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Abstract

We propose a wireless fading channel prediction algorithm for a pilot-symbol aided Orthogonal
Frequency Division Multiplexing (OFDM) system. Assuming a doubly selective (time and frequency
varying) ray-based physical channel model and equispaced pilot subcarriers in time and frequency, this
algorithm performs channel model parameter acquisition using a 2-Step 1D ESPRIT (estimation of
signal parameters via rotational invariance techniques) as a �rst stage, and channel prediction via model
extrapolation as a second stage. Since the channel model parameter acquisition has cubic complexity, we
also propose a linear complexity channel parameter tracking algorithm based on an improved adaptive
ESPRIT algorithm to continuously adapt to the time-varying channel model parameters. We derive the
Cramer-Rao Lower Bound (CRLB) and Asymptotic CRLB (ACRLB) for the mean squared error (MSE)
in OFDM channel prediction. We show that our proposed OFDM channel prediction algorithm has better
MSE performance while maintaining similar computational complexity than previous methods in sparse
multipath fading channels characterized by specular scattering, which is most suitable for outdoor mobile
macro-cell scenarios. Thus, our method can be seen as a complement to the existing schemes that are
more suitable for dense multipath channels with diffuse scattering, which is typical of urban pico-cell and
indoor wireless scenarios. We provide simulation results based on the IEEE 802.16e mobile broadband
wireless access standard to corroborate our claims.

I. INTRODUCTION

OFDM is a common modulation method for high speed data access systems, e.g. IEEE 802.16e

mobile wireless broadband access [1] systems. Modern high-performance OFDM transmission strategies,
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e.g. adaptive multi-user resource allocation [2], and adaptive multi-antenna precoding [3], require the

transmitter to have knowledge of the current channel state information (CSI). CSI can be obtained through

feedback of channel estimates from the receiver, or through the transmitter's own estimates in a time

division duplex (TDD) reciprocal channel. In high mobility environments, where the Doppler frequency

is high and the channel changes rapidly, the CSI used by the transmitter would be outdated due to the

processing and feedback delays, causing signi�cant performance degradation [2]. An effective means of

overcoming the feedback delay is channel prediction.

Channel prediction algorithms for �at-fading channels have been investigated extensively in the past

several years. In [4] [5], the channel is modeled as an autoregressive (AR) wide-sense stationary (WSS)

stochastic process, and linear minimum mean square error (LMMSE) prediction using previous channel

estimates is used to extrapolate the complex-valued fading channel. These methods can be broadly

classi�ed as analytical prediction approaches, since they model the wireless channel as a general stochastic

process without regard to the actual physical scattering mechanism of the channel. On the other hand,

several prediction algorithms model the channel as a sum of complex sinusoids [6] [7] [8]. These

approaches use frequency estimation techniques to determine the dominant sinusoids in the physical fading

process, and extrapolate the fading channel using the estimated model. We classify these approaches as

physical prediction approaches, since they use ray-based scattering mechanisms to model the wireless

channel.

More recently, channel prediction algorithms for doubly selective fading channels have also been

studied. In [9], the power of the doubly selective channel is predicted by predicting the individual complex

taps in the channel impulse response. In [10], OFDM channel prediction is performed by treating each

subcarrier in the OFDM symbol as a �at-fading AR WSS stochastic process, and an LMMSE prediction

�lter based on previous downsampled channel estimates similar to that in [4] was used. In [11], a Kalman-

�ltering based channel estimation and unbiased channel power prediction based on [9] was used on the

pilot-subcarriers. In [12], decision-directed and adaptive short-term channel prediction on the time-domain

channel taps was proposed. Their approach uses an IFFT/FFT pair to derive the time-domain channel

taps, perform the prediction, and then return to the frequency domain. These previous approaches are

based on the analytical model of the channel, and differ primarily on where the prediction is performed,

i.e. whether on all the subcarriers, the pilot subcarriers, or the time-domain channel taps. In [13], we

compared these different OFDM prediction approaches using a common framework, and have concluded

that prediction using the time-domain channel taps has better MSE performance with similar complexity.

The use of the physical approach for time and frequency selective channel prediction have also been
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considered in [14]. They extended the idea of using sinusoidal parameter estimation to the frequency

selective case, using 2D-Unitary ESPRIT [15, Ch. 63] to extract the 2D frequencies.

In [16], a thorough comparison of the non-physical AR and physical sinusoidal modeling for �at-fading

channel prediction using simulations and measured channels is performed. Their main conclusion was

that sinusoidal modeling is better than AR modeling only for simulated channels based on simple channel

models (e.g. Jakes' model), but is actually worse than AR modeling for measured channels. However, in

a more recent work [8], the �ndings in [16] were corroborated only for urban channels, but the reverse

was seen for sub-urban channels. They also concluded that AR modeling is more sensitive to channel

estimation error, whereas sinusoidal modeling is more sensitive to model mismatch and non-stationarities.

Furthermore, since both [14] and [8] used channel sounding measurements, which typically have very

high SNR (around 40 dB), whereas practical communication links have lower SNR, the advantage actually

tips towards sinusoidal modeling in practical cases, especially when model-order selection and tracking

techniques with low complexity are used. Thus, we focus on the sinusoidal modeling approach for doubly

selective channels, and propose low-complexity model-order and sinusoidal parameter tracking techniques

to overcome the shortcomings of sinusoidal modeling.

In this paper, we propose a channel prediction algorithm for a pilot-symbol aided OFDM system

with equispaced pilot subcarriers in time and frequency. Our algorithm is derived assuming a doubly

selective ray-based physical channel modeled as a sum of 2D complex sinusoids whose frequencies

correspond to the time-delay and Doppler frequency of each ray. We assume that the channel model

parameters vary slowly; i.e. these parameters are essentially constant within a small estimation and

prediction time window. Thus, using the available pilot subcarriers, we can estimate these parameters

reliably and simply extrapolate the model forward to predict the future channel response. Estimating the

parameters of a sum of 2D complex sinusoids in noise is a classical problem in radar, sonar, and other array

signal processing �elds, and many algorithms have been proposed in the past [15, Sec. XII]. However,

these previous methods are highly computationally intensive and may not be suitable for cost-effective

real-time implementation in mobile wireless communication systems. These approaches are based on

joint estimation, where the time delay and Doppler frequency of each ray are determined together. Our

algorithm is based on the observation that typical outdoor mobile wireless propagation environments

involve clusters of scatterers, e.g. a group of large buildings and far away hills. Thus, the numerous

propagating rays typically cluster around several mean time delays and angles of arrival [17]. Thus,

we propose a sequential 2-Step 1D estimation approach, where the time-delays and the corresponding

complex amplitudes are �rst estimated, and then followed by Doppler frequency estimation. In our work,
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TABLE I

NOTATION GLOSSARY

Notation Description Notation Description

αr,p Amplitude for rth ray of pth path P No. of paths
φr,p Phase for rth ray of pth path Pmax Max. no. of paths
fr,p Doppler freq. for rth ray of pth path Rp No. of rays for path p

ωr,p Normalized radian Doppler freq. Rp,max Max. no. of rays per path
τp Time delay for rth ray of pth path N No. of subcarriers
ϕp Normalized radian time delay Ncp Cyclic pre�x length
∆f Subcarrier frequency spacing Nf No. of pilot subcarriers
Df Pilot subcarrier spacing Nt No. of pilot symbols
Dt Pilot symbol spacing Nu No. of used subcarriers

we chose the ESPRIT [15, Ch. 63.2] algorithm since it has been shown to provide better MSE performance

than other comparable methods, and has a closed-form solution, which eases implementation.

Although less computationally complex than the joint estimation approach, the 2-step 1D approach is

still much more complex than the AR-modeling-based approaches, since ESPRIT has cubic complexity in

the number of samples. Fortunately, since the time-delays and Doppler frequencies are slowly varying, this

step needs to be performed only once during an initialization phase, and more computationally ef�cient

tracking techniques can be used for subsequent symbols. Thus, we also propose a linear complexity

channel parameter tracking algorithm based on our own improved adaptive ESPRIT algorithm.

We also derive the CRLB and ACRLB for the MSE in OFDM channel prediction. We show via

simulation that our proposed algorithm is quite close to the MSE lower bound for practical propagation

scenarios and pilot-subcarrier lengths. We also provide simulation results that compare our algorithm with

AR modeling-based algorithms, and it is shown that our algorithm provides better MSE performance at

a similar computational complexity for sparse multipath channels characterized by specular scattering,

which is suitable for outdoor mobile macro-cell scenarios.

II. SYSTEM MODEL

A. OFDM Baseband System Model

1We consider an N = Nu + Ng + 1 subcarrier OFDM system, where Nu = Nd + Nf subcarriers (Nu

is assumed to be even) in the middle of the band are used, which include the Nd data subcarriers and the

1Table I summarizes the notation for the most commonly used parameters.
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Nf pilot subcarriers, and 1 null subcarrier at the 0th index. The rest of the Ng subcarriers are the guard

subcarriers, which are nulled out to allow the signal to naturally decay and create the FFT �brick wall�

shaping. Let Fs be the sampling frequency, which gives us a subcarrier spacing of ∆f = Fs/N , and a

useful symbol time of Tu = 1/∆f . We use a cyclic pre�x (CP) of duration Tcp to avoid inter-symbol

interference and maintain the orthogonality of the subcarriers, which gives us a total OFDM symbol time

of Tsym = Tcp + Tu. The complex baseband representation for the nth OFDMA symbol is

sn(t) =
Nu/2∑

k = −Nu/2

k 6= 0

X(n, k)ej2πk∆f(t−Tcp), for nTsym ≤ t < (n + 1)Tsym (1)

We assume that the cyclic-pre�x time Tcp is greater than the maximum delay spread of the channel τmax,

and that time and frequency synchronization is perfect, such that the received signal at the kth subcarrier

of the nth symbol can be written as

Y (n, k) = H(n, k)X(n, k)G(k) + W (n, k) (2)

where H(n, k) is the complex channel response, X(n, k) is the complex transmitted symbol we wish

to communicate, G(k) = GT (k)GR(k) with GT (k) and GR(k) as the pulse-shaping transmitter and

receiver �lter frequency response values at the kth subcarrier frequency, and W (n, k) is a zero-mean,

circular-symmetric, complex additive white Gaussian noise (AWGN) with variance σ2.

B. Doubly Selective Wireless Channel

The continuous-time impulse response of a doubly selective wireless channel can be modeled as the

superposition of a discrete number of resolvable paths [17]

hc(t, τ) =
P∑

p=1

γp(t)δ(τ − τp(t)) (3)

where τp(t) and γp(t) are the time-varying delay and complex gain of the pth path, and P is the number

of paths. We assume that re�ectors and scatterers are far enough from the receiver, so that the waves

incident on the receiving antenna are plane waves; and that the receiver travels in a linear motion and

with constant velocity2. These assumptions allow γp(t) to be �tted by a sum of complex sinusoids

γp(t) =
Rp∑

r=1

αr,p(t)ejφr,p(t)ej2πfr,pt (4)

2These assumptions are valid in outdoor macro-cellular propagation scenarios and in considering small time windows of
interest, i.e. a few wavelengths.
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where Rp is the number of rays contributing to the pth path, and αr,p(t), φr,p(t) and fr,p are the real

valued amplitude, phase, and Doppler frequency, respectively, for the rth ray in the pth path. Although

these parameters are in general dependent on time, we assume that they are constant within a small

estimation and prediction time window3. We allow these parameters to vary slowly beyond this window,

where we use tracking techniques to adapt to the non-stationary channel at a low computational cost.

Removing the time-dependency of the parameters in (4), substituting it into (3), and taking its Fourier

transform, we get the frequency response of the channel within the stationary window Hc(t, f) =
P∑

p=1

Rp∑
r=1

αr,pe
jφr,pej2π(fr,pt−τpf) which is composed of R =

P∑
p=1

Rp complex sinusoidal rays. Each ray

is characterized by the quadruplet {αr,p, φr,p, fr,p, τp}. We assume that no two rays share the same pair

of Doppler frequency and time-delay values {fr,p, τp} (otherwise they can be combined to form one ray),

but different rays may share the same delay or Doppler frequency. We further assume that the OFDM

system with symbol period Tsym and subcarrier spacing ∆f have proper cyclic extension and sample

timing, giving us the sampled channel frequency response

H(n, k) =
P∑

p=1

Rp∑

r=1

αr,pe
jφr,pej2π(fr,pnTsym−τpk∆f) (5)

Note that practical values of fr,p and τp are bounded, i.e. 0 ≤ fr,p < fmax and 0 ≤ τp < τmax where

fmax is the maximum Doppler frequency and τmax is the maximum delay spread. Hence, (5) has �nite

support in both Doppler and delay domains.

C. OFDM Pilot Pattern and Least-Squares Channel Estimation

We assume that there are Nf pilot subcarriers inserted every Df = bNu/Nfc subcarriers within the Nu

used subcarriers in every OFDM symbol, where Df ≤ 1/(∆fτmax) to avoid aliasing in the frequency

domain. We also assume that a block of Nt current and previous OFDM symbols (which we call pilot

symbols) equally inserted every Dt OFDM symbols, where Dt ≤ 1/(2Tsymfmax) in order to avoid

aliasing in the time domain.

Let kq =
(

Nf

2 − q
)

Df , q ∈ Q, Q , {0, . . . , Nf − 1} denote the set of pilot subcarrier indices across

frequency4, and nl = lDt, l ∈ L, L , {0, . . . , Nt − 1} denote the set of pilot symbol across time. Using

3The fast fading nature of the channel is due to the superposition of these sinusoids. A similar model has been used as
simulation models for mobile wireless channels [18] and also for wireless channel modeling and prediction [19] [14]

4We implicitly assumed that Nf is even such that index kq is an integer. A similar pilot subcarrier set can be de�ned for Nf

odd without changing the development of the algorithm.
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Fig. 1. Top-level block diagram for proposed OFDM channel prediction algorithm

these Nt×Nf pilot subcarriers5, we can perform a least squares (LS) estimate of the channel at the pilot

locations using the received signal Y (nl, kq) and the known pilot symbols X(nl, kq), given as

ĤLS(l, q) = Y (nl, kq)/X(nl, kq)

= G(kq)
P∑

p=1

Rp∑

r=1

cr,pe
j(ωr,pl+ϕpq) + W̃ (l, q), l ∈ L, q ∈ Q (6)

where ωr,p = 2πfr,pDtTsym, ϕp = 2πτpDf∆f , and cr,p = αr,pe
j(φr,p−ϕpNf /2). We assume that the

pilot symbols X(nl, kq) are deterministic complex values with unit magnitude, such that W̃ (l, q) =

W (nl, kq)/X(nl, kq) is AWGN with variance σ2. For notational convenience, let

ĤLS =
[
ĥ0:Nf−1

0 . . . ĥ0:Nf−1
Nt−1

]
(7)

be the Nf × Nt matrix of the LS estimates, where ĥa:b
l = [ĤLS(l, a), . . . , ĤLS(l, b)]T is the column

vector of the estimates on time index nl and pilot indices {kq}q=b
q=a.

III. OFDM CHANNEL PREDICTION ALGORITHM

The top-level block diagram for our proposed OFDM channel prediction algorithm is shown in Fig. 1.

Our channel prediction algorithm �rst estimates the parameters in our deterministic channel model using

the least squares estimates ĤLS in (7), and then extrapolates this model to predict the future channel

Ĥ(n + ∆, k). Improved maximum likelihood (ML) channel estimates ĤML are also generated as a by-

product of our prediction algorithm. After the initial parameter acquisition and channel prediction step,

subsequent channel parameters are then tracked using computationally ef�cient adaptive algorithms.

5Although we require equispacing of the pilots in time and frequency, we do not require that the pilots align across time (i.e.
the pilots need not be in the same subcarrier index for all time), thus allowing more general pilot patterns used in e.g. [1].
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A. Channel model parameter acquisition

Notice that (6) is in the form of a 2D complex sum-of-sinusoids (2D-SoS) in additive white Gaussian

noise, if not for the G(kq) pulse-shaping �lter frequency response terms, which can be considered as a

deterministic multiplicative noise across the frequency dimension. Fortunately, it is not very dif�cult to

design these �lters to have almost �at passband response. Thus, we simply ignore the minimal effect

of G(kq) in the derivation of our algorithm, and treat (6) as a standard 2D-SoS model. However, we

explicitly included the G(kq) factors in the results section for fair comparison with other algorithms.

Estimating the parameters of a 2D-SoS model jointly is a classical problem, and is very well studied in

the radar, sonar, and other array signal processing literature (see e.g. [15, Sec. XII] and references therein).

Although a straightforward application of these techniques may be used, they are too computationally

expensive for cost-effective implementation, primarily because of the required pairing operation of the two

frequencies for each ray. Other techniques that exploit shift invariance do not require a pairing operation

[15, Ch. 63], but are still highly complex due to the large matrix decomposition and joint diagonalization.

An important observation on the structure of the wireless channel, however, allows us to reduce the

computational burden. We decompose (6) as

ĤLS(l, q) =
P−1∑

p=0

gp(l)ejϕpq + W̃ (l, q) (8)

where the complex gain for the pth propagation is

gp(l) =
Rp−1∑

r=0

cr,pe
jωr,pl (9)

As mentioned in the introduction section, we exploit the fact that several (Rp) sinusoidal rays actually

share the same time-delay value ϕp. This allows us to divide the estimation task into a time delay

(ϕp) estimation step, and then a Doppler frequency (ωr,p) estimation step, which we call the 2-Step 1D

approach to channel parameter estimation.

If we treat gp(l) in (8) as simply the unknown complex amplitudes of the sum of sinusoids with

frequencies ϕp, then (8) amounts to 1D-SoS parameter estimation. This is a much simpler problem than

its two-dimensional counterpart, and a huge body of literature is available in solving this problem (see

e.g. [20]). In this type of estimation problem, once the number of sinusoids P is estimated, the dif�culty

lies in estimating the frequencies of the complex exponentials (ϕp in this case), since these frequencies

enter the model in a non-linear fashion. Although the ML estimates for the frequencies are desirable,

techniques to �nd these exactly or even approximately are highly complex iterative procedures that are not

guaranteed to converge [21]. Hence, we opted to base our algorithm on the non-iterative eigen-analysis
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technique ESPRIT [15, Ch. 63.2], which has been shown to perform better than other techniques in

terms of MSE, while still being amenable to real-time computation. Once these frequencies have been

estimated, the ML estimates for the complex amplitudes gp(l) are easily computed using a standard linear

LS approach. We shall refer to this step where the time-delays ϕp and complex multipath taps gp(l) are

estimated as the time-delay estimation step, or Step 1. Once the estimates of gp(l) are generated, we can

subsequently use these estimates as the left hand side of (9), and once again we have a 1D-SoS parameter

estimation problem. This allows us to use the same algorithm as above and generate the estimates for Rp,

ωr,p, and cr,p. We shall refer to this step where the Doppler frequencies ωr,p and complex amplitudes cr,p

are estimated as the Doppler frequency estimation step, or Step 2. The two-step algorithm is described

in more detail next.
1) Time-delay estimation: 6The time-delay estimation step can be further broken down into 4 substeps:

estimating the autocorrelation matrix and computing its eigenvalue decomposition (EVD), estimating the

number of paths P , estimating the time-delays ϕp, and estimating complex amplitudes {gp(l)}l∈L for

each path p = 0, . . . , P̂ − 1.

a) Estimate the autocorrelation matrix Rf and compute its EVD: Since there are Nt OFDM symbols,

we can use an average of the frequency autocorrelation estimates for each symbol generated using

the modi�ed covariance method (a.k.a. forward-backward) [21],

R̂f =
1
Nt

Nt−1∑

l=0

1
2

(
Ψ̂(nl) + JΨ̂(nl)HJ

)
(10)

Ψ̂(nl) =
1

Nf

Nf∑

q=K

(
ĥ(q−K+1):q

l

)(
ĥ(q−K+1):q

l

)H
(11)

and J is the exchange matrix with ones on the anti-diagonal and zeros elsewhere, and K is the size

of the autocorrelation matrix chosen to be greater than the maximum possible number of paths7

Pmax and less than Nf . The eigenvalue decomposition (EVD) of R̂f

R̂f−→EVD

K∑

k=1

λ̂f
k v̂kv̂H

k , λ̂f
1 ≥ . . . ≥ λ̂f

K (12)

is then performed where {λ̂f
k}K

k=1 are the non-increasingly ordered estimated eigenvalues of the

estimated autocorrelation matrix R̂f .

6Note that this step is similar to the time-delay acquisition step of the OFDM channel estimation algorithm in [22, Sec. III
B-C], although we assumed a different channel model, and our focus is on its use for prediction, not estimation.

7We make the reasonable assumption that Pmax is known à priori. This value is typically determined by the propagation
environment, and the desired accuracy of the channel characterization.
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b) Estimate the number of paths P : Estimation of the number of paths P is essentially a model-

selection problem, wherein the Minimum Description Length (MDL) is the method most often

used due to its consistency [21]. We employ the MDL appropriate for the modi�ed covariance

averaging technique [23] given as

P̂ = arg min
1≤µ≤K−1

−log




(
K∏

k=µ+1

λ̂f
k

) 1
K−µ

1
K−µ

K∑
k=µ+1

λ̂f
k




Nt(K−µ)

+
1
4
µ(2K − µ + 1) log Nt (13)

c) Estimate the time-delays {ϕp}P̂
p=1: Let V̂ = [v̂1 . . . v̂P̂ ] denote the matrix whose columns are the

eigenvectors associated with the P̂ largest eigenvalues of R̂f , and let V̂1 and V̂2 denote the upper

and lower (K − 1)× P̂ submatrices of V̂. The time delay estimates are

ϕ̂p = arg(ε̂p), p = 1, . . . , P̂ (14)

where arg (x) is the radian phase angle of the complex number x, and {ε̂p}P̂
p=1 are the eigenvalues

of the P̂ × P̂ ESPRIT spectral matrix Φ̂P̂ , given as

Φ̂P̂ = (V̂H
1 V̂1)−1V̂H

1 V̂2 (15)

d) Estimate the complex amplitudes {ĝp(l)}P̂
p=1: Assuming that the time delay estimates {ϕ̂p}P̂

p=1 are

correct, the ML estimate for the P̂ ×Nt matrix of complex amplitudes, given as

ĜML = [ĝ1 . . . ĝP̂ ]T (16)

ĝp = [ĝp(1) ĝp(2) . . . ĝp(Nt)]T (17)

which can be computed via least squares, i.e.

ĜML =
(
ÊHÊ

)−1
ÊHĤLS (18)

where [Ê]q,p = ejϕ̂pq, q = 0, . . . , Nf−1, p = 0, . . . , P̂ −1, is the Nf× P̂ Fourier transform matrix.

2) Doppler frequency estimation: In this second step, we utilize the estimated complex amplitudes

ĝp (17) for each path p to estimate the remaining parameters in our channel model. We simply replace

the left-hand side of (9), gp(l), with its corresponding estimate ĝp(l), and proceed similarly as Step 1,

since it is also a sinusoidal parameter estimation problem. For each path p = 1, . . . , P̂ , we repeat the

four substeps similar to Section III-A.1 above with slight modi�cations.
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a) Estimate the autocorrelation function R̂t
p and compute its EVD: We estimate the autocorrelation

matrix R̂t
p across time for path p using the modi�ed covariance method as in (10), but without the

averaging since we only have one observation vector, i.e.

R̂t
p =

1
2

(
Ψ̂(p) + JΨ̂(p)HJ

)
(19)

Ψ̂(p) =
1
Nt

Nt∑

l=I

(
ĝ(l−I+1):l

p

)(
ĝ(l−I+1):l

p

)H
(20)

The EVD of R̂t
p gives the eigenvalues {λ̂t

i}I
i=1 and their corresponding eigenvectors. Similar to

Sec. III-A.1.a), we should choose I larger than the maximum number of rays Rp,max but less than

Nt. In practice, Nt is chosen to balance complexity versus the modeling accuracy, and a good rule

of thumb is to choose I ≈ 3/5Nt [24].

b) Estimate the number of rays Rp: We estimate the number of complex sinusoidal rays Rp contributing

to path p also using the MDL derived for sinusoidal estimation described in [25].

c) Estimate the Doppler frequencies{ωr,p}R̂p

r=1: We estimate the Doppler frequencies using the same

ESPRIT algorithm given in (14)-(15).

d) Estimate the complex amplitudes {cr,p}R̂p

r=1: We estimate the amplitudes also via LS

ĉp =
(
EH

p Ep

)−1
EH

p ĝp (21)

where ĉp = [ĉ1,p . . . ĉR̂p,p]
T and [Êp]l,r = ejω̂r,pl, l = 0, . . . , Nt − 1, r = 1, . . . , R̂p is the Nt × R̂p

estimated Fourier transform matrix.

B. Channel estimation and prediction

Now that we have estimated all the parameters needed in our model, we just plug in these parameters

into our model in (5) to �nd our predicted channel ∆ symbols ahead as

Ĥ(n + ∆, k) =
P̂∑

p=1

R̂p∑

r=1

α̂r,pe
jφ̂r,pej2π(f̂r,p(n+∆)Tsym−τ̂pk∆f) (22)

where τ̂p = ϕ̂p

2πDf
, f̂r,p = ω̂r,p

2πDt
, α̂r,p = mag{ĉr,p}, and φ̂r,p = arg{ĉr,p} + ϕ̂p

Nf

2 . Although we used

simple model extrapolation in this case, we can similarly use Bayesian-type prediction by modeling the

complex amplitudes cr,p as IID random variables. It can be shown that LMMSE channel prediction is

also model extrapolation, with the parameters estimated using Bayesian LMMSE techniques [8].
Note that each of the Nt columns of ĜML in (18) is actually the time-domain channel tap estimate

for the frequency-selective channel. Hence, we can write

ĤML = WĜML (23)
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where the Nu×Nt matrix ĤML is the ML estimate for the frequency response of the channel at the Nu

data carrying subcarriers given that the time-delays are correct, and the (Nu + 1)× P̂ Fourier transform

matrix with elements [W]k,p = e
j

ϕ̂p

Df
(k−1−Nu

2
). Thus, our algorithm can be used as an OFDM channel

estimation and prediction solution.

C. Channel Model Parameters Tracking

Although less complex than the joint estimation approaches, the 2-step 1D approach has O(N3
f +

N3
t P̂ ) principal computational complexity, which is still highly complex for ef�cient implementation.

Fortunately, since the time-delays and Doppler frequencies are slowly varying, this step needs to be

performed only once during an initialization phase, and more computationally ef�cient subspace tracking

techniques can be used for subsequent symbols. In this section, we derive a completely adaptive version

of the 2-step 1D ESPRIT-based algorithm that has O
(
NfPmax + NtP̂Rp,max

)
complexity that is able

to ef�ciently track the slowly time-varying parameters, and also adapt to the time-varying model order.

Since both time-delay and Doppler frequency estimation entail essentially the same operations, we shall

limit our discussion to the time-delay estimation step, and explain brie�y the modi�cations necessary for

the Doppler frequency estimation step. Similar to our discussion of Step 1 in Sec. III-A.1, we subdivide

this step into adaptive autocorrelation estimation and subspace tracking, adaptive model-order estimation,

adaptive time-delay estimation, and adaptive complex amplitude estimation. Table II presents a listing of

this step together with the complexity of each operation as it appears in the ensuing discussion.
1) Adaptive autocorrelation estimation and subspace tracking: We update the matrix of LS estimates

using an exponential window, given as8

ĤH
LS(l) =


(1− β)1/2ĥH(l)

β1/2ĤH
LS(l − 1)


 (24)

where ĤH
LS(l−1) is the �old� observation matrix, ĥ(l) is the �new� LS-estimated Nf -length vector, and

0 < β < 1 is the exponential forgetting factor. This smooth exponential update leads to the development

of ef�cient singular value decomposition (SVD) updating algorithms for computing the dominant singular

values and right singular vectors of the growing data matrix at each time step [26], which can effectively

replace computing the EVD of the frequency autocorrelation matrix in (10), since this is equivalent to

tracking the dominant eigenvalues and eigenvectors of R̂f (l).

8Note that the vertical dimension grows without bound in this equation. It is thus the purpose of various subspace tracking
techniques (e.g. [26]) to approximate this �exponential windowing� update with algorithms that do not have the computationally
infeasible �growing vertical dimension�.
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TABLE II

CHANNEL MODEL PARAMETERS TRACKING STEP 1: TIME-DELAY ESTIMATION.

Input: ĥ(l)

Output: P̂ , {ϕ̂p}P̂
p=1, ĝl

Section Operation Complexity Equation No.
III-C.1 Adaptive autocorrelation estimation and subspace tracking

Run subspace tracker −−−−−−→Mod Bi-SVD3 V̂(n), σ̂,G, ĥ⊥ 10NfPmax + 3P 3
max Table III

III-C.2 Adaptive model-order estimation
σ̂2(l) = βσ̂2(l − 1) + (1− β) ĥ⊥H ĥ⊥

Nf−Pmax
Nf (27)

λ̂i
f

=

8<: σ̂i
2, i ∈ [1, Pmax]

σ̂2(l), i ∈ [Pmax + 1, Nf ]
Pmax (28)

Ñt = 1−βl

1−β
(29)

P̂ = arg min
1≤µ≤Pmax

−log

0BBB@
0@ NfQ

k=µ+1
λ̂

f
k

1A 1
Nf−µ

1
Nf−µ

NfP
k=µ+1

λ̂
f
k

1CCCA
Ñt(Nf−µ)

NfPmax (30)

+ 1
2
µ(2Nf − µ) log Ñt

III-C.3 Adaptive time-delay estimation using adaptive ESPRIT
h̄⊥ = ĥ⊥/ ‖ ĥ⊥ ‖
h̄⊥1 = [INf−1 0(Nf−1)×1]h̄

⊥

h̄⊥2 = [0(Nf−1)×1 INf−1]h̄
⊥

V̂1(l − 1) = [INf−1 0(Nf−1)×1]V̂(l − 1)

V̂2(l − 1) = [0(Nf−1)×1 INf−1]V̂(l − 1)24Υ(l) ∗
∗ ∗

35 = G(l)

24 Υ(l − 1) V̂H
1 (l − 1)h̄⊥2

h̄⊥H
1 V̂2(l − 1) h̄⊥H

1 h̄⊥2 (l)

35GH(l) O(P 2
max) (38)

Υ(l)
−−−−−−−−−−−−−−−→
Extract P̂ × P̂ top-left submatrix ΥP̂ (l)

V̂(l)
−−−−−−−−−−−−−−−−−→
Extract P̂ bottom-left-most row vector v̂H

P̂,1
(l)

Φ̂P̂ (l) = ΥP̂ (l) +
v̂

P̂ ,1(l)
�
Υ

P̂
(l)H v̂

P̂ ,1(l)
�H

1−‖v̂
P̂ ,1(l)‖2 P̂ 2 (33)

Φ̂P̂ (l)−→EVD
P̂P

p=1

ε̂pupu
H
p O(P̂ 3)

ϕ̂p = arg(ε̂p), p = 1, . . . , P̂ P̂

III-C.4 Adaptive complex amplitude estimation
∆ϕ̂p(l) = ϕ̂p(l)− ϕ̂p(l − 1), p = 1, . . . , P̂ P̂

[∆(l)]q,p = ej∆ϕ̂p(l)q

Q̂(l) = ∆(l)¯Q(l − 1) Nf P̂ (43)
R̂(l) = R(l − 1)

R̂(l)ĝl = Q̂H(l)ĥ(l) −−−−−−−→Backsubstitution ĝl Nf P̂ + P̂ 2/2 (41)
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Our approach is based on the Bi-iterative SVD-3 subspace tracker [26, Table III], with the stabilizing

modi�cations proposed in [27, p. 2995]. We chose this algorithm over other algorithms primarily due

to its ability to track the eigenvalues (for model-order tracking), its guarantee of orthonormality of the

singular vectors (for ef�cient adaptive ESPRIT implementation, which will be discussed later), and its

low computational complexity of O(NfPmax). We include the iteration step of the modi�ed Bi-SVD 3

algorithm with the complexity estimates in Table III for the reader's convenience.

The main subspace updating step of the modi�ed Bi-SVD 3 algorithm is given by
[
V̂(l) q(l)

]
=

[
V̂(l − 1) h̄⊥(l)

]
GH(l) (25)

(c.f. Step 9 of Table III) where h̄⊥(l) = ĥ⊥(l)

‖ĥ⊥(l)‖ can be interpreted as the normalized �innovations vector�

that is orthogonal to the old dominant subspace spanned by V̂(l − 1) [26], and V̂(l) is the Nf × Pmax

�updated� dominant subspace spanning matrix. The key to the low complexity of this algorithm is in the

structure of the matrix GH(l), which is a sequence of 2Pmax − 1 Givens planar rotations [28], i.e.

G(l) =
2Pmax−1∏

i=1

Gi(l) (26)

where each Gi(l) is a Givens rotation matrix. We do not actually form the matrix G(l), but instead apply

the 2Pmax − 1 rotations sequentially to the desired matrix. Hence, this can be interpreted as an ef�cient

�sequential rotational update� for the old subspace matrix V̂(l − 1) with complexity O(NfPmax) [26].
2) Adaptive model-order estimation: Note that by squaring the estimated Pmax singular values, we

have an estimate of the dominant eigenvalues. However, in order to employ the MDL criterion, we

also require an estimate of the rest of the Nf −Pmax non-dominant eigenvalues. Theoretically, the noise

eigenvalues should all be equal to the noise power σ2. Thus, we estimate these non-dominant eigenvalues

by simply equating them to an estimate of the noise power. Note that ĥ⊥(l) in Step 2 of Table III is the

component of ĥ(l) that lies in the noise subspace [26]. The noise power estimate can then be derived as

σ̂2(l) = βσ̂2(l − 1) + (1− β)
ĥ⊥(l)H ĥ⊥(l)
Nf − Pmax

(27)

Therefore, our eigenvalue estimates can be written as

λ̂i
f
(l) =





σ̂i
2(l), i ∈ [1, Pmax]

σ̂2(l), i ∈ [Pmax + 1, Nf ]
(28)

where σ̂i(l) is the ith element of the singular value estimates given in Step 11 of Table III. Finally, by

using the effective window length at time nl, given as

Ñt(l) =
1− βl

1− β
, (29)

DRAFT



15

TABLE III

BI-ITERATION SVD SUBSPACE TRACKER BI-SVD 3 [26] WITH MODIFICATIONS INTRODUCED IN [27, P. 2995]. G(l) IS A

SEQUENCE OF (2Pmax − 1) GIVENS ROTATIONS.

Input: ĥ(l)

Output: V̂(l), σ̂(l),G(l), ĥ⊥(l)

Step No. Operation Complexity
1 d(l) = V̂H(l− 1)ĥ(l) Nf Pmax

2 ĥ⊥(l) = ĥ(l)− V̂(l− 1)d(l) Nf Pmax

3 D(l) = RB(l− 1)ΘA(l − 1) P 3
max/3

4

24 (1− β)1/2dH(l)

β1/2D(l)

35−−−−→Givens QR

24 RB(l)

01×Pmax

35 2P 3
max

5 dH
R (l)RB(l) = dH(l)

−−−−−−−−→Back substitution dH
R (l) P 2

max/2

6 DR(l)RB(l) = D(l)
−−−−−−−−→Back substitution DR(l) P 3

max/3

7 RA(l− 1)DR(l)
−−−−−−−−−−−−−−−→Extract upper triangular portion T

8

24 RA(l)

01×Pmax

35 = G(l)

24 βT + (1− β)d(l)dH
R (l)

(1− β) ‖ ĥ⊥(l) ‖ dH
R (l)

35 4P 2
max

9
h
V̂(l) q(l)

i
=
h
V̂(l− 1) ĥ⊥(l)/ ‖ ĥ⊥(l) ‖

i
GH(l) 8Nf Pmax

10 GH(l)
−−−−−−−−−−−−−−−−−−−−→Extract upper left Pmax square matrix ΘA(l)

11 σ̂(l) = diag(RB(l)ΘA(l)) P 3
max/3

we have the adaptive model order

P̂ (l) = arg min
1≤µ≤Pmax

−log




(
Nf∏

k=µ+1

λ̂f
k(l)

) 1
Nf−µ

1
Nf−µ

Nf∑
k=µ+1

λ̂f
k(l)




Ñt(l)(Nf−µ)

+
1
2
µ(2Nf − µ) log Ñt(l) (30)

Note that a similar adaptive MDL criterion has been developed in [29]. Their approach tracks a varying

dimension P̂ (l − 1) + Paux, and increments by Paux or decrements by any number the model order

estimate P̂ (l) based on the criterion. We track a constant dimension Pmax of the dominant subspace,

and use the adaptive MDL to determine P̂ (l). We have veri�ed through simulations that the constant

dimension tracking approach is better in terms of speed of convergence. This can be intuitively explained

by the fact that there is a delay for the subspace tracker (approximately the effective window length) to

be able to provide a reliable estimate of the eigenvalues, especially when the dimension of the dominant

subspace has recently changed. Thus, by �xing the dimension of the dominant subspace being tracked,

all the eigenvalue estimates for the Pmax dimensions are equally reliable once the initial window length

has been reached. The tracking of a �xed dimensionality is also used by the adaptive ESPRIT algorithm

of [30], but they use a simple thresholding approach where the model order is determined by the number
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of eigenvalues with magnitudes exceeding the noise estimate by a certain factor. Although quite simple in

concept, no clear criteria for choosing the factor is available, and thus extensive simulations are required

to assess a good value for a particular scenario. Thus, our approach is advantageous in that it uses well

established information theoretic criteria, thus doing away with ad-hoc choosing of threshold factors.

3) Adaptive time-delay estimation using adaptive ESPRIT: Fast adaptive ESPRIT algorithms have

already been investigated in the past, and could potentially be used in our framework in a straightforward

manner. In [30], a class of fast recursive ESPRIT algorithms for adaptive source localization based

on subspace tracking and adaptive rank reduction was developed. Their fastest method has complexity

O(Nr), where N is the number of observations, and r is the number sources being estimated. However, it

has been observed by other researchers [27] [31], and validated by our own simulations, that the O(Nr)

method in [30] becomes unstable for sinusoidal frequencies that are very close, which is not uncommon in

our scenario. More stable adaptive ESPRIT algorithms with similar complexity have also been proposed

in [31], but these have the disadvantage of not being able to adaptively track the time-varying model

order. Thus, we develop our own fast adaptive ESPRIT algorithm for time-delay estimation of O(Nr)

complexity that is both stable and model-order adaptive.

Let V̂P̂ (l)(l) be the matrix composed of the dominant (leftmost) P̂ eigenvector columns of V̂(l), the

output of the subspace tracker from Table III. Perform the partitions

V̂P̂ (l) =


V̂P̂ ,1(l)

v̂H
P̂ ,1

(l)


 =


 v̂H

P̂ ,2
(l)

V̂P̂ ,2(l)


 (31)

where V̂P̂ ,1(l) and V̂P̂ ,2(l) are the (Nf − 1) × P̂ upper and lower submatrices of V̂P̂ (l); v̂H
P̂ ,1

(l) and

v̂H
P̂ ,2

(l) are the bottommost and topmost row vectors of the same matrix. We can write the adaptive

equivalent of the ESPRIT spectral matrix (15) as

Φ̂P̂ (l) =
(
V̂H

P̂ ,1
(l)V̂P̂ ,1(l)

)−1
V̂H

P̂ ,1
(l)V̂P̂ ,2(l) (32)

Our initial objective is to derive an O(NfLmax) updating scheme for Φ̂P̂ (l), where we proceed

similarly as in [31, Sec. 3.1]. Since V̂P̂ (l) has orthonormal columns, we have V̂H
P̂ ,1

(l)V̂P̂ ,1(l) = IP̂ −
v̂P̂ ,1(l)v̂

H
P̂ ,1

(l), which is simply a rank-one modi�cation of the P̂ × P̂ identity matrix. Using the matrix

inversion lemma [32], we have
(
V̂H

P̂ ,1
(l)V̂P̂ ,1(l)

)−1
= IP̂ +

v̂P̂ ,1(l)v̂
H
P̂ ,1

(l)

1−‖v̂P̂ ,1(l)‖2 . Using this in (32), we have

Φ̂P̂ (l) = ΥP̂ (l) +
v̂P̂ ,1(l)

(
ΥP̂ (l)H v̂P̂ ,1(l)

)H

1− ‖ v̂P̂ ,1(l) ‖2
(33)

ΥP̂ (l) = V̂H
P̂ ,1

(l)V̂P̂ ,2(l) (34)
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Note that the spectral matrix (33) is simply an O(P̂ 2) rank-one update to (34), but computing (34)

directly requires O(Nf P̂ 2). In [31, Sec. 3.1], they proceed to use subspace trackers that employ rank-one

updates to derive an O(NfPmax) update for (34). Unfortunately, these subspace trackers do not track

the actual eigenvalues, and are therefore unable to estimate and track the time-varying model order P̂ .

Thus, we proceed to derive a novel O(NfPmax) recursion for (34).

The main subspace updating step of the modi�ed Bi-SVD 3 is given by (cf. Step 9 of Table III)
[
V̂(l) q(l)

]
=

[
V̂(l − 1) ĥ⊥(l)

]
GH(l) (35)

where ĥ⊥(l) = ĥ⊥(l)

‖ĥ⊥(l)‖ . Pre-multiply both sides of (35) by [INf−1 0(Nf−1)×1] and [0(Nf−1)×1 INf−1]

to get the (Nf − 1)× (Pmax + 1) top submatrix and the (Nf − 1)× (Pmax + 1) bottom submatrix
[
V̂1(l) q1(l)

]
=

[
V̂1(l − 1) ĥ⊥1 (l)

]
GH(l) (36)

[
V̂2(l) q2(l)

]
=

[
V̂2(l − 1) ĥ⊥2 (l)

]
GH(l) (37)

respectively. Taking the Hermitian transpose of both sides of (36) and pre-multiplying it to (37), we have

Υ(l) ∗

∗ ∗


 = G(l)


 Υ(l − 1) V̂H

1 (l − 1)ĥ⊥2 (l)

ĥ⊥H
1 (l)V̂2(l − 1) ĥ⊥H

1 (l)ĥ⊥2 (l)


GH(l) (38)

Υ(l) = V̂H
1 (l)V̂2(l) (39)

where '∗' represents unused quantities. Observe that once we initialize (39), we no longer need to

perform this O(NfP 2
max) matrix multiplication, since we can simply update it as a single Pmax × Pmax

matrix. Furthermore, since G(l) represents a sequence of 2Pmax−1 Givens plane rotations [28], we can

update ΥPmax
(l) in just 8Pmax operations. Also notice that by partitioning V̂1(l) = [V̂P̂ ,1(l) ∗] and

V̂2(l) = [V̂P̂ ,2(l) ∗],

ΥPmax
(l) =


ΥP̂ (l) ∗

∗ ∗


 (40)

where ΥP̂ (l) is given by (34). Thus, by extracting the P̂ × P̂ upper-left submatrix of the left hand side

of (38) and using it in (33), we arrive at an ef�cient adaptive ESPRIT spectral matrix updating algorithm

with principal complexity O(NfPmax). Finally, we extract the radian phase of each of the complex

eigenvalues of the small P̂ × P̂ matrix Φ̂P̂ (l) (33) (requiring O(P̂ 3) operations), giving an estimate of

the time-delays {ϕ̂p}P̂
p=1.
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4) Adaptive complex amplitude estimation: Given the time delay estimates {ϕ̂p}P̂
p=1 (which is assumed

correct), the maximum-likelihood estimate for the P̂ -length complex amplitude vector ĝ(l) of complex

amplitudes is also the LS solution (cf. (18)), which can be computed by back substitution of

R(l)ĝ(l) = QH(l)ĥ(l) (41)

where Q(l)R(l) = Ê(l) is the �skinny� QR9 decomposition [28] of the Nf × P̂ Fourier transform matrix

Ê(l) (see (18)) formed using the estimated time-delays. Computing (41) from scratch requires O(Nf P̂ 2),

and thus we propose a recursive updating solution to approximate the QR decomposition.

Let ∆ϕ̂i(l) = ϕ̂i(l)−ϕ̂i(l−1) denote the difference between the time-delay estimates at two consecutive

time steps, and let ∆(l) be an Nf × P̂ perturbation matrix with elements [∆(l)]q,p = ej∆ϕ̂p(l)q. Suppose

that we have at hand the previous �skinny� QR decomposition of E(l − 1) = Q(l − 1)R(l − 1). Then,

E(l) = ∆(l)¯E(l − 1)

= ∆(l)¯Q(l − 1)R(l − 1)
(42)

where ¯ is the Hadamard (elementwise) product. It is reasonable to assume that the time-delay differences

across consecutive time steps are quite small, i.e. |∆ϕ̂p(l)| ≈ 0. Hence, an approximation to the QR factors

E(l) = Q(l)R(l) can be given as

Q(l) ≈ Q̂(l) = ∆(l)¯Q(l − 1) (43)

which is now only approximately orthogonal, and R(l) = R(l − 1), which is still upper triangular.

This update can be performed in O(Nf P̂ ) operations. In our numerical experiments, we saw that the

normalized MSE10 is negligible (< 10−2) up until around 10% of the previous delay value. We can

simply compute the QR decomposition directly when the deviation goes beyond this.

The above discussion assumes that the model order is static between iterations, which is the case most

often encountered since the time delays are slowly varying. However, it is conceivable that there are

small model order changes (e.g. 1 or 2) from one iteration to the next. We can use the same framework

above in conjunction with ef�cient column deleting and appending procedures for the QR decomposition

[28], which have complexity O(P̂ 2) and O(Nf P̂ ) respectively.

9A regular QR decomposition of E ∈ Cm×n, m > n with Q ∈ Cm×m and R ∈ Cm×n can be also be written in partitioned

form as E = [Q1 Q2]

24R1

0

35 = Q1R1 where Q1 ∈ Cm×n has orthogonal columns and R1 ∈ Cn×n is a square upper-

triangular matrix. Q1R1 is termed the �skinny� QR decomposition
10We de�ne the NMSE as E{‖ ĝ(l)−g̃(l) ‖2 / ‖ ĝ(l) ‖2} where ĝ(l) is the solution to (41) using the actual QR decomposition

computation, and g̃(l) the solution when using the update approximation.
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D. Doppler Frequency Tracking and Channel Prediction

In tracking Doppler frequencies, we can use the same procedure for each path p = 1, . . . , P̂ , with

ĝp = [ĝp(l), . . . , ĝp(l − (Nt − 1))]T as the Nt-length observation vector for the pth path, and track the

Rp,max-dimension dominant subspace. The principal computational complexity can be analyzed similar to

the time-delay estimation step, and is thus omitted due to space constraints. It is given by O(NtP̂Rp,max).

IV. MEAN-SQUARE ERROR BOUNDS

In this section, we derive the CRLB of the prediction MSE for OFDM channel prediction11. We then

derive a simple closed-form expression for the asymptotic CRLB for large Nt and Nf to provide better

insight into the effect of various parameters on the MSE lower bound.

For notational convenience, we collect the parameters to be estimated in (6) into length R vectors, e.g.

α = [α1,1, . . . , αR1,1, . . . , αRP ,1, . . . , αRP ,P ]T (44)

and re-index each parameter by its location in the vector, e.g. αi = [α]i, i = 1, . . . , R. Let θ =

[θT
1 , . . . ,θT

R]T with θi = [αi, φi, ωi, ϕi]T denote the 4R-length vector of channel parameters . We rewrite

the physical channel model (5) as

H(n, k, θ) =
R∑

i=1

Hi(n, k, θi) (45)

with Hi(n, k, θi) = αie
j
�

φi+ϕi

Nf

2

�
e
j

�
ωi
Dt

n− ϕi
Df

k

�
. The dependence of the channel response on the pa-

rameter vector θ is made explicit in our notation. Note that (45) is a continuous function of the unknown

parameters; hence, by the invariance principle of the ML estimate, the CRLB is [33, Ch. 6.4]

e(n, k) =
∂H(n, k, θ)

∂θ

H

I−1
2D(θ)

∂H(n, k,θ)
∂θ

(46)

∂H(n, k, θ)
∂θ

=

[
∂H1(n, k,θ1)

∂θ1

H

, . . . ,
∂HR−1(n, k, θR−1)

∂θR−1

H
]H

(47)

∂Hi(n, k,θi)
∂θi

= Hi(n, k, θi)
[

1
αi

, j, j
n

Dt
,−j

k − k̄

Df

]H

(48)

11For simplicity, we omit the effect of the pulse-shaping �lter frequency response, but this can be included in a straightforward
manner as nuisance parameters.
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and where k̄ = Nf

2 Df and I−1
2D(θ) is the CRLB matrix for 2D sinusoidal parameter estimation, which

can be found in [34, Appendix A]. References [19] and [7] derived a similar MSE bound as (46) by

using a different and perhaps more tedious approach (�rst-order Taylor expansion of the MSE function).

Although the bound in (46) can be used to study the effects of various parameters on the prediction

MSE, its expression is not readily interpretable. Furthermore, since the bound depends on the actual

parameter vector θ, extensive Monte-Carlo simulations that generate realizations of this parameter vector

assuming a certain probability distribution is required to assess the performance. And with the objective of

investigating the effect of various channel prediction parameter con�gurations, this requires performing a

Monte-Carlo simulation for each parameter con�guration. Approximately 8R2NtNf +O(R3) operations

are required to compute the CRB for each channel realization. This is a heavy computational burden even

for the case of of�ine analysis, esp. when R, Nt, and Nf are large. Thus, we derive a simple closed-form

expression for the lower bound on prediction MSE in the asymptotic case of large Nt and Nf . Consider

the asymptotic MSE bound given as

ε̃(n, k) = lim
min(Nt,Nf )→∞

ε(n, k)

=
∂H(n, k, θ)

∂θ

H

Ĩ−1
2D

∂H(n, k,θ)
∂θ

(49)

where Ĩ−1
2D = diag{K1, . . . ,KR} with

Ki =




σ2

2NtNf
0 0 0

0 7σ2

2α2
i NtNf

−3σ2

α2
i N2

t Nf

−3σ2

α2
i NtN2

f

0 −3σ2

α2
i N2

t Nf

6σ2

α2
i N3

t Nf
0

0 −3σ2

α2
i NtN2

f
0 6σ2

α2
i NtN3

f




(50)

is the block diagonal asymptotic CRB for 2D superimposed complex exponential parameter estimation

[35]. After further simpli�cation, we have

ε̃(n, k) = σ2R
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where the individual terms correspond to

(a) Amplitude and phase estimation error variance
(b) Doppler frequency and phase estimation error cross covariance
(c) Doppler frequency estimation error variance
(d) Time delay and phase estimation error cross covariance
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(e) Time delay estimation error variance

Using this simple expression for the lower bound on MSE, we could easily deduce the impact of the

various parameters on the MSE, e.g.
1) The bound increases linearly with increasing noise variance σ2 and number of 2D sinusoidal rays R. This

is intuitively satisfying, and agrees with previous results that dense multipath channel environments, i.e. R

large, are the hardest to predict [7].
2) The contribution to the overall MSE from the error variances corresponding to the estimate of frequencies

ωi and ϕi grow quadratically with n and |k|, emphasizing the importance of estimating these accurately.
3) In general, Nt and Nf and the downsampling factors Dt and Df should be chosen as large as possible to

decrease the MSE bound, but are of course subject to limitations imposed by other system considerations
such as complexity, training overhead, and the time window for which the constant-parameter sinusoidal
model is valid.

V. SIMULATION RESULTS AND COMPARISONS

We provide simulation results for an outdoor mobile OFDM system based on the IEEE 802.16e standard

[1] with N = 512 subcarriers, Nu = 426 used subcarriers, Ncp = 32 cyclic pre�x length, B = 5 MHz

bandwidth, Fc = 2.6 GHz carrier frequency, Fs = 5.712 Ms/s sampling frequency, and v = 75 kph mobile

velocity. The OFDM symbol period is given as Tsym = (N + Ncp)/Fs = 95.24µs, and the subcarrier

spacing is ∆f = Fs/N = 11.16 kHz. We also simulate the square-root raised cosine transmit and receive

pulse-shaping FIR �lters with 2× interpolation, roll-off of 0.15 < (1 − Nu/N) = (1 − 426/512), and

�lter length of 16 taps [17]. The effect of this pulse-shaping �lter on the algorithm is minimal, since the

passband is almost �at, and the FIR �lter simply causes a constant shift on the time delays.

We simulate the delay spread of the channel using various ITU and COST-207 power delay pro�les

[17] as illustrated in Fig. 2(a), with τmax ranging from 2.5 µs to 7 µs. For each tap in the power delay

pro�le, we simulate the fading channel using the modi�ed Jakes' method [18] with Rp = 16 rays per

path, which was shown to be suf�cient to match the desired second-order statistics [18]. Note that in

the modi�ed Jakes' method of [18], the Doppler frequencies are generated randomly per realization as

fr,p = ±fmax cos((2πr + θ − π)/(4Rp)), r = 1, . . . , Rp where fmax = v/(3× 108/Fc) ≈ 180 Hz is the

maximum Doppler frequency, and θ ∼ U [−π, π). Thus, the frequencies are not equispaced, and dif�cult

cases of two frequencies being close together is actually not uncommon, esp. when the number of rays

chosen is large (see Fig. 2(b)).

We assume a frame-based transmission with frame length of Tframe = 2 ms (equivalent to Dt =

bTframe/Tsymc = 21 OFDM symbols), where a frame preamble with Nf = 142 pilot subcarriers inserted
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every Df = Nu/Nf = 3 subcarriers transmitted at the beginning of each frame. In order to determine

a suitable value for Nt, we recall from the previous section that Nt should be chosen such that it is

within the time-window of the validity of the sinusoidal model. In [9], a rule-of-thumb for the duration

of validity of this model is given by

T =

√
λrmin

3v2
(52)

where λ = 3× 108/Fc ≈ 0.115 m is the wavelength, v is the velocity in m/s, and rmin is the separation

of the mobile to its nearest relevant scatterer in m. Assuming a macro-cell outdoor mobile scenario

where the dominant scatterers are huge structures like faraway buildings and hills, rmin = 500 m is a

conservative estimate [9], which gives us T ≈ 210 ms, which is approximately 105 frames. Thus, we set

Nt = 100 as the default number of pilot symbols12. The autocorrelation matrix dimension for time-delay

estimation in (11) is chosen as K = d3
5Nfe, and similarly for Doppler frequency estimation in (19) as

I = d3
5Nte, according to the rule-of-thumb proposed in [24]. Note that these are the default parameters,

and are varied accordingly to study the effects of various parameters on the system performance.

A. Acquisition Stage

We �rst investigate the performance of the acquisition part of our algorithm (Sec. III-A) without the

pulse-shaping �lters, and assuming that the time-delays and Doppler frequencies are indeed stationary

within the acquisition window, in order to compare the performance with the bounds that are derived

under this assumption. We compare this algorithm to using standard linear prediction on the downsampled

time-domain channel taps in (16), similar to the approach in [10]. We used the Burg method to compute

the AR coef�cients in our simulations, with a �lter order of p = d3/5Nte to match the complexity of

our algorithm. We call this method the Burg Prediction method. Following the convention of previous

work [9] [8], we normalize the prediction length in terms of the number of wavelengths λ. For example,

predicting 1 frame ahead is equivalent to L = vTframe/λ wavelengths. Fig. 3(a) shows the prediction

normalized mean square error (NMSE) results for predicting 2λ ahead using the Vehicular-A power

delay pro�le. Fig. 3(b) shows the NMSE comparisons for varying the prediction horizon with SNR= 7.5

dB. Our proposed algorithm outperforms the Burg Prediction method for all SNR values and prediction

lengths, and the advantage is more pronounced as the SNR and the prediction lengths increase. We also

plot the CRLB and ACRLB for comparison, and our method is quite close to these bounds under these

12Although NtNf = 14200 may seem huge, if we use 4 bytes (e.g. single-precision �oating point) per channel data point,
the memory requirement is just 50 kB which is not excessive given the advanced DSPs used in current base stations.
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somewhat idealized channel assumptions. This is consistent with the results in [6] [8] for single-carrier

�at-fading channel prediction.

Next, we study the performance of the acquisition part of our algorithm under more realistic scenarios.

First, we increase the mobile velocity to 100 kph such that the time-delays and Doppler frequencies

be slowly linearly varying, i.e. τp(t) = τp + Cτ t and fr,p(t) = fr,p + Cf t where Cτ and Cf are small

constants. This models the scenario where the acquisition window is larger than the recommended rule of

thumb (52), causing the geometry of the scattering �eld experienced by the mobile to change signi�cantly

enough so as to affect the time-delays and Doppler frequencies [9]. We also model the pulse-shaping

�lters in these experiments.

We compare our methods with the FFT-based implementation of the MMSE algorithm given in [12,

Sec. III-C], which we call (FFT-MMSE). In this method, an IFFT is performed on the pilot subcarriers,

and linear prediction �lters are used for each time-domain tap for the �rst Ncp taps corresponding

to the length of the cyclic-pre�x, thus capturing most of the energy of the delay-spread channel. An

FFT is then performed on the predicted channel to get the frequency domain channel response. Since a

straightforward FFT is used in FFT-MMSE, we allowed all the Nu used subcarriers to be used as its pilot

subcarriers. However, we still retain the pilot pattern assumed in the system model in the implementation

of our algorithm, hence granting a slight advantage to FFT-MMSE. We compared the acquisition part

of our proposed algorithm with that of [12] using 1000 channel realizations, the results of which are

shown in Fig. 4. The dashed-x's correspond to [12], and the solid-squares correspond to our proposed

algorithm. The four NMSE curves for each algorithm from lowest to highest correspond to predicting

{.25λ, .5λ, λ, 2λ} (equivalent to predicting {.5, 1, 2, 4} frames ahead) respectively for the various SNRs.

We considered the following six cases:

1) TU-Sparse, Rp = 16, Nt = 100, Nf = 142: This is the baseline case from which we compare the other
cases, with Ncp = 32. Note that our algorithm outperforms FFT-MMSE in all SNRs and prediction lengths.
Also note that our method is less sensitive to prediction length compared to FFT-MMSE, and this can be
observed in all the other cases as well.

2) BU-Sparse, Rp = 16, Nt = 100, Nf = 142: We increase the delay spread in this case, such that the cyclic
pre�x length is also increased to Ncp = 64. We can see that our method is insensitive to the increased delay
spread, since it picks out the dominant multipaths which remains at P = 6. On the other hand, FFT-MMSE
is adversely affected, especially for long prediction lengths. This is because the increased Ncp increases the
noise that creeps into the time-domain estimates from the IFFT operation, and the noise propagation makes
the MSE for long prediction lengths worse.

3) TU-Dense, Rp = 16, Nt = 100, Nf = 142: We increase the density of the multipath taps to P = 12 in this
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case, while retaining the maximum delay spread. We can see that we perform worse than FFT-MMSE at
low SNR and short prediction lengths, primarily due to the inability of the MDL to detect the weaker paths
embedded in noise. However, we still outperform FFT-MMSE signi�cantly at medium to high SNR and long
prediction lengths.

4) TU-Sparse, R = 32, Nt = 100, Nf = 142: In this case, we increase the number of rays per multipath tap to
Rp = 32. Our method is adversely affected in this case, and is characteristic of sinusoidal modeling based
channel prediction approaches (see e.g. [7]). This is due to the presence of more closely-spaced sinusoids,
whose parameters are much harder to estimate. However, we still outperform FFT-MMSE in medium to high
SNRs and long prediction lengths.

5) TU-Sparse, Rp = 16, Nt = 60, Nf = 142: In this case, we decrease the number of time-domain pilots
to 60. We see that the detrimental effect on MSE is minimal, and is seen only for low SNRs. As long as
a suf�cient number of pilots is chosen to prevent statistical over�tting, the performance is just as good as
further increasing Nt.

6) TU-Sparse, Rp = 16, Nt = 100, Nf = 42: In this case, we decreased the number of frequency domain
pilots. We can see that the FFT-MMSE is unchanged because we use all Nu pilots for this method all the
time, whereas our method is affected because the decreased number Nf increases the error in time-delay
estimation.

Note that in all of the above cases, the performance of our algorithm and the FFT-MMSE algorithm,

in contrast to Fig. 3(a) and the results in [12], saturates at high SNR and deviates from the ACRLB. This

is primarily due to the non-stationarity of the frequency parameters, causing the MSE to be dominated

by the model mismatch at high SNR, and also breaking the assumptions for which the CRLB bounds

were derived. This makes choosing the appropriate acquisition time window crucial to the performance

of the algorithm. This also implies that when the number of rays Rp is high, it become very dif�cult to

predict the channel, since we need Nt to be large, but not too large such that the stationarity no longer

holds. This phenomenon has been similarly observed in [7].

There are several reasons our method outperforms FFT-MMSE, although the linear MMSE is known

to be optimal for Gaussian channels. First, note that the FFT-MMSE is itself an approximation, since the

IFFT is performed to get the time-domain channel taps. This is due to the unknown channel information

in the guard subcarriers at the edges, and more importantly, due to the non-sample spaced nature of

the channel, which causes the time-domain channel energy to be greater than the length of the CP (see

Fig.2(a)). Furthermore, since our channel is simulated using a small number of rays, the channel statistics

cannot be assumed Gaussian. Also, we subjected both methods to realistic autocorrelation estimation

procedures, and thus the second-order statistics are not fully known, which once again deviates from the
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optimality of MMSE. More importantly, the non-stationarity of the delays and Doppler frequencies is

also a deviation from the assumptions used in [12].

B. Tracking stage

In order to assess the performance of the tracking portion of our algorithm, we ran the acquisition

stage of our algorithm for the �rst Nt = 100 frames, followed by 500 frames using the tracking stage,

where we predict one frame (2 ms) ahead. We use β = 0.99, and the default simulation parameters using

the Vehicular-A channel model. In order to simulate the non-stationary time-varying channel, we allow

both time-delays and Doppler frequencies to vary linearly over time similar to the previous section. Fig.

5(a) shows the time-delay tracking results for one channel realization for all 6 paths at an SNR = 15

dB. Fig. 5(b) shows the Doppler frequency tracking results for the �rst 4 Doppler frequencies of the 6th

(weakest) path for the same channel realization. We can observe that our algorithm is able to track the

time-varying nature of the time-delays and Doppler frequencies.

We compare the performance of our proposed algorithm with the algorithm proposed in [12] in training-

based mode. After designing the prediction �lter using the block FFT-MMSE method, conventional LMS

and RLS adaptive �lters are then used to track the non-stationary channel. Note that we investigate

only the tracking capability of these standard adaptive �lters versus our adaptive ESPRIT based tracking

methods. We ran this algorithm with P = I = 60 to match the complexity of our algorithm. Figure

6 shows the MSE performance for 20 channel realizations, with 500 frames per realization, for mobile

velocities 30 and 75 kph (0.14λ and 0.36λ). It can be seen that our algorithm outperforms [12] except

for the case of very low SNR, where the MDL model-order selection is unable to detect the weakest

paths, resulting in higher MSE when compared to using Ncp time domain taps.

C. Complexity Analysis

Table IV summarizes the computational complexity of the proposed adaptive channel prediction al-

gorithm. We compare this with the adaptive algorithm using LMS and RLS in [12], initialized with

the reduced complexity FFT-MMSE prediction used in the previous experiments [12]. Typically, the

parameters corresponding to the time delay estimation step have relations N > Nf ≈ K À Pmax ≥ P̂ ,

the parameters corresponding to the time delay estimation step have relations Nt ≈ I À Rp,max ≥ R̂p,

and Ncp > P̂ , where Ncp is the cyclic pre�x length. We also have R̂ =
∑

p R̂p as the total number of

estimated rays. In the initialization stage, the proposed algorithm is more complex than that of [12]. In

the tracking stage, our algorithm is slightly more complex than LMS, but is much less complex than
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TABLE IV

COMPUTATIONAL COMPLEXITY

Stage Proposed Algorithm Algorithm from [12]

Initialization O(N3
f + P̂N3

t ) O(N log2 N + NcpN2
t )

Tracking O(Nf Pmax + NtP̂Rp,max) LMS - O(NcpNt)

RLS - O(NcpN2
t )

Prediction O(NP̂ + R̂) O(N log2 N + NcpNt)

RLS. In the prediction stage, [12] is more complex than our algorithm. The initialization needs to be

performed only once, whereas prediction and tracking are performed for each OFDM symbol.

VI. DISCUSSIONS AND CONCLUSION

We have proposed a novel OFDM channel prediction algorithm assuming a doubly selective ray-based

physical channel model, where the model parameters are stationary within the initial acquisition and

prediction time window, and is slowly time-varying beyond this window. The proposed algorithm performs

channel model parameter acquisition using a 2-Step 1D ESPRIT algorithm as a �rst stage, and channel

prediction via model extrapolation as a second stage. Since the channel model parameter acquisition

has cubic complexity, we also proposed a linear complexity channel parameter tracking algorithm based

on an improved adaptive ESPRIT algorithm to continuously adapt to the time-varying channel model

parameters. We also derived the CRLB and asymptotic CRLB for the MSE in OFDM channel prediction.

The key assumption in our algorithm is the specular scattering wireless channel model, where time-

delays are shared by the propagating rays. The use of this model can be more easily justi�ed in

outdoor macro-cell propagation scenarios (e.g. suburban and rural environments), where a few distinct

scatterers contribute most to the fading channel. We have shown through extensive simulations that our

proposed OFDM channel prediction algorithm has better MSE performance while maintaining similar

computational complexity than previous methods in these scenarios, especially for medium-high SNRs

and long prediction lengths. Thus, our method can be seen as a complement to the existing prediction

methods that are more suitable for dense multipath channels with diffuse scattering.

In the scenarios where there are mixed specular and diffuse scattering, which is typical of certain urban

pico-cell and indoor wireless scenarios, a more general superposition of a specular and AR model may

be more suitable. This has been con�rmed for measured channels, esp. in suburban areas in [8], where a

joint sinusoidal and AR model showed slight performance bene�ts over AR modeling alone. They noticed
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Fig. 2. Power delay pro�les and sample Doppler frequencies used in wireless channel simulations.
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Fig. 3. Normalized MSE performance of our algorithm versus linear prediction on the time-domain channel taps.

that sinusoidal modeling is most prone to modeling errors and non-stationarities, and �model selection

based on frequency tracking might help to improve the overall performance�. Since only static block

based algorithms were used in [8], we believe that using our adaptive frequency tracking algorithms with

adaptive model order estimation can improve the performance of the joint model even further.
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