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Overview

Rolling shutter effects
Previous work using IMUs

Sensor fusion

- Feature point correspondence in rolling shutter camera
- EKF-based sensor fusion

- Outlier detection using 1-point RANSAC

Experiments and comparison
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Rolling Shutter Effects

- Handheld cameras — fast motion

- CMOS image sensors:
- Rows in sensor array are exposed sequentially from top to bottom
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- Rolling shutter effects:
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Rectify Rolling Shutter Effects

- Pose estimation for each row needed

- Pure rotational model

- Main cause of pose difference between rows

- Fast rectification

u~ KR(t(u,j))x u ~ KR((t;)R"(t(u,j))K 'u

- Previous work on pose estimation

- [Karpenko 2011]

- Integrate gyro readings (100Hz on Nexus S)

- Use SLERP for exposure time between samples

- Unknown bias and noise; Fast changing motion

- [Hanning 2011]

- EKF-based estimation with accelerometer readings as measurements
- acceleration = f (pose, gravity)

- Good loop closing property

- Gravity is not the only source of acceleration
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Proposed Method

- Gyro readings integrated with visual measurements

- Feature point correspondences provide accurate geometric clue
- Structure from Motion; Simultaneous Localization and Mapping (SLAM)

- How to relate matched features with high-frequency camera poses in
rolling shutter model

- How to effectively detect outliers

- Research platform
- Android smartphones (Google Nexus S)

- Use app “data logger” to record video and gyro readings (with timestamp)
at the same time

+ How to synchronize sensor measurements
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Gyro and Feature Point Correspondence

- Gyro returns measurements with higher sampling rate

gyroscope readings
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- Compute the relative rotation between two exposure time
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EKF-based Estimation

- State vector: two groups of angular velocities

Xi = [U)(Z —1, 1)1 “ee ,CU(’I: — 1, N'—l)? w('i? 1)7 s ,U)(’I:, N’&)]T

- Why two groups?
- The visual measurements depend on both the group of the current frame and the
group of the previous frame

- Why angular velocity instead of rotation representation (unit quaternion)

- Equivalent for relative rotation estimation
+ No SLERP needed (simple Jacobian in EKF)

- Probabilistic Graphical Model 0 0 e
OO
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Dynamic Motion Model (State Prediction)

- Group cloning in prediction

x_(i-1) X_i

- Linear model

_of
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Measurement Model (State Update)

- Use only feature points in current frame as the measurements; their
matching points in previous frame are used as parameters
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l state vector determines the relative rotation
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- Final measurement equation for state update
- Closed form Jacobian matrix
using chain rule

u; 1 hi(Xi, Wi—1,1 — Vie1,1) + Vi
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Measurement Model (State Update)
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- State prediction of current stage is correlated with the noise of the
observation (measurements) in previous stage

- Solution: augment the state vector with the measurement noise



Outliers Removal

- For global shutter model
- Epipolar constraint / Homography fitting

- 1-point RANSAC in EKF
- In standard RANSAC, each hypothesis need the minimum number of
points necessary to estimate the parameters
- For EKF, we have got a prior distribution of the parameters (state vector)
by prediction

- The minimum number of points to estimate the parameters can be reduced
to one (in the rolling shutter case we choose three)



Outlier Removal

- Track features using the state prediction result, refine by KLT
- inliers =[]
- fori=1to N_hyp
- randomly choose 3 matches
- update the states through EKF filtering
- computer the re-projection error (innovation) and choose current_inliers

- if num_current_inliers > max_num
- inliers = current_inliers
« max_num = num_current_inliers

- end

- Use inliers to compute the EKF update

75ms/frame in Matlab implementation on 2.3GHz Intel i5 processor
20 features tracked



Sensor Synchronization and Calibration

- Parameters
- Rolling shutter speed (actual exposure time)
- Intrinsic parameters of the camera
- Delay between timestamps of IMUs and video

- Batch optimization [Karpenko 2011]
- Camera intrinsic parameters initialized by Zhang’s self-calibration
- Get relative rotation from gyro readings
- Optimize over all matching points, minimize the average re-projection error

- Solve by Levenberg-Marquardt algorithm o
convergence of synchronization &

calibration
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Average Re-projection Error per Point

- RANSAC EKEF vs. Integrating gyro readings
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Rotation Estimation Accuracy

- Zero-angle test
- Start with cell phone on a plat surface

- Rotate cell phone at will, then put it back on the surface and stay still for
several seconds

- Repeat for ten times
- Ground truth available naturally for pitch and roll
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Rotation Estimation Accuracy

- Using raw gyro readings (with bias)
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Rotation Estimation Accuracy

- Using raw gyro readings (with bias)
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Rotation Estimation Accuracy

- Using unbiased gyro readings
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Rotation Estimation Accuracy

- Using unbiased gyro readings

Roll angle estimation error (rad)
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Rotation Estimation Accuracy

- Using unbiased gyro readings
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Rotation Estimation Accuracy

- Using unbiased gyro readings

Pitch angle estimation error (rad)
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Rolling Shutter Rectification




gyro + cam



Rolling Shutter Rectification

gyro + cam



Rolling Shutter Rectification

gyro + cam



Complete failure using gyro + accel




Numerical Comparison

- No ground truth - no-reference method

- Vanishing point check
- Lines detected manually
- Find vanishing point by least-square

Average Euclidean distance from the
lines to the vanishing point (in pixel)
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