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ABSTRACT
Previous research efforts on OFDMA resource allocation have typ-
ically assumed the availability of perfect channel state information
(CSI). Unfortunately, this is unrealistic, primarily due to channel es-
timation errors, and more importantly, channel feedback delay. In
this paper, we develop optimal resource allocation algorithms for
OFDMA systems assuming the availability of only partial (imper-
fect) CSI. We consider ergodic weighted sum discrete rate maxi-
mization subject to total power constraints. We approach this prob-
lem using a dual optimization framework, allowing us to solve this
problem with O(MK) complexity per symbol for an OFDMA sys-
tem with K used subcarriers and M active users, while achieving
relative optimality gaps of less than 10−3 (99.999% optimal).

Index Terms: Multiaccess communication,Information rates, Re-
source management, Optimization methods, Uncertain systems

1. INTRODUCTION

Next-generation broadband wireless system standards, e.g. 3GPP-
Long Term Evolution (LTE) [1], consider Orthogonal Frequency Di-
vision Multiple Access (OFDMA) as the preferred physical layer
multiple access scheme, esp. for the downlink. The problem of as-
signing the subcarriers, rates, and powers to the different users in
an OFDMA system has been an area of active research, (see e.g.
[2]). A common underlying assumption among these works is that
the channel state information (CSI) of the users are known perfectly.
This assumption is quite unrealistic due to channel estimation errors,
and more importantly, channel feedback delay. Thus, in this paper,
we focus on the case where only imperfect (partial) CSI is available.

The effect of imperfect CSI for rate maximization in wireless
systems has been quite well studied for single-user OFDM systems
[3]. However, no work to the best of the authors's knowledge consid-
ered the multiuser OFDM case. In the multiuser OFDM (or OFDMA)
case, the dif�culty arises from the fact that the exclusive subcarrier
assignment restriction (i.e. only one user is allowed to transmit on
each subcarrier) renders the problem to be combinatorial in nature.
Fortunately, in our recent work on optimal resource allocation for
ergodic rate maximization in OFDMA systems with perfect CSI [4],
we have shown that using a dual optimization approach, the prob-
lem can be solved with just O(MK) complexity per symbol for an
OFDMA system with M active users and K used subcarriers. Fur-
thermore, our solution results in relative optimality gaps of less than
10−4 in typical scenarios, thereby supporting us to claim practical
optimality. Using a similar dual optimization approach, we relax
the assumption of perfect CSI and formulate and solve the problem
assuming the availability of imperfect CSI. We show that by using
the dual optimization framework, we can solve the imperfect CSI
problem with relative optimality gaps of less than 10−3 in cases of

practical interest. Note that the dual optimization framework has
also been used in the DSL context in [5].

2. SYSTEM MODEL

We consider a single OFDMA base station with K-subcarriers and
M -users indexed by the set K = {1, . . . , k, . . . , K} and M =
{1, . . . , m, . . . , M} (typically K À M ) respectively. We assume
an average transmit power of P̄ > 0, bandwidth B, and noise den-
sity N0. The received signal vector for the mth user at the nth
OFDM symbol is given as

ym[n] = Gm[n]Hm[n]xm[n] + wm[n] (1)

where ym[n] and xm[n] are the K-length received and transmit-
ted complex-valued signal vectors; Gm[n] is the diagonal gain al-
location matrix with diagonal elements [Gm[n]]kk =

p
pm,k[n];

wm[n] ∼ CN (0, σ2
wIK) with noise variance σ2

w = N0B/K is
the white zero-mean, circular-symmetric, complex Gaussian (ZM-
CSCG) noise vector; and Hm[n] = diag {hm[n]} is the diagonal
channel response matrix, where hm = [hm,1[n], . . . , hm,K [n]]T

and where

hm,k[n] =

NtX
i=1

gm,i[n]e−j2πτik∆f . (2)

are the complex-valued frequency-domain wireless channel fading
random processes, given as the discrete-time Fourier transform of
the Nt time-domain multipath taps gm,i[n] with time-delay τi and
subcarrier spacing ∆f . The gm,i[n] are the time-domain fading
channel taps modeled as stationary and ergodic discrete-time ran-
dom processes, with identical normalized temporal autocorrelation
function

rm[∆] =
1

σ2
m,i

E{gm,i[n]g∗m,i[n + ∆]}, i = 1, . . . , Nt (3)

with tap powers σ2
m,i, which we assume to be independent across

the fading paths i and across users m. Since gm,i[n] is stationary,
hm,k[n] is also stationary, and the distribution of hm[n] is indepen-
dent of symbol index n.

Assuming that the time domain channel taps are independent
ZMCSCG random variables gm,i ∼ CN (0, σ2

m,i), then from (2),

hm ∼ CN (0K ,Σhm)

Σhm = WΣgmWH
(4)

where W is the K × Nt DFT matrix with [W]k,i = e−j2πτik∆f

and Σgm = diag{σ2
m,1, . . . , σ

2
m,Nt

} is an Nt×Nt diagonal matrix
of the time-domain path covariances. We model partial CSI as

hm = ĥm + êm (5)



where ĥm ∼ CN
�
0K ,Σhm − Σ̂m

�
is the estimated channel vec-

tor and ê ∼ CN (0K , Σ̂m) is the estimation error vector with

Σ̂m = Σhm−(rT
m⊗Σhm)(Rm⊗Σhm+σ2

eIPK)−1(rT
m⊗Σhm)H

as the error covariance matrix for a P th order MMSE predictor for
the channel with pilot spacing Dt, where [Rm]i,j = rm[(i− j)Dt],
rT

m = [rm[Dt], . . . , rm[PDt]], and ⊗ is the Kronecker product.
We assume that the marginal fading distribution on subcarrier k

conditioned on the estimated channel is a non-zero mean complex
Gaussian random variable given as hm,k|ĥm,k ∼ CN (ĥm,k, σ̂2

m,k)

where ĥm,k is the estimated complex channel gain and σ̂2
m,k is the

estimation error variance for that subcarrier. Thus, the channel-to-
noise ratio (CNR) γm,k = |hm,k|2/σ2

w conditioned on γ̂m,k =

|ĥm,k|2/σ2
w is in turn a non-central Chi-squared distributed random

variable with two degrees of freedom with pdf [6, Eq. 2-1-118]

fγm,k (γm,k|γ̂m,k) =
1

ρm,k
e
− γ̂m,k+γm,k

ρm,k I0

�
2

ρm,k

p
γ̂m,kγm,k

�
(6)

where I0 is the zeroth-order modi�ed Bessel function of the �rst
kind, and ρm,k = σ̂2

m,k/σ2
w is the ratio of the estimation error vari-

ance to the ambient noise variance.

3. DISCRETE RATE MAXIMIZATION WITH PARTIAL CSI

3.1. Problem Formulation

In the discrete rate case, the data rate of the kth subcarrier for the
mth user can be given by the following staircase function

Rd
m,k(pm,kγm,k) =

8>>><>>>:
0, pm,kγm,k < η0

r1, η0 ≤ pm,kγm,k < η1

...
...

rL, ηL−1 ≤ pm,kγm,k < ηL ≡ ∞
(7)

where {rl}l∈L, L = {1, . . . , L} are the L available discrete infor-
mation rates in increasing order, and {ηl}L−1

l=0 are the SNR bound-
aries chosen in such a way that the information rate rl is supportable
subject to an instantaneous BER constraint. In the perfect CSI case,
the candidate power allocation function that satis�es the BER con-
straint for each possible rate rl is simply multi-level fading inversion
(MFI), i.e. p

(l)
m,k = ηl/γm,k [4]. This allows us to do away with

having a BER function, since all that we require are the SNR rate
region boundaries ηl which can be computed of�ine. However, with
imperfect CSI, the average rate is given as

R̄m,k =
X
l∈L

rlP (ηl−1 ≤ pm,kγm,k < ηl|γ̂m,k) (8)

Since we do not have the perfect CSI information γm,k, simply per-
forming MFI on the imperfect CSI γ̂m,k does not guarantee satisfac-
tion of the BER constraint, and is illustrated in Section 4.

With the imperfect CSI assumption, we require a BER function
that can be expressed in terms of the SNR pm,kγm,k for a given rl in
order to enforce the average BER constraint. Suppose that we have
this BER function for a given rate rl denoted as BERl(pm,kγm,k),
which could be derived using theoretical analysis or curve �tting
from empirical data, the average BER constraint can be written as

E {BERl(pm,kγm,k)|γ̂m,k} = BER (9)

Solving for pm,k in (9) for each l ∈ L, we have L power allocation
functions to choose from.

In order to simplify our development, we derive a closed-form
expression for (9) assuming the fading distributions derived in Sec-
tion 2, and a representative BER prototype function that has been
empirically shown to �t a lot of practical scenarios (see e.g. [7]).
This prototype BER function is given by

BERl(pm,kγm,k) = al exp (−blpm,kγm,k) (10)

where al and bl are constants that are searched to �t the actual BER
function for each rl. For example, if we assume a Grey-coded square
2rl -QAM modulation scheme in AWGN, the BER function can be
approximated to within 1-dB for rl ≥ 2 and BER ≤ 10−3 with
al = 0.2 and bl = 1.6/(2rl − 1) [7]. Using (10) in (9) with the pdf
in (6), we have after some algebraic manipulation

E{BERl(pm,kγm,k)|γ̂m,k} = (11)

â
(l)
m,k

Z ∞

0

exp
�
−x
�
b̂
(l)
m,kpm,k + 1

��
I0

�
2
p

Km,kx
�

dx

where x = γm,k/ρm,k, Km,k = γ̂m,k/ρm,k, and

â
(l)
m,k = al exp (−Km,k)

b̂
(l)
m,k = blρm,k

(12)

Eq. (11) can be interpreted as the Laplace transform of I0(2
p

Km,kx)

with parameter s = b̂
(l)
m,kpm,k+1, which is given in [8, Eq. 29.3.81].

Hence, a closed form expression for (11) can be written as

E{BERl(pm,kγm,k)|γ̂m,k}

=
â
(l)
m,k

b̂
(l)
m,kpm,k + 1

exp

 
Km,k

b̂
(l)
m,kpm,k + 1

!
(13)

Equating (13) with the target BER, we arrive at the closed form
expression for the candidate power allocation function given the es-
timated CNR γ̂m,k and data rate rl

p̂
(l)
m,k =

1

b̂
(l)
m,k

0@ Km,k

W
�

BERKm,k/â
(l)
m,k

� − 1

1A (14)

where W (x) is the Lambert-W function, which is the solution to the
transcendental equation W (x)eW (x) = x. This function is ubiq-
uitous in the physical sciences, and ef�cient algorithms have been
extensively studied for its computation [9]. It is important to em-
phasize that (14) gives us the power allocation value that ful�lls the
average BER constraint when rl is chosen as the rate for a particular
user m and subcarrier k given imperfect CSI γ̂m,k. Fig. 1 shows
the power allocation as a function of the estimated CNR γ̂m,k for
uncoded 4−QAM and 64−QAM for various ρm,k. We also plot
the power allocation function when treating the γ̂m,k as perfect,
i.e. p

(l)
m,k = ηl/γ̂m,k called multi-level fading inversion on imper-

fect CSI (Imperfect CSI-MFI). We can see that as ρm,k decreases
(prediction accuracy increases), the power allocation function ap-
proaches that of Imperfect CSI-MFI. On the other hand, a higher
ρm,k requires higher power in order to ensure the average BER re-
quirement is met, especially for low estimated CNR γ̂m,k. Note also
that the power allocation functions approach the Imperfect CSI-MFI
value as γ̂m,k becomes large, despite the value of ρm,k.



Using (14) in (8), the average rate given that rl is chosen as the
transmission rate can be written as

R̄m,k(rl) =
X
i∈L

riP
�
ηi−1 ≤ p̂

(l)
m,kγm,k < ηi|γ̂m,k

�
(15)

=
X
i∈L

riP

 
ηi−1

p̂
(l)
m,k

≤ γm,k <
ηi

p̂
(l)
m,k

����� γ̂m,k

!
=
X
i∈L

ri

 
Fγm,k

 
ηi

p̂
(l)
m,k

����� γ̂m,k

!
− Fγm,k

 
ηi−1

p̂
(l)
m,k

����� γ̂m,k

!!
From [6, Eq. 2.1-124], we have the following closed-form expres-
sion for the cdf of a non-central Chi-squared random variable

Fγm,k (x| γ̂m,k) = 1−Q

 s
2γ̂m,k

ρm,k
,

s
2x

ρm,k

!
(16)

where Q(a, b) is the Marcum-Q function. Using (16) in (15), we
have a closed-form expression for the average rate for user m and
subcarrier k given a choice of transmission rate rl.

Considering the above development, we can think of our deci-
sion variables in this case as a vector of rate allocation indices l =
[lT

1 , . . . , lT
K ]T , lT

k = [l1,k, . . . , lM,k]T and lm,k ∈ {0, 1, . . . , L}.
The exclusive subcarrier assignment restriction can be written as
lk ∈ Lk, where

Lk = {lm,k ∈ {0, 1, . . . , L}|lm,klm′,k = 0; ∀m 6= m′} (17)

For notational convenience, we let l ∈ L = L1 × · · · × LK de-
note the space of allowable rate allocation indices for all subcarri-
ers. Note that a decision of lm,k = 0 means that neither rate nor
power is transmitted on subcarrier k by user m. Thus, we can de-
�ne R̄m,k(r0) ≡ 0 and p̂

(0)
m,k ≡ 0. The discrete weighted sum rate

maximization problem with partial CSI is then formulated as

f∗d = max
l∈L

X
m∈M

wm

X
k∈K

R̄m,k(rlm,k )

s.t.
X

m∈M

X
k∈K

p̂
(lm,k)

m,k ≤ P̄
(18)

3.2. Dual Optimization Framework
The dual problem of (18) can be written as (see e.g. [4])

g∗d = min
λ≥0

λP̄ +
X
k∈K

max
m∈M

max
l∈L∪{0}

R̄m,k(rl)− λp̂
(l)
m,k (19)

where we can use a univariate line-search method such as Golden-
section search to compute for the optimum multiplier λ∗d. Note that
neither (14) nor (15) depend on λ. Hence, we can pre-compute these
quantities for all l ∈ L, m ∈M, and k ∈ K before running the line
search iterations. Using λ∗d, we have

l∗m,k = arg max
l∈L

wmR̄m,k(rl)− λ∗dp̂
(l)
m,k (20)

m∗
k = arg max

m∈M
wmR̄m,k(rl∗

m,k
)− λ∗dp̂

(l∗m,k)

m,k (21)

p∗m,k =

(
p̂
(l∗m,k)

m,k , m = m∗
k

0, m 6= m∗
k

(22)

r∗m,k =

�
rl∗

m,k
, m = m∗

k

0, m 6= m∗
k

(23)

3.3. Complexity Analysis

Before running the line search iterations to compute for λ∗ in (19),
we need to compute MKL power allocation values (14) and aver-
age rate values (15) and store it in memory. This is followed by
the search iterations which we assume to require Iλ, wherein each
iteration requires O(MK) operations (19). The overall complex-
ity order for the discrete rate resource allocation algorithm is thus
O(MK(L + Iλ). Since L and Iλ are just constants independent of
M and K, the complexity is O(MK).

4. RESULTS AND DISCUSSION

We present several numerical examples to substantiate our theoret-
ical claims. Our simulations are roughly based on a 3GPP-LTE
downlink [1] system with parameters given in Table 1. We simu-
late the frequency-selective Rayleigh fading channel using the ITU-
Vehicular A channel model [10]. We assume Clarke's U-shaped
power spectrum [11] for each multipath tap, resulting in the temporal
autocorrelation function rm[∆] = J0(2π∆FdDt(Kfft +Lcp)/Fs)
where J0(x) is the zeroth-order Bessel function of the �rst kind [8,
Ch. 9]. To simulate imperfect CSI, we generate IID realizations
of ĥm and its prediction error vector êm as discussed in Section
2. This allows us to also generate the �actual� channel hm for the
perfect CSI cases using (5).

Fig. 2 shows the discrete rate region for the optimal resource al-
location algorithm assuming imperfect CSI (Imperfect CSI-Optimal).
We also show the rate region achieved by using optimal resource al-
location for discrete rates with perfect CSI (Perfect CSI-Optimal),
which is essentially MFI [4], and by using MFI on the imperfect
CSI (Imperfect CSI-MFI). Observe that due to the imperfect CSI
assumption, Imperfect CSI-Optimal loses approximately 8% of the
sum capacity when compared to Perfect CSI-Optimal. Observe also
that Imperfect CSI-MFI results in a rate region that is quite close
to the Perfect CSI-Optimal, and actually results in higher raw rates
than the Imperfect CSI-Optimal. However, if we consider the aver-
age BER for each subcarrier shown in Fig. 3, Imperfect CSI-Optimal
actually meets the average BER constraint of 10−3 (within ±2%),
but Imperfect CSI-MFI results in average BER violations of between
30 − 180%. This is because Imperfect CSI-MFI is equally aggres-
sive in rate and power allocation even when the CSI prediction er-
ror is quite large. Our proposed Imperfect CSI-Optimal algorithm,
on the other hand, is actually more conservative in rate and power
allocation when the prediction MSE is large, thus allowing the av-
erage BER to be met. In a practical communications system, this
would mean the difference of whether a packet is decoded success-
fully or not. Thus, using Imperfect CSI-MFI would result in unnec-
essary packet retransmissions and delays, and consequently decrease
the throughput signi�cantly. An explicit characterization in terms of
throughput, however, is beyond the scope of this paper.

Table 2 shows the other relevant metrics of the optimal resource
algorithms. The �rst column shows the average number of line-
search iterations it took to converge to a tolerance of 10−4, and the
second column the relative optimality gaps1 [12] [4]. We see that the
relative optimality gaps are virtually zero, which allows us to claim
optimality of the algorithms for all practical purposes.

1This is a measure of how far we are from the optimal solution, where a
gap of 0 means we have attained the optimal solution.



Table 1. Simulation Parameters
Parameter Value Parameter Value

Subcarriers (Kfft) 64 Vehicular speed (V ) 120 kph
Used Subcarriers (K) 33 Doppler frequency (Fd) 289 Hz

Bandwidth (B) 1.25 MHz Prediction �lter length (P ) 4
Sampling Freq. (Fs) 1.92 MHz Pilot spacing (Dt) 7

Carrier Freq. (Fc) 2.6 GHz CP Length Lcp 6 samples

Table 2. Other Relevant Metrics
SNR No. of Iterations (Iλ) Relative Gap (×10−4)
5 21.33 71.48
10 21.12 7.707
15 21.15 5.662
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Fig. 1. Discrete rate power allocation as a function of estimated CNR
(γ̂) with γ0 = 1 for various ρm,k.
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