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Abstract—Modern OFDM systems such as cellular LTE and
powerline communications experience additive impulsive noise
emitted from their environment. OFDM modulation has been
shown to provide resilience to impulsive noise due to its code
diversity. However, typical OFDM receivers designed under the
Gaussian noise assumption will lead to suboptimal performance
due to the dependence in noise statistics across subcarriers
resulting from the FFT operation. As a result, optimal detection
of OFDM symbols becomes prohibitive due to its exponential
complexity. We consider the design of a practical class of OFDM
receivers that are constrained to perform independent detection
on each subcarrier. In this paper, we propose an EM based
low-complexity iterative decoding algorithm for OFDM systems
in impulsive noise environments that preserves the independent
decoding across subcarriers. Then we validate its performance
under typical impulsive noise conditions based on noise traces
collected from wireless and powerline platforms. Our proposed
method achieves a gain between 2 − 7dB over the conventional
OFDM receiver depending on the SNR range.

I. INTRODUCTION

Communication transceivers in powerline communication
(PLC) and wireless networks suffer from uncoordinated in-
terference from other users and non-communication sources
such as microwave ovens and switching power supplies. The
typical additive white Gaussian noise (AWGN) assumption
is inadequate for capturing the statistical properties of such
interference and leads to suboptimal receivers. Different sta-
tistical models for impulsive noise have been proposed in
order to help in designing receivers that mitigate the impulsive
noise. Middleton class-A model, Symmetric Alpha Stable, and
the more general Gaussian mixture model have been shown
to accurately model interference in uncoordinated wireless
networks [1], [2], [3], [4] and PLC networks [5].

Orthogonal Frequency Division Multiplexing (OFDM)
modulation is used to combat multipath and increase the data
rates. Due to these advantages, OFDM modulation has been
adopted in many modern wireless communication standards,
such as IEEE802.11n and LTE, and recent PLC standards,
such as PRIME and G3. In addition, [6] explored the im-
pulse resilient properties of OFDM systems by viewing them
as time-codes. The design of OFDM receiver in impulsive
noise can be classified into two subcategories according to
the assumed impulsive noise structure. First, non-parametric
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models do not assume any particular model for impulsive
noise and treat it as a sparse vector. A compressed-sensing
based non-parametric approach has been proposed in [7],
while a more general Sparse Bayesian Learning approach was
given in [8]. On the other hand, parametric models assume
a given impulsive noise model and design the receiver based
on its statistical properties. In [6], a non-iterative time-domain
MMSE-based receiver was proposed to increase performance
under the constraint of preserving independent decoding across
subcarriers. In this method an estimate of the time-domain
signal is computed, followed by the conventional OFDM
receiver. Iterative receivers have been proposed in [9], [6],
[10], [11]. In particular, in [9], [10] an iterative scheme with
a threshold limiter applied at each iteration is used to improve
performance of OFDM under impulsive noise. However, the
threshold selection is ad-hoc and poses difficulty for practical
systems. In addition, [10] and [11] propose an iterative scheme
based on the turbo-decoding principle that comes close to
the derived PEP bound. However, this scheme requires a
complex receiver that may not be implementable on current
computational platforms. It was shown in [8], that parametric
approaches outperform non-parametric models if the assumed
model provides a good match for the underlying impulsive
noise.

As a result, in this paper we propose a parametric EM-
based low-complexity iterative decoding algorithm for OFDM
systems in impulsive noise environments that preserves inde-
pendent decoding across subcarriers. We also fit the parametric
models to collected data from wireless and PLC receivers
and use the obtained parameters in out simulation results to
validate our proposed method.

II. IMPULSIVE NOISE ENVIROMENTS

Various statistical physical models have been proposed
to capture the non-Gaussian nature of the interference in
uncoordinated wireless and PLC networks [1], [4], [2], [5].
This section will describe the used parametric models in more
details and then provide typical values for the parameters
encountered in practice.

A. Statistical-Physical Noise Models

The main statistical-physical models for modeling impulsive
noise are the Gaussian mixture, the Middleton’s Class A, and
the Symmetric Alpha-Stable. A random variable W has a



TABLE I
PARAMETERS OF FITTED 2-TERM GAUSSIAN

Dataset Number π1 π2
σ2
2

σ2
1

Wireless Environment

1 0.75 0.25 13.7

2 0.56 0.44 23.4

Powerline Environment

1 0.89 0.11 198

2 0.87 0.13 140

Gaussian mixture distribution if its probability density function
(pdf) is a weighted sum of a set of Gaussian distributions1

Ω =
{
Nc
(
µi, σ

2
i

)}K
i=1

given by

f(w) =

K∑
k=1

πk · Nc(w; 0, σ2
k), (1)

where Nc(w; 0, σ2
k) denotes the complex Gaussian distribution

with zero mean and variance σ2
k, and πk is the mixing

probability of the k-th Gaussian component. The mixing vector
π = [π1 · · ·πK ] can be interpreted as a discrete pdf of a
latent random variable S that controls which component of Ω
is drawn to generate a sample of W . In other words, given
that S = s, W is a Gaussian random variable with variance
σ2
s i.e. f (w|s) = Nc

(
w; 0, σ2

s

)
. In this paper, we refer to the

knowledge of S as “Noise State Information” (NSI).
Middleton’s Class A model, characterized by the parameters

(A,Γ), is a special case of a Gaussian mixture distribution
with πk = e−AA

(k−1)
(k−1)! and σ2

k = (k−1)/A+Γ
1+Γ as K → ∞.

In practice, only the first few significant terms are retained
[3]. On the other hand, a Symmetric Alpha-Stable (SαS)
distribution does not have a closed form pdf and is char-
acterized by its characteristic function Φ(ω) = ejδω−γ|ω|

α

,
where (α, δ, γ) are defining parameters. For receiver design,
a SαS RV can be approximated by a Gaussian mixture
RV [1]. As a result, we restrict ourself to Gaussian mixture
distributions and particularly to 2-term Gaussian mixtures, also
known as ε−contaminated Gaussian, due to their tractability
for parameter estimation.

B. Impulsive Noise in Wireless and PLC receivers

The statistical fit of the interference to Gaussian mixture
models has been analyzed for wireless receivers in [1], [2]
and for PLC systems in [5]. In this section, we fit various
collected datasets from wireless transceivers and PLC systems
to the tractable 2-term Gaussian mixture model. The wireless
dataset was provided by Intel Corporation and was collected by
connecting a scope to a laptop receiver. The PLC dataset was
collected from the 40-100kHz range in a residential complex
in Austin, TX. Table I shows some typical values for the
estimated model parameters that will be used to set a practical
range for simulations in Section VIII.

1In general, the first Gaussian component Nc
(
0, σ2

1

)
represents the back-

ground thermal noise.

III. SYSTEM MODEL

We consider the simplified OFDM system, described by the
discrete-time baseband model

y =
√
ρF∗x︸ ︷︷ ︸
u

+w (2)

where y = [y1 · · · yN ]
T is the received signal with N being

the FFT block length (number of subcarriers), ρ is signal
power, X is the N×1 frequency-domain transmitted symbols,
and w = [w1 · · ·wN ]

T is the N × 1 additive noise vector.
The FFT operation is represented by the N × N matrix F
where (·)∗ represents the Hermitian operator. The N × 1
vector u is the time-domain transmitted OFDM signal. This
simplified model serves as a fair comparison with single carrier
systems and provides insight into OFDM’s impulse resilience
properties. The noise is assumed to be temporally independent
and identically distributed (i.i.d.) Gaussian mixture random
vector. Thus, the probability density function (pdf ) of w is
the product form of (1) given by

f (w) =

N∏
i=1

K∑
j=1

πjNc
(
wi; 0, σ2

j

)
. (3)

IV. OPTIMAL OFDM DETECTION IN IMPULSIVE NOISE

The problem of detecting an OFDM symbol for the system
model given in (2) can be formulated as

x̂ = arg max
x

f(y|x) = arg max
x

fw (y −√ρF∗x) . (4)

In (4), each of the vector components of w depends on(
yj −

√
ρ
[
F†x

]
j

)
which is a function of all components of

x. On top of that, there is no efficient code representation for
F which would reduce the decoding complexity. As a result,
an exhaustive search would be required to solve this problem.
Conventional OFDM receivers, designed under the Gaussian
noise assumption, circumvent this problem by computing the
following statistic

Ψ = Fy =
√
ρx + Fw︸︷︷︸

z

. (5)

When w is Gaussian, the transformed noise z would still have
a product form pdf across subcarriers because F is unitary
and preserves the Gaussian statistics of w and thereby the
independence between the noise vector samples in the Fourier
domain . As a result, Ψ is a sufficient statistic and decoding can
be performed independently across subcarriers. However, for
the noise model in (3), the transformed noise z has dependent
components which means that detection across subcarriers can
not be decoupled as in the Gaussian case. This leads to the
same exhaustive search as in (4).

V. LOW COMPLEXITY SUBOPTIMAL DECODERS

Due to the dependance of noise samples in the Fourier
domain, optimal detection can not be performed independently
across subcarriers and has an exponential complexity in the
number of subcarriers N (ranging from 64 to 1024 for modern



communication systems). This makes optimal detection based
on (4) impractical on current computational platforms. In
addition, many communication system assume independent
decoding across subcarriers. As a result, it desirable to de-
sign algorithms that will improve performance under such a
constraint. Two observations, employed by [6] to simplify the
problem, are : 1) the noise w is i.i.d. in time, and 2) the time-
domain signal u = [u1 · · ·uN ]

T in (2) can be approximated as
being i.i.d. in time and uj ∼ Nc (0, ρ) ,∀j by the Central Limit
Theorem. [6] then proceeds to find the MMSE estimate, û, of
u with NSI and without NSI, followed by hard detection on
Fû. Since the proof is not explicitly given in [6], we provide
it here for completeness.

A. MMSE Estimation with NSI

When NSI is available, the noise at time j is Gaussian with
variance σ2

sj . The NSI is given by vector s = [s1 · · · sN ]
T

where sj represents the state of the noise at the time instance
j (see Section II-A). Let Λ be a matrix function of s given by

Λ (s) = diag {1/σs1 , · · · , 1/σsN } . (6)

Multiplying (2) by Λ (s), we obtain

Λ (s)y = Λ (s) u︸︷︷︸
√
ρF∗x

+ Λ (s)w︸ ︷︷ ︸
n

|s (7)

where n is now a Gaussian vector with identity covariance
matrix. However, independent detection across subcarriers
would introduce intersymbol interference (ISI) in the fre-
quency domain since FΛ (s)F∗ 6= IN . Since u and n are
Gaussian, the MMSE estimate of u is also the Linear MMSE
estimate given by

û (y, s) = diag
{

ρ

ρ+ σ2
s1

, · · · , ρ

ρ+ σ2
sN

}
y. (8)

At any time instant j, (8) multiplies the observation by ρ
ρ+σ2

sj

.
This scaling reflects the reliability of the received sample based
on the noise state it was received under. The implementation
complexity of this estimator is low, however the assumption
of having NSI at the receiver does not hold in most cases.

B. MMSE Estimation without NSI

When NSI is not present at the receiver, (2) can not be
normalized as in (7) and the resulting MMSE estimator û =
[û1 · · · ûN ]

T of u is a nonlinear function of y. It can be shown
that the MMSE estimate is given by

ûj =
Es

[
ρ

(ρ+σ2
s)2

exp
(
−‖yj‖

2

ρ+σ2
s

)]
Es

[
1

ρ+σ2
s

exp
(
−‖yj‖

2

ρ+σ2
s

)] · yj (9)

where the index j is dropped from the expectation. The proof
is given in the Appendix.

VI. THE EM ALGORITHM

The EM algorithm is an iterative algorithm used to compute
the ML estimate of a desired parameter b ∈ B given some
observed data y ∈ Y . In particular, it solves the following
optimization

b̂ = arg max
b∈B

f (y|b) (10)

where f (y|b) is the conditional density of y given b. In
order to achieve this, it treats this problem as incomplete data
estimation problem where the missing data α simplifies the
evaluation of f (y, α|b). The EM algorithm uses the likelihood
function of the complete data in a two-step procedure as
follows:

1) E-step: Compute Q
(
b|b̂i
)

= Eα

[
log f (y, α|b) |y, b̂i

]
2) M-step: Solve b̂i+1 = arg maxb∈BQ

(
b|b̂i
)

Given the right initial conditions, the estimate b̂i will converge
to a stationary point. In general, the solution of (10) can
be obtained by an appropriate choice of the initial value. In
communication systems, the EM algorithm has been widely
applied to sequence and channel estimation problems. In [12],
the authors give a detection-specific framework for applying
EM to sequence estimation problems in communication sys-
tems.

VII. PROPOSED EM-BASED DETECTION ALGORITHM

The ML estimate of the transmitted vector x is given by

x̂ = arg max
x

f(y|x). (11)

In Section V-A, NSI reduced the complexity of the MMSE
estimation from a non-linear function to a linear function
of y. This suggests that the latent vector of noise states s
could be an appropriate choice for unobserved data in an EM-
implementation. Thus, we choose (y, s) as our complete data
and formulate the E-step accordingly. The likelihood of the
complete data can be written as

f (y, s|x) = f (y|s,x) f (s|x) = f (y|s,x) f (s) (12)

where the second equality follows from the fact that x and s
are independent (transmission is not adapted to noise state).
Since f (s) is not a function of x, it will not have an effect
on the M-step and can be ignored. Given that y is Gaussian
given s and x, the E-step can be expressed as

Q
(
x|x̂i

)
= Es

{
log f (y|s,x) |y, x̂i

}
(1)
= Es

{
− (y −√ρF∗x)

∗
Λ−1
s (y −√ρF∗x) |y, x̂i

}
(2)
= − (y −√ρF∗x)

∗
Es

{
Λ−1
s |y, x̂i

}
(y −√ρF∗x)

where Λs = diag
{
σ2
s1 , · · · , σ

2
sN

}
is the covariance matrix of

y given s and x. The term Es

{
Λ−1
s |y, x̂i

}
is a diagonal matrix

as well with diagonal entries 1
γij
,∀j ∈ {1, · · · , N} given by

1

γij
=

K∑
sj=1

1

σ2
sj

f
(
sj |y, x̂i

)
=

K∑
sj=1

πsj
σ2
sj

f
(
yj |sj , x̂i

)
f (yj |x̂i)

(13)



where the second equality follows from the application of
Bayes rule and substituting for the corresponding probabilities.
The term f

(
yj |x̂i

)
is a constant with respect to sj and can

be computed as the normalization constant for the distribution
f
(
sj |y, x̂i

)
as follows

f
(
yj |x̂i

)
=

K∑
sj=1

πsjf
(
yj |sj , x̂i

)
.

As a result, the only term that requires non-linear compu-
tation is f

(
yj |sj , x̂i

)
= 1

πσ2
sj

e
−|yj−

√
ρ[F∗x̂i]j |2/σ2

sj which
can be implemented using a look-up table. Let Γy,x̂i =
diag{γi1, · · · , γiN}, then the M-step can be written as

x̂i+1 = arg min
x

(y −√ρF∗x)
∗

Γ−1
y,x̂i (y −√ρF∗x) (14)

where max was replaced by min by removing the minus sign.
The objective in (14) can be interpreted as resulting from
the system given by (2) where the noise vector w consists
of Gaussian random variables each with a different variance
given by γj ,∀j. In other words, this problem is similar to the
problem in Section V-A with perfect noise state information
(NSI) where the states are specified by Γy,x̂i . Thus, taking
the FFT will just lead to ICI as described in Section V-A. The
exact solution of (14) still requires an exponential search over
x. However; by formulating the problem as an EM problem,
we transformed the highly non-linear objective of (11) into
a quadratic objective given in (14). In addition, the problem
was transformed from detection with no NSI (highly non-
linear) into multiple iterations of detection with perfect NSI
(with linear MMSE estimate). As a result, we approximate the
solution of (14) by taking the MMSE estimate of the OFDM
symbol in the time domain using the NSI followed by hard
detection similar to the method given in Section V-A. As a
result, the new step is given by

x̂i+1 ≈
[
Fûi+1

]
(15)

where [·] denotes hard detection and ûi+1 is given by its Linear
MMSE estimate as follows

ûi+1 = diag
{

ρ

ρ+ γi1
, · · · , ρ

ρ+ γiN

}
y. (16)

The choice of the initial value x̂0 for the EM algorithm
has a big effect on the convergence rate and converging value.
Two possible initial points are: 1) the result of the typical
OFDM receiver (taking an FFT followed by hard decision),
and 2) taking the result of the MMSE receiver without NSI
described in Section V-B. The former is computationally more
tractable since it involves only an FFT operation while the
latter might provide a better estimate and lead to lower number
of iterations. This is explored further in the results section.

VIII. RESULTS

We simulate the OFDM system given in (2) using Monte-
Carlo simulations. The communication performance of the
discussed algorithms is compared for N = 1024 with 4-
QAM modulation in the presence of a 2-term Gaussian mixture
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Fig. 1. Communication performance of the low-complexity receivers in the
presence of impulsive noise (π1 = 0.9, π2 = 0.1, σ2

1 = 1 and σ2
2 = 100).

The proposed method has a gain of around 6dB in the moderate SNR region
over the next best implementable algorithm.

model (2-term Gaussian also called the ε-contaminated Gaus-
sian usually suffices in practice [3], [1]). The symbol error
rate (SER) of the proposed iterative method is given for the
conventional OFDM and single carrier (SC) receivers and for
the non-iterative estimator-correlator receivers with NSI and
without NSI. The noise parameters are set to typical values
given in Table I. In particular, we set π =

[
0.9 0.1

]
, σ2

1 = 1,
and σ2

2 = 150. SNR is interpreted as the signal power to the
second moment of the impulsive noise which exists in closed
form for Gaussian mixture distributions.

A. Single Carrier vs. Conventional OFDM

Fig. 1 shows the communication performance degradation
between single carrier (SC) systems and conventional OFDM
receivers (using FFT followed by hard detection). It is noticed
that the single carrier system performs better at low SNR
till around 6dB. After that the conventional OFDM system
considerably outperforms the SC system with gains up to
7.5dB at SER=10−4. This can be explained by the fact that at
low SNR the occurring impulses have a much larger energy
than the signal. In SC systems, this translates to losing the
symbol exposed to the impulse. However, in OFDM systems
the high energy of the impulse is spread across the whole
OFDM symbol which results in losing the whole OFDM
block. As a result, the SC performs better at low SNR. The
opposite occurs at high SNR where the amplitude of the
impulse is spread across the whole OFDM symbol without
affecting it, while the SC system still suffers from the single
symbols errors as in the previous case. This is the basis for
the OFDM impulse resilience ability which is the result of the
time diversity it provides when viewed as a time-code.

B. Performance of the Proposed Method

The communication performance of the non-itarative
MMSE methods described in Section V and the proposed
iterative method based on the EM algorithm are shown in
Fig. 1. The non-iterative method with NSI provides the lower
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Fig. 2. Communication performance for different initial values of x0 with 10
iterations of the EM algorithm. The initial value obtained by the MMSE-based
detector with no NSI provides a slightly better performance for additional
computational complexity than the conventional OFDM receiver.

bound on the achievable performance using these time-domain
MMSE based class of algorithms. However, the perfect NSI
at the receiver assumption is not valid in most cases and this
algorithm is impractical. The iterative algorithm is allowed
to run for a maximum of 10 iterations. It is seen that the
proposed EM-based algorithm provides a gain of ranging from
2dB 7dB over the non-iterative MMSE without NSI. Further,
the proposed method, which is an approximate ML detector,
achieves the lower bound for the MMSE based methods with
perfect NSI at almost the same computational complexity. The
effect of the choice of the initial condition on the performance
of the proposed EM-based algorithm is given in Fig. 2. The
MMSE-based detector with no NSI provides only a slight
improvement at 10 iterations of the EM algorithm.

IX. COMPUTATIONAL COMPLEXITY AND LIMITATIONS

The computational complexity of the proposed algorithm is
analyzed in terms of the number of exponential evaluations and
FFT operations it requires per subcarrier. For each subcarrier
k, the proposed algorithm has to compute γk given in (13)
for each iteration. This requires K (number of Gaussian
components, usually 2) scalar exponential evaluations that
could be implemented in a lookup table. In addition to that, at
the end of each iteration a FFT operation of size N has to be
performed. Although the proposed method leads to significant
performance gain for typical impulsive environments such as
the ones measured in Section II-B, it can fail in impulsive noise
with extreme amplitudes that are for example 30dB higher
above the noise floor. Such scenarios are not common since
in many cases very high impulses are clipped by the receiver
reducing their amplitude. This degradation in performance is
due to the approximation made in (15) by which the EM
algorithm loses its monotonic increase in likelihood.

APPENDIX

The system model of (2) can be expressed as

yj = uj + wj j = 1, · · · , T.

The MMSE estimate of uj given yj is

ûj = E[uj |yj ] =

∫
CN

ujf (uj |yj) duj . (17)

Using Bayes rule and summing over all noise state realizations
sj ∈ S with Pr[sj ] = πj , we obtain

f (uj |yj) =

∑
S πjf (uj |yj , sj) f (yj |sj)∑

S πjf (yj |sj)

=
Es[f (uj |yj , sj) f (yj |sj)]

Es[f (yj |sj)]
(18)

Substituting (18) in (17) and interchanging the order of inte-
gration and expectation

ûj =
Es[f (yj |sj) ·

∫
ujf (uj |yj , sj) duj ]

Es[f (yj |sj)]
.

Given the noise state sj , yj is a sum of two independent Gaus-
sian vectors and therefore Gaussian with covariance ρ + σ2

sj .
On the other hand,

∫
ujf (uj |yj , sj) duj = E[uj |yj , sj ] is the

LMMSE estimate of uj given in (8). Thus,

ûj =

Es

[
1

ρ+σ2
s

exp
(
−‖yj‖

2

ρ+σ2
s

)
· ρ
ρ+σ2

sj

yj

]
Es

[
1

ρ+σ2
s

exp
(
−‖yj‖

2

ρ+σ2
s

)]
which simplifies to (9).
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