
Zero-copy Queues for Native Signal Processing
Using the Virtual Memory System

Gregory E. Allen, Paul E. Zucknick, and Brian L. Evans
Applied Research Laboratories, and Dept. of Electrical and Computer Engineering

The University of Texas at Austin
P.O. Box 8029, Austin, TX 78713-8029

{gallen,zucknick}@arlut.utexas.edu, bevans@ece.utexas.edu

Abstract—The high performance of current general-purpose pro-
cessors makes it feasible to perform digital signal processing on the
main CPU of a workstation. As the performance gap between CPU
speed and memory speed continues to increase, it becomes obvious
that DSP applications on workstations must address memory perfor-
mance. We present a technique for using the virtual memory system
to implement zero-copy queues. We present benchmark results for a
frequency-domain FIR filter using this technique, compared to man-
ual data circularity management. The technique presented can sig-
nificantly reduce the overhead of data management when processing
continuous, overlapping streams of data.

I. INTRODUCTION

Current high-performance general-purpose CPUs make it
feasible to perform substantial signal processing on the main
CPU of a workstation. The term “native signal processing”
(NSP) has been used to describe this approach [1]. With the
various Single Instruction Multiple Data (SIMD) instruction
sets included in modern CPUs, several GFLOPS of com-
putational power is available per core with single-precision
floating-point numbers. With multi-core CPUs and multi-
CPU workstations becoming available, single workstations
are capable of tens of GFLOPS, and these numbers are in-
creasing. Highly optimized libraries are available for com-
mon DSP tasks, making these SIMD architectures accessi-
ble without programming for them directly. Examples in-
clude Intel’s Math Kernel Library (MKL) [2] and the Vector
Signal & Image Processing Library (VSIPL) [3] .

Although memory speeds have also been increasing, they
have not kept pace with the rate of increase for CPU arith-
metic performance. In high-throughput signal and image
processing systems, memory bandwidth and latency can be-
come large bottlenecks. As CPU parallelism increases, the
contention for a slower shared memory becomes even more
problematic. Although high-performance signal processing
libraries are available for many common algorithms, the user
programmer typically must manage data input and output,
and assure that the data is arranged in memory in whatever
manner the library requires. Copying or rearranging high-
throughput stream data can be a very expensive operation,
but having data in the proper arrangement in memory can
make astounding differences in library performance. Time
spent by the CPU to copy data or time spent waiting on a

Supported by the Independent Research and Development program at
Applied Research Laboratories: The University of Texas at Austin.

slower memory is time spent not performing DSP.
Many common DSP algorithms operate on continuous,

overlapping (or “sliding window”) streams of data, e.g. FIR
filters or overlap-and-save FFTs. On hardware DSP proces-
sors, modulo (or “circular”) addressing modes are available
for efficient implementation of these algorithms [4]. The
appearance of a circular queue in memory is maintained
with the addressing hardware, such that no copying of data
by the DSP is necessary to maintain circularity. However,
general-purpose processors seldom have such modulo ad-
dressing modes, so this circularity must be maintained in
software. Although it is possible to write a signal process-
ing kernel function to manage this circularity, it requires
additional address computation overhead, and is therefore
seldom done. Indeed, libraries are typically written to oper-
ate directly on contiguous blocks of data. Therefore, some
amount of copying is generally necessary to manage circu-
larity and overlapping portions of data. For large overlaps
with high-throughput stream data, this can be a significant
overhead.

We use the virtual memory manager (VMM) to achieve
the equivalent of modulo addressing for native signal pro-
cessing on Unix workstations. This effectively emulates
circular buffers, and permits zero-copy queue implementa-
tions. That is, no copying is necessary to manage a contin-
uous, overlapping stream of data. The appearance of circu-
larity is maintained by the virtual memory system.

II. MANUAL OVERLAP MANAGEMENT

Because general-purpose processors generally lack mod-
ulo addressing modes, software must copy data in order to
manage memory for algorithms operating on continuous,
overlapping streams of data. This copying is undesired over-
head that would not be necessary on a DSP processor.

Fig. 1 shows the copy operations that would be necessary
for software to manage a buffer used with a sliding window
algorithm. For a continuous stream of data, the following
steps would by repeatedly executed:

1. copy old overlap data from end to start of buffer
2. copy new stream data to be after overlap data
3. execute algorithm on contiguous buffer

The needed overlap data length depends on the algorithm be-
ing executed. For an FIR filter, it is the filter order. Increas-
ing the length of the buffer decreases the relative amount of



overlap data

overlap data

new data for next executionoverlap data

Fig. 1. Copies necessary for manual management of data overlap.

copying overhead at the expense of more memory usage.

III. CIRCULARITY WITH THE VMM

By using the Virtual Memory Manager (VMM) on a Unix
system, we can achieve the equivalent of circular buffers,
eliminating the need for manual buffer management via
copying of overlap data.

The Portable Operating System Interface (POSIX) [5] is
an open set of standard operating system interfaces based
on Unix, produced by the IEEE and recognized by ISO and
ANSI. As such, it is portable across a large number of plat-
forms. POSIX provides a standard operating system call,
mmap(· · ·), for mapping files or devices into a process’s
virtual memory map with the VMM.

By mapping the same file (or shared memory object) to
multiple, contiguous locations, we have achieved virtual cir-
cularity. This mapping is maintained by the CPU’s virtual-
to-physical address translation hardware. The user process
has contiguous access to a block anywhere in the buffer up to
the length of the mirrored data. One must never access mem-
ory past the final mapping, but this can easily be avoided
by performing a modulus operation after incrementing any
pointer that accesses the buffer. There can be some overhead
incurred in using virtual memory mappings, but there is the
benefit of avoiding copies of high-throughput data. Fig. 2
shows the memory layout of a queue using this technique.

The following steps are used to create a circular buffer:
1. create an object that can be mapped with mmap(· · ·)

(such as POSIX shared memory or a temporary file)
2. map the object with mmap(· · ·), typically allowing the

operating system to assign the virtual address
3. map the object again with mmap(· · ·), specifying the

virtual address adjacently after the previous mapping
We have demonstrated this technique to work on Linux (x86
and PowerPC), MacOS X, and AIX.

IV. MEASURING PERFORMANCE

We quantify the performance improvement of these zero-
copy queues by benchmarking a commonly implemented al-
gorithm – a frequency domain FIR filter. We use the well-
known “Fastest Fourier Transform in the West” (FFTW) li-
brary [6] for our forward and inverse FFTs, and a SIMD

mirrored data

queue data region mirror region

Virtually mapped twice

Fig. 2. Creating the appearance of a circular queue with virtual memory.

vector complex multiplication function. Our point of com-
parison is the manual overlap management approach, as
would be necessary without the zero-copy memory manage-
ment technique. Before each forward FFT, overlap data is
copied from the tail of the buffer to the head, and the new
data is copied in. After each inverse FFT, the “good” (non-
circularly-aliased) result data is copied to an output buffer.

By varying algorithm parameters during the benchmark,
such as filter length and FFT length, we are able to make
some general performance evaluations about the zero-copy
queues. We use power-of-two FFTs from 16 to 65536, and
vary the filter length as a percentage of the FFT length over
several steps. Note that the filter length is the same as the
overlap length, so this test is also varying the percentage
of overlap. We do not propose that all of the benchmarked
cases are a desirable approach for implementing such an FIR
filter in a signal processing system, but we are interested
in varying the parameters to explore the zero-copy queue
performance over a wide workload.

We run these benchmarks in two different POSIX-
compliant environments, with minimal software changes
necessary between the platforms. We benchmark with a data
size large enough to prevent it from fitting in cache (typically
over 100MB), and measure the execution time as an average
over 10 trials. We compute MFLOPS from the measured ex-
ecution time for a forward and a reverse FFT, and a complex
multiply, as

10N log2 N + 6N. (1)

This is the same method that the FFTW project uses to com-
pute the number of FLOPs in an FFT.

V. RESULTS

We present benchmark results from two architectures and
environments: a 2.5 GHz PowerPC 970 (Apple Power Mac
G5) running MacOS X 10.4.6, and a 1.8 GHz AMD Opteron
running 64-bit Red Hat Enterprise Linux 4 (RHEL4). The
Opteron processor is installed in a Shuttle SN21G5 sys-
tem. In all cases, we use single-precision floating point with
SIMD instruction set libraries. These benchmarks use only
a single thread, and therefore only a single CPU core.

A. MacOS X on PowerPC
Fig. 3 shows a subset of the performance results on the

PowerPC system. For FFT lengths 512, 1024, and 2048, we
plot performance versus overlap percentages, for both zero-
copy and manual copy. For any given FFT length there is a
visible performance gain in the zero-copy version versus the
manual copy version.

It is significant to point out the absolute performance that
was measured. The benchmark shows that the processor is
operating at 4 to 6 GFLOPS, which is 20 to 30 percent of
the theoretical peak. This is about 2 floating-point opera-
tions per clock cycle. It is also interesting to note that in
each case, the performance increases nearly linearly as the
overlap increases. This is unsurprising, because the overlap
data has already been read from main memory into cache.
These particular FFTs are small enough to fit in cache, so the



0 20 40 60 80 100
3500

4000

4500

5000

5500

6000

6500

7000

percent overlap

m
ea

su
re

d 
pe

rf
or

m
an

ce
 (

M
FL

O
PS

)
512 pt FFT, zero−copy
1024 pt FFT, zero−copy
2048 pt FFT, zero−copy
512 pt FFT, manual copy
1024 pt FFT, manual copy
2048 pt FFT, manual copy

Fig. 3. Partial PowerPC performance results versus overlap for zero-copy
and manual copy queues. Zero-copy queues have higher performance.

overlap percentage is equivalent to the percentage of cache
pre-warming.

Fig. 4 shows PowerPC results as percent performance
improvement for zero-copy queues over the manual copy
method, versus the FFT length. The percent performance
improvement generally wanes as the FFT length grows. This
is unsurprising because the execution time overhead for the
manual copying is linear with the FFT length, but the FFT
execution time grows super-linearly as shown in (1). In gen-
eral, one would expect the percentage performance improve-
ment to decrease as the size of the (non-overhead) workload
increases.

B. RHEL4 on Opteron
Fig. 5 shows a subset of the performance results on the

Opteron system. Again we plot performance versus overlap
percentages for FFT lengths 512, 1024, and 2048, for both
zero-copy and manual copy. Again there is a visible perfor-
mance gain for zero-copy versus the manual copy version.

On the Opteron, the benchmark is operating at just un-
der 3 GFLOPS, which is about 20 percent of the theoretical

4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

log
2
 of FFT length

Pe
rc

en
t P

er
fo

rm
an

ce
 I

m
pr

ov
em

en
t

overlap of 6.25%
overlap of 12.50%
overlap of 25.00%
overlap of 50.00%
overlap of 75.00%
overlap of 87.50%

Fig. 4. Percent performance increase on PowerPC for zero-copy queues
over manual copy.

0 20 40 60 80 100
2400

2600

2800

3000

3200

3400

percent overlap

m
ea

su
re

d 
pe

rf
or

m
an

ce
 (

M
FL

O
PS

)

512 pt FFT, zero−copy
1024 pt FFT, zero−copy
2048 pt FFT, zero−copy
512 pt FFT, manual copy
1024 pt FFT, manual copy
2048 pt FFT, manual copy

Fig. 5. Partial Opteron performance results versus overlap for zero-copy
and manual copy queues. Zero-copy queues have higher performance.

peak. This is about 1.7 floating-point operations per clock
cycle. Again, performance increases nearly linearly as the
overlap increases. Note that FFTW is not included as a pack-
age on RHEL4, so we built it from the source code pack-
age provided by the Fedora Extras repository. The pack-
age as provided performed at only about 1.5 GFLOPS. We
achieved the presented performance by modifying the build
flags to optimize for the Opteron.

Fig. 6 shows Opteron results as percent performance
improvement for zero-copy queues over the manual copy
method, versus the FFT length. When compared to the Pow-
erPC results in Fig. 4, the shortest FFTs do not have as much
performance improvement, and the middle FFTs do not dip
as low. However, the general trend is similar.

We have shown that on both the PowerPC and the
Opteron, zero-copy queues can significantly increase per-
formance over manual copies for a wide range of potential
workloads.

4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

log
2
 of FFT length

Pe
rc

en
t P

er
fo

rm
an

ce
 I

m
pr

ov
em

en
t

overlap of 6.25%
overlap of 12.50%
overlap of 25.00%
overlap of 50.00%
overlap of 75.00%
overlap of 87.50%

Fig. 6. Percent performance increase on Opteron for zero-copy queues
over manual copy.



FFT IFFT

filter

Fig. 7. A CPN program for a frequency-domain FIR filter. Nodes can
execute concurrently and have zero-copy queues connecting them.

VI. COMPUTATIONAL PROCESS NETWORKS

Zero-copy queues using the virtual memory manager
came as a side-effect of other ongoing work: an implemen-
tation of Computational Process Networks (CPN) [7].

The Process Network (PN) model was introduced by
Kahn [8] in 1974, and is a dataflow model in which con-
current processes communicate (only) over one-way FIFO
queue channels. In a PN program graph, edges represent
queue channels, and nodes represent processing elements.
Process Networks naturally model functional parallelism,
can model data parallelism, and are generally well-suited
for modeling signal processing systems. Kahn showed that
a PN program is determinate – the results produced on all
queues are the same for every possible execution order, in-
cluding concurrent execution. PN has therefore found some
use in parallel and distributed signal processing systems. In
the example program of Fig. 7, each node could be executed
concurrently, and have zero-copy queues connecting them.

Computational Process Networks (CPN) is our extension
of the PN model, and adds the concept of firing thresh-
olds similar to Computation Graphs [9]. With firing thresh-
olds, nodes may access more queue data than they consume,
meaning that they can operate on continuous, overlapping
streams of data without the need to perform manual data
copying for overlap management. In fact, nodes can operate
directly from queue memory, which further reduces copying
and also decouples computation from communication.

By reducing the overhead of copying, zero-copy queues
reduce overall system memory bandwidth usage, and can
therefore increase scalability of a CPN program on a
symmetric-multiprocessing system. Although one can also
reduce relative copying overhead by increasing the process-
ing size at each node, there are advantages to using smaller
granularity. Smaller nodes increase the potential concur-
rency in the system, and also increase the design space for
mapping the system to a parallel implementation.

We have released a high-performance CPN framework
implementation using POSIX threads with source code
available [7]. This release also contains the source code for
the zero-copy queues presented in this paper. The presented
zero-copy queue approach has been used extensively in our
implementation of CPN, and has been successfully fielded
in our real-time sonar beamformer on a workstation [10].

VII. CONCLUSION

For high-throughput signal and image processing sys-
tems, zero-copy queues can eliminate the copies necessary
for overlap management, and can make a significant, mea-
surable difference. We demonstrated this for a wide work-
load on multiple platforms.

There are some issues to be aware of while using the
VMM in this manner. In using zero-copy queues for various
applications, we have encountered a performance problem
with respect to N-way set-associative caches on the Pow-
erPC. The base address of a zero-copy queues is always page
aligned. This had the base addresses from many different
queues hitting the same cache set. We resolved this issue
(achieving better cache utilization and therefore overall per-
formance) by staggering data in the different queues such
that they hit different cache sets.

We also note that extreme overuse of zero-copy queues
is likely to give diminishing returns. If too many maps are
made in a single process and the virtual memory transla-
tion lookaside buffer (TLB) begins to overflow, the penalty
for recovering from TLB misses will likely exceed the per-
formance gained by reducing the overhead of data copying.
That said, we have used several dozen zero-copy queues in
processes and found them to perform admiribly.

The benefit of using zero-copy queues depends on the
workload, but as data throughput grows or the computa-
tion size gets smaller, the relative overhead due to copying
for overlap management typically becomes more significant.
The CPU time saved from copying will free the processor
for other operations, ultimately making a more efficient im-
plementation. Such high-throughput workloads are the type
that Computational Process Networks [7] were designed to
handle.

REFERENCES

[1] W. Chen, H. Reekie, S. Bhave, and E. Lee, “Native Signal Processing
on the UltraSPARC in the Ptolemy Environment,” in Proc. IEEE
Asilomar Conf. on Signals, Systems and Computers, Pacific Grove,
CA, Nov. 1996, pp. 1368–1372.

[2] “Intel math kernel library (MKL) web page,” http : / / www .
intel.com/software/products/mkl/.

[3] “Vector signal and image processing library (VSIPL) web page,”
http : //www.vsipl.org/.

[4] J. Eyre and J. Bier, “DSP processors hit the mainstream,” IEEE
Computer, vol. 31, no. 8, pp. 51–59, 1998.

[5] “IEEE POSIX standards web page,” http : / / standards .
ieee.org/catalog/olis/posix.html.

[6] M. Frigo and S. Johnson, “The design and implementation of
FFTW3,” Proc. of the IEEE, vol. 93, no. 2, pp. 216–231, 2005,
special issue on “Program Generation, Optimization, and Platform
Adaptation”.

[7] “Computational process networks (CPN) web page,” http : / /
www.ece.utexas.edu/∼allen/CPN/.

[8] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Information Processing, pp. 471–475, Aug. 1974.

[9] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: Determinacy, termination, queueing,” SIAM Journal,
vol. 14, pp. 1390–1411, Nov. 1966.

[10] G. E. Allen and B. L. Evans, “Real-time sonar beamforming on work-
stations using process networks and POSIX threads,” IEEE Trans. on
Signal Processing, pp. 921–926, Mar. 2000.


