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Introduction

• Modern general-purpose CPUs are capable of 
substantial digital signal processing performance

• Tens of GFLOPS with 32-bit floating-point

• Single-Instruction Multiple-Data (SIMD) 
instruction sets (SSE3/AltiVec)

• Highly optimized libraries (VSIPL, Intel MKL)

• Multiple cores and/or multiple CPUs

• Dubbed “Native Signal Processing” (NSP)



Bottleneck: Memory

• Major bottleneck in data-dominated applications

• CPUs often waiting on memory -- latency or BW

• Performance depends on organization in memory

• Many algorithms require specific data arrangement

• Copying and re-arranging data is expensive

• Time spent copying is time not doing DSP



“Sliding Window” Algorithms

• Overlapping, continuous streams of data

• Common in DSP algorithms

• FIR filters

• Overlap-and-save FFTs

• “Circular” memory buffers for queues of data

• Hardware DSPs use modulo addressing modes

• No copying is necessary to maintain circularity



Circular Queues for NSP

• No modulo addressing on general purpose CPUs

• Optimized libraries are for contiguous blocks

• Copying is necessary to maintain circularity for 
sliding window algorithms -- undesired overhead

new data for next execution

overlap data

overlap data

1. Copy down overlap

overlap data

2. Copy in new data

3. Ready for execution



Circular Queues with VMM

• Virtual Memory Manager maintains circularity

• Map a physical page to multiple addresses

• Queue indices wrap upon reaching end

• Contiguous access to only mirrored length

• No data copying required -- done by VM mappings

mirrored data

Virtually mapped twice

queue data region mirror region



VM Queue Implementation

• Use POSIX mmap(...) system call:

1. Create mmap-able object (shm or tmp file)

2. mmap object (address typically assigned by OS)

3. mmap object again, adjacent to previous mmap

• Demonstrated to work on: Linux, LinuxPPC, 
MacOS X, Solaris, AIX

• Source code available at
http://www.ece.utexas.edu/~allen/CPN



Performance Study

• An FIR filter implemented in the frequency domain:

• Overlap-and-save FFT using FFTW

• SIMD complex multiply (AltiVec/SSE2)

• Inverse FFT using FFTW

• Compare zero-copy queue to overlap copying

• Vary FFT length over several powers of two

• Vary overlap size as a percentage of FFT length



Performance Results

• FFT is 5N log2 N

• 2.5 GHz PPC G5, 
MacOS X 10.4

• ~2 FLOPs/cycle

• mean of 10 runs

• Zero-copy queue 
gives visible gain! "! #! $! %! &!!
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Performance Results

• Smaller FFTs have substantial gain, tends to decrease

• Smaller workload implies a larger overhead

! " # $ % & '( '' ') '* '! '" '#
(

"

'(

'"

)(

)"
+,-.!/.0120,-3.-456/,2.7,-24568592/.01

9.:
)
;<<=29,6:>?@

0
,
-3
.
-4
5
6
/
,
2A
4
0
-.
7
,
4
,
6
>2
;0
,
-/
,
6
>@

.7,-9502.32#B)"C

.7,-9502.32')B"(C

.7,-9502.32)"B((C

.7,-9502.32"(B((C

.7,-9502.32$"B((C

.7,-9502.32%$B"(C



Process Networks (PN)

• Naturally models parallelism in a system

• A formal model for concurrency [Kahn 74]

• A dataflow model for parallel processing

• Arcs are queues, nodes perform processing

• Mathematically provable concurrency properties

FFT Multiply IFFT



Computational Process 
Networks (CPN)

• Adds firing thresholds from Computation Graphs

• Nodes need not perform manual copying

• Nodes can operate directly from queue memory

• Decouple computation from communication

• Implementable with zero-copy queues

FFT Multiply IFFT



Zero-copy Queues & CPN

• Zero-copy queues can significantly reduce overhead 
normally required for maintaining circularity

• This reduces system memory bandwidth usage

• Can increase overall scalability

• Permits smaller granularity processing nodes

• Increases potential concurrency in the system

• Increases mapping design space to parallel HW


