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Impulsive Noise at Wireless Receivers 

Wireless Communication 
Sources 

Uncoordinated transmissions 

Computational Platform 
• Clocks, busses, processors 
• Other embedded transceivers 

Antennas 

Baseband Processor 

Non-Communication 
Sources 

Electromagnetic radiations 
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In-Platform Interference 

• May severely degrade communication performance 

• Impact of LCD noise on throughput for IEEE 802.11g embedded 

wireless receiver ([Shi2006]) 
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Noise Trace for Platform Noise 
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OFDM System in Impulsive Noise 

 

 

 

• FFT spreads out impulsive energy across all tones 

 

 

 

 

• SNR of each tone is decreased 

• Receiver performance degrades 

• Noise in each tone is asymptotically Gaussian (as 𝑁𝐷𝐹𝑇 → ∞) 
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Prior Work 

• Parametric vs. non-parametric methods (Noise Statistics) 

 

 

 

  

• Impulsive noise mitigation in OFDM 

 

 

 

 

 
          *   Semi-non-parametric since threshold tuning is needed 

          ** MMSE: Minimum mean squared error; LS: least squares 

Param. Non-Param. 

Assume parameterized noise statistics Yes No 

Performance degradation due to model mismatch Yes No 

Training needed Yes No 

Parametric? Technique Optimality Complexity 

[Nassar09] Yes Pre-filtering 

[Haring02] Yes MMSE** estimate 

[Haring03] Yes Iterative decoder 

[Caire08] No* Compressed sensing & LS** 
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System Model 

 

 

 

 

• A linear system with Gaussian disturbance 

 

𝑦 = 𝐹𝑒 + 𝐹𝐻𝐹∗𝑥 + 𝐹𝑛 = 𝐹𝑒 + 𝑣,     𝑣~𝐶𝑁(𝛬𝑥, 𝜎2𝐼)  

 

 Estimate the impulsive noise and remove it from the received signal 

      𝑦 = 𝑦 − 𝐹𝑒 = 𝛬𝑥 + 𝑔 + 𝐹(𝑒 − 𝑒)
𝑒 ≈𝑒

 𝛬𝑥 + 𝑔 

 Apply standard OFDM decoder as if only Gaussian noise were present 

 Goal: Non-parametric impulsive noise estimator 

𝛬 𝑔 

𝑣 
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Estimation Using Null Tones 

• Underdetermined linear regression 

• 𝐹𝐽: over-complete dictionary 

• e: sparse weight vector 

• 𝑔~𝐶𝑁(0, 𝜎2𝐼) with 𝜎2 unknown 

 

• Sparse Bayesian learning (SBL) 

• Prior:           𝑒|𝛾  ~  𝐶𝛮 0, 𝛤 , 𝛤 ≜ diag 𝛾  

• Likelihood:  𝑦𝐽|𝛾, 𝜎
2  ~  𝐶𝑁(0, 𝐹𝛤𝐹∗ + 𝜎2𝐼) 

• Posterior:    𝑒|𝑦𝐽; 𝛾, 𝜎
2 ~  𝐶𝑁(𝜇, 𝛴𝑒) 

   Step 1: Maximum likelihood estimate of hyper-parameters: 𝛾 , 𝜎 2 = argmax  
𝛾,𝜎2

𝑝 𝑦𝐽; 𝛾, 𝜎
2  

     Treat e as latent variables and solve by expectation maximization (EM) 

     𝛾  and 𝜎 2are inter-dependent and updated iteratively 

   Step 2: Estimate e from posterior mean: 𝑒 = 𝐸 𝑒 𝑦𝐽; 𝛾 , 𝜎 
2 = 𝜇  

   Guaranteed to converge to a sparse solution. 

𝐽: Index set of null tones 

(𝒙𝐽 = 𝟎) 
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Estimation Using All Tones 

• Joint estimation of data and noise   

𝑦 = 𝐹𝑒 + 𝑣         𝑣~𝐶𝑁(𝛬𝑥, 𝜎2𝐼) 

• Similar SBL approach with additional hyper-parameters of the data 

 

 

 

 

 

• Step 1 involves ML optimization over 3 sets of hyper-parameters: 𝛾, 𝜎2, 𝛬𝑥 𝐽  

• 𝑥𝐽  is relaxed to be continuous variables to insure a tractable M-step 

• Estimate of 𝛬𝑥 𝐽  is sent to standard OFDM channel equalizer and MAP detector 

• Increase complexity from O(N2M) to O(N3) per EM iteration 

𝑧 ≜ 𝛬𝑥  
𝐽  : Index set of data tones  
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Simulation Results 

• Symbol error rate (SER) performance in different noise scenarios 

Middleton’s Class A model Gaussian mixture model 

~6dB 

~8dB 

~4dB 

~10dB 

~6dB ~7dB 

~4dB 

Symmetric alpha stable model 
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Simulation Results 

• Performance of the first algorithm 

vs. the number of null tones 

• SNR = 0dB 

• 256 tones 

• Middleton Class A noise 

 

 

• In both algorithms, EM converges 

after a few iterations 
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Thank you for your attention! 
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