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Abstract— Blind source separation (BSS) is the process of using
multiple sensors to separate multiple random signals from a
received linear combination. In this paper, we apply blind source
separation techniques to mixtures of digital communications
signals. We predict the achievable symbol error rate when the
signals are received on the same carrier frequency and blindly
separated. In a wireless environment where the sources are
mobile or the environment is changing, the mixing matrix will
vary with time. Our primary contribution is that we identify the
major source of error in separation. We extend an adaptive step
size algorithm to the complex-valued case to mitigate the errors
in a dynamic environment.

I. INTRODUCTION

Blind source separation (BSS) is the process of using
multiple sensors to separate multiple random signals from a
received linear combination. Applications may be found in
many areas of signal processing, such as separating speech,
biomedical signals, and co-channel communication signals.
The classic example is the “cocktail party” problem, where
one uses a microphone array to separate the voices of speakers
in a room. Specifically, this paper explores demixing co-
channel communication signals. While a number of significant
problems arise from such a setup, this paper will focus on the
case where the mixing matrix, which relates the unknown input
sources to the sensed observations, varies with time.

The goal of BSS is to separate m sources from n ≥ m
sensors. The system can be modeled as a linear system of
equations

xt = Ast + nt, t = 1, 2, ... (1)

where st is a vector of m unknown signals, xt is a vector
of n sensor readings, and A is an n×m mixing matrix. An
additive noise vector nt may be included. Assuming the noise
to be negligible and that an inverse or pseudo-inverse exists,
blind source separation attempts to find a matrix W that can
recover the sources:

yt = Wxt = WAst (2)

The primary contributions of this paper are the following:
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• Predict received symbol error rate (SER) of blindly
separated communications signals

• Identify the major source of separation error for time-
varying mixing matrices to be the condition number of
the mixing matrix

• Extend an iterative, adaptive step size algorithm to de-
crease inter-signal interference for a time-varying but
unknown mixing matrix to the complex valued case

II. BACKGROUND

We use the Equivariant Adaptive Source Identification
(EASI) algorithm as a basis [1]. We assume the additive noise
term to be negligible, ignoring it in the problem formulation
as is done throughout the BSS literature. Through simulation
we see that at reasonable signal-to-noise (SNR) ratios, the
separating algorithms still perform well. A separating matrix
W is a time-varying matrix Wt that is updated every time
instance using an n× n matrix function H(·) according to:

Wt+1 = Wt − λtH(yt)Wt = (I− λtH(yt))Wt (3)

This is a serial update where Wt is updated by left mul-
tiplication every time instance. The algorithm is a stochastic
gradient approach, similar to the popular least mean-square
(LMS) algorithm [2]. The multiplier λt is a step size, and H(·)
is chosen such that E{H(yt)} = 0 when y has independent
components. The choice of λt and H(·) affect the convergence
rate of the algorithm. By using a phase-preserving nonlinearity,
we keep the constellations from rotating [3].
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Fig. 1. Diagram illustrating the fundamental blind source separation system



Let 〈·|·〉 be the Euclidean inner product of two matrices:

〈A|B〉 = Trace(AT B) (4)

Consider an objective function φ(W), where W is an n ×
m matrix. The standard gradient at W is denoted ∂φ

∂W (W),
where the first order Taylor approximation of φ(W) is

φ(W + E) = φ(W) + 〈 ∂φ

∂W
|E〉+ o(E) (5)

In this paper, to remain consistent with the literature, the
relative gradient is denoted as ∇φ(W) is defined such that

φ(W + EW) = φ(W) + 〈∇φ(W)|E〉+ o(E) (6)

From Equations 5 and 6, we see that ∇φ(W) =
∂φ
∂W (W)WT . This is useful for a number of reasons. First,
the relative gradient is consistent with the serial update no-
tion, where the separating matrix is updated at each itera-
tion as Wt+1 = Wt + EtWt. Secondly, it can be shown
that when the objective function is in the form φ(W) =
E{f(y)} = E{f(Ax)}, the relative gradient becomes
∇φ(W) = E{f ′(y)yT } [1]. Thus, the relative gradient at any
specific W will only be a function of the received distribution
y = Wx. A standard gradient would require us to use x,
which we assume is not available in this blind setting.

III. PERFORMANCE EFFECTS

In order to evaluate the execution of the separation algo-
rithm, we first follow previous work defining the Inter-Signal
Interference (ISI) as a performance measure to be [1]

ISIij = E{|(Ct[i][j]− I)|2} (7)

where Ct = WtAt is ideally close to identity. Therefore
ISI as defined above provides a measure of the distance from
the desired identity matrix and is entirely source independent.
Note that since Ct may be a permuted scaled version of I, we
may have to permute the rows and scale back before making
this measurement. The i-th received signal yt[i] can be written
as the desired signal plus interfering terms:

yt[i] = Ct[i][i]y[i]t + nt +
∑

j 6=i

Ct[i][j]xj (8)

This measure is reasonable for any source separation prob-
lem. In digital communication channels, the fundamental per-
formance measure is usually the probability of symbol error.
We can determine the expected probability of error based on
the expected ISI if we treat the extra terms as additional
Gaussian interferers. It is a rough estimate, but works well
as the number of interferers gets large and is often used to
characterize the effects of intersymbol interference. Fig. III
illustrates the accuracy of predicting the symbol error rate
this way with a stationary matrix. Additionally, the ISI can
be predicted for a stationary matrix for a given λ [1]. For a
time-varying mixing matrix, we look at the instantaneous ISI
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Fig. 2. Simulations show the effect of step size on symbol error rate vs.
predicted for n = m = 8 sources and sensors. SNR was set to 15 dB; A is
complex Gaussian and constant for all t

instead of the expected value and average each of the non-
diagonal ISI terms. Consequently, the average ISI used in Fig.
4 is defined as:

ISIavg =
1

m2 −m

∑

i,j,i 6=j

|(Ct[i][j]− I)|2 (9)

A larger step size converges faster but has more error in the
steady state while a smaller step size converges slower and
has less error after convergence.

The example separation problem examined in this work
considers mixtures of narrowband signals in the presence of
diffuse multipath where the delay spread is shorter than the
symbol time. This assumption allows us to maintain that At is
still instantaneous (otherwise, in a frequency selective channel,
we would have a linear combination of multipath taps for
each symbol period leading to the related problem of blind
deconvolution). We follow Clarke’s model for wide sense
stationary uniform scattering [4]. The major source of error
in this environment is the ill-conditioning of the matrix. The
condition number of A is denoted κ(A) = σmax

σmin
, the ratio of

the maximum and minimum singular values. If A is square,
then the expression is equivalently κ(A) =‖ A−1 ‖ · ‖ A ‖,
where we use the L2-norm. When the condition number is
large, small perturbations in A result in large changes in the
inverse (or pseudo-inverse) of A, and an iterative algorithm
may have trouble tracking the changes. Fig. 3 illustrates
the direct correlation between the condition number and the
average ISI using the EASI algorithm with a fixed step-size.

Besides the fact that higher ISI implies more symbol errors,
there is a more fundamental problem with this ill-conditioning.
The objective function is not convex, in fact there are many
local minimums. These local minimums correspond to separat-
ing matrices, which are permuted forms of the identity matrix,
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Fig. 3. Illustration of the effects of ill-conditioned mixing matrix on inter-signal interference. Notice the direct correlation between a higher κ value (condition
number) and higher ISI.

with perhaps some phase shift. For example the following
matrices could both be considered separating matrices for a
4× 4 system:

WA1 =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


 ,WA2 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




(10)
We can see that WA1 will permute the sources such

that WA1[s1, s2, s3, s4]T = [s2, s4, s1, s3]T , and WA2 will
permute the sources in a new order as WA2[s1, s2, s3, s4]T =
[s1, s3, s2, s4]T . This creates a problem when trying to sort
out and demodulate the sources. If the separating matrix
changes, the output signals must be re-synchronized somehow
to determine which stream is which. The proposed algorithm
reduces the number of times that this occurs, as is illustrated
in the simulation results in Section V.

IV. VARIABLE STEP-SIZE ALGORITHM

When the matrix becomes ill-conditioned, we would like the
step size to increase to accommodate the rapid changes in the
separating matrix. In other stochastic gradient descent type
algorithms, for example the least mean square (LMS) algo-
rithm, research has shown improved performance by allowing
the step size to vary [5], [6]. In many of these algorithms, the
step size is updated according to it’s own stochastic gradient
descent in the form

λt+1 = λt − ρt
∂J (·)
∂λt

(11)

where J (·) is the cost function and ρ is a small constant.
In the LMS case, the cost function would be the squared
error between the filtered and desired signal. In blind source

separation, it will be the function measuring independence.
Note that now we are looking at the gradient of this cost
function with respect to the step size.

A few papers have looked into using adaptive step size tech-
niques for source separation. Douglas and Cichocki adapted
Amari’s natural gradient approach [7]. An approach following
for the EASI algorithm with real-valued data was presented in
[8].

An adaptive step size approach following for the EASI
algorithm with real-valued data was presented in [8]. We build
upon this work to find an adaptive step size algorithm for the
complex-valued EASI algorithm and analyze it in a wireless
environment. Following from Section II, we find the relative
gradient taken with respect to the step size to be

∇λφ|λ=λt = 〈ΓH(t + 1), Γ(t)〉 (12)
Γ(t) = [ytyH

t − I + g(yt)yH
t − ytg(yt)H ]Wt (13)

This is a complex-valued gradient, which provides informa-
tion on the descent direction in both the real and imaginary
planes. We propose a simple combination approach by choos-
ing the average of the real and imaginary components:

λt+1 = λt − ρ
1
2
[<{∇λφ|λ=λt}+ ={∇λφ|λ=λt}] (14)

We now illustrate the advantages of using the complex-
valued variable step size approach.

V. SIMULATION RESULTS

The advantages of the complex-valued adaptive step size are
twofold. In addition to the main points discussed in Section
IV with a time-varying mixing matrix, with a constant (or
very slowly changing) mixing matrix, the proposed algorithm
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Fig. 4. Sample runs comparing the proposed adaptive step size algorithm to constant step size. Note that Fig. 4(a) is with a constant matrix, so a smaller
number of samples are shown to illustrate the fast convergence. Fig. 4(b) shows a longer sequence to illustrate the adaptation under ill-conditioning for a
time-varying matrix. Fig. 4(c) shows the performance in different noise environments of the adaptive algorithm in a constant mixing matrix. Fig . 4(d) presents
the same SNR comparison in a fading channel.

adjusts the step size to be large at first for fast convergence
then shrinks the step size in the steady state. Notice the
performance of the proposed algorithm when At is constant
for all t, as seen in Fig. 4(a). The adaptive algorithm is
compared to constant step sizes of λ = 0.002 and λ = 0.05.
The larger step size converges more quickly, and the smaller
step size has less steady-state error after convergence. The
adaptive algorithm uses a large step size in the beginning so
as to converge faster than λ = 0.05, and then shrinks λt to
achieve a steady state error consistent with the small step size.
Thus the adaptive step size provides a clear advantage even in
the constant mixing matrix case.

Fig. 4(b) illustrates the advantage to using the adaptive
algorithm. The simulations were run with n = m = 4 and

the average SNR set to 20 dB. No assumptions are made
about the sensor geometry except that the observations are
independent. The fixed step size was λ = 0.01, and the
adaptive step size was computed with ρ = 5 × 10−5 with
0.0001 ≤ λt ≤ 0.10. The adaptive step size algorithm adapts
well to the ill-conditioned matrix. Note by looking at the y-
axis that the average ISI increases as fd

fs
increases, as expected.

The adaptive step size algorithm helps smooth out the jumps
by increasing the step size appropriately.

In the formulation of the EASI algorithm, noise is removed
from the problem. Here we show that at reasonably high SNR
the noise effects are rather small. Figures 4(c) and 4(d) present
the average ISI for different noise powers in the constant and
time-varying mixing matrix cases respectively with the same



variable step size parameters as in Fig. 4(b) described above.
For each SNR value, the mixing matrix is the same at each
time instant but with varying additive noise. In both cases,
once the SNR reaches 20 dB, the algorithm performs almost
as well as when noise is absent in the system.

VI. CONCLUSION

This paper has examined the problem of separating multi-
ple co-channel digital communications signals in a wireless
environment. We have illustrated the relationship between the
ability to separate digital communications signals measured
by inter-signal interference and the maximum likelihood de-
tector symbol error rate. Under the assumption of diffuse
multipath and spatially independent channels, we have shown
that the major difficulty in separation is the ill-conditioning
of the channel matrix. In response to this challenge, we
have proposed an adaptive step size EASI-based algorithm
for complex-valued data which performs well in simulation
compared to the constant step size approach.
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