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Abstract—With increasing spatial reuse of the radio spectrum,
co-channel interference is becoming a dominant noise source
and may severely degrade the communication performance of
wireless transceivers. In this paper, we consider the problem of
statistical-physical modeling of co-channel interference from an
annulus field of Poisson interferers. Our contributions include
(1) demonstrating the applicability of the symmetric alpha
stable and Middleton Class A distributions in modeling co-
channel interference in various topologies of interferers, and
(2) deriving analytical conditions on the system parameters
for which these distributions accurately model the interference
statistics. Through simulation, we compare the decay rate of tail
probabilities of the empirical co-channel interference and the
symmetric alpha stable, Middleton Class A, and Gaussian models
for different topologies of interferers. Practical applications
include co-channel interference modeling for various wireless
network environments, including ad hoc and cellular networks.

Index Terms—Co-channel interference, Poisson processes, Im-
pulse noise, Probability, Stochastic approximation

I. INTRODUCTION

Current and future wireless communication systems require
higher spectral usage due to increasing demand in user data
rates. One of the principal techniques for efficient spectral
usage is to implement a dense spatial reuse of the available
radio spectrum. This causes severe co-channel interference,
which limits the system performance. Knowledge of the in-
terference statistics is integral to analyzing performance of
wireless networks (e.g. outage probability and throughput) [1]
and designing receivers with improved communication per-
formance [2]. We have released a freely distributed software
toolbox in MATLAB for statistical modeling and mitigation
of radio frequency interference [3].

Statistical-physical modeling of co-channel interference in
a Poisson field of interferers has been extensively studied in
literature [4]–[6]. Much of the prior work, however, considers
the interferers to be distributed over the entire plane. Recently,
[7], [8] assumed a finite-area field and studied the interference
characteristic function and interference moments, respectively.
Closed form approximations to the interference characteristic
function or amplitude density, however, were not investigated.

In prior work [9], we presented a unified framework to
derive the co-channel interference statistics in a Poisson field
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of interferers distributed over a parametric circular annulus
region. In this paper, we extend the work in [9] for complex
baseband interference and demonstrate the applicability of
the symmetric alpha stable (SAS) and Middleton Class A
(MCA) model for a wider range of interferer topologies.
Analytical constraints on the system parameters for which
these distributions accurately model the interference statistics
are also derived. When exact statistics cannot be derived in
closed form, the paper focuses on accurately modeling the tail
probability of the interference.

Throughout this paper, random variables are represented us-
ing boldface notation, deterministic parameters are represented
using non-boldface type, EX {f(X)} denotes the expectation
of the function f(X) with respect to the random variable X,
and P(·) denotes the probability of a random event.

II. SYSTEM MODEL

Consider a wireless communication system in which the re-
ceiver receives a signal of interest in the presence of interfering
signals. The interferers are assumed to be distributed over the
spatial interference space Γ(rl, rh) ⊆ R2, and be potentially
infinite in number. The receiver is assumed to employ a single
omni-directional antenna and is located at Rm ∈ R2 with
respect to the origin of the two-dimensional coordinate system.
The parametric interference space Γ(rl, rh) is defined as

Γ(rl, rh) =
{
x ∈ R2 : rl ≤ ‖x‖ ≤ rh

}
(1)

where ‖ · ‖ denotes the Euclidean norm.
At each sampling time instant, location of the active interfer-

ers are assumed to be distributed according to a homogeneous
spatial Poisson point process Υ = {R0,R1, · · · } over the
space Γ(rl, rh) with intensity λ.

The baseband model for the sum interference Y at the
receiver at any time instant can then be represented as

Y =
K∑
i=1

r−
γ
2

i giXi (2)

where K is the random number of active interferers at that
time instant, i is the interferer index, ri = ‖Ri − Rm‖ is
the random distance of active interferers from the receiver,
γ is the power pathloss exponent, gi is the independent and



identically distributed (i.i.d.) random fast-fading experienced
by each interferer emission, and Xi are the random baseband
emissions from the active interferers.

We assume that all potential interferers have i.i.d. symmetric
narrowband emissions of the form [10]

Xi = Bie
jφi = Bi cos(φi) + jBi sin(φi) (3)

where Bi is the i.i.d. envelope, and φi is the i.i.d. random
phase of the emissions. Further, we assume that the emerging
times of the interferers are uniformly distributed between the
sampling times at the receiver. Thus the phase φi of the
emissions can be assumed to uniformly distributed on [0, 2π].

The fast-fading experienced by the interferer emissions is
also assumed to be narrowband of the form

gi = hiejθi (4)

where hi is the random amplitude scaling and θi is the random
phase variation due to fading. The in-phase and quadrature-
phase components of the emissions are assumed to experience
uncorrelated fading and thus θi is uniformly distributed on
[0, 2π]. The sum interference in (2) can then be expressed as

Y =
K∑
i=1

r−
γ
2

i hiBi (cos(φi + θi) + j sin(φi + θi)) . (5)

III. STATISTICAL-PHYSICAL MODELING

From (5), the joint characteristic function of the in-phase
and quadrature-phase components of the sum interference
Y = YI + jYQ can be expressed as

ΦYI ,YQ
(ωI , ωQ)

= EYI ,YQ

{
ejωIYI+jωQYQ

}
(6)

= E
{
ej|ω|

∑K

i=1
r
− γ2
i

hiBi cos(φi+θi+ωφ)

}
(7)

=
∞∑
k=0

E
{
ej|ω|

∑k

i=1
r
− γ2
i

hiBi cos(φi+θi+ωφ)
∣∣∣k in Γ(rl, rh)

}
×

P (k in Γ(rl, rh)) (8)

where ω = [ωI , ωQ]T , |ω| =
√
ω2
I + ω2

Q, and ωφ =

− tan−1
(
ωQ
ωI

)
. The expectation in (8) is with respect to the

set of random variables {ri,hi,Bi,φi,θi}.
Conditioned on the number of interferers present in the

space Γ(rl, rh), the interferer locations are mutually indepen-
dent and uniformly distributed over this space [11]. Hence-
forth, we remove the conditioning on the number of inter-
ferers from the expectation by noting that the interferers are
uniformly distributed in the space Γ(rl, rh). For i.i.d. interferer
emissions, the characteristic function can be expressed as

ΦY(ω) =
∞∑
k=0

[
E
{
ej|ω|r

− γ2 hB cos(φ+θ+ωφ)

}]k
×[

λπ
(
r2h − r2l

)]k
e−λπ(r2

h−r
2
l )

k!
(9)

= e
λπ(r2

h−r
2
l )
(

E
{
ej|ω|r

− γ2 hB cos(φ+θ+ωφ)
}
−1

)
(10)

where Y is the set of random variables {YI ,YQ}. By taking
the logarithm of ΦY(ω), and using the identity

eja cos(φ) =
∞∑
k=0

jkεkJk(a) cos(kφ) (11)

where ε0 = 1, εk = 2 for k ≥ 1, and Jk(·) denotes the Bessel
function of order k, the log-characteristic function is

ψY(ω) = λπ
(
r2h − r2l

)
×(

E

{ ∞∑
k=0

jkεkJk

(
|ω|r−

γ
2 hB

)
cos (k(φ + θ + ωφ))

}
− 1

)
.

(12)

Since φ and θ are uniformly distributed on [0, 2π],
Eφ,θ {cos (k(φ+θ+ωφ))} = 0 for k ≥ 1, and (12) reduces to

ψY(ω) = λπ
(
r2h − r2l

) (
Er,h,B

{
J0

(
|ω|r−

γ
2 hB

)}
− 1
)
.

(13)
The log-characteristic function derived in (13) holds in general
for narrowband interferers distributed over the parametric
space Γ(rl, rh). We now consider the following three cases
and further simplify the log-characteristic function.

A. Case I: Interferers distributed over the entire plane (rl =
0, rh →∞)

This scenario corresponds to a decentralized random net-
work where the nodes do not employ any contention-based
medium access control (MAC) layer protocol and has been
widely studied in literature [4]–[7], [9]. Note that ‖Rm‖ can be
assumed to be zero without any loss in generality of the result.
From [9], the log-characteristic function can be expressed as

ψY(ω) = −|ω|
4
γ λπEh,B

{
h

4
γ B

4
γ

} ∞∫
0

J1(x)

x
4
γ

dx. (14)

Equation (14) is the log-characteristic function of an isotropic
SAS distribution centered at zero such that

ψYI ,YQ
(ωI , ωQ) = −σ

∣∣∣√ω2
I + ω2

Q

∣∣∣α (15)

where α = 4
γ is the characteristic exponent (0 < α < 2), and

σ = λπEh,B {hαBα}
∫∞
0

J1(x)
xα dx is the dispersion parameter

of the SAS distribution [11].

B. Case II: Interferers distributed over a finite-area annular
region (0 ≤ rl < rh <∞, and Rm /∈ Γ(rl, rh))

This scenario corresponds to interference from local area
wireless networks (such as a hotspot) or wireless networks em-
ploying contention-based MAC protocols. In [10], Middleton
proposed an approximation of the log-characteristic function
for |ω| in the neighborhood of zero. From Fourier analysis,
the behavior of the characteristic function in neighborhood of
zero governs the tail probability of the random envelope. The
proposed approximation is based on the identity [10]:

Er,h,B

{
J0

(
|ω|r−

γ
2 hB

)}
= e−

|ω|2Er,h,B{r−γh2B2}
4 ×

(1 + Λ(|ω|)) . (16)



Here, Λ(|ω|) indicates a correction term with the lowest
exponent in |ω| of four and is given by

Λ(|ω|) =
∞∑
k=2

(EZ {Z})k |ω|2k

22kk!
EZ

{
1F1

(
−k; 1;

Z
EZ {Z}

)}
(17)

where the random variable Z = r−γh2B2, and 1F1 (a; b;x) is
the confluent hypergeometric function of the first kind, such
that Λ(|ω|) = O(|ω|4) as |ω| → 0.

Using the identity (16), and approximating Λ(|ω|) << 1 for
|ω| in the neighborhood of zero, the log-characteristic function
in (13) can be expressed as

ψY(ω) = λπ
(
r2h − r2l

)(
e−
|ω|2Er,h,B{r−γh2B2}

4 − 1

)
. (18)

Equation (18) is the log-characteristic function of a MCA
model (without the additive Gaussian component) such that

ψYI ,YQ
(ωI , ωQ) = A

(
e−

(ω2
I

+ω2
Q)Ω2A

2A − 1

)
(19)

where A = λπ
(
r2h − r2l

)
is the overlap index that indicates the

impulsiveness of interference, and Ω2A =
A×Er,h,B{r−γh2B2}

2
is the mean intensity of the interference [10]. Using (19), the
joint probability density function can be expressed as

fYI ,YQ
(yI , yQ) = e−Aδ(yI)δ(yQ)+

∞∑
m=1

e−AAm

m!
e
−

(y2
I

+y2
Q)

2σ2
m

√
2πσm

(20)
where σ2

m = m
AΩ2A and δ(·) is the Dirac delta functional.

The correspondence to the MCA distribution is particularly
valid for modeling the tail probabilities. From [9], the MCA
model provides a good approximation in this scenario when∣∣∣∣∣ Er,h,B

{
r−2γh4B4

}
4× [Er,h,B {r−γh2B2}]2

− 1
2

∣∣∣∣∣ << 1. (21)

C. Case III: Interferers distributed over infinite-area annular
region with guard zone (rl>0, rh →∞, and Rm /∈ Γ(rl, rh))

This scenario corresponds to interference in large-scale
random wireless networks employing contention-based MAC
protocols. As rh →∞, with high probability, the distance of
an interferer from receiver located at Rm can be approximated
as r = ‖R−Rm‖ ≈ ‖R‖, particularly for ‖Rm‖ << rl. The
distance of each interferer from the receiver thus follows the
distribution

fr|K(r|K) =

{
2r

r2
h
−r2

l

if rl ≤ r ≤ rh,
0 otherwise.

Expanding the expectation in (13), we have

ψY(ω) = lim
rh→∞

λπ(r2h − r2l )

( rh∫
rl

Eh,B

{
J0

(
|ω|r−

γ
2 hB

)}
× 2r
r2h − r2l

dr − 1

)
. (22)

Integrating the above by parts, reordering terms, and noting
that limrh→∞ λπr2h

(
Eh,B

{
J0

(
|ω|r−

γ
2

h hB
)}
− 1
)

= 0 for
γ > 2, we have

ψY(ω) = −λπr2l
(
Eh,B

{
J0

(
|ω|r−

γ
2

l hB
)}
− 1
)
−

lim
rh→∞

λπ

∫ rh

rl

∂

∂r

(
Eh,B

{
J0

(
|ω|r−

γ
2 hB

)})
r2dr. (23)

Invoking the identity (16), approximating Λ(|ω|) << 1 for |ω|
in the neighborhood of zero, and using Taylor series expansion
of ex, the log-characteristic function reduces to

ψY(ω) = λπr2l

[ ∞∑
k=1

(−1)k|ω|2k

4kk!
(
E
{
h2B2

})k
r−γkl

2
kγ − 2

]
(24)

valid for γ > 2. Note that unlike (16), the approximation of
(23) involves a non-random r. The 2

kγ−2 multiplicative factor
inside the summation prevents the log-characteristic function
to be expressed in closed form. We thus approximate the
function 2

kγ−2 as ηeβk for k ≥ 1. The parameters η and β
are chosen to minimize the weighted mean squared error

{η, β} = arg min
η,β

∞∑
k=1

(
2

kγ − 2
− ηeβk

)2

u(k) (25)

where u(k) are the weights. The weights should be chosen
such that penalty of error is large when k is small since it
affects the coefficients of terms with lower order exponents of
|ω|. In our simulations, we use the weights u(k) = e−k. Using
this approximation, the log-characteristic function reduces to

ψY(ω) = λπr2l η

(
e−
|ω|2r−γ

l
eβEh,B{h2B2}

4 − 1

)
. (26)

Equation (26) is the log-characteristic function of MCA dis-
tribution (without the additive Gaussian component) as given
in (19) with impulsive index A = λπr2l η, and mean intensity

Ω2A =
A×r−γ

l
eβEh,B{h2B2}

2 .
The choice of the functional form ηeβk to approximate the

function 2
kγ−2 for k ≥ 1 was chosen since (a) it provides a

good approximation and enables the log-characteristic function
to be expressed in closed form, and (b) provides two free
parameters {η, β} such that η affects only the overlap index
A, while β affects only the variance σ2

m = m
AΩ2A of individual

components of the Gaussian mixture form of MCA model.
Analogous to Case II, a first-order measure of the accuracy

of the approximation can be expressed by comparing the coef-
ficient of |ω|4 term in the true log-characteristic function (23)
against that in the approximated log-characteristic function
(26). The MCA distribution provides a good approximation
to co-channel interference statistics in this scenario when∣∣∣∣∣
([

Eh,B

{
h2B2

}]2
64

)(
2

2γ − 2
− 2ηe2β

)
+(

Eh,B

{
h4B4

}
128

)(
2

2γ − 2

) ∣∣∣∣∣ <<
∣∣∣∣∣
[
Eh,B

{
h2B2

}]2
32

ηe2β

∣∣∣∣∣.
(27)
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Fig. 1: Decay rates for tail probabilities of simulated co-channel interference
and the symmetric alpha stable (SAS) model for Case I (rl = 0, rh =
∞,B = 5). The Middleton Class A and Gaussian models are not suitable in
this scenario as the mean intensity Ω2A →∞.
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Fig. 2: Decay rates for tail probabilities of simulated co-channel interference
and the symmetric alpha stable (SAS), Middleton Class A (MCA), and
Gaussian models for Case II (rl = 20, rh = 40, ‖Rm‖ = 4,B = 1600).
MCA has the best match to the empirical (simulated) co-channel interference.

IV. SIMULATION RESULTS

Using the model discussed in Section II, we apply Monte-
Carlo numerical techniques to simulate the co-channel inter-
ference observed at the receiver in various wireless network
environments based on (5). At each sample instant, the location
of the active interferers is generated as a realization of a spatial
Poisson point process with intensity λ = 10−4 within the
region Γ(rl, rh). Parameter values for rl, rh, and Rm change
according to the network environment under consideration.

In our simulations, we assume a power path-loss exponent
γ = 4 and Rayleigh fading (h) with unit energy. The amplitude
of the interferer emissions, B, was chosen as a constant for a
particular wireless environment such that the tail probability,
P(‖Y‖ > y), at an amplitude threshold of y = 7 is of the order
of 10−4. The empirical distribution of co-channel interference
is estimated from 100000 samples of the received interference
using kernel smoothed density estimators.

Accuracy of the statistical-physical models for co-channel
interference is established by comparing the empirical and in-
terference model tail probabilities. We compare the asymptotic
decay rates of the tail probabilities given by

ρ (y) = − log (P(‖Y‖ > y))
y

(28)

where ρ(y) is the asymptotic decay rate at interference ampli-
tude y. The decay rate is the rate at which the tail probability
asymptotically approaches zero.
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Fig. 3: Decay rates for tail probabilities of simulated co-channel interference
and the symmetric alpha stable (SAS), Middleton Class A (MCA), and
Gaussian models for Case III (rl = 30, rh = ∞, ‖Rm‖ = 4,B = 2200).
From (25), {η, β} = {2.781,−1.025} for γ = 4 and u(k) = e−k . MCA
has the best match to the empirical (simulated) co-channel interference.

Figs. 1, 2, and 3 compare the decay rates of the empirical
distribution with the statistical models for Case I, Case II,
and Case III, respectively. In each scenario, we compare the
empirical distribution against the SAS and the MCA distri-
bution with appropriate parameters as derived in Section III.
Further, we compare the empirical distribution to a Gaussian
distribution with equal variance for all scenarios.

The results demonstrate that the tail probabilities of the co-
channel interference in Case I are well modeled using a SAS
distribution, while the MCA distribution provides a good fit to
the tail probabilities in Case II and Case III. In all scenarios,
the Gaussian distribution decays far too quickly to model the
impulsive nature of co-channel interference accurately.
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