Real-Time 3D Rotation Smoothing for Video Stabilization

Chao Jia, Zeina Sinno, and Brian L. Evans
Department of Electrical and Computer Engineering The University of Texas at Austin

Asilomar Conference on Signals, Systems, and Computers
2014-11-03

Introduction

- Video recording by handheld cameras is growing exponentially due to:
- Compactness
- Everywhere \& Anytime
- Easy Sharing
- Good User Experience (touchscreen)

Common Problem: Unwanted inter-frame jitter ...

Introduction

Why online video stabilization

- Real-time delivery: video conferencing, broadcasting, etc.
- Improved user experience: What You See is What You Get.
- More efficient compression

Online Video Stabilization

- Removing unwanted jitter (inter-frame correction)

Motion Model Selection

- 2D motion: apparent pixel displacements
Translation Similarity Euclidean Affine Projective
- 3D real camera motion

Rotation Full (Rotation + Translation)

Motion Model	Estimation Complexity	Smoothing Effectiveness low	Correction Complexity low
2D	high	high	high
3D Full	high	high	low (projective transform)
3D Rotation	low (using gyro)		(

- No approximation in 3D rotational stabilization (proposed method)
- We are not assuming pure camera rotation
- Translation is kept as is, and not smoothed

Online 3D Rotation Smoothing

- Classical approaches for 2D motion models
- ($1^{\text {st }}$ order low-pass) IIR filtering
- Kalman filtering with constant-velocity (CV) model
- Extension to 3D rotation smoothing
- Euclidean space \rightarrow SO(3) manifold
- Ad-hoc projection for black-border constraint

3D Rotation Matrix

- Manifold of 3D Rotation Matrices
- Special Orthogonal Group $\quad \mathbf{S O}(\mathbf{3}) \mathbf{R R}^{\mathrm{T}}=\mathbf{I}$
- An embedded submanifold in $\mathbb{R}^{9}($ dimension $=3)$

Tangent Space $T_{x} M$

Tangent Vector

- Minimizing Geodesic \& Geodesic Distance

$$
d_{g}\left(\mathbf{R}, \mathbf{R}^{\prime}\right)=\left\|\operatorname{logm}\left(\mathbf{R}^{-1} \mathbf{R}^{\prime}\right)\right\|_{F}
$$

Constrained Motion Smoothing

- Inevitably some pixels are not visible after view change

$$
\begin{aligned}
{\left[\begin{array}{c}
\tilde{u}_{i j} \\
\tilde{v}_{i j}
\end{array}\right]=g } & \left(\mathbf{K} \tilde{\mathbf{R}}_{i} \mathbf{R}_{i}{ }^{\mathrm{T}} \mathbf{K}^{-1}\left[\begin{array}{c}
u_{i j} \\
v_{i j} \\
1
\end{array}\right]\right) \\
& \begin{array}{l}
\text { Correction by } \\
\text { image warping }
\end{array}
\end{aligned}
$$

$$
\left\{\begin{array} { l }
{ 0 \leq \tilde { u } _ { i j } \leq w } \\
{ 0 \leq \tilde { v } _ { i j } \leq h }
\end{array} \quad , \forall [\begin{array} { l }
{ u _ { i j } } \\
{ v _ { i j } }
\end{array}] \text { s.t. } \left\{\begin{array}{l}
c_{1} \leq u_{i j} \leq c_{2} \\
d_{1} \leq v_{i j} \leq d_{2}
\end{array}\right.\right.
$$

Hard Constraint: All of the pixels in the cropped new frame should be visible in the original frame.

IIR-like 3D Rotation Smoothing

- First-Order IIR filtering

$$
\hat{\boldsymbol{\theta}}_{k}=\alpha \hat{\boldsymbol{\theta}}_{k-1}+(1-\alpha) \boldsymbol{\theta}_{k} \quad \mathrm{SO}(3) x
$$

$$
\hat{\boldsymbol{\theta}}_{k}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \alpha\left\|\boldsymbol{\theta}-\hat{\boldsymbol{\theta}}_{k-1}\right\|^{2}+(1-\alpha)\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{k}\right\|^{2}
$$

$$
\hat{\mathbf{R}}_{k}=\underset{\mathbf{R}}{\operatorname{argmin}} \alpha d_{g}\left(\mathbf{R}, \hat{\mathbf{R}}_{k-1}\right)^{2}+(1-\alpha) d_{g}\left(\mathbf{R}, \mathbf{R}_{k}\right)^{2} \underset{\text { linear }}{\text { spherical }}
$$

interpolation (SLERP)

- Ad-hoc projection $\hat{\mathbf{R}}=\mathbb{P}\left(\hat{\mathbf{R}}^{*}\right)=\mathbf{R e x p m}\left(\beta^{*} \operatorname{logm}\left(\mathbf{R}^{-1} \hat{\mathbf{R}}^{*}\right)\right)$

Move closer to the original rotation if necessary for black-border constraint

UKF-based 3D Rotation Smoothing

- Constant-Velocity Model (widely used in target tracking)

- Hard to solve on SO(3)
- Nonlinear on Euclidean space
- Solved approximately by unscented Kalman filter (UKF)

Proposed Algorithms

```
Algorithm . IIR-like 3D Rotation Smoothing
    Input: \(\mathrm{q}_{1}, \cdots, \mathrm{q}_{K}\) (original rotations)
    Output: \(\hat{\mathbf{q}}_{1}, \cdots, \hat{\mathbf{q}}_{K}\) (smoothed rotations)
    \(\hat{\mathbf{q}}_{1}=\mathbf{q}_{1}\)
    for \(k=2\) to \(K\) do
        \(\hat{\mathbf{q}}_{k}=\operatorname{slerp}\left(\mathbf{q}_{k}, \hat{\mathbf{q}}_{k-1}, \alpha\right)\)
        \(\hat{\mathbf{q}}_{k} \leftarrow \mathbb{P}\left(\hat{\mathbf{q}}_{k}\right)\)
    end for
```

$1.54 \mathrm{~ms} /$ frame

```
Algorithm _ UKF-based 3D Rotation Smoothing
    : Input: \(\mathrm{q}_{1}, \cdots, \mathrm{q}_{K}\) (original rotations)
    2: Output: \(\hat{\mathbf{q}}_{1}, \cdots, \hat{\mathbf{q}}_{K}\) (smoothed rotations)
    3: Parameters: \(\mathbf{Q}, \mathbf{R}\) (process and measurement noise vari-
    ance)
    for \(k=1\) to \(K\) do
    : Obtain unconstrained UKF estimate \(\hat{\mathbf{q}}_{k}^{*}, \hat{\boldsymbol{\omega}}_{k}^{*}, \mathbf{P}_{k}\)
    6: \(\quad \hat{\mathbf{q}}_{k}^{*}=\hat{\mathbf{q}}_{k}^{*} /\left\|\hat{\mathbf{q}}_{k}^{*}\right\|_{2}\) (normalization)
    7: \(\quad \hat{\mathbf{q}}_{k} \leftarrow \mathbb{P}\left(\hat{\mathbf{q}}_{k}\right)\)
    8: (Mean and covariance estimate to pass to the next stage
    are \(\hat{\mathbf{q}}_{k}, \hat{\boldsymbol{\omega}}_{k}, \mathbf{P}_{k}\) )
    9: end for
```

$6.97 \mathrm{~ms} /$ frame

Experimental Results - 2D vs. 3D KF

2D Affine KF

3D Rotational UKF

Experimental Results- 2D vs. 3D KF

Experimental Results- 2D vs. 3D IIR

Experimental Results - 2D vs. 3D IIR

3D Rotational IIR

Thanks!

Backup - Pure Rotation

Camera Projection

Backup - Pinhole Camera Model

Backup - Camera Model \& Camera Motion

World Coordinates \rightarrow Camera Coordinates

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
1
\end{array}\right] \sim\left[\begin{array}{llc}
f & 0 & c_{x} \\
0 & f & c_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right] \longmapsto\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\mathbf{R}\left(\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]\right)
$$

