentage afgorithms, the entire framework can be implemented with
background pixels in the image. The merger reduced imafpsver than 180 fixed-point computations and 40 memory
for Fig. 11(a) is shown in Fig. 11(b). The background treegads/writes per pixel (as shown in Table Ill). This is about
merging with the bird are blurred out, thereby inducing aseen50% higher than the implementation complexity of JPEG
of distance. compression and decompression together.

| Total | 32| 65] 67 15] 38 |
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Fig. 2. Automation of photographic composition rules by diétecthe main subject, the man and the child, which are in fo¢afsDigital image with
background blur from large shutter aperture; (b) Sharpgesdire prominent in the filtered image; (c) Rough outline of nsaipject; (d) Detected main
subject mask, with center of mass not following the rule-afeld] (e) Generated picture obeying rule-of-thirds; andSjimulated background blur which
could result from camera panning. The mask could be also dilzefore applying the motion blur filter to prevent over-bingrof edges. The full-resolution
images are available at http://www.ece.utexas.edu/ ls¢stardents/phd/sererteanerjee/Pictures/
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(a) (b)

Fig. 3. Automation of photographic composition rules by ditecthe main subject, the man, which is in focus: (a) Digital gmavith background blur from
large shutter aperture; (b) Sharper edges are prominentifiltdred image; (c) Rough outline of main subject; (d) Detgctain subject mask, with center
of mass not following the rule-of-thirds; (e) Generated ymietobeying rule-of-thirds; and (f) Simulated backgroundrbWhich could result from camera
panning. The mask could be also dilated before applying théomdtur filter to prevent over-blurring of edges. The fudisolution images are available at
http://www.ece.utexas.edu/"bevans/students/phdigdvanerjee/Pictures/
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(b)

(d)

Fig. 4. Automation of photographic composition rules by detecthe main subject, the stuffed animal, which is in focu}:Qagital image with background
blur from large shutter aperture; (b) Sharper edges are pemiin the filtered image; (c) Rough outline of main subjec}; Bdtected main subject mask,
with center of mass not following the rule-of-thirds; (e) @eated picture obeying rule-of-thirds; and (f) Simulatedkzgound blur which could result from
camera panning. The mask could be also dilated before appthimgnotion blur filter to prevent over-blurring of edges. Thii-fesolution images are
available at http://www.ece.utexas.edu/"bevans/stsdgm/serenedanerjee/Pictures/
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(b) (©

Fig. 12. Comparison of the proposed method with prevalent ndetifior main subject detection: (a) Original image, with the maibject (the alligator,

butterfly, bird and tiger, respectively) in focus; (b) De&st mask of the main subject with the proposed low—implememiatioplexity one—pass algorithm;
(c) Detected mask by Wangét. al. multiscale wavelet-based approddh, [5]; and (d) Detected main subject by Woes al. maximum a posteriori probability
estimation approacfi] (the authors fill the segmented region with original gray Iefer visual inspection).
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(a) Object 1 (b) Object 2 (c) Object 3

(b) Fig. 9. Some of the background objects (segmented by color con-
tent) for Fig. 6(a) identified by the color background segraton.

Fig. 6. Examples of (a) a merger of the main subject, the man,

with the trees in the background (in color) and (b) the detéct

main subject mask in (a).

(b)

Fig. 10. (a) The Euclidean distance transform
coefficients and (b) the high frequency coeffi-
cients from the first level of the Gaussian pyramid
for Fig. 6(a). The background object is detected
to be merged if it yields the maximum of the
weighted sum of (a) and (b).

Fig. 7. The detected merged region is
processed in the frequency domain to reduce
the effect of the merger. The blurred trees
induce a sense of distance.
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(b) Merger reduced

1000

Fig. 11. The proposed algorithm reduces the effect of the enafjthe tree
p  with the bird. The blurred trees in the processed image atigisshable as

Fig. 8. Histogram of the hue values for the background of B{@), whic| . . A
9 9 9 ®) a separate object from the main subject.

shows the average and peaks.



