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Abstract—Communication in decentralized wireless networks
is limited by interference. Because transmissions typically last for
more than a single contention time slot, interference often exhibits
a strong statistical dependence over time that results in tem-
porally correlated communication performance. The temporal
dependence in interference increases as user mobility decreases
and/or the total transmission time increases. We propose a
network model that spans the extremes of temporal independence
to long-term temporal dependence. Using the proposed model,
closed-form single hop communication performance metrics are
derived that are asymptotically exact in the low outage regime.
The primary contributions are (i) deriving the joint temporal
statistics of network interference and showing that it follows a
multivariate symmetric alpha stable distribution; (ii) utilizing the
joint interference statistics to derive closed-form expressions for
local delay, throughput outage probability, and average network
throughput; and (iii) using the joint interference statistics to
redefine and analyze the network transmission capacity that
captures the throughput-delay-reliability tradeoffs in single hop
transmissions. Simulation results verify the closed-form expres-
sions derived in this paper and we demonstrate up to 2× gain
in network throughput and reliability by optimizing certain
parameters of medium access control layer protocol in view of
the temporal correlations.

Index Terms—Co-channel interference, decentralized net-
works, outage probability, temporal correlation, transmission
capacity.

I. INTRODUCTION

Characterizing the communication performance of single
hop transmissions from a transmitter to its next hop receiver
is a fundamental step towards understanding the end-to-end
performance of multihop wireless networks. Over the last
decade, significant research has been done towards analyzing
the single hop communication performance in a decentralized
wireless network, such as a wireless ad hoc network, under
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the assumption that user locations at any given time instant
follow a spatial Poisson point process (PPP) [2], [3]. Key
measures of communication performance include outage prob-
ability [3], transmission capacity [4], and local delay [5], [6].
Such measures are affected not only by the user locations
at any given time instant, but also the correlation in user
locations over time [7]. Much of the prior work assumes either
no dependence or complete correlation in the user locations
over time [4]–[6]. This captures only the extremes of either
no mobility and infinitely backlogged user queues (complete
correlation), or highly mobile users and/or short user queues
(little or no correlation). In many realistic settings, however,
there is some mobility or traffic bursts that play out over a
significantly slower time scale than contention and channel
access. It is therefore important to study the throughput,
delay, and reliability of single hop transmissions when there
is nontrivial correlation in the transmitter locations.

A. Motivation and Prior Work
Temporal correlation in user locations, and hence temporal

dependence in interference, depends on user mobility and the
typical duration of user transmissions. Modeling nontrivial
correlation in user locations thus captures the random mo-
bility and random queue size of users in a decentralized
network. Much of the prior work, however, assumes temporal
independence in user locations – primarily for mathemat-
ical tractability [4], [8]. Extensions for complete temporal
correlation, as an effect of no user mobility and infinitely
backlogged user queues, was recently studied in [5], [6]. In
[5], [6], the local delay in networks with both static (no user
mobility) and highly mobile networks (high user mobility)
was characterized. Local delay was defined as the mean time
required for a successful transmission from a transmitter to
its next hop receiver. With complete temporal correlation,
local delay captures the effect of temporal dependence in
interference on the throughput of single hop transmissions.
With nontrivial correlations, however, the local delay measure
alone captures only the first-success rate since consecutive
transmission successes are no longer statistically identical. In
this paper, we first propose a network that spans the extremes
of temporal independence to long-term temporal dependence
in interference. The proposed network model is then used
to define and characterize performance measures that entirely
capture the throughput-delay-reliability tradeoffs in single hop
transmissions.
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Although we describe the system model with respect to
the duration of user transmissions, it can also be interpreted
with respect to the varying user mobility. A user may start
a transmission at any time, termed as the emerging time,
and the transmissions lasts for a random duration, termed
as the lifetime. Distribution of the random lifetime of users
can be deduced from typical data transfer characteristics in
the network. Thus at any given time, users that transmit
include those whose transmissions are ongoing from some
time in the past, and users that just started transmitting. Hence,
the temporal dependence in the interference increases as the
lifetime of a typical user increases. The static and highly
mobile network models studied in prior work are included as
special cases in this network model by appropriately choosing
the lifetime distribution and constraints on the emerging time
of users.

The paper adopts a novel approach to derive the single
hop communication performance measures in closed-form.
Much of the prior work formulates the system model as an
abstraction of transmit and receive power, uses tools from
stochastic geometry, and attempts to express the measures of
communication performance in terms of the Laplace transform
of interference [2], [3], [9]. The performance measures can
typically be derived in closed-form only under the assumption
of Rayleigh fading. Further, to the best of our judgment,
using prior methods to derive closed-form expressions for
the performance measures considered in this paper is hard.
In contrast, we formulate the problem as an abstraction of
amplitude and phase of the interfering and desired signals,
and express the performance measures in terms of the joint tail
probability of the interference. The joint tail probabilities are
arrived at by first deriving the joint characteristic function of
interference in a known statistical form. An advantage of this
approach is that we do not require stringent assumptions on the
fading distribution [10]. The disadvantage of this approach is
that our results are mathematically exact only in the low outage
probability regime. We assume a low outage regime to derive
a closed-form expression for the joint tail probability, and
also the joint characteristic function for non-Rayleigh fading.
However, the results match closely in simulations even when
the outage probability is fairly high.

Under the assumptions of PPP distributed user locations and
a power-law pathloss function, the interference statistics at any
given time instant follow a symmetric alpha stable distribution
[10]–[16]. Further, under additional restrictive assumptions on
the user emission and fading distributions, the joint temporal
statistics of interference follow a multidimensional symmet-
ric alpha stable distribution [13], [14]. To the best of our
knowledge, in lieu of the restrictive assumptions on user emis-
sion and fading distributions, the closed-form joint temporal
statistics of interference for the network model considered
in this paper cannot be derived using prior results. Further,
even when temporal interference exactly follows a multidi-
mensional symmetric alpha stable distribution, the closed-form
tail probability expressions required for deriving the single hop
communication performance measures considered in this paper
are not known.

TABLE I: Summary of Notation

Symbol Description

Π(m) Poisson point process of emerging nodes at time slot m
λ(m) intensity of Π(m)

Ξn(Ξk,n) point process of active nodes at slot n (that emerged at slot k)
R,R(m) (random) location of a node in space
L,L(m) (random) time slots a node transmits (i.e., lifetime)
γ power pathloss exponent (γ > 2)
X = Bejφ amplitude and phase of interferer emissions
g = hejθ amplitude and phase of fast fading
In(Ik,n) interference at slot n (due to nodes that emerged at slot k)

Ik,1:n ,
{

I
(I)
k,1, I

(Q)
k,1 , · · · , I

(I)
k,n, I

(Q)
k,n

}
, Ik,m=I

(I)
k,m+jI

(Q)
k,m

ω1:n ,
{
ω
(I)
1 , ω

(Q)
1 , · · · , ω(I)

n , ω
(Q)
n

}
frequency variables

ΦI (ω1:n) characteristic function of I, where I = Ik,n or In
ψI (ω1:n) log-characteristic function of I, where I = Ik,n or In
∆ (random) number of consecutive failed transmissions
S(n) (random) number of successes in n time slots
LD, Cav local delay, average network throughput
L, ε average lifetime, throughput outage constraint
TC(L, ε) transmission capacity
D distance between a transmitter-receiver pair
T signal-to-interference ratio threshold for detection success
Sd unit sphere in d dimensions
α characteristic exponent of alpha stable vector, α = 4/γ

Γ spectral measure of symmetric alpha stable vector
σ dispersion of an isotropic symmetric alpha stable vector
FL(·),K(·) constants defined in (26) and (31), respectively
ML(·),N (·) constants defined in (38) and (40), respectively

B. Contribution, Organization, and Notation

To characterize the single hop communication performance,
we first derive the joint temporal statistics of interference that
capture the effect of temporal correlation in user locations.
We show that in the low outage regime, the joint characteristic
function of interference follows a multivariate symmetric alpha
stable distribution for any general user emission and fading
distributions. The joint characteristic function is exact when
the amplitude of the faded interferer emissions are Rayleigh
distributed, and closely characterizes the tail probability of
interference otherwise. Using properties of the multivariate
symmetric alpha stable distribution, we provide new theorems
for expressing the joint tail probability of interference in
closed-form. The closed-form expressions of tail probability
enable us to derive the following single hop communication
performance measures: (i) local delay, (ii) throughput out-
age probability, (iii) average network throughput, and (iv)
transmission capacity. Transmission capacity for single hop
transmissions was first defined for temporally independent user
locations as the maximum allowable density of transmitting
users satisfying an outage probability constraint [4], [8]. In
this paper, we extend the definition of transmission capacity to
account for temporal dependence and show that it captures the
throughput-delay-reliability tradeoff of single hop transmis-
sions. Using the extended definition, we demonstrate up to 2×
gain in network throughput and reliability by optimizing over
the lifetime distribution – which motivates designing MAC
protocols to incorporate the effect of temporal correlation.

The paper is organized as follows. Section I-B discusses the
system model. Section III derives joint interference statistics,
including characteristic function and tail probability, for the
two network models discussed in the system model. Section
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Fig. 1: Network Model I: nodes emerge only at fixed time slots and transmit for a random number of time slots (= L).

IV uses the results on tail probability to derive various
single hop communication performance measures. Section V
presents the numerical simulation results to corroborate our
claims. Appendix A contains a brief overview of statistical
properties of symmetric alpha stable vectors and proofs for
the new theorems used in the paper. Throughout this paper,
random variables are represented using boldface notation and
deterministic parameters are represented using non-boldface
type. Table I summarizes the notation used in this paper.

II. SYSTEM MODEL

Time is slotted at the symbol time scale. The locations of
transmitters, also referred to as nodes, are modeled using a
spatial point process. A node is said to emerge at a particular
time slot if it first starts to transmit at that time slot. All
nodes transmitting at a given time slot are referred to as
active nodes at that time slot. Thus at each time slot n, the
set of active nodes is a union over the sets of nodes that
first emerged at a slot m ≤ n and are still active at the
time slot n. Emerging nodes at any time slot m are assumed
to be spatially distributed according to a homogeneous PPP
Π(m) =

{(
R

(m)
i ,L

(m)
i

)
, i ≥ 1

}
with intensity λ(m). Here

R
(m)
i is the random location of the node i that first emerged

at time m, and L
(m)
i ≥ 1 is the random number of time slots

(lifetime) it intends to be active. Each node is assumed to
be associated with a distinct receiver at a distance D in a
random direction. Extension to include randomness in D is
straightforward [4]. A node may intend to transmit single or
multiple packets in its lifetime, and may not be successful due
to packet errors. We consider two network models – network
model I represents a synchronous network where nodes emerge
only at fixed time slots, while network model II represents a
asynchronous network where nodes may emerge at any time
slot.

A. Network Model I: Synchronous
Consider a network, as depicted in Fig. 1, in which the

nodes can start transmitting only at fixed time slots, referred

to as MAC scheduling instants. The MAC scheduling instants
are spaced apart by Lmax + 1 time slots such that all nodes
complete their transmission prior to the next scheduling in-
stant. For analysis of such a network, we consider just one
MAC scheduling cycle. Thus we can model the interference
by assuming that nodes emerge only at the time slot k with
λ(k) = λ, λ(m) = 0 for m 6= k, and P

(
L(k) ≤ Lmax

)
= 1 for

all nodes. Further, without loss of generality, k = 1 could be
chosen for analysis of the network. However, we keep k as a
variable so that it can be used as a building block for network
model II.

The point process of active nodes at any time slot n ≥ k
is a subset of the point process Π(k), and can be expressed
as Ξk,n =

{
R : (R,L) ∈ Π(k),L ≥ n− k + 1

}
. For n < k,

Ξk,n is an empty set since no nodes have yet emerged. Since
the underlying node distribution follows a PPP, by Slivnyak’s
theorem and the random translation invariance property of
PPP, we can add a typical transmit node to the point process
such that its associated receiver lies on the origin without
affecting the node distribution [2]. Note that the active node
distribution at any given time instant n ≥ k is a PPP with
intensity λP (L ≥ n− k + 1). The node distribution, however,
is correlated across time slots. Complete temporal correlation
is a special case of network model I with L

p→∞.
The sum interference Ik,n observed at the typical receiver

located at the origin at the time slot n due to the nodes that
emerged at time slot k can then be represented as [10]

Ik,n =
∑

Ri∈Ξk,n

r
− γ2
i hi(n)Bi(n)ej(φi(n)+θi(n)) (1)

where i is the interferer index, ri = ‖Ri‖ are the random
distances of active interferers from the receiver, γ is the power
pathloss exponent, Bi(n)ejφi(n) are the narrowband emissions
from interferer i at time slot n, and hi(n)ejθi(n) are the
distortions due to fast fading experienced by the interferer
emissions. Random variables Bi(n),hi(n),φi(n),θi(n) are
each assumed to be i.i.d. for each interferer i and time slot n.
At the symbol time scale, the random amplitude and phase are
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Fig. 2: Network Model II: nodes can emerge at any time slot and are active for a random number of time slots (= L).

typically uncorrelated over time, but may still be temporally
dependent. The assumption of temporally i.i.d. amplitude and
phase, however, is made for mathematical tractability and
does not affect the large scale trends in the results. Assuming
the actual emerging time of the interferers to be uniformly
distributed between two time slots, φi(n) and θi(n) can be
assumed to be uniformly distributed on [0, 2π].

The signal-to-interference ratio (SIR) at the typical receiver
at time slot n can be expressed as

SIRk,n =

∥∥D− γ2 h0(n)B0(n)ej(φ0(n)+θ0(n))
∥∥2

‖Ik,n‖2

=
D−γh2

0(n)B2
0(n)

‖Ik,n‖2
(2)

where B0(n)ej(φ0(n)) is the random emission and
h0(n)ej(θ0(n)) is random fading at time slot n corresponding
to the desired transmitter-receiver pair.

B. Network Model II: Asynchronous

Model II, as depicted in Fig. 2, extends the network model
I by removing the assumption of globally synchronized MAC
scheduling instants. This represents a fully decentralized wire-
less network where the nodes can emerge at any time slot and
stay active for a random number of slots. The point process
for the emerging nodes Π(m) is assumed to be independent
and identical over the time slots m with λ(m) = λ, ∀m. The
point process of active nodes Ξn is thus a stationary process.

The point process of active nodes at time slot n can be
represented as a union over the active node point process

for network model I, given as Ξn =
n⋃

k=−∞
Ξk,n. Similar

to network model I, we can add a typical node to the point
process of active nodes such that its associated receiver lies
on the origin without affecting the node distribution. Note that
the active node distribution at any given time instant n is

a PPP with intensity λ
n∑

k=−∞
P (L ≥ n− k + 1) = λE{L}.

The node distribution is correlated across time slots unless

P
(
L(k) = 1

)
= 1 for all nodes and time slots k. Temporal

independence is thus a special case of network model II with
L

p
= 1.
Since Ξn =

n⋃
k=−∞

Ξk,n, the sum interference at the typical

receiver located at the origin from all active interfering nodes
at time slot n can be expressed as

In =

n∑
k=−∞

Ik,n

=

n∑
k=−∞

 ∑
Ri∈Ξk,n

r
− γ2
i hi(n)Bi(n)ej(φi(n)+θi(n))

 . (3)

The signal-to-interference ratio (SIR) at the typical receiver
at time slot n can be expressed as

SIRn =

∥∥D− γ2 h0(n)B0(n)ej(φ0(n)+θ0(n))
∥∥2

‖In‖2

=
D−γh2

0(n)B2
0(n)

‖In‖2
. (4)

III. JOINT STATISTICS OF INTERFERENCE

In this section, we derive the joint temporal statistics of
interference for network models I and II. The properties of
the joint temporal statistics of interference are then used to
derive closed-form expressions for the joint tail probability of
interference over time.

A. Network Model I

Let Ik,1:n =
{

I
(I)
k,1, I

(Q)
k,1 , I

(I)
k,2, I

(Q)
k,2 , · · · , I

(I)
k,n, I

(Q)
k,n

}
denote

the vector of the in-phase and quadrature phase components
of interference at time slots 1 through n due to nodes that
emerged at time instant k, where Ik,n is given by (1). Further,
let ω1:n =

{
ω

(I)
1 , ω

(Q)
1 , ω

(I)
2 , ω

(Q)
2 , · · · , ω(I)

n , ω
(Q)
n

}
denote

the vector of frequency variables. To derive the joint statistics,
we consider the nodes to be distributed over a disc of radius R,
denoted as b(0, R), and take the limit on the joint distribution
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as R→∞. Using (1), the joint characteristic function of Ik,1:n

can be expressed as

ΦIk,1:n
(ω1:n)

= E

{
exp

(
j

n∑
m=1

|ωm|
∑

(Ri,Li)∈Π(k)

r
− γ2
i hi(m)Bi(m)×

cos
(
φi(m)+θi(m)+φωm

)
1 (Li≥m−k+1>0)

)}
(5)

= exp

(
λπR2

(
−1+E

{
exp

(
j

n∑
m=1

|ωm| r−
γ
2 h(m)B(m)×

cos
(
φ(m)+θ(m)+φωm

)
1 (L≥m−k+1>0)

)}))
(6)

where |ωm| =
√(

ω
(I)
m

)2

+
(
ω

(Q)
m

)2

, φωm = tan−1
(
ω(Q)
m

ω
(I)
m

)
,

1(·) is the indicator function, and the expectation in
(6) is with respect to the set of random variables
{r,L,h(m),B(m),φ(m),θ(m)}. Equation (5) holds since
Ξk,m =

{
R : (R,L) ∈ Π(k),L ≥ m− k + 1

}
for m ≥ k,

and is an empty set for m < k. Equation (6) is derived
using the probability generating functional (PGFL) of a ho-
mogeneous PPP [3] and holds since the node emissions, node
lifetime, and fading are each assumed to be i.i.d. across time
slots and nodes. Note that the expectation in (6) is conditioned
such that the node locations are uniformly distributed over
b(0, R) [3], [10]. Using the identity

eja cos(φ) =

∞∑
l=0

jlεlJl(a) cos(lφ) (7)

where ε0 = 1, εl = 2 for l ≥ 1, and Jl(·) denotes
the Bessel function of order l, the log-characteristic function
ψIk,1:n

(ω1:n) , log ΦIk,1:n
(ω1:n) can be expressed as

ψIk,1:n
(ω1:n)

=λπR2

[
−1+E

{
n∏

m=1

( ∞∑
l=0

jlεlJl

(
|ωm| r−

γ
2 h(m)B(m)×

1 (L≥m−k+1>0)
)

cos
(
l
(
φ(m)+θ(m)+φωm

)))}]
(8)

=λπR2

[
− 1 + E

{
n∏

m=1

J0

(
|ωm| r−

γ
2 h(m)B(m)×

1 (L≥m−k+1>0)
)}]

(9)

=λπR2

[
n∑
s=1

F
(k,n)

L (s)

(
− 1+

E

{
s∏

m=max(1,k)

J0

(
|ωm| r−

γ
2 h(m)B(m)

)})]
(10)

where

F
(k,n)

L (s) =


0 s < k,

P(L = s− k + 1) k ≤ s < n,

P(L ≥ s− k + 1) s = n.

(11)

The expectation in (8) is with respect to the set of ran-
dom variables {r,L,h(m),B(m),φ(m),θ(m)}. Equation (9)
involves expanding the expectation over φ(m) and θ(m),
where φ(m),θ(m) are mutually independent and uniformly
distributed in [0, 2π] and i.i.d. across time slots m, and
noting that Eφ(m),θ(m) {cos (l(φ(m) + θ(m) + φωm))} = 0
for l ≥ 1 for all time slots m. Equation (10) is derived by
expanding the expectation over the lifetime random variable
L. The expectation in (10) is thus with respect to the set of
random variables {r,h(m),B(m)}. To further simplify (10),
we express it as

ψIk,1:n
(ω1:n) = λπ

[
n∑
s=1

F
(k,n)

L (s)Υ(k,s) (ω1:n)

]
(12)

where for any parameters {k, s},

Υ(k,s) (ω1:n)

= lim
R→∞

R2

(
− 1+

E

{
s∏

m=max(1,k)

J0

(
|ωm| r−

γ
2 h(m)B(m)

)})
(13)

= lim
R→∞

R2

(
− 1+

R∫
0

s∏
m=max(1,k)

Eh,B

{
J0

(
|ωm| r−

γ
2 hB

)} 2r

R2
dr

)
(14)

= −
∞∫

0

∂

∂r

 s∏
m=max(1,k)

Eh,B

{
J0

(
|ωm| r−

γ
2 hB

)} r2dr.

(15)

Equation (14) is derived by expanding the expectation over r in
(13) and noting that h(m) and B(m) are each i.i.d. across time
slots m. Equation (15) involves integrating (14) by parts and
using the series expansion of J0(x) around x=0 to show that

lim
R→∞

R2

(
−1+

s∏
m=max(1,k)

Eh,B

{
J0

(
|ωm|R−

γ
2 hB

)})
=0

for γ>2.
Exact evaluation of (15) is possible for s = max(1, k),

i.e., when only one J0(·) term exists, which arises in deriving
the instantaneous statistics of interference and reduces to an
isotropic alpha stable form

(
∝ |ωs|

4
γ

)
[10], [11]. Similar

reduction with exact equality, however, is not possible for
terms involving a product of Bessel functions. We thus pro-
pose an approximation of the log-characteristic function for
|ωm| ,m = 1, · · · , n in the neighborhood of zero based on an
identity proposed by Middleton [17]. From Fourier analysis,
the behavior of the characteristic function for |ωm| ,m =
1, · · · , n in the neighborhood of zero governs the joint tail
probability of the random envelope at time instants 1 through
n. The proposed approximation is based on the following
identity [17]:

Eh,B

{
J0

(
|ωm| r−

γ
2 hB

)}
= e−

|ωm|2r−γEh,B{h2B2}
4 ×

(1 + Λ(|ωm|)) (16)
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where Λ(|ωm|) indicates a correction term with the lowest
exponent in |ωm| of four and is given by

Λ(|ωm|) =

∞∑
k=2

(EZ {Z})k |ωm|2k r−kγ

22kk!
×

EZ

{
1F1

(
−k; 1;

Z

EZ {Z}

)}
(17)

where the random variable Z = h2B2, and 1F1 (a; b;x) is
the confluent hypergeometric function of the first kind. Also
Λ(|ωm|) = O

(
|ωm|4

)
as |ωm| → 0.

Using this identity, and approximating Λ(|ωm|) � 1 for
|ωm| ,m = 1, · · · , n in the neighborhood of zero, (15) reduces
to

Υ(k,s) (ω1:n)

≈ −
∞∫

0

∂

∂r

(
e−

 s∑
m=max(1,k)

|ωm|2
r−γEh,B{h2B2}

4

)
r2dr (18)

= −

 s∑
m=max(1,k)

|ωm|2
 Eh,B

{
h2B2

}
4

 2
γ

Γ

(
1− 2

γ

)
(19)

where Γ(·) denotes the Gamma function. When hB is
Rayleigh distributed, e.g., for constant amplitude modu-
lated transmissions in Rayleigh fading environment, then
Λ(|ωm|) = 0 and the expression in (18) is exact. Substituting
(19) in (12), the log-characteristic function can be expressed
as

ψIk,1:n
(ω1:n)=−σ

 n∑
s=1

F
(k,n)

L (s)

√√√√ s∑
m=max(1,k)

|ωm|2
 4

γ


(20)

where σ=λπ

(
Eh,B{h2B2}

4

) 2
γ

Γ
(

1− 2
γ

)
and F

(k,n)

L (·) is de-

fined in (11). Equation (20) corresponds to a 2n-dimensional
symmetric alpha stable vector with characteristic exponent
α= 4

γ [18].

B. Network Model II

Let I1:n =
{

I
(I)
1 , I

(Q)
1 , I

(I)
2 , I

(Q)
2 , · · · , I(I)

n , I
(Q)
n

}
denote

the vector of in-phase and quadrature phase components on
the interference at time slots 1 through n due to nodes that
emerged anytime till slot n. Using (3) and noting that the
underlying Poisson process of emerging nodes at any time
slots k are mutually independent for all k, the joint log-
characteristic function of I1:n can be expressed as

ψI1:n
(ω1:n) =

n∑
k=−∞

ψIk,1:n
(ω1:n) . (21)

Substituting (20) in (21), the log-characteristic func-
tion can be expanded as shown in (22), where σ =

λπ

(
Eh,B{h2B2}

4

) 2
γ

Γ
(

1− 2
γ

)
. Equation (22) is the log-

characteristic function of a 2n-dimensional symmetric alpha

stable vector with characteristic exponent α = 4
γ . Intuition

into the above form of the log-characteristic function can

be gained as follows. Each of the
(√
|ωi|2 + · · ·+ |ωj |2

)α
term in (22) contributes to the joint characteristic function
at dimensions corresponding to the interference at time slots
i through j. Further, the parameter λ embedded inside σ,
along with the probability on the random variable L, forms

a pre-multiplier to the terms
(√
|ωi|2 + · · ·+ |ωj |2

)α
, and

corresponds to the density of users that are active only during
the time slots i through j. For example, the density of users
affecting interference only at time slots 1 and 2 includes users
that emerged at time slot k ≤ 1 and are active until time
slot 2, i.e.,

∑
k≤1 λP(L = 3 − k) = λP(L ≥ 2). The user

density λP(L ≥ 2) thus forms a pre-multiplier for the term(√
|ω1|2 + |ω2|2

)α
in (22).

C. Joint Tail Probability of Interference Amplitude

We are interested in deriving closed-form expressions for
the joint interference tails of the form

P(∆ > n) = P (‖I1‖ > β1, ‖I2‖ > β2, · · · , ‖In‖ > βn)
(23)

where ∆ is the number of consecutive failed transmissions.
Recall that for analysis of network model I, k = 1 can
be assumed without loss of generality. Hence, we use In to
denote the interference at time slot n for both the network
models. Further, for simplicity in exposition, we assume non-
random thresholds βi in this subsection. In the later sections,
the tail thresholds βi are inherently random as they relate to the
random signal power. Since the interference and the desired
signal are independent, the results derived in this subsection
are used directly and averaged over the randomness in signal
power.

For both the network models, the joint characteristic func-
tion of interference at time slots 1 through n was shown to
follow a 2n-dimensional symmetric alpha stable distribution.
Even though we derived the joint characteristic function of
interference in a known form, expressing the joint tail prob-
ability in closed-form turns out to be nontrivial. Referring to
(20) and (22), the log-characteristic function is a sum of many(√∑

m |ωm|
2

)α
terms. To the best of our knowledge, no

direct result is available in the literature to aid the derivation of
(23) in closed-form for this specific form of joint characteristic
function. To this end, we provide certain useful theorems
regarding the tail probability of symmetric alpha stable vectors
with the same mathematical form as (20) and (22).

We now briefly describe the steps required to derive the
joint tail probability in closed-form using the results proved in
Appendix A. Theorem A.2 is the key underlying theorem, and
expresses the tail probability of the form (23) in terms of the
symmetric alpha stable spectral measure in an integral form.
The spectral measure, along with the characteristic exponent
α, completely characterize the statistics of a symmetric alpha
stable vector (see Theorem 2.4.3 in [18]). Further, for the log-
characteristic function of the form (20) and (22), we observe
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ψI1:n
(ω1:n) = −σ

[
P (L ≥ 1)

((√
|ω1|2

)α
+

(√
|ωn|2

)α)
+ P (L = 1)

(
n−1∑
l=2

(√
|ωl|2

)α)
+

P (L ≥ 2)

((√
|ω1|2 + |ω2|2

)α
+

(√
|ωn−1|2 + |ωn|2

)α)
+P (L = 2)

(
n−2∑
l=2

(√
|ωl|2 + |ωl+1|2

)α)
+

...

P (L ≥ n− 1)

((√
|ω1|2 + |ω2|2 + · · ·+ |ωn−1|2

)α
+

(√
|ω2|2 + |ω3|2 + · · ·+ |ωn|2

)α)
+

(P (L ≥ n) + P (L ≥ n+ 1) + · · · )
(√
|ω1|2 + |ω2|2 + · · ·+ |ωn|2

)α ]
(22)

that the spectral measure Γ on the 2n-dimensional unit sphere
S2n can be represented as a sum of independent measures

Γ = Γ0 +

|X |∑
k=1

Γkδ

 ⋃
j∈X (k)

{s2j−1, s2j}

 , (24)

where X is a collection of non-empty proper subsets of
{1, 2, · · · , n}, |X | denotes the cardinality of X , X (k) is the
kth set contained in X , δ(· · · ) denotes the multi-dimensional
dirac delta functional, s ∈ S2n, Γ0 is a spectral measure
distributed over the unit sphere S2n, and Γk is a spectral
measure distributed over the unit sphere S2(n−|X (k)|) formed
from the dimensions ∪j=1,··· ,2n;j /∈X (k){2j−1, 2j}.

For symmetric alpha stable vectors with a spectral measure
of the form (24), we prove in Corollary A.2.1 that the
joint tail probability of the form (23) is dominated by the
measure Γ0. In other words, the joint tails are dominated by

the
(√
|ω1|2 + · · ·+ |ωn|2

)α
term in the log-characteristic

function when β1, · · · , βn → ∞ with the same rate. Further,
since the spectral measure Γ0 is uniformly distributed over
the unit sphere S2n, it implies that the tails are equivalent to
the tails of an isotropic symmetric alpha stable vector with a
spectral measure Γ0 [18]. For an isotropic symmetric alpha
stable vector, we have derived the tail probability in closed-
form in Theorem A.1.

Using the aforementioned proof outline, if βi = βηi for
0 < ηi <∞, then

lim
β→∞

√√√√ n∑
i=1

β2
i

α

P(∆>n)

= 2ασFL(n)Cα
2

cos
(πα

4

)
Γ
(

1 +
α

2

)
(25)

where

FL(n) =


P (L ≥ n) for network model I,
∞∑
k=n

P (L ≥ k) for network model II,
(26)

and Cα
2

is given by (46). Equation (25) is derived using
Corollary A.2.1, recognizing that Γ0 is uniformly distributed
over S2n, and finally using Theorem A.1. Thus for β1, · · · , βn
large,

P(∆>n)

≈

√√√√ n∑
i=1

β2
i

−α2ασFL(n)Cα
2

cos
(πα

4

)
Γ
(

1+
α

2

)
. (27)

Intuitively, the joint tail probability is dominated by the(√
|ω1|2 +· · ·+ |ωn|2

)α
term in the log-characteristic func-

tion since this term corresponds to the contribution by nodes
that are active at all time slots 1 through n. The event that the
interference amplitude is high at all time slots 1 though n is
more likely to be due to the nodes that were active at all time
slots, rather than due to nodes that were active in only some
of those time slots.

IV. SINGLE HOP COMMUNICATION PERFORMANCE
ANALYSIS

In this section, we use the joint tail probability of inter-
ference to derive the descriptive measures of communication
performance for single hop transmissions. For both network
models, we assume the network is interference limited and so
thermal noise can be ignored.

A. Local Delay

Local delay (LD) of the network is defined as the expected
number of time slots a typical node requires for a successful
transmission to its receiver. In other words, the local delay
is one more than the expected number of successive failed
transmission attempts (E{∆}) of a typical node. Since a node
is active for a maximum of Lmax time slots, the local delay
of the network can be expressed as

LD=1+E{∆}

=1+

Lmax∑
n=1

P (SIR1<T, SIR2<T, · · · , SIRn<T ) (28)

=1+

Lmax∑
n=1

P (‖I1‖>β1, ‖I2‖>β2, · · · , ‖In‖>βn) (29)

where β2
n = T−1D−γh2

0(n)B2
0(n), and T is the SIR threshold

required for successful detection. Thus the local delay can
be expressed as the joint tail probability of interference.
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To enforce a low outage regime, we assume T � 1. The
assumption T � 1 is particularly valid for spread spectrum
physical layer where T−1 is proportional to the spreading
gain. While the results are asymptotically exact for T � 1,
simulations show that they match closely for typical values of
T around −5dB to −10dB. For T � 1, βn is large and thus
by using (27) we have

LD ≈ 1 + T
α
2 D2λK(α)

(
E
{
h2B2

})α
2 ×

Lmax∑
n=1

E

(

n∑
k=1

h2
0(k)B2

0(k)

)−α2FL(n)

 (30)

where

K(α) = πCα
2

cos
(πα

4

)
Γ
(

1− α

2

)
Γ
(

1 +
α

2

)
. (31)

Equation (30) expresses the local delay for network models
I and II in closed-form. We can now observe the impact of
various system parameters on the local delay.

User density: The intensity (λ) of the PPP has a linear
effect on the local delay of the network.

Power pathloss exponent: Recall that the power pathloss
exponent (γ) is related to the characteristic exponent as α = 4

γ .
To gain insight into the effect of α on the local delay, we
consider E(∆) for a non-random fading (h,h0(k)) and non-
random emission amplitudes (B,B0(k)). The RHS of (30)
becomes T

α
2 D2λK(α)

∑Lmax
n=1 n−

α
2 FL(n). The factor K(α)

does not vary significantly over a meaningful range of pathloss
exponent (2 < γ ≤ 8). Since this paper considers T � 1,
increasing γ (or equivalently decreasing α) increases the local
delay E(∆) exponentially. Intuitively, this happens because
an interferer close to the desired receiver becomes even more
dominant as compared to the desired signal if γ is large.

SIR threshold: Since α < 2, local delay scales sublinearly
(T

α
2 ) with the SIR threshold (T ).
Fading: To study the effect of fading, consider non-random

emission amplitudes (B,B0(k)). Evaluating (30) for Rayleigh
fading with parameter 1/

√
2 (i.e. , h2

0(k) ∼ exp(1)) gives

LD = 1 + T
α
2 D2λK(α)

Lmax∑
n=1

Γ
(
n− α

2

)
(n− 1)!

FL(n) (32)

where the factor
Γ(n−α2 )
(n−1)! is approximately equal to n−

α
2 .

Further, for any fading and interferer emission distributions,
local delay can be lower bounded by using the Jensen’s
inequality and recalling that h2

0(k)B2
0(k) are mutually i.i.d.

for all k, given as

LD ≥ 1 + T
α
2 D2λK(α)

(
E
{
h2B2

})α
2

E {hα0 Bα
0 }

Lmax∑
n=1

n−
α
2 FL(n).

(33)

Equality in (33) is attained, for example, when h2
0(k)B2

0(k)
does not vary with k. Such a situation can occur when
the desired node employs channel inversion power control
by adapting its instantaneous transmission power B2

0(k) to
combat the variations due to channel fading h2

0(k). Using (33),
we can conclude that channel inversion power control reduces
the local delay of the network.

Lifetime probability: From (30) we can conclude that the
local delay increases as E(L) increases. This is also intuitively
clear as increasing the mean lifetime of nodes causes more
interference in the network. Further the static and highly
mobile networks studied in prior work [5], [6] can be analyzed
as particular cases of the network models I and II.
(a) Network model I with L

p→ ∞: This would represent
a static network with no node mobility, where given a
particular instantiation of the PPP, the node actively trans-
mit for a large number of time slots. Here Lmax → ∞,
FL(n) = 1 ∀n from (26). Thus the local delay is

LD ≥ 1 + T
α
2 D2λK(α)

∞∑
n=1

n−
α
2 →∞ (34)

since α < 2. This is the same result as [5], [6] for the
Poisson bipolar model with no mobility, and a medium
access probability of 1 in the slotted-ALOHA MAC
protocol.

(b) Network model II with L
p
= 1: This would represent

a highly mobile network, where the location of active
nodes at each time slot is an independent instantiation of
the PPP. Here Lmax = 1, FL(1) = 1, and FL(n) = 0
for n ≥ 2 from (26). The local delay for such a network
is

LD = 1 + T
α
2 D2λK(α)

(
E
{
h2B2

})α
2

E {hα0 Bα
0 }

≥ 1 + T
α
2 D2λK(α) (35)

which is asymptotically (T � 1) same as the result in
[5] for the Poisson bipolar model with high mobility,
Rayleigh fading, and a medium access probability of 1
in the slotted-ALOHA MAC protocol.

B. Outage with respect to Throughput

Let S(n) denote the number of successful transmissions in n
consecutive time slots. Then the outage probability associated
with achieving at least s successful transmissions in n time
slots is

P (S(n) < s)

= P

 ⋃
1≤i1≤···≤in−s+1≤n

SIRi1 < T, · · · , SIRin−s+1 < T


=

n∑
k=n−s+1

[
(−1)k−(n−s+1)

(
k−1

n−s

)
×

∑
1≤i1≤···≤ik≤n

P (‖Ii1‖ > βi1 , · · · , ‖Iik‖ > βik)

]
(36)

for 1 ≤ s ≤ n, where βi = βηi, β2 = T−1D−γ , and η2
i =

h2
0(i)B2

0(i). Now for I = {i1, · · · , ik},

lim
β→∞

√∑
l∈I

β2
l

α

P (‖Ii1‖ > βi1 , · · · , ‖Iik‖ > βik)

= 2ασML(i1, ik)Cα
2

cos
(πα

4

)
Γ
(

1 +
α

2

)
(37)
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where

ML(i, j) =

{
FL(j) for network model I,
FL(j−i+1) for network model II

(38)

can be derived using (27) and noting that the log-characteristic
function for

{
I
(I)
i1
, I

(Q)
i1
· · · , I(I)

ik
, I

(Q)
ik

}
is of the form (20) or

(22) for network models I and II, respectively, with |ωm| set
to zero for m /∈ I . Using (36) and (37), for β large we have

P (S(n)<s)

≈ K
n∑

k=n−s+1

[
(−1)k−(n−s+1)

(
k−1

n−s

)
×

∑
1≤i1≤···≤ik≤n

E

{(∑
l∈I

h2
0(l)B2

0(l)

)−α2}
ML(i1, ik)

]

= K
n∑

k=n−s+1

[
(−1)k−(n−s+1)

(
k−1

n−s

)
×

E

{(
k∑
l=1

h2
0(l)B2

0(l)

)−α2} n∑
d=k

N (n, k, d)FL(d)

]
(39)

where K = T
α
2 D2λK(α)

(
E
{
h2B2

})α
2 and

N (n, k, d)

=


{

n for k=1,

(n−d+1)
(
d−2
k−2

)
for k≥2,

for network model I,(
d−1
k−1

)
for network model II.

(40)

Trends similar to the local delay can be observed for
P (S(n) < s) as a function of various network parameters.
Further, if a node is active for n consecutive time slots, the
expected number of successes during those n time slots are

E {S(n)} = n−
n∑
s=1

P (S(n) < s).

C. Average Network Throughput (Network Model II)

We focus on network model II since the point process of
active nodes is statistically invariant across time slots in this
case. Recall that the spatial density of active nodes at any time
slot is λE{L}. Now consider a typical node in the network that
is active for l consecutive time slots with probability P(L = l).
Assume that for each successful transmission, the typical node
is able to communicate at log2(1+T ) bits/Hz, i.e., the Shannon
rate. In l time slots, the typical node is expected to have
E {S(l)} successful transmissions, or an expected successful
transmission rate of E{S(l)}

l log2(1 + T ) bps/Hz. Averaging
this rate over the lifetime distribution of a typical node, the
average network throughput (in bps/Hz/area) is

Cav = λE{L} log2(1 + T )EL

{
E {S(L)}

L

}
(41)

D. Transmission Capacity and Throughput-Delay-Reliability
(TDR) Tradeoff (Network Model II)

The average throughput of the network discussed in the last
subsection does not capture the quality-of-service constraints

which may be required in most networks. Motivated by
the approach used in [19], [20], we define the transmission
capacity of the network and show that it captures the TDR
tradeoff.

For single hop transmissions, delay can be interpreted as the
number of time slots a typical node has to be active to achieve
a desired throughput with a certain reliability. Thus E{L} is
considered to be the delay for single hop transmissions. This
definition also enables us to study the TDR tradeoff of the
network for different probability mass functions of the time
slots that a node is active, pL(l) for l ∈ {1, · · · , Lmax},
given a delay constraint E{L} = L. Further, given an outage
constraint of ε, we define

s∗(l, ε) = max {s : P (S(l) < s) ≤ ε} (42)

as the maximum number of successful transmissions in l time
slots that can be achieved with reliability (1 − ε). Hence
a successful transmission rate of EL

{
s∗(L,ε)

L

}
log2(1 + T )

bps/Hz can be achieved with reliability of (1 − ε) for each
user. We define the transmission capacity of the network (in
bps/Hz/area) as

TC(L, ε) , max
pL(l),l∈{1,··· ,Lmax},

E{L}=L

(
λL log2(1+T )×

EL

{
s∗(L, ε)

L

}
(1−ε)

)
. (43)

Thus transmission capacity captures the TDR tradeoff, where
the successful throughput of TC(L, ε) bps/Hz/area can be
achieved under a reliability constraint of (1 − ε) and delay
constraint E{L} = L. For a given (L, ε) pair, TC(L, ε) can be
evaluated using numerical optimization of (43) over feasible
lifetime distributions. Further, for a given distribution of L,
closed-form expression for P (S(n) < s) in (39) enables direct
numerical evaluation of (43), without requiring any Monte
Carlo simulations of the network.

V. SIMULATION RESULTS

Using the physical model discussed in Section I-B, we apply
Monte Carlo numerical techniques to simulate the dynamics
of network models I and II. A typical link is simulated by
generating the desired transmission link in the presence of
network interference using (1) and (3) for network models
I and II, respectively. The empirical performance measures
are then compared against the closed-form expressions for the
corresponding measures derived in this paper. Even though
the paper assumes that T−1 is large for deriving closed-form
expressions, simulations reveal that the results match closely
for considerably small values of T−1 of around 5− 10.

Unless mentioned otherwise, the network model parameters
used in numerical simulations are:

γ = 4, λ = 0.01,h ∼ Rayleigh
(

1/
√

2
)
,B = 5,
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Fig. 3: Local delay in network model I with and without power control,
Lmax = 20 (L = 10), and power pathloss exponent γ of {4, 6}. Local
delay increases sublinearly as SIR threshold T required for successful detec-
tion increases, and exponentially as the power pathloss exponent increases.
Channel inversion power control reduces the local delay of the network.
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Fig. 4: Local delay in network model II with and without power control,
Lmax = 20 (L = 10), and power pathloss exponent γ of {4, 6}. Variations
of local delay with various network parameters are similar to those observed
for network model I in Fig. 3.

and the lifetime (L) of a typical node is assumed to follow a
truncated Poisson distribution given as

L ∼

(
Lmax∑
l=1

L
l

l!

)−1

L
l

l!
l = 1, · · · , Lmax, (44)

where Lmax and L are the maximum and the average number
of time slots a node is active, respectively. In our simulations
L is chosen to be Lmax

2 .
Local Delay: Figs. 3 and 4 compare the empirical and

estimated local delay for network models I and II, respectively,
as a function of the inverse of the SIR threshold

(
T−1

)
required for successful detection. Transmit power control
is implemented by adapting the instantaneous transmission
power B2

0(k) to the channel fading conditions h2
0(k) over time

slots k, such that h2
0(k)B2

0(k) = B2 = 25.
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Fig. 5: Outage probability associated with achieving at least s = {1, 2, 3, 4}
successes in n = 4 time slots for network model I with Lmax = 20.
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Fig. 6: Outage probability associated with achieving at least s = {1, 2, 3, 4}
successes in n = 4 time slots for network model II with Lmax = 20.

Outage with respect to Throughput: Figs. 5 and 6 com-
pare the empirical and estimated throughput outage probability
for network models I and II, respectively, as a function of the
inverse of the SIR threshold T−1. Note that P(S(n = 4) < 1)
(s = 1 in Figs. 5 and 6) corresponds to the probability of
outage in all n = 4 time slots. Hence Figs. 5 and 6 also
serve as a verification of the result on joint tail probability of
interference derived in (27). Additionally, for network model
II, Fig. 7 compares the throughput outage probability when
the channel coherence time is much larger than the symbol
time period (Tcoh = 10 × Tsym). Though the paper assumes
temporally i.i.d. channel h(·) to derive the closed-form results,
Fig. 7 shows that the large scale trends (i.e., decay rate of
P(S(n) < s)) correspond closely in simulations even for slow
fading channels. Similar correspondence in large scale trends
for slow fading channels is observed for other communication
performance measures derived in this paper.

Average Network Throughput (Network Model II):
Fig. 8 compares the simulated and estimated average network
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Fig. 7: Outage probability associated with achieving at least s = {1, 2, 3, 4}
successes in n = 4 time slots for network model II with Lmax = 20
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time and symbol time period, respectively. Although the throughput outage
probability is derived assuming fast fading (i.e., Tcoh < Tsym), the decay rate
of the outage probability matches closely to the simulated results even with
slow fading.
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Fig. 8: Average throughput for network model II for Lmax = 10, L = 5,
and λ = {0.01, 0.005}.

throughput as a function of T−1 for λ = {0.01, 0.005}.
Increasing λ results in a increased spatial density of trans-
missions, but also increases interference at any receiver. Thus
the average throughput grows sublinearly with λ.

Transmission Capacity and Throughput-Delay-
Reliability (TDR) Tradeoff (Network Model II): Fig. 9
compares the transmission capacity as a function of the
outage constraint ε. The optimization problem in (43) is
solved numerically using the fmincon function in MATLAB

using the active-set algorithm [21]. When higher outages are
tolerable, increasing L increases the transmission capacity
of the network since the spatial density of users transmitting
at any time slot (= λL) increases more than the loss
suffered due to increased interference. When outages are
constrained to be low (ε < 0.1 in Fig. 9), increasing L
decreases the transmission capacity as interference becomes
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Truncated Poisson lifetime distribution

Optimized over all lifetime distributions

L
max

 = 20

L
max

 = 40

Fig. 9: Transmission capacity TC(L, ε) of network model II as a function of
the outage constraint ε and delay constraint of L = Lmax

2
= {20, 10} for

a SIR detection threshold T of 0.1. Transmission capacity with a truncated
Poisson lifetime distribution is compared with that obtained by numerical
optimization over feasible lifetime distributions. Optimizing over feasible
lifetime distributions improves the peak throughput, and the reliability at
which the peak throughput is achieved.

a limiting factor. Further, optimizing over all feasible lifetime
distributions not only increases the peak throughput, but
also improves the reliability at which the peak throughput is
achieved. This motivates the design of MAC strategies that
achieve the optimal lifetime distribution.

From a practical viewpoint, the simulations results provide
the following insights. For a packet length of PL symbols,
instead of transmitting L/PL packets for each channel access
grant, the network interference is better managed by randomly
varying the packet count. The optimal packet count distribution
(lifetime distribution) is obtained by solving (43). Fig. 9
demonstrates up to 2× in the peak network throughput, and
a reliability improvement from approximately 0.8 to 0.9 (i.e.,
50% fewer packet retransmissions) by optimizing the lifetime
distribution. The gains in throughput and reliability are greater
if more randomness in the packet count can be observed (i.e.,
greater Lmax). Further, Figs. 3 through 8 show that reducing
the detection threshold (via coding or other physical methods)
significantly improves the delay and outage performance. This
motivates design of physical layer methods to improve the
detection performance in view of the non-Gaussian statistics
of interference.

VI. CONCLUSIONS

The paper utilized the approximate temporal statistics of
interference amplitude to derive network performance mea-
sures in simple algebraic form. This approach deviates from
the mathematical techniques commonly used in literature for
analyzing various network performance measures. While not
shown in the paper, using such common methods to derive
measures such as local delay for the network model assumed
in this paper yields rather intractable results, thereby providing
minimal insight into the effect of various network parameters
on the communication performance. The non-Gaussian statis-
tics of interference derived in this paper can be used to design
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physical layer methods, such as filtering, detection rules, and
forward error correcting codes, to improve the link spectral
efficiency by several bps/Hz [22]–[24].

The results derived in this paper can be easily extended
to include a slotted-ALOHA channel access protocol [25] in
conjunction with the network model assumed in the paper. The
analytical form of the results remain the same, with FL(n)
replaced with pnFL(n), where p is the channel access proba-
bility. Further, for a bounded pathloss function min(1, r−

γ
2 ),

the interference statistics can be derived using similar steps
used in this paper and shown to follow a multivariate Gaussian
mixture distribution [10]. The approach used in this paper can
also be extended for frequency selective channels. Extensions
to networks with contention based MAC protocols, however,
appear nontrivial, but approximations may be proposed based
on a Poisson assumption with a guard zone, which results
in multivariate Gaussian mixture distributed interference [10],
[26].

APPENDIX A
STATISTICAL PROPERTIES OF SYMMETRIC ALPHA STABLE

RANDOM VECTORS

This appendix borrows heavily from the notation, theorems,
and proofs used in [18], while still being consistent with
the notation used in this paper. We first derive the following
theorem regarding the joint amplitude tails of an isotropic
symmetric alpha stable vector.

Theorem A.1. Let X = (X1,I ,X1,Q, · · · ,Xd,I ,Xd,Q) be an
isotropic symmetric alpha stable vector in R2d with 0 < α < 2
and dispersion parameter σ [18]. Then the joint tail proba-
bility of ‖X1‖, · · · , ‖Xd‖ can be expressed as

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd)

= 2ασCα
2

cos
(πα

4

)
Γ
(

1 +
α

2

)
(45)

where β =

√
d∑
i=1

β2
i , ‖Xi‖ =

√
X2
i,I + X2

i,Q, and

Cα =

{
2
π when α = 1,

1−α
Γ(2−α) cos(πα2 )

otherwise. (46)

Proof: Using the sub-Gaussian representation
of an isotropic symmetric alpha stable vector,
X

d
=

{
A

1
2 G1,I ,A

1
2 G1,Q, · · · ,A

1
2 Gd,I ,A

1
2 Gd,Q

}
where A is a positive stable random variable and
G1,I ,G1,Q, · · · ,Gd,I ,Gd,Q are i.i.d. Gaussian random
variables [18], we have

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd)

= lim
β→∞

βαP

(
A min
i=1,··· ,d

β2

β2
i

(
G2
i,I + G2

i,Q

)
> β2

)
(47)

= lim
β→∞

βα
∞∫

0

P
(

A >
β2

x

)
1

2
e−

x
2 dx (48)

= 2ασCα
2

cos
(πα

4

)
Γ
(

1 +
α

2

)
(49)

where (48) is expressed by noting that for all i,
β2
i

β2

(
G2
i,I + G2

i,Q

)
are independent and exponentially dis-

tributed with mean 2β2

β2
i

. Thus min
i=1,··· ,d

β2
i

β2

(
G2
i,I + G2

i,Q

)
is

also exponentially distributed with mean
(∑d

i=1 β
2
i

2β2

)−1

= 2.
Equation (49) follows from the dominated convergence theo-
rem, and noting that A is a positive α

2 -stable random variable
with tails limt→∞ t

α
2 P (A > t) = 2

α
2 σCα

2
cos
(
πα
4

)
.

Deriving the joint amplitude tail probability of a general
symmetric alpha stable vector is more involved as compared to
the specialized case of isotropic symmetric alpha stable vector
dealt in Theorem A.1. We now prove a theorem which relates
the joint amplitude tail probability of a general symmetric
alpha stable vector to its spectral measure.

Theorem A.2. Let X = (X1,I ,X1,Q, · · · ,Xd,I ,Xd,Q) be a
symmetric alpha stable vector in R2d with 0 < α < 2 and a
unique symmetric finite measure Γ on the unit sphere S2d. If
βi = βηi such that 0 < ηi <∞ for i = 1, · · · , d, then

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd)

= Cα

∫
S2d

min
i=1,··· ,d

(
η−1
i

√
s2

2i−1 + s2
2i

)α
Γ(ds) (50)

where Cα is defined in (46).

Proof: This proof adopts the approach used in the proof
of Theorem 4.4.1 in [18]. Using Theorems 3.5.6 and 3.10.1,
and Corollary 3.10.4 in [18],

(X1,I ,X1,Q, · · · ,Xd,I ,Xd,Q)
d
= (Y1, · · · ,Y2d) (51)

such that Yk have a Le-Page series representation

Yk =
(
CαΓ̃(S2d)

) 1
α
∞∑
i=1

εiΓ
− 1
α

i

fk(Vi)

f∗(Vi)
(52)

=
(
CαΓ̃(S2d)

) 1
α

ε1Γ
− 1
α

1

fk(V1)

f∗(V1)︸ ︷︷ ︸
Uk

+
(
CαΓ̃(S2d)

) 1
α
∞∑
i=2

εiΓ
− 1
α

i

fk(Vi)

f∗(Vi)︸ ︷︷ ︸
Wk

(53)

Here fk : S2d → R is defined as fk(s) = sk for k = 1, · · · , 2d
and s ∈ S2d, f∗ : S2d → R is defined as f∗(s) =

max
k=1,··· ,2d

|fk(s)| for s ∈ S2d, Γ̃(ds) = (f∗(s))
α

Γ(ds) is a

finite measure on (S2d, Borel σ-algebra on S2d), {Γ1,Γ2, · · · }
is the sequence of arrival times of a Poisson process with
unit arrival rate, {V1,V2, · · · } is the sequence independent of
{Γ1,Γ2, · · · } such that Vi has a distribution Γ̃

Γ̃(S2d)
on S2d,

and {ε1, ε2, · · · } is the sequence independent of {Γ1,Γ2, · · · }
and {V1,V2, · · · } such that P(εi = 1) = P(εi = −1) = 1

2 .

Let U = mini=1,··· ,d

√
U2

2i−1+U2
2i

ηi
and W =

max
i=1,··· ,2d

|Wi|

min
i=1,··· ,d

ηi
.

Using (53), and the triangle inequality, we have

U + 2W ≤ min
i=1,··· ,d

√
Y2

2i−1 + Y2
2i

ηi
≤ U− 2W. (54)



13

Tails of the random variable U can be expressed as

lim
β→∞

βαP
(
U>β

)
= lim
β→∞

βαP

((
CαΓ̃(S2d)

) 1
α

Γ
− 1
α

1 ×

min
i=1,··· ,d

√
f2

2i−1(V1) + f2
2i(V1)

ηif∗(V1)
> β

)
(55)

= lim
β→∞

βα
∫
S2d

P

((
CαΓ̃(S2d)

) 1
α

Γ
− 1
α

1 ×

min
i=1,··· ,d

√
f2

2i−1(s)+f2
2i(s)

ηif∗(s)
> β

)
Γ̃(ds)

Γ̃(S2d)
(56)

= lim
β→∞

βα
∫
S2d

(
1− exp

(
−CαΓ̃(S2d)β

−α×

(
min

i=1,··· ,d

√
s2

2i−1+s2
2i

ηif∗(s)

)α))
Γ̃(ds)

Γ̃(S2d)
(57)

=Cα

∫
S2d

min
i=1,··· ,d

(
η−1
i

√
s2

2i−1 + s2
2i

)α
Γ(ds) (58)

where (56) involves integrating over the distribution of V1,
and (58) is derived using the dominated convergence theorem
and transforming the finite measure over which the integral is
expressed. From (58), it can be noted that the random variable
U is regularly varying (as defined by in Lemma 4.4.2 in [18]).
Furthermore, W is a positive random variable and the relation
lim
β→∞

βαP (maxi=1,··· ,2d |Wi| > β) = 0 was proved as an

intermediate step in the proof of Theorem 4.4.1 in [18]. Using
Lemma 4.4.2 in [18], the tails of U± 2W are dominated by
the tails of U. Using (50), (54), and Lemma 4.4.2 in [18],

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd)

= lim
β→∞

βαP

 min
i=1,··· ,d

√
Y2

2i−1 + Y2
2i

ηi
> β

 (59)

= lim
β→∞

βαP
(
U > β

)
(60)

= Cα

∫
S2d

min
i=1,··· ,d

(
η−1
i

√
s2

2i−1 + s2
2i

)α
Γ(ds). (61)

This concludes the proof of the theorem.
Using Theorem A.2, we now prove a result which is relevant

for the particular form of the symmetric alpha stable vectors
derived in this paper.

Corollary A.2.1. Let X = (X1,I ,X1,Q, · · · ,Xd,I ,Xd,Q) be
a symmetric alpha stable vector in R2d with 0 < α < 2 and a
spectral measure Γ on the unit sphere S2d. Consider the case
when the spectral measure is a sum of independent spectral
measures of the form

Γ = Γ0 +

|X |∑
k=1

Γkδ

 ⋃
j∈X (k)

{s2j−1, s2j}

 (62)

where X is an arbitrary collection of non-empty proper
subsets of {1, 2, · · · , n}, |X | denotes the cardinality of X ,
X (k) is the kth set contained in X , δ(· · · ) denotes the
dirac delta functional, Γ0 is a spectral measure distributed
over the unit sphere S2n, and Γk is a spectral measure
distributed over S2(n−|X (k)|) formed from the dimensions
∪j=1,··· ,2n;j /∈X (k){2j − 1, 2j}. If βi = βηi such that 0 <
ηi < ∞ for i = 1, · · · , d, then the joint tail probability are
dominated by the spectral measure Γ0 such that

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd)

= Cα

∫
S2d

min
i=1,··· ,d

(
η−1
i

√
s2

2i−1 + s2
2i

)α
Γ0(ds). (63)

Proof:

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd)

=Cα

∫
S2d

min
i=1,··· ,d

(
η−1
i

√
s2

2i−1+s2
2i

)α
Γ0(ds) +

|X |∑
k=1

∫
S2d

min
i=1,··· ,d

(
η−1
i

√
s2

2i−1+s2
2i

)α
×

δ

 ⋃
j∈X (k)

{s2j−1, s2j}

Γk(ds)

 (64)

=Cα

∫
S2d

min
i=1,··· ,d

(
η−1
i

√
s2

2i−1+s2
2i

)α
Γ0(ds) (65)

since mini=1,··· ,d

(
η−1
i

√
s2

2i−1 + s2
2i

)α
δ
(⋃

j∈X (k){s2j−1,

s2j}
)

= 0 as X (k) is a non-empty set.
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