
978-1-4673-2921-7/12/$31.00 c©2012 IEEE

A Methodology for the Design and Deployment of
Reliable Systems on Heterogeneous Platforms

Hugo A. Andrade∗†, Arkadeb Ghosal∗, Kaushik Ravindran∗ and Brian L. Evans†
∗National Instruments Corporation, Berkeley, CA 94704, USA

†Dept. of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA
E-mail: {hugo.andrade, arkadeb.ghosal, kaushik.ravindran}@ni.com, bevans@ece.utexas.edu

Abstract—Heterogeneous multi-target platforms composed of
processors, FPGAs, and specialized I/O are popular targets
for embedded applications. Model based design approaches are
increasingly used to deploy high performance concurrent appli-
cations on these platforms. In addition to programmability and
performance, embedded systems need to ensure reliability and
availability in safety critical environments. However, prior design
approaches do not sufficiently characterize these non-functional
requirements in the application or in the mapping on the multi-
target platform. In this work, we present a design methodology
and associated run-time environment for programmable hetero-
geneous multi-target platforms that enable design of reliable
systems by: (a) elevating reliability concerns to the system
modeling level, so that a domain expert can capture reliability
requirements within a formal model of computation, (b) modeling
platform elements that can be automatically composed into
systems to provide a reliable architecture for deployment, and
(c) segmenting (in space and time) the run-time environment
such that the system captures independent end-user provided
reliability criteria. We illustrate the modeling, analysis, and
implementation capabilities of our methodology to design fault
tolerant control applications. Using the National Instruments
PXIe platform and FlexRIO components, we demonstrate a run-
time environment that provides desired levels of reliability.

I. INTRODUCTION

Heterogeneous programmable multi-target platforms are an
established trend in mainstream and embedded computing [1],
[2]. Such platforms are composed of multiple processors,
FPGAs, GPUs, application specific processing units, dis-
tributed memories, and specialized interconnection networks
and I/O. The continuous increase in performance requirements
of embedded applications has fueled the advent of such high-
performance platforms. At the same time, the need to adapt
products to rapid market changes has made programmability
an important criterion for the success of these devices. These
platforms are dominant in a variety of markets including digital
signal processing, gaming, graphics, and networking. The
recent surge of applications in medicine, finance, and security
will only encourage the proliferation of these platforms.

In addition to the need for programmability and perfor-
mance, embedded systems need to ensure higher reliability and
availability in safety critical environments [3]. These systems
are often large and complex and downtime is very expen-
sive [4]. This makes reliability an increasingly important de-
sign consideration. The new technologies, owing to the harsh
nature of the deployment conditions, are more susceptible to

hard errors due to external effects like radiation, catastrophic
failures, malicious attacks, and deterioration over time. The
complexity of the design solution makes them increasingly
prone to manufacturing (lower yield) errors, design errors,
and run-time (soft) errors. The typical platform is therefore
a collection of unreliable computing devices, communicating
over an unreliable network, and surrounded by I/O that may
be unreliable as well. The application components deployed
on this platform may also be subject to design and run time
errors, or even contain maliciously created programs.

The larger number and relative independence of multiple
processing components motivates a design approach that ex-
ploits redundancy to improve reliability and availability. The
system can be viewed as a collection of possibly redundant
computation, communication, and I/O components, which can
be replaced in the field while the system is in operation.
The redundancy of these field replaceable units (FRUs) are
exploited to maintain the mean time between failure (MTBF)
within reasonable boundaries and create a dynamic fault-
tolerant system. FRUs are typically low cost parts, composed
of few components, as opposed to an entire chassis, which
helps minimize the cost of repair and replacement.

Building a reliable, efficient, and cost-effective system of
FRUs brings forth new challenges. The application specifica-
tion must be extended to include non-functional requirements
related to reliability and availability. The platform model
should capture the reliability of individual components and
define how the reliability of the combined system is evaluated.
Further, in most embedded applications, the nature and affinity
of I/O is an important consideration. FRUs usually have direct
interaction with the I/O of the system. The processing com-
ponents of these FRUs are complemented by reconfigurable
devices that serve as interfaces to the I/O and guarantee
control and timing requirements. This introduces additional
constraints that regulate how these FRUs can be reconfigured
and computation can be re-distributed to exploit redundancy.
The challenge then is to develop models, tools, and run-time
environments for the design and deployment of reliable fault-
tolerant systems on heterogeneous multi-target platforms.

In this paper, we advance a design methodology that elevates
reliability concerns to the system level and propose a frame-
work that enables reliable system level design by application
domain experts. The salient features of our methodology are:
(a) specification of non-functional requirements in terms of in-

tuitive and well-defined models of computation and application
design patterns; (b) availability of dynamic virtual platform
infrastructure based on coarser granularity reliable elements
on top of programmable components; (c) and, hardware-
software co-design environment that uses dynamic mapping
to adapt to different operational scenarios.

Our methodology is inspired by the Y-chart approach for
system design and design space exploration (DSE) [2], [5],
[6]. The Y-chart approach advocates a deliberate separation of
concerns related to application specification, platform model,
and mapping between them. We advocate that reliability and
availability concerns be emphasized at all steps in the Y-
chart methodology. The non-functional requirements must be
formally encoded in the application specification. Similarly,
the redundancy and replaceability of the computation and
I/O components must be explicit in the platform model.
The mapping step binds the application to the architectural
resources while enforcing non-functional requirements. This
methodology emphasizes the productivity of domain experts
who are knowledgeable in a technical field but not necessarily
adept in deploying embedded systems. The goal is to help
the application domain expert design a reliable fault-tolerant
distributed embedded system, while being able to focus on
important design problems. The methodology ensures that the
issues of reliability are not ignored, while obviating the expert
from having to delve into the details of reality of deploying a
distributed computing environment.

In this work, we demonstrate our methodology for the
design of reliable systems on multi-target platforms by apply-
ing it to the National Instruments (NI) LabVIEW Graphical
System Design framework [7]. LabVIEW targets a platform
consisting of (reconfigurable) measurement and control I/O
modules, which can be aggregated into cyber-physical systems
by combining the I/O modules with industrial controllers or
external computers. The framework includes specialized ad-
dons like LabVIEW RT [8] (for real-time systems), LabVIEW
FPGA [9] (for reconfigurable platforms with FPGAs), and
StateCharts development module [10] (for state transition sys-
tems). The framework organization and flow (Fig. 1) closely
resembles the Y-chart methodology discussed in [11] and [2].
Traditionally, LabVIEW has focused on functional modeling.
In this work, we extend LabVIEW to include non-functional
requirements related to reliability and availability and present
case studies to validate the design methodology.

Section II compares related methodologies for the design
of reliable systems. The proposed framework based on Y-
chart methodology is reviewed in Section III. Section IV
discusses patterns to capture fault tolerance requirements that
serve as examples for the case study. Section V demonstrates a
prototype run-time infrastructure and presents the case study.
Section VI concludes with future directions.

II. RELATED WORK

Synthesis of reliable systems from higher level specifica-
tions has been well studied in the literature [12] [13] [14].
These researchers have extended conventional models of

Fig. 1. Platform-based Design and MoCs

computation (e.g. dataflow or timed interaction of tasks) to
specify reliability requirements. As discussed in Section I,
the LabVIEW graphical system design framework (Fig. 1)
supports multiple models of computation (dataflow, math,
textual etc.) for functional aspects that can be synthesized
over multiple hardware platform elements (behavioral poly-
morphism [15]). Recent efforts have extended the framework
with capabilities to capture non-functional requirements, and
allow subsequent synthesis on heterogeneous platforms. [16]
reports extensions to allow non-functional specifications like
throughput and latency for communications applications de-
ployed on reconfigurable targets. In this work, we enhance the
LabVIEW framework to support the capture of non-functional
requirements like reliability, and enable system synthesis from
these requirements. In particular, we focus on pattern-based
specification of fault-tolerant systems [3] and on templates for
patterns in non-functional requirements [17].

Our methodology supports synthesis for heterogeneous
computation, communication, and I/O elements. [18] [19]
present prototype run-time environments that target proces-
sors and reconfigurable elements with standardization at the
operating system (OS) level. We provide support at three
levels: the ability to capture system level requirement with
reliability constraints, the ability to integrate third party IP
(possibly using [20] [21]), and the ability to support multiple
commercial hardware platforms.

A key aspect of the run-time infrastructure for fault tol-
erance is the ability to adapt to diverse requirements. Prior
works referred here use high level specifications at the system
level, but there is a disconnect between the model and the
run-time environment. [22] presents an interesting approach
where a run-time optimizer has been used with early design
information for better adaptive behavior. Our goal is to im-
plement a secondary run-time optimizing mapping engine that
complements the initial system level mapping with updates to
the platform model in order to provide adaptive behavior. In
summary, the methodology advanced in this paper attempts to
integrate the respective strengths of the previously discussed
tools into a unified framework for implementation of reliable
systems onto heterogeneous platforms, while maintaining an
intuitive graphical design environment for domain experts who
may not be experts in hardware design.

III. FLOW

As discussed in the introduction, we follow the Y-chart
design/synthesis methodology (Fig. 2) which begins with
separate specifications of application and architecture. An
explicit mapping step binds the application to the architectural
resources. The result of the evaluation (of the mapping) forms
the basis for further mapping iterations: the designer has the
choice to modify the application and the workload, the selec-
tion of architecture building blocks, or the mapping strategy
itself. Thus, the Y-chart enables the designer to methodically
explore the design space of system implementations [6].

Multiprocessor

architecture
Application /

workload

Mapping

Performance

analysis

Performance

numbers

…

… …

…

Fig. 2. The Y-Chart approach for deploying concurrent applications.

The goal of the mapping step in the Y-chart framework is
to maximize application performance (or some other design
objective) by an effective distribution of computation and
communication on to the resources of the target architecture.
Thus, to map the task level concurrency in an application to a
multi-target platform entails solving a complex multi-objective
combinatorial optimization problem subject to several im-
plementation and resource constraints. A manual designer-
driven approach, based on commonly accepted “good practice”
decisions, may be satisfactory today; but the relative quality of
solutions will only deteriorate in the future as the complexity
of applications and architectures continues to increase. There-
fore, it is less and less likely that a good design is a simple
and intuitive solution to a design challenge [6]. This motivates
the need for an automated and disciplined methodology to
guide a designer in evaluating large design spaces and creating
successful system implementations.

The objective of this work is to create an automatic tool
flow that handles specification of application (with func-
tional and non-functional requirements) and hardware platform
(with reliability metrics), computation/evaluation of possible
mappings for different optimization objectives, and synthe-
sis/implementation of the application on the hardware plat-
form based on the selected mapping. In this paper we focus
on two aspects of the design flow. Section IV discusses
how reliability/availability requirements can be mapped from
application to platform using pattern information assuming
MTTF/MTBF is available for the platform. Section V presents
a prototype run-time implementation of the patterns discussed
in Section IV. Two other aspects, a specification language

(to formally express reliability patterns) and an automated
mapping algorithm (to detect the best possible assignment of
tasks to processors), have been partially documented in [23]
and [24] and are the subject of ongoing research.

IV. PATTERN SPECIFICATION

A fault in a system gives rise to an error. The basic idea
of fault tolerance is to detect the error and to take necessary
action to process the error through recovery and/or mitigation.
Once error processing completes, the system returns to normal
operation. If needed, the system can perform fault treatment
during normal operation, to prevent the error from recurring.
Depending upon scenarios and needs of the system, error
detection, recovery, and mitigation can be classified into
patterns. Patterns for fault tolerance have been well studied;
refer to [3] for a comprehensive list of different patterns for
error detection, recovery, and mitigation. In this section we
discuss one pattern each for error detection, recovery, and
mitigation using reconfigurability to implement the patterns.
Reconfigurability is used to reduce the overall cost of the
system, and to maximize the use of resources. We use the
following patterns:

• Watchdogs (for Error Detection) uses special entities to
watch over the system (or specific components) to make
sure that the system is operating well.

• Failover (for Recovery) recovers by switching to a re-
dundant unit.

• Shed Load (for Mitigation) discards some requests for
service to offer better service to other requests.

We investigate the possibility of using reconfigurability to
avoid a standby redundant unit which reduces the overall cost.
In particular, we show that both computation and communica-
tion can be reconfigured on-demand based on the requirements
of availability and reliability. The following sections define
reliability and availability metrics and discuss the patterns.

A. Reliability and Availability Metrics

Reliability (R) of a component is the probability that the
component will perform the intended function during a given
period of time under specified operating conditions. Reliability
is computed as R = e−λ∗t, where λ is the inverse of MTTF
(Mean Time To Failure), t is the period of time for which
reliability is being calculated, and MTTF is the expected time
to failure for the component. For n components, reliability
of a system with the components in series (resp. parallel) is∏n
i=1Ri (resp. 1−

∏n
i=1(1−Ri)), where Ri is the reliability

of the i-th component.
Availability (A) of a component is the probability that a

component will perform the intended function over a period
of time when operated and maintained in a prescribed manner.
Given MTTF and MTTR (Mean Time To Repair), availabil-
ity A = MTTF

MTTF+MTTR where MTTR is the expected time to
repair/restore the component. When n replicas of a component
are in series (resp. parallel), availability of the system is An

(resp. 1− (1−A)n).

B. Increasing Availability without Explicit Backup Redun-
dancy

In this pattern, reconfigurability is used to meet avail-
ability requirements. Two tasks T1 and T2 are running on
two reconfigurable processors F1 and F2 respectively. T1
has higher priority than T2 in terms of availability, and
requirement for the design states that if at least one of the
processors is operational, then T1 must be executing. The
processing requirements of the tasks are such that both cannot
be placed simultaneously on the same processor. Fig. 3 shows
the states of the system in terms of mapping between tasks
and processors. In states 2 and 3, only one processor is
operational, and task T1 executes on the operational processor.
When the other processor is back to operational (in states 2
or 3), T2 is reconfigured on that processor, and the system
has both tasks running (state 4 or 1). As long as either
F1 or F2 is operational the downtime for T1 is only the
reconfiguration time if the task needs to be moved. The pattern
can be extended for more than two tasks (with different levels
of priorities) executing on multiple reconfigurable processing
units. If availabilities of the processors are 0.998 each, then
availabilities of the tasks are 0.998 each as long as they are
bound to one processor only. If task T1 can be moved back
and forth between the two processors, then the availability of
task T1 improves to 0.999996.

Fig. 3. Pattern 1

The time to repair can be refined as MTTR = MTTI +
MTTX+MTTD, where MTTI (Mean Time To Identify) is
the time to detect whether the failure is transient or semi-
permanent/permanent, MTTX (Mean Time To Fix) is the
time to fix and/or replace a component that has a failure,
and MTTD (Mean Time To Deploy) is the time to de-
ploy/reconfigure a task on a processor. Note that MTTI and
MTTD may be orders of magnitude smaller than MTTX ,
thus making the average value of MTTR smaller relative to
the time to repair/fix/replace a failed component.

C. On-demand Reliability based on Modal Requirements

Similar to the last pattern, there are two tasks (T1, T2)
and two reconfigurable processors (F1, F2). There are two
operation modes m1 and m2 (see Fig. 4). In mode m1, tasks
T1 and T2 execute on F1 and F2, respectively. In mode m2,

task T2 is removed and task T1 is replicated on F1 and F2
such that T1 runs in DMR (Dual Redundancy Mode). This
implies task T1 runs with higher reliability in mode m2 than
in mode m1. The mode switch is triggered by an external
monitor based on user command or change in environment.
Mode m1 can switch to mode m2 only if both processors are
operational. If either of the processors fails in mode m2, the
remaining operational processor will continue to run task T1.

Fig. 4. Pattern 2

When mode m1 switches to mode m2, both computation
and communication need to be reconfigured. Computation
needs to be reconfigured as task T1 need to be replicated.
Communication needs to be reconfigured as results from the
processors should be sent for voting, which can be imple-
mented on the embedded controller, on the running processors,
or on a third processor. Care should be taken such that voting
is not the bottleneck, which may reduce the overall reliability.
If reliabilities of the processors are 99% each, then in mode
m1 both tasks have reliability of 99%, while in mode m2,
reliability of task t1 is 99.99%. The processing units have been
assumed to be a black box system. However processing units
may consist of core (FPGA), memory, I/O conditioning units,
and communications interfaces. If reliabilities for individual
components are available, then they should be factored in
the calculation. The pattern can be extended for more than
two tasks running on more than two processing units. E.g.,
in a platform with three processing units, a task may be
configured to run solo or in DMR or in TMR (Triple Modular
Redundancy) as needed for scenarios by replacing lower
priority tasks.

V. CASE STUDY

As a step towards building a tool that supports the flow
described in Section III, we prototyped parts of the run-
time infrastructure. Though the flow presented here is manual,
the overall methodology is inspired by the Y-chart approach.
Fig. 5 shows the application, platform, and system view. The
application consists of task definitions with I/O drivers for
each task. In the case study, there are two tasks T1 and T2
with two drivers d1 and d2 respectively. The platform consists
of one embedded controller (implementing the watchdog),
two modular computing nodes with FPGAs, and a backplane
supporting communication between the controller and the
computing nodes. The computing nodes connect to I/O via
drivers. The system supports links from both I/O to the two
computing nodes. The links may not be working all the time;

a link would be activated as required to implement a scenario
for a specific pattern.

Fig. 5. Design Flow

For the experiments, we have used some of the platform
elements currently available with the National Instruments PXI
Express (PXIe) platform [25] (as shown in Fig. 6):

• PXIe-1075 (marked as PXI Express Chassis) is a 3U
18-slot chassis with up to 1 GB/s slot-to-slot dedicated
bandwidth and 4 GB/s system bandwidth, via a PCI
Express based interconnect.

• PXIe-8133 (marked as RT Host Controller) is a real-time
(RT) quad-core Intel Core i7-820 based controller, with a
high-bandwidth PXI Express embedded interface which
supports up to 8 GB/s of system and 2 GB/s of slot-to-slot
bandwidth.

• PXIe-7965R (marked as RIO1 and RIO2) is a FlexRIO
FPGA module with a Virtex-5 SX FPGA optimized
for digital signal processing with onboard RAM, and
DMA channels for high-speed data streaming at more
than 800 MB/s. General purpose I/O lines are accessible
through the front panel of the FPGA module and serve as
interconnections to optional Front Adapter Modules (the
NI-5781 baseband transceiver in this case).

Fig. 6. PXIe-based Platform

The PXIe platform is used not only in test and measure-
ment applications, but also in embedded high performance
applications. A similar platform configuration as the above
has been used at CERN [4] to provide reliable measurements
and control for the collimators at LHC.

Some of the platform elements like the chassis already
have specific features to increase availability at the sys-
tem level. E.g. the PXIe-1066DC chassis incorporates hot-
swappable, redundant DC power supplies and hot-swappable,

front-accessible, redundant cooling fans to maximize system
availability. Reliability issues of PCI Express have been dis-
cussed in [26]. As mentioned in the previous section for now
we assume the interconnect is 100% reliable.

With the proposed methodology we are exploring a finer
granularity for the FRUs compared to the current chassis level,
and focussing on the reliability closer to the I/O ports of
the system, so that we would need to only replace individual
boards. We take advantage of some of the independent slot-to-
slot communication existent in PCIe, and the redundancy and
reconfigurability of the I/O platform elements to implement
parts of the reliable run-time support.

A. Run-time Infrastructure Prototype to Increase Availability
without Explicit Replication

We first prototyped the infrastructure required to implement
a system using the first pattern described in section IV, where
we give priority to the execution of task T1 over task T2 on
a platform that has two processing engines (in this case the
FPGAs labeled RIO1 and RIO2). An implementation of tasks
T1 and T2 in the LabVIEW FPGA (G) graphical programming
language are shown in Fig. 7. G provides an actor-based
structural homogeneous dataflow model of computation [27].
In this case the tasks are providing two levels of service of
a simple linear computation of the data coming from the on-
board ADCs, which is then sent to the real-time controller via
DMA channels.

Fig. 7. LV FPGA Task Block Diagrams (T1 top, T2 bottom) for Pattern 1

Fig. 8 shows the host computer implementation. As shown
in the yellow comments, we first execute one iteration of
the state machine. The system state is maintained by the
LabVIEW StateCharts and closely resembles the high level
description in Fig. 3. The input to the state machine includes
failure and repair flags for each of the FPGA boards. The
host program refers to the output of the state machine, and
performs the necessary reset, replacement or reconfiguration.
Although not explicitly modeled for this case study, we can
include a fault identification step to differentiate between

Fig. 8. LV Host Block Diagram for Pattern 1

transient failures (which would require a reconfiguration) and
permanent failures (which would only require component
replacement). An operator would be alerted to the fact that
a repair is necessary. To control the life cycle of the task
on a FPGA I/O board we use the LabVIEW FPGA Host
API. In addition to basic dynamic downloading capabilities,
it provides reset, abort, and control/status register access, as
well as high-performance streaming interfaces. The framework
does not provide partial configuration capabilities yet, so
a full reconfiguration is required to download a new task
onto the FPGAs. For our implementation, the absence of
partial reconfiguration capability does not impose significant
restrictions, but we would be able to take advantage of such
feature, when available, as partial reconfiguration can reduce
MTTD.

Fig. 9 shows the front panel or console used to control the
experiment. On the left side we see the data captured by T1
and T2, as well as the FPGA on which they were last running,
depending on which one was operational. For the experiment,
we can also override the error detection on each FPGA, and
we are alerted when an FPGA needs to be serviced, and we
can let the system know that an I/O board has been repaired.
The right side of the figure depicts the state transition of the
system depending on failures of the modules RIO1 or RIO2.

B. Run-time Infrastructure Prototype for On-demand Reliabil-
ity based on Modal Requirements

We also prototyped the run-time environment to implement
a DMR scheme between two RIO FPGA boards, which check
each other for possible errors. This resembles mode m2 of
the patterns shown in Section IV. We have not implemented
both the modes and mode switch as we have already shown
the possibility of switching while discussing the first pattern.

Fig. 9. LV Host Front Panel for Pattern 1

Hence this subsection only focuses on implementing the DMR
scheme. If an error is identified, then the host will be alerted
to read the functional FPGA. The scheme can be extended to
TMR if three FPGA boards are available. Each of the FPGAs
implements the code shown in Fig. 10. In the code, references
for data to and from the other/redundant unit are labeled
with ‘RU’. With dual modular redundancy we can identify a
problem, but cannot provide fail safe implementation. To avoid
the limitation, we have implemented a set of heuristics to better
predict which stream the host should read from. For each RIO
board we send a copy of the data stream (or arbitrarily sub-
sampled version to avoid overhead) to the redundant unit via
a peer-to-peer connection. There it is synchronized with its
own data stream and compared in the actor labeled ‘T-DMR

Controller’. This would indicate possible errors at the source of
data, and based on local and remote (which are passed through
another peer-to-peer link from the RU) diagnostic heuristics
we identify the board that is in better condition to generate
data for the host to continue computation.

Fig. 10. LV FPGA DMR Block Diagram for Pattern 2

The RIO board to Host communication is done via a DMA
stream from each board. As shown in Fig. 11, at each iteration
of the host software, we check which stream the host should be
reading from. Given that for synchronization purposes we have
time stamps for the data, the information can be passed to the
host, which can then (during switch-over between I/O sources)
reorganize the data or ignore out of order data with very little
overhead. We can also proceed to reconfigure or repair/replace
the faulty board while operating from the redundant unit.

Fig. 11. LV Host Block Diagram for Pattern 2

VI. CONCLUSIONS

In this work, we focused on two aspects of design and
deployment of reliable systems on heterogeneous platforms:
(1) we showed examples of how reliability/availability re-
quirements can be mapped from application to platform using
pattern information for given MTTF/MTBF information for
a platform, and (2) we used the NI PXIe platform and
FlexRIO components to demonstrate the viability of a run-
time environment that provides desired levels of reliability for
two requirement patterns.

In the future, we intend to focus on (a) formalizing pattern
specification language, (b) modeling platform elements based
on reliability, and (c) defining techniques to map functional
requirements on platform based on reliability requirements.
In the end, we would like to combine the above into a
consistent automatic flow for synthesis of reliable systems on
heterogeneous multi-target platforms.

REFERENCES

[1] A. L. Sangiovanni-Vincentelli, “Quo Vadis SLD: Reasoning about
Trends and Challenges of System-Level Design,” Proceedings of the
IEEE, vol. 95, no. 3, March 2007.

[2] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System Level Design: Orthogonalization of Concerns and
Platform-Based Design,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 19, no. 12, Dec 2000.

[3] R. S. Hanmer, Patterns for Fault Tolerance Software. Wiley Series in
Software Design Patterns, 1978.

[4] A. Masi, A. Brielmann, R. Losito, and M. Martino, “LVDT Conditioning
on the LHC Collimators,” IEEE Trans. on Nucl. Sci., vol. 55, 2008.

[5] B. Kienhuis, E. F. Deprettere, P. v. d. Wolf, and K. A. Vissers, “A
Methodology to Design Programmable Embedded Systems - The Y-
Chart Approach,” in Embedded Processor Design Challenges: Systems,
Architectures, Modeling, and Simulation - SAMOS, 2002.

[6] M. Gries, “Methods for Evaluating and Covering the Design Space
during Early Design Development,” Integr. VLSI J., vol. 38, no. 2, Dec
2004.

[7] “LabVIEW System Design Software,” www.ni.com/labview/.
[8] “NI LabVIEW Real-Time Module,” www.ni.com/labview/realtime/.
[9] “NI LabVIEW FPGA Module,” www.ni.com/labview/fpga/.

[10] “NI LabVIEW Statechart Module,” www.ni.com/labview/statechart/.
[11] E. Lee and S. Neuendorffer, “Concurrent Models of Computation for

Embedded Software,” Tech. Memorandum UCB/ERL M04/26, EECS,
Univ. of California, Berkeley, 2004.

[12] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-vincentelli, “Fault-
Tolerant Deployment of Embedded Software for Cost-Sensitive Real-
Time Feedback-Control Applications,” in Proc. of Design Automation
and Test in Europe, 2004.

[13] C. Buckl, D. Sojer, and A. Knoll, “FTOS: Model-driven Development of
Fault-tolerant Automation Systems,” in Proc. of the IEEE International
Conference on Emerging Techonologies and Factory Automation, 2010.

[14] K. Chatterjee, A. Ghosal, T. A. Henzinger, D. Iercan, C. M. Kirsch,
C. Pinello, and A. Sangiovanni-Vincentelli, “Logical Reliability of
Interacting Real-time Tasks,” in Proc. of Design Automation and Test in
Europe, 2008.

[15] E. A. Lee and Y. Xiong, “A Behavioral Type System and its Application
in Ptolemy II,” Formal Aspects of Computing, vol. 16, no. 3, 2004.

[16] H. Andrade, J. Correll, A. Ekbal, A. Ghosal, D. Kim, J. Kornerup,
R. Limaye, A. Prasad, K. Ravindran, T. N. Tran, M. Trimborn, G. Wang,
I. Wong, and G. Yang, “From Streaming Models to FPGA Implemen-
tations,” in Proc. of the Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), 2012.

[17] A. Armoush, F. Salewski, and S. Kowalewski, “Design Pattern Rep-
resentation for Safety-Critical Embedded Systems,” Journal Software
Engineering and Applications, vol. 2, no. 1, 2009.

[18] H. K. So, A.Tkachenko, and R. Brodersen, “A Unified Hard-
ware/Software Runtime Environment for FPGA-based Reconfigurable
Computers using BORPH,” Proc. of the 4th international Conference
on Hardware/Software Codesign and System Synthesis, 2006.

[19] X. Iturbe, K. Benkrid, A. T. Erdogan, T. Arslan, M. Azkarate, I. Mar-
tinez, and A. Perez, “R3TOS: A Reliable Reconfigurable Real-Time Op-
erating System,” Proc. of NASA/ESA Conference on Adaptive Hardware
and Systems, 2010.

[20] “IP-XACT,” www.accellera.org/activities/committees/ip-xact/.
[21] “OpenCPI - Open Component Portability Infrastructure,” opencpi.org/.
[22] P. Benoit, “Distributed Approaches for Self-Adaptive Embedded Sys-

tems,” in Proc. of the Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), 2012.

[23] H. Andrade, A. Ghosal, and K. Ravindran, “Pattern-based Specification
of Non-Functional Requirements and Synthesis onto Dynamically Re-
configurable Platforms,” in IEEE International Reliability Innovations
Conference (IRIC), 2012.

[24] H. A. Andrade and K. Ravindran, “Automatic System-Level Synthesis
for Heterogeneous Platforms,” in Proc. of the IEEE Real-Time Confer-
ence, 2012.

[25] “NI PXI Platform,” www.ni.com/pxi/.
[26] K. Kong, “PCIe as a Multiprocessor System Interconnect,”

http://www.pcisig.com, 2012.
[27] H. A. Andrade and S. Kovner, “Software Synthesis from Dataflow

Models for G and LabVIEW,” in Proc. of the IEEE Asilomar Conference
on Signals, Systems, and Computers, 1998.

