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Abstract—Measuring visual quality, as perceived by hu-
man observers, is becoming increasingly important in many
applications where humans are the ultimate consumers
of visual information. Significant progress has been made
for assessing the subjective quality of natural images,
such as those taken by optical cameras. Natural Scene
Statistics (NSS) is an important tool for no-reference visual
quality assessment of natural images, where the reference
image is not needed for comparison. In this paper, we
take an important step towards using NSS to automate
visual quality assessment of photorealistic synthetic scenes
typically found in video games and animated movies. Our
primary contributions are (1) conducting subjective tests
on our publicly available ESPL Synthetic Image Database
containing 500 distorted images (20 distorted images for
each of the 25 original images) in 1920 × 1080 format, and
(2) evaluating the performance of 17 no-reference image
quality assessment (IQA) algorithms using synthetic scene
statistics. We find that similar to natural scenes, synthetic
scene statistics can be successfully used for IQA and certain
statistical features are good for certain image distortions.

I. INTRODUCTION

Recently there has been an immense growth in ac-
quisition, transmission and storage of video data, which
consists of synthetic scenes (such as animated movies,
cartoons and video games) in addition to the natural
videos captured with optical cameras. In all these cases,
methods of evaluating the visual quality provide im-
portant tools for the optimal design of displays, ren-
drering engines and maintaining a satisfactory quality-of-
experience in video streaming applications under certain
bandwidth constraints.

For full-reference image quality assessment (IQA)
metrics, the distortions in an image are compared to
a reference “pristine” image. However, for applications
where the ground-truth reference image is not available,
blind or no-reference IQA (NR-IQA) metrics are better
suited. Most of the NR metrics are based on learning
based approaches using statistical properties possessed
by pristine images, which for natural images tend to ap-
pear irrespective of image content and it is assumed that
distortions tend to deviate the Natural Scene Statistics
(NSS). Some of the popular NR-IQA metrics for natural
images described in [1] [2] [3] [4].

However, these metrics for evaluating the quality of
natural images have not been studied in the context

of images generated using computer graphics. With the
improvement of graphics engines, synthetic images are
becoming increasingly photo-realistic, which has made
us to conjecture that with some modifications, the NSS
based NR-IQA metrics can be potentially applied to
computer graphics. In our earlier work [5], we modeled
the distribution of mean-subtracted-contrast-normalized
(MSCN) pixels obtained from the synthetic image in-
tensities using Generalized Gaussian and Symmetric α-
Stable distributions similar to natural images.

Recently we conducted a subjective test on 64 ob-
servers, each of whom evaluated more than 500 photo-
realistic synthetic images (pristine and distorted images)
[6] and compiled the results for our ESPL Synthetic
Image Database [7]. Some of the most popular natu-
ral image databases are LIVE Image Quality Database
(LIVE) [8], Tampere Image Database 2013 [9], Cate-
gorical Image Quality Database [10] and EPFL JPEG
XR codec [11]. Recently Cadı́k et al. have developed a
database of computer graphics generated imagery [12].

From our ESPL Synthetic Image Database, we con-
sider a larger number of photo-realistic images and
a broader class of distortions (transmission and com-
pression artifacts for synthetic images) than the work
by Cadı́k et al. [12] [13] in the hope of providing a
better representation of the types of images and artifacts
encountered in watching animated movies and playing
video games. In this paper, we use benchmark the state-
of-the-art NR-IQA metrics on our database.

Čadı́k et al. [13] proposes an NR-IQA metric for quan-
tifying rendering distortions based on machine learning.
The features were chosen heuristically, instead of ana-
lyzing the properties of the synthetic images under test.

In this paper, we (1) conduct subjective tests on our
publicly available ESPL Synthetic Image Database, and
(2) compare 17 no-reference IQA algorithms to the sub-
jective test results. The comparison includes hypothesis
testing and statistical significance analysis. We evaluate
the applicability of NSS in different domains to synthetic
scenes and observe how the presence of distortions
change the scene statistics for synthetic images.
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Fig. 1: Sample synthetic images in the ESPL database [6]

II. USE OF THE ESPL DATABASE

For the purpose of this study, 25 synthetic images have
been chosen from video games and animated movies.
These high quality color images from the Internet are
1920×1080 pixels in size. Three categories of process-
ing artifacts have been considered, namely interpolation
(which arises frequently in texture maps, causing jagged-
ness of crisp edges), blurring (“Blur”) and additive Gaus-
sian noise (“GN”). With the advent of cloud gaming,
where the rendered 2D game images are streamed from
the server to the ‘dumb’ clients, we have chosen to study
the effect of compression and transmission artifacts on
computer graphics generated images (which had been
previously considered only for natural scenes). For this
database, JPEG compression (“JPEG”) and Rayleigh
fast-fading wireless channel artifacts (“FF”) have been
considered. For each artifact type, four different levels
were considered, resulting in 20 distorted image created
from a single pristine image.

A single stimulus continuous evaluation testing pro-
cedure [14] was followed. 64 subjects evaluated each
image on a Dell 24 inches U2412M display. 12 subjects
were treated as outliers and the ratings obtained from the
remaining 52 subjects were considered in the calculation
of the final differential mean opinion score (DMOS)
for each image. Details on the type of artifacts and the
testing methodology can be found in [7].

III. EXPERIMENTAL RESULTS

A. NSS on Synthetic Scenes

Leading NR-IQAs are based on the premise that
natural images occupy a small subspace of all possible
two dimensional signals, and that distortions deviate
from NSS (Fig. 2). In this study we find that similar
conclusions about distortions also hold for synthetic
images. Different NR-IQAs use NSS in either in the
spatial domain or in transform domains, such as using
DCT, Gabor or wavelet domains.

1) Spatial Domain Features: In [15], it was ob-
served that for natural images MSCN pixels tend to fol-
low a Gaussian-like distribution. Distribution of MSCN
pixels along with those of their paired products has
been employed in Blind/Referenceless Image Spatial

QUality Evaluator (BRISQUE) [3] and Natural Im-
age Quality Evaluator (NIQE) [16]. The Derivative
Statistics-based QUality Evaluator (DESIQUE) [4] sup-
plements BRISQUE by using log-derivative distributions
of MSCN pixels. In a gradient magnitude (GM) map and
the Laplacian of Gaussian (LOG) response based NR-
IQA metric (GM-LOG) [17], the GM has been computed
after applying Gaussian partial derivative filters along the
horizontal and vertical directions. This along with LOG
response, captures the Luminance discontinuities.

2) Transform Domain Features: Neurons employed
in early stages of the visual pathway capture informa-
tion over multiple orientation and scales, which has
led to multiscale processing in many NR-IQAs: log-
Gabor decomposition (DESIQUE [4]), steerable pyramid
wavelets (Distortion Identification-based Image Verity
and INtegrity Evaluation - DIIVINE [1]), Daubechies 9/7
wavelets (Blind Image Quality Index - BIQI [18]), DCT
(BLind Image Integrity Notator using DCT Statistics-
II - BLIINDS-II [2]), phase congruency (General Re-
gression Neural Network IQA - GRNN [19]), curvelets
(CurveletQA [20]), expected image entropy upon a set
of predefined directions (Anisotropy [21]). In contrary,
COdebook Representation for No-Reference Image As-
sessment (CORNIA) [22] uses supervised learning tech-
nique to learn a dictionary for different distortions from
the raw image patches instead of using a fixed set of
features.

B. NSS of distorted images

As in the case of natural images, for synthetic images
also we find that the presence of distortions change the
scene statistics based features extracted from the image
patches. For three NR-IQA algorithms, Fig. 3 shows the
features for each distortion class projected onto a two-
dimensional space using Principle Component Analysis.
Pristine images and images with different types of dis-
tortions form different clusters, which show that the NSS
based features can be used for distortion classification.
Table I shows the distortion classification accuracy of
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Fig. 2: Histograms of (a) MSCN pixels, (b) Steerable Pyramid Wavelet Coefficients and (c) Curvelet Coefficients of pristine and
distorted image patches obtained from ESPL Synthetic Image Database. The figure shows how distortions change the statistics
of pristine images.1
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Fig. 3: Features used in (a) GM-LOG (b) DESIQUE (c) BLIINDS-II NR-IQAs projected onto 2 dimensional space using Principal
Component Analysis. Pristine images and images with different types of distortions (obtained from the ESPL Synthetic Image
Database) form different clusters.1

the features used in popular NR-IQA algorithms.

IQA Interpolation Blur GN JPEG FF All
GM-LOG 100.0 96.0 100.0 96.5 96.6 97.8
BRISQUE 94.4 96.6 100.0 91.8 89.8 94.4
DESIQUE 92.5 88.5 100.0 87.9 88.2 91.4

BIQI 88.8 92.3 93.8 93.8 88.0 91.2
BLIINDS-II 91.6 87.7 100.0 82.0 82.7 88.7
CurveletQA 88.4 85.8 100.0 81.3 74.6 85.9

DIIVINE 46.1 75.9 79.1 58.3 49.9 61.5

TABLE I: Mean classification accuracy (in percentage) for
various Image Quality Assessment (IQA) algorithms across
100 train-test (4:1) combinations on ESPL database.

C. Performance of NR-IQA algorithms

In the paper, on the ESPL Synthetic Image Database,
we have evaluated the performance of 11 distortion

1Legends Pris, Interp, Blur, GN, JPEG, FF refer to pristine images,
images with interpolation distortion, blur distortion, additive white
Gaussian noise, compressed with JPEG encoder and transmitted over
a Rayleigh fast-fading wireless channel, respectively.

agnostic NR-IQA algorithms (DESIQUE [4], GM-LOG
[17], BRISQUE [3], CORNIA [22], BLIINDS-II [2],
CurveletQA [20], DIIVINE [1], BIQI [18], GRNN [19],
NIQE [16] and Anisotropy [21]), 5 NR-IQA algorithms
(LPCM [23], CPBDM [24], FISH [25], S3 [26] and
JNBM [27]) for blurred and one NR-IQA algorithm
(JPEG-NR [28]) for JPEG compressed images. The per-
formances of full-reference IQA (FR-IQA) algorithms
like Peak Signal-to-noise Ratio (PSNR) and Multi-scale
Structural Similarity Index (MS-SSIM) have also been
provided for reference.

For rows 1-8, after the feature extraction step, a
mapping is obtained from the feature space to the DMOS
scores using a regression method, which provides a
measure of the perceptual quality. We used a support
vector machine regressor (SVR), LibSVM software [29]
is used to implement ε-SVR with radial basis function
kernel. Image of the ESPL database were split randomly
into two subsets (80% training and 20% testing) and the
process was repeated 100 times to eliminate any bias due



No. IQA Interpolation Blur GN JPEG FF All Runtime
SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC (seconds)

1 DESIQUE 0.7495 0.7865 0.8834 0.8947 0.9242 0.9601 0.9461 0.9691 0.8126 0.8557 0.8872 0.8817 1.78
2 GM-LOG 0.8328 0.8486 0.8211 0.8441 0.8793 0.9409 0.9076 0.9374 0.7945 0.8242 0.8678 0.8536 0.51
3 BRISQUE 0.6699 0.6899 0.8105 0.8388 0.8714 0.9267 0.9261 0.9403 0.7737 0.7996 0.8554 0.8382 0.53
4 CORNIA 0.8000 0.8395 0.8701 0.8929 0.8584 0.8812 0.8844 0.9255 0.7774 0.8064 0.8471 0.8478 84.33
5 BLIINDS-II 0.8003 0.8313 0.8559 0.8744 0.9024 0.9240 0.8947 0.9169 0.7930 0.8493 0.8379 0.8492 74.50
6 CurveletQA 0.7720 0.7992 0.7796 0.8472 0.8973 0.9516 0.9022 0.9177 0.6798 0.7235 0.7998 0.8081 16.29
7 DIIVINE 0.7434 0.7695 0.8007 0.8201 0.8116 0.8542 0.7750 0.8149 0.5497 0.5412 0.7547 0.7143 118.31
8 BIQI 0.7264 0.7627 0.8443 0.8672 0.9071 0.9493 0.8075 0.8290 0.5889 0.6565 0.7513 0.7061 1.95
9 MS-SSIM 0.6230 0.6347 0.6457 0.6498 0.9082 0.9237 0.8710 0.8907 0.9029 0.9005 0.6994 0.7121 0.90

10 PSNR 0.5651 0.5908 0.4811 0.4920 0.8638 0.8973 0.6952 0.7016 0.8456 0.8585 0.5903 0.6030 0.02
11 GRNN 0.5568 0.5875 0.6022 0.6451 0.8502 0.9232 0.7573 0.7812 0.6177 0.6503 0.5415 0.5225 3.41
12 NIQE 0.3643 0.3539 0.3565 0.3999 0.8351 0.8708 0.3846 0.4485 0.3921 0.4391 0.4697 0.4306 2.30
13 Anisotopy 0.3670 0.3758 0.4373 0.3530 0.7411 0.6806 0.1593 0.2267 0.4111 0.4688 0.2196 0.3113 10.13
14 LPCM 0.4155 0.4436 0.8358 0.8470 0.6227 0.6213 0.2111 0.2311 0.1079 0.2367 - - 0.86
15 CPBDM 0.6761 0.7200 0.7568 0.7664 0.7457 0.8151 0.7646 0.7489 0.3474 0.4045 - - 0.95
16 FISH 0.2222 0.3051 0.7045 0.7159 0.8226 0.8696 0.1961 0.2519 0.4322 0.4716 - - 0.47
17 S3 0.4086 0.4493 0.7001 0.7558 0.7468 0.7859 0.1509 0.1889 0.4024 0.4503 - - 276.20
18 JNBM 0.5979 0.6347 0.5063 0.5283 0.7556 0.8155 0.5355 0.5121 0.4482 0.4551 - - 0.41
19 JPEG-NR 0.5403 0.5703 0.5929 0.6501 0.7483 0.8648 0.9277 0.9540 0.4643 0.6068 - - 0.71

TABLE II: Median Spearman’s Rank Ordered Correlation Coefficient (SROCC) and Pearson’s Linear Correlation Coefficient
(PLCC) between algorithm scores and DMOS for various Image Quality Assessment (IQA) algorithms (described in Section
III-C) along with the time needed (on a Macintosh laptop having 8 GB RAM, 2.9 GHz clock, Intel Core i7 CPU) across 100
train-test (4:1) combinations on the ESPL Synthetic Image Database. Italicized IQA algorithms are full-reference algorithms.
Italicized correlations indicate the values obtained when the mentioned NR-IQA algorithms were applied for distortion categories
other than what they were originally intended for.

PSNR MS-SSIM DESIQUE BRISQUE BLIINDS-II DIIVINE BIQI CurveletQA GM-LOG GRNN
PSNR - - - - - - - - - - - - - - - 0 1 0 - - - 0 1 0 - - - 0 - 0 0 - - - 1 - 0 0 - - 1 - 0 - - 0 1 0 - - - 0 - 0 - - - - 1 -

MS-SSIM - - - - - - - - - - - - - - - 0 - 0 - - - 0 - 0 - - - 0 - 0 0 - - - - - 0 0 - - - - 0 - - - - 0 0 - - 0 - 0 - - - - - -
DESIQUE - - - 1 0 1 - - - 1 - 1 - - - - - - - - - - - - - - - - - - - - - 1 - 1 - - - 1 - 1 - - - 1 - - - - - - - - - 1 - 1 - 1
BRISQUE - - - 1 0 1 - - - 1 - 1 - - - - - - - - - - - - - - - - - - - - - 1 - 1 - - - 1 - 1 - - - - - - - - - - - - - 1 - 1 - 1

BLIINDS-II - - - 1 - 1 - - - 1 - 1 - - - - - - - - - - - - - - - - - - - - - 1 - - - - - 1 - 1 - - - - - - - - - - - - - 1 - 1 - 1
DIIVINE 1 - - - 0 - 1 - - - - - - - - 0 - 0 - - - 0 - 0 - - - 0 - - - - - - - - - 0 - - - - - - - - - - - - - 0 - 0 - - - - - -

BIQI 1 1 - - 0 - 1 1 - - - - - - - 0 - 0 - - - 0 - 0 - - - 0 - 0 - 1 - - - - - - - - - - - - - 0 - - - - - 0 - 0 - 1 - - - -
CurveletQA 1 - - 1 0 1 1 - - - - 1 - - - 0 - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - 1 1 - - 1
GM-LOG - - - 1 - 1 1 - - 1 - 1 - - - - - - - - - - - - - - - - - - - - - 1 - 1 - - - 1 - 1 - - - - - - - - - - - - - 1 - 1 - 1

GRNN - - - - 0 - - - - - - - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - - - - - - - 0 - - - - - 0 0 - - 0 - 0 - 0 - 0 - - - - - -

TABLE III: Results of the F-test performed on the residuals between model predictions and DMOS values. In each cell, the
symbol of 6 entries indicates “Interpolation’, “Blur”, “GN”, “JPEG” , “FF” and “All” respectively.

to varying spatial content.

From Tables I and II we find that DESIQUE,
BRISQUE and GM-LOG features are best perform-
ing in both the tasks of distortion classification and
deducing the mapping between the feature space and
the DMOS scores. All of the SVM based NR-IQA
algorithms beat FR-IQA algorithms like PSNR and MS-
SSIM. GRNN, NIQE and Anisotropy do worse than
FR-IQA algorithms. NIQE, which does remarkably well
for natural images performs poorly on being trained on
pristine synthetic images. This might occur due to higher
amount of variability in the distribution of the MSCN
coefficients for synthetic images as compared to natural
scenes [5]. Compared to IQA algorithms meant for
particular distortion classes (rows 14-19), scene statistics
based algorithms (rows 1-8) perform better. The NR-
IQA algorithms perform worse on the ‘Interpolation’ ar-
tifact. This is because low down-sampling factors result
in near-threshold artifacts, which might appear almost
imperceptible, specially at normal viewing distances.

To determine whether the IQA algorithms are signifi-
cantly different from each other, the F-statistic, as in [8]
[30], was used to determine the statistical significance
between the variances of the residuals after a non-
linear logistic mapping between two IQA algorithms.
Table III shows the results for eight selected NR-IQA
algorithms and two full-reference IQA algorithms across
all distortions. The value of ‘1’ (‘0’) indicates that the
row IQA is statistically better (worse) than the column
IQA, ‘-’ implies statistical equivalence of the row and
the column. Some of the best performing NR-IQA
algorithms, such as DESIQUE, BRISQUE, BLIINDS-II,
GM-LOG, CurveletQA etc are found to be statistically
superior to PSNR and MS-SSIM.

IV. CONCLUSION

In this paper we have studied the successful applicabil-
ity of scene statistics approach to synthetic images in our
ESPL Synthetic Image Database and benchmarked 17
state-of-the-art publicly available NR-IQA algorithms.
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[12] M. Čadı́k, R. Herzog, R. Mantiuk, K. Myszkowski, and H.-P.
Seidel, “New measurements reveal weaknesses of image quality
metrics in evaluating graphics artifacts,” ACM Transactions on
Graphics, vol. 31, no. 6, pp. 147:1–147:10, Nov. 2012.
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