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Abstract—We propose a novel receiver for orthogonal fre-
quency division multiplexing (OFDM) transmissions in impulsive
noise environments. Impulsive noise arises in many modern
wireless and wireline communication systems, such as Wi-Fi
and powerline communications, due to uncoordinated interfer-
ence that is much stronger than thermal noise. We first show
that the bit-error-rate optimal receiver jointly estimates the
propagation channel coefficients, the noise impulses, the finite-
alphabet symbols, and the unknown bits. We then propose a
near-optimal yet computationally tractable approach to this joint
estimation problem using loopy belief propagation. In particular,
we merge the recently proposed “generalized approximate mes-
sage passing” (GAMP) algorithm with the forward-backward
algorithm and soft-input soft-output decoding using a “turbo”
approach. Numerical results indicate that the proposed receiver
drastically outperforms existing receivers under impulsive noise
and comes within 1 dB of the matched-filter bound. Meanwhile,
with N tones, the proposed factor-graph-based receiver has only
O(N logN) complexity, and it can be parallelized.

I. INTRODUCTION

THE main impairments to a communication system,
whether wireless or wireline, are due to multipath propa-

gation through a physical medium and additive noise. Mul-
tipath propagation is commonly modeled as a linear con-
volution that, in the slow-fading scenario, can be character-
ized by a channel impulse response {hj}L−1j=0 that is fixed
over the duration of one codeword. In the well-known “un-
correlated Rayleigh/Ricean-fading” scenario, the (complex-
baseband) channel “taps” hj are modeled as independent
circular Gaussian random variables. Similarly, in the equally
well-known “additive white Gaussian noise” (AWGN) sce-
nario, the time-domain additive noise samples {nt}∀t are
modeled as independent circular Gaussian random variables
[1].
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A. Motivation

In this work, we focus on applications where the
uncorrelated-Rayleigh/Ricean-fading assumption holds but the
AWGN assumption does not. Our work is motivated by
extensive measurement campaigns of terrestrial wireless in-
stallations wherein the additive noise is impulsive, with peak
noise amplitudes reaching up to 40 dB above the thermal
background noise level [2]–[7]. The noise affecting powerline
communications (PLC) has also been shown to be highly
impulsive, as well as bursty [8]–[10].

We restrict our attention to systems employing (coded or
uncoded) orthogonal frequency division multiplexing (OFDM)
[1], as used in many modern cellular wireless standards (e.g.,
IEEE802.11n and LTE) and PLC standards (e.g., PRIME and
IEEE1901). OFDM is advantageous in that it facilitates data
communication across convolutive multipath channels with
high spectral efficiency and low complexity.

The impulsivity of noise has particular consequences for
OFDM systems. Recall that, in conventional OFDM receivers,
the time-domain received signal is converted to the frequency
domain through a discrete Fourier transform (DFT) [1], after
which each subcarrier (or “tone”) is demodulated indepen-
dently. Such tone-by-tone demodulation is in fact optimal
with AWGN and perfect channel estimates [1], and is highly
desirable from a complexity standpoint, since it leaves the DFT
as the primary source of receiver complexity, and thus requires
only O(N logN) multiplies per symbol for N tones. When the
time-domain noise is impulsive, however, the corresponding
frequency-domain noise samples will be highly dependent,
and tone-by-tone demodulation is no longer optimal. We are
thus strongly motivated to find near-optimal demodulation
strategies that preserve the O(N logN) complexity of classical
OFDM. In this work, we propose one such solution that
exploits recent breakthroughs in loopy belief propagation.

B. Prior Work

1) OFDM Reception in Impulsive Noise: One popular
approach to OFDM reception in impulsive noise stems from
the argument that the noiseless time-domain received OFDM
samples can be modeled as i.i.d Gaussian (according to
the central limit theorem with sufficiently many tones), in
which case the noise impulses can be detected using a sim-
ple threshold test. This approach straightforwardly leads to
a decoupled procedure for impulse mitigation and OFDM
reception: the time-domain received signal is pre-processed
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via clipping or blanking techniques [11], [12] or (nonlinear)
MMSE estimation [13], and the result passed to a conventional
DFT receiver for decoding. While agreeable from a complexity
standpoint, these techniques give relatively poor communica-
tion performance, especially when the power of the impulsive
noise is comparable to the power of the OFDM signal, or
when higher order modulations are used [13]. This loss of
performance can be explained by the fact that OFDM signal
structure is not exploited for noise mitigation. In an attempt
to improve communication performance, it has been suggested
to iterate between such pre-processing and OFDM decoding,
but the approaches suggested to date (e.g., [14]–[17]) have
shown limited success, mainly because the adaptation of
preprocessing with each iteration is challenging and often done
in an ad-hoc manner.

Another popular approach models the time-domain impul-
sive noise sequence as a sparse vector and then uses sparse-
reconstruction techniques to estimate this sequence from the
observed OFDM null and pilot (i.e., known) tones. The recov-
ered impulse vector is then subtracted from the time-domain
received signal, and the result is passed to a conventional DFT
receiver for decoding. Algebraic techniques were proposed
in [18]–[20], and sparse reconstruction techniques based on
compressive-sensing were proposed in [21], [22]. With typical
numbers of known tones, these techniques have been shown to
work well for very sparse impulsive noise sequences (e.g., one
impulse in a 256-tone OFDM system with 30 known tones)
but not for practical sparsity rates [21], [23]. Recently, under
the highly restrictive condition requiring no overlap between
the support of impulsive noise and channel impulse response,
this approach was extended to incorporate channel estimation
[24].

A more robust approach was proposed in [23], which
performs joint symbol detection and impulse-noise estimation
using sparse Bayesian learning (SBL). Because [23] decouples
channel estimation from impulse-noise estimation and symbol
detection, and because it integrates coding in an ad-hoc man-
ner, there is considerable room for improvement. In addition, it
performs matrix inversion that is impractical for typical OFDM
receivers with hundreds of tones.

2) Factor Graph Receivers: Factor-graph-based receivers
[25] have been proposed as a computationally efficient means
of tackling the difficult task of joint channel, symbol, and bit
(JCSB) estimation. Here, messages (generally in the form of
pdfs) are passed among the nodes of the factor graph according
to belief propagation strategies like the sum-product algorithm
(SPA) [26]. Due to the loopy nature of the OFDM factor graph,
however, exact implementation of the sum product algorithm is
infeasible, and so various approximations have been proposed
[27]–[30]. Notably, [30] merged the “generalized approximate
message passing” (GAMP) algorithm [31] with a soft-input
soft-output decoder in a “turbo” configuration to accomplish
near-optimal1 joint structured-sparse-channel estimation and
decoding of bit-interleaved coded-modulation (BICM)-OFDM
with O(N logN) complexity. To our knowledge, no factor-

1The approach was shown to be near-optimal in the sense of achieving [32]
the pre-log factor of the sparse channel’s noncoherent capacity [33].

graph-based OFDM receivers have been proposed to tackle
impulsive noise, however.

C. Contribution

In this paper, we propose a novel OFDM receiver that
performs near-optimally in the presence of impulsive noise
while maintaining the O(N logN) complexity order of the
conventional N -tone OFDM receiver. Our approach is based
on computing joint soft estimates of the channel taps, the
impulse-noise samples, the finite-alphabet symbols, and the
unknown bits. Moreover, all observed tones (i.e., pilots, nulls,
and data tones) are exploited in this joint estimation. To do
this, we leverage recent work on “generalized approximate
message passing” (GAMP) [31], its “turbo” extension to
larger factor graphs [34], and off-the-shelf soft-input/soft-
output (SISO) decoding [35]. The receiver we propose can be
categorized as an extension of the factor-graph-based receiver
[30] that explicitly addresses the presence of impulsive noise.
The resulting receiver provides a flexible performance-versus-
complexity tradeoff and can be parallelized, making it suitable
for FPGA implementations [36].

D. Organization and Notation

In Section II, we describe our OFDM, channel, and noise
models, and provide an illustrative example of impulsive noise.
Then, in Section III, we detail our proposed approach, which
we henceforth refer to as joint channel, impulse, symbol, and
bit (JCISB) estimation. In Section IV, we provide extensive
numerical results, and, in Section V, we conclude the paper.

Notation: Vectors and matrices are denoted by boldface
lower-case (x) and upper-case notation (X), respectively.
XR,C then represents the sub-matrix constructed from rows
R and columns C of X, where the simplified notation XR
means XR,: and “:” indicates all columns of X. The notations
(·)T and (·)∗ denote transpose and conjugate transpose, re-
spectively. The probability density function (pdf) of a random
variable (RV) X is denoted by pX(x), with the subscript
omitted when clear from the context. Similarly, for discrete
RVs, the probability mass function (pmf) is denoted by PX(x).
We denote the circular Gaussian distribution with mean µ and
variance γ by N(µ, γ) and the pdf of a RV X corresponding to
that distribution by N(x;µ, γ). The expectation and variance
of a RV are then given by E{·} and V{·}, respectively. We use
the sans-serif font to indicate frequency domain variables like
X and bold sans-serif to indicate frequency domain vectors
like X.

II. SYSTEM MODEL

A. Coded OFDM Model

We consider an OFDM system with N tones partitioned into
Np pilot tones (indexed by the set P), Nn null tones (indexed
by the set N ), and Nd data tones (indexed by the set D), each
modulated by a finite-alphabet symbol chosen from an 2M -
ary constellation S. The coded bits (which determine the data
symbols) are generated by encoding Mi information bits using
a rate-R coder, interleaving them, and allocating the resulting
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Mc =Mi/R bits among an integer number Q = dMc/NdMe
of OFDM symbols.

In the sequel, we use S(i) ∈ S with i ∈
{
1, . . . , 2M

}
to

denote the ith element of S, and c(i) = [c
(i)
1 , . . . , c

(i)
M ]T to de-

note the corresponding bits as defined by the symbol mapping.
Likewise, we use Sk[q] to denote the scalar symbol transmitted
on the kth tone of the qth OFDM symbol. Based on the tone
partition, we note that: Sk[q] = p for all k ∈ P , where p ∈ C
is a known pilot symbol; Sk[q] = 0 for all k ∈ N ; and Sk[q] =
S(l) for some l such that ck[q] = c(l) for all k ∈ D, where
ck[q] = [ck,1[q], . . . , ck,M [q]]T denotes the coded/interleaved
bits corresponding to Sk[q]. On the frame level, we use c[q]
to denote the coded/interleaved bits allocated to the data
tones of the qth OFDM symbol, and c = [c[1], . . . , c[Q]]
to denote the entire codeword obtained from the information
bits b = [b1, . . . , bMi ]

T by coding/interleaving. Similarly, we
use S[q] = [S0[q], . . . ,SN−1[q]]

T to denote the qth OFDM
symbol’s tone vector, including pilot, null, and data tones.

For OFDM modulation, an inverse of the unitary N -point
discrete Fourier transform (IDFT) matrix F is applied to the
qth OFDM symbol’s tone vector S[q], producing the time-
domain sequence F∗S[q] = s[q] = [s0[q], . . . , sN−1[q]]

T , to
which a cyclic prefix is prepended. The resulting sequence
propagates through an L-tap linear-time-invariant channel with
impulse response h[q] = [h0[q], . . . , hL−1[q]]

T before being
corrupted by both AWGN and impulsive noise. Assuming
a cyclic prefix of length L−1, inter-symbol interference is
avoided by simply discarding the cyclic prefix at the receiver,
after which the remaining N samples are

y[q] = H[q]s[q] + n[q] = H[q]F∗S[q] + n[q] (1)

where n[q] is the time-domain noise vector and H[q] is the
circulant matrix formed by h[q] [1]. Applying a DFT, the
resulting frequency-domain received vector becomes

Y[q] = FH[q]F∗S[q] + Fn[q] = H[q] ◦ S[q] +N[q] (2)

where H[q] =
√
NF:,1:Lh[q] is the frequency-domain channel

vector, N[q] = Fn[q] is the frequency-domain noise vector,
and ◦ denotes the Hadamard (i.e., elementwise) product. The
second equality in (2) follows from the fact that a circulant
matrix is diagonalized by the Fourier basis. In fact, (2)
illustrates the principal advantage of OFDM: each transmitted
tone Sk[q] experiences a flat scalar subchannel, since

Yk[q] = Hk[q]Sk[q] + Nk[q], ∀k ∈ {0, . . . , N − 1}. (3)

B. Channel Modeling

We assume that the channel taps remain constant during
the entire duration of one OFDM symbol, as required by
(2). Since we make no assumptions on how the taps change
across symbols, for simplicity we take h[q] and h[q′] to be
statistically independent for q 6= q′. Furthermore, we use the
Rayleigh-fading uncorrelated-scattering model

{hj [q]}∞q=−∞ ∼ i.i.d N(0, νj) (4)

where [ν0, . . . , νL−1]
T = ν is the power delay profile. Exten-

sions to sparse [32], structured-sparse [30], and time-varying
sparse channels [37] are straightforward, but not covered here.

1 2 3 4 5 6 7 x 10
4

−10

0

10

sample index

si
gn

al
 le

ve
l

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

signal level

pd
f

Empirical
Normal Fit
(µ=0,σ2 =1)
GM Fit
(π=[0.98 0.02],
Γ=19dB)

Fig. 1. Modeling a noise realization collected from a receiver embedded in
a laptop: A 2-component GM model provides a significantly better fit than a
Gaussian model.

C. Impulsive Noise Models

In many wireless and power-line communication (PLC)
systems, the additive noise is non-Gaussian (see the example in
Fig. 1) and the result of random emission events from uncoor-
dinated interferers (due to, e.g., aggressive spectrum reuse) or
non-communicating electronic devices. In his pioneering work,
Middleton modeled these random spatio-temporal emissions,
or the “noise field,” using Poisson point processes (PPP),
giving rise to the “Middleton class-A” and “Middleton class-
B” noise models (for a recent review see [38]). Recently, his
approach has been extended to modeling fields of interferers in
wireless and PLC networks using spatial and temporal PPPs,
and the resulting interference was shown to follow either the
Symmetric alpha stable, the Middleton class-A (MCA), or the
more general Gaussian mixture (GM) distribution, depending
on the network architecture [9], [10], [39], [40]. Fig. 1
illustrates that a GM model provides a significantly better fit
to a noise realization collected from a receiver embedded in a
laptop than a Gaussian model does.

Since our factor-graph-based receiver is inherently
Bayesian, these statistical models provide natural priors on
the noise. Thus, we model the additive noise using a GM
model, noting that—given the pdf parameters—there is no
distinction between the MCA and GM models. In particular,
we decompose2 a given time-domain noise sample nt = gt+it
into a Gaussian background component gt ∼ N(0, γ(0)) and
a sparse impulsive component it with Bernoulli-GM pdf

p(it) = π(0)δ(it) +

K−1∑
k=1

π(k)N(it; 0, γ
(k)) (5)

where δ(·) denotes the Dirac delta and
∑K−1

k=0 π(k) = 1.

2Our approach is equivalent to modeling the total noise nt by a GM pdf
p(nt) =

∑K−1
k=0 π(k)N(nt; 0, ν(k)) with ν(0) = γ(0) and ν(k) = γ(0) +

γ(k) for k > 1.
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Fig. 2. Two realizations of noise {nt} with identical marginals but different
temporal statistics: the emission states {zt} in the top were generated i.i.d
and those in the bottom were generated Markov via (8) to model burstiness.

Equivalently, we can model the (hidden) mixture state zt ∈
{0, . . . ,K−1} of the impulsive component it as a random
variable, giving rise to the hierarchical model (with γ(0) = 0)

p(it|zt = k) = N(it; 0, γ
(k)) (6a)

P (zt = k) = π(k). (6b)

In many applications, such as PLC, the noise is not only
impulsive but also bursty and thus the noise samples are
no longer statistically independent. Such burstiness can be
captured via a Bernoulli-Gaussian3 hidden Markov model
(BGHMM) on the impulse-noise {it} [8], [41] or equivalently
a Markov model on the GM state zt in (6). For this, we
model the sequence {zt} as a homogeneous (stationary) K-ary
Markov chain with a state transition matrix T such that

Ti,j = P(zt = j|zt−1 = i) ∀i, j ∈ {0, . . . ,K − 1} . (7)

In this case, the marginal pmf π = [π0, . . . , πK−1] of steady-
state zt obeys π = πT, and the mean duration of the event
z = k is 1/(1−Tk,k) [41].

As an illustrative example, Fig. 2 plots two realizations of
the total noise {nt} with impulsive component {it} generated
by the hierarchical Bernoulli-GM model (6). Both realizations
have identical marginal statistics: their impulsive components
have two non-trivial emission states with powers 20dB and
30dB above the background noise power that occur 7% and 3%
of the time, respectively. However, in one case the emission
state {zt} was generated i.i.d whereas in the other case it is
generated Markov with state-transition matrix

T =

0.989 0.006 0.005
0.064 0.857 0.079
0.183 0.150 0.667

 . (8)

The GHMM realization clearly exhibits bursty behavior.

3Here, Bernoulli refers to the impulse noise support. The non-zero samples
follow multiple Gaussian emission probabilities characterized by different
variances γ(k).

In practice, assuming the noise statistics are slowly varying,
the noise parameters {γk}K−1k=0 and T can be estimated us-
ing the expectation-maximization (EM) algorithm [26] during
quiet intervals when there is no signal transmission.

III. MESSAGE-PASSING RECEIVER DESIGN

In this section, we design computationally efficient
message-passing receivers that perform near-optimal bit de-
coding which, as we shall see, involves jointly estimating
the coded bits, finite-alphabet symbols, channel taps, and
impulsive noise samples. In doing so, our receivers exploit
knowledge of the statistical channel and noise models dis-
cussed above and the OFDM signal structure (i.e., the pilot
and null tones, the finite-alphabet symbol constellation, and
the codebook).

A. MAP Decoding of OFDM in Impulsive Noise

Maximum a posteriori (MAP) decoding, i.e.,

b̂m = argmax
bm∈{0,1}

P(bm|Y) ∀m ∈ {1, . . . ,Mi} (9)

is well known to be optimal in the sense of minimizing the
bit-error rate. Here, Y = [Y[1], . . . ,Y[Q]] collects the received
OFDM symbols of the corresponding frame. Using the law of
total probability, we can write the posterior information-bit
probability from (9) as

P(bm|Y) =
∑
b\m

P(b|Y) ∝
∑
b\m

p(Y|b)P(b) (10)

∝
∑

S,c,b\m

Q∏
q=1

∫
i[q],h[q]

p(Y[q]|h[q], i[q],S[q])

× p(h[q])p(i[q])P(S|c)P(c|b) (11)

=
∑

S,c,z,b\m

∏
q

∫
i[q],h[q]

N−1∏
k=0

p(Yk[q]|Sk[q],h[q], i[q])

× P(Sk[q]|ck[q])
L+N−1∏
j=L

p(ij [q]|zj [q])P(zj [q]|zj−1[q])

×
L−1∏
l=0

p(hl[q])P(c|b) (12)

where “∝” denotes equality up to a constant, b\m =
[b1, . . . , bm−1, bm+1, . . . , bMi ]

T , and the information bits are
assumed to be independent with P(bm) = 1/2 ∀m. Equation
(12) shows that optimal decoding of bm involves marginalizing
over the finite-alphabet symbols S, coded bits c, noise states
z, impulse noise samples i, channel taps h, and other info bits
b\m.

The probabilistic structure exposed by the factorization (12)
is illustrated by the factor graph in Fig. 3. There and in the
sequel, for brevity, we drop the “q” (i.e., OFDM symbol)
index when doing so does not cause confusion. Note that we
write the factor graph using time-domain channel coefficients,
rather than frequency-domain channel coefficients, because
we assume that the time-domain coefficients are statistically
independent, as is standard practice in the literature. Noting



5

Impulse 
Noise

Symbols

Channel
Taps

Channel
Support

Noise
State

...
...

...

Impulse 
Noise

Received
Signal

Finite-alphabet
Symbols

Channel
Taps

Noise
State

HMM Prior

Alternating Noise GAMP 
& Channel GAMP

OFDM Symbol #1

OFDM Symbol #Q

MC Decoding

...
...

...

SISO Decoding

Pilot/Null

Coded 
Bits

Info 
Bits

Uniform
Prior

Code &
Interlv
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and-interleaving subgraph, whose details are immaterial. The time-domain
impulse-noise quantities it and zt start at time t = L due to the use of an
L−1-length cyclic prefix.

that the corresponding frequency-domain coefficients are not
statistically independent, there is no advantage to writing
the factor graph using frequency-domain channel coefficients.
Later in Section III-C, we show that, despite the dense
subgraph connecting the time-domain channel taps, efficient
low-complexity channel inference is possible.

Clearly, direct evaluation of P(bm|Y) from (12) is com-
putationally intractable due to the high-dimensional integrals
involved. Belief propagation (BP), and in particular the sum-
product algorithm (SPA) [26] described below, offers a prac-
tical alternative to direct computation of marginal posteriors.
In fact, when the factor graph has no loops, the SPA performs
exact inference after only two rounds of message passing (i.e.,
forward and backward). On the other hand, when the factor
graph is loopy, the computation of exact marginal posteriors is
generally NP hard [42] and thus the posteriors computed by
BP are generally inexact. Nevertheless, loopy BP has been
successfully applied to many important problems, such as
multi-user detection [43], [44], turbo decoding [45], LDPC
decoding [35], compressed sensing [31], [46], and others.

In fact, for certain large dense loopy graphs that arise in the
context of compressed sensing, SPA approximations such as
the AMP [46] and GAMP [31] algorithms are known to obey
a state evolution whose fixed points, when unique, yield exact
posteriors [47], [48]. Looking at the factor graph in Fig. 3,
we see dense loopy sub-graphs between the factors {Yk} and
the time-domain noise samples {it} and channel taps {hl},
which are due to the linear mixing of the Fourier matrix F.
It is these types of dense loopy graphs for which AMP and

GAMP are designed.4 In the sequel, we will describe exactly
how we combine the sum-product and GAMP algorithms for
approximate computation of the bit posteriors in (12). First,
however, we review the SPA.

B. Belief Propagation using Sum-Product Algorithm

Belief propagation (BP) transforms a high-dimensional
marginalization problem (like (12)) into a series of local
low-dimensional marginalization problems by passing beliefs,
or messages, which usually take the form of (possibly un-
normalized) pdfs or pmfs, along the edges of a factor graph.
The sum-product algorithm (SPA) [26] is probably the best
known approach to BP, and it operates according to the
following rules (note that integrals are replaced by sums for
discrete random variables):

1) Messages from Factor Nodes to Variables: Suppose the
pdf factor fs(x1, . . . , xL) depends on the variables Xs =
{xl}Ll=1. Then the message passed from factor node fs to
variable node xm ∈ Xs is

µfs→xm
(xm) =

∫
{xl}l 6=m

fs(x1, . . . , xL)
∏
l 6=m

µxl→fs(xl)

representing the belief that node fs has about the variable xm.
2) Messages from Variables to Factor Nodes: Suppose the

factors Fm = {f1, . . . , fM} all involve the variable xm. Then
the message passed from variable node xm to factor node
fs ∈ Fm is

µxm→fs(xm) =

M∏
k=1

µfk→xm(xm)

and represents the belief about the variable xm that node xm
passes to node fs.

3) Marginal Beliefs: SPA’s approximation to the marginal
posterior pdf on the variable xm is

p(xm) = C
∏

fs∈ne(xm)

µfs→xm (xm)

where C is a normalization constant and ne (xm) is the set of
all xm neighbors.

C. Joint Channel/Impulse-Noise Estimation and Decoding

We now propose a strategy to approximate the bit posteriors
in (12) by iterating (an approximation of) the SPA on the loopy
factor graph in Fig. 3. To distinguish our approach from others
in the literature, we will refer to it as “joint channel, impulse,
symbol, and bit estimation” (JCISB).

Given the loopy nature of the factor graph, there exists
considerable freedom in the message-passing schedule. In
JCISB, we choose to repeatedly pass messages from right to
left, and then left to right, as follows.

1) Beliefs about coded bits {ck,m} flow rightward through
the symbol-mapping nodes {Mk}, the finite-alphabet
symbol nodes {Sk}, and into the factor nodes {Yk}.

4Although rigorous GAMP guarantees have been established only for gen-
eralized linear inference problems with i.i.d sub-Gaussian transform matrices
[48], equally good performance has been empirically observed over much
wider classes of matrices [49].
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2) GAMP-based messages are then passed repeatedly be-
tween the {Yk} and {hl} nodes until convergence.

3) GAMP-based messages are passed repeatedly between
the {Yk} and {it} nodes until convergence, and then
through the {zt} nodes using the forward-backward
algorithm, alternating these two steps until convergence.

4) Finally, the messages are propagated from {Yk} leftward
through the symbol nodes {Sk}, the symbol-mapping
nodes {Mk}, the coded-bit nodes {ck,m}, and the
coding-interleaving block—the last step via an off-the-
shelf soft-input/soft-output (SISO) decoder.

In the sequel, we will refer to steps 1)–4) as a “turbo” iteration,
and to the iterations within step 3) as “impulse iterations,” We
note that it is also possible to execute a parallel schedule if
the hardware platform supports it. The details of these four
message passing steps are given below.

1) Bits to Symbols: Beliefs about the coded bits {ck,m}Mm=1

(for each data tone k ∈ D) are first passed through the symbol
mapping factor node Mk. The SPA dictates that

µMk→Sk
(S(i)) =

∑
ck∈{0,1}M

P(S(i)|ck)
M∏

m=1

µck,m→Mk
(ck,m)

=

M∏
m=1

µck,m→Mk
(c(i)m ) (13)

where (13) follows from the deterministic symbol mapping
P(S(i)|c(j)) = δi−j . The resulting message is then copied
forward through the Sk node, i.e., µSk→Yk

= µMk→Sk
, also

according to the SPA. Note that, at the start of the first turbo
iteration, we have no knowledge of the bits and thus we take
µck,m→Mk

(c) to be uniform across c ∈ {0, 1} for all m, k.
2) GAMP for Channel Estimation: The next step in our

message-passing schedule is to pass messages between the
factor nodes {Yk} and the time-domain channel nodes {hl}.
According to the SPA, the message passed from Yk to hl is

µYk→hl
(hl) =

∑
Sk

∫
i,h\l

p(Yk|Sk,h, i)µSk→Yk
(Sk)

×
∏
z 6=l

µhz→Yk
(hz)

∏
j

µij→Yk
(ij). (14)

Exact evaluation of (14) involves an integration of the same
high-dimensionality (N ) that made (12) intractable. Thus,
we instead approximate the message passing between the
{Yk} and {hl} nodes using generalized approximate message
passing (GAMP) algorithm [31] reviewed in Appendix A and
summarized in Table I.

To do this, we temporarily treat the messages
{µSk→Yk

} and {µij→Yk
} as fixed, allowing us to employ

“GAMP(Y,H,
√
NF,h),” using the notation established in

the caption of Table I. Definition (D1) [later used in steps
(R3)–(R4)] requires us to specify the likelihood p(Yk|Hk)
relating the transform output Hk to the corresponding
observed output Yk. From Fig. 3, we see that there are
two types of belief flowing into each Yk node (apart
from beliefs about {hl}) that determine this likelihood:
beliefs about the symbols {Sk}, which we parameterize
as βk = [β

(1)
k , . . . , β

(|S|)
k ] with β

(i)
k = µSk→Yk

(S(i)), and

TABLE I
THE GAMP(y, z,Φ,x) ALGORITHM WITH COEFFICIENTS-OF-INTEREST

x, LINEAR TRANSFORM Φ, TRANSFORM OUTPUTS z = Φx, AND
OBSERVED OUTPUTS y

inputs: {p(xj)}∀j , {p(yi|zi)}∀i,y,Φ, Tmax

definitions:
p(zi|y; p̂, γp) =

p(yi|zi)N (zi;p̂,γ
p)∫

z′
i
p(yi|z′i)N (z′i;p̂,γ

p)
(D1)

p(xj |y; r̂, γr) =
p(xj)N (x;r̂,γr)∫

x′
j
p(x′j)N (x′j ;r̂,γ

r)
(D2)

initialize:
∀j : x̂j(1) =

∫
xj
xj p(xj) (I1)

∀j : γxj (1) =
∫
xj
|xj − x̂j(1)|2p(xj) (I2)

∀i : ŝi(0) = 0 (I3)
for t = 1 : Tmax,

∀i : γpi (t) =
∑N
j=1 |Φij |2γxj (t) (R1)

∀i : p̂i(t) =
∑N
j=1 Φij x̂j(t)− γpi (t) ŝi(t− 1) (R2)

∀i : γzi (t) = V{zi|y; p̂i(t), γ
p
i (t)} (R3)

∀i : ẑi(t) = E{zi|y; p̂i(t), γ
p
i (t)} (R4)

∀i : γsi (t) =
(
1− γzi (t)/γpi (t)

)
/γpi (t) (R5)

∀i : ŝi(t) =
(
ẑi(t)− p̂i(t)

)
/γpi (t) (R6)

∀j : γrj (t) =
(∑M

i=1 |Φij |2γsi (t)
)−1 (R7)

∀j : r̂j(t) = x̂j(t) + γrj (t)
∑M
i=1 Φ∗ij ŝi(t) (R8)

∀j : γxj (t+1) = V{xj |y; r̂j(t), γ
r
j (t)} (R9)

∀j : x̂j(t+1) = E{xj |y; r̂j(t), γ
r
j (t)} (R10)

outputs: {ẑi(T ), γzi (T )}∀i, {r̂j(T ), γrj (T ), x̂j(T ), γxj (T )}∀j

beliefs about the frequency-domain impulsive noise {Ik},
which GAMP approximates as N(Ik; Îk, γ

I
k), where the

values {̂Ik, γIk} were computed by GAMP(Y, I,F, i) in the
previous turbo iteration.5 Here, I = Fi refers to the impulsive
component of the frequency-domain noise N = I + G, with
{Gk} ∼ i.i.d N(0, γ(0)), so that [from (2)]

Y = H ◦ S+ I+ G. (15)

From (3) and (15), the GAMP(Y,H,
√
NF,h) likelihood is

p(Yk|Hk) =


N(Yk; pHk + Îk, γ

I
k+γ

(0)) k ∈ P
|S|∑
l=1

β
(l)
k N(Yk;S

(l)Hk + Îk, γ
I
k+γ

(0)) k ∈ D

(16)
with the corresponding “output MMSE estimation functions”
E{Hk|Y; p̂, γp} and V{Hk|Y; p̂, γp}, as used in steps (R3)–
(R4), specified in Table II. (See Appendix B for derivations).

GAMP(Y,H,
√
NF,h) also requires us to derive the

“input MMSE estimation functions” E{hj |Y, r̂, γr} and
V{hj |Y, r̂, γr} for GAMP steps (R9)–(R10). Given the chan-
nel model specified in Section II-B and definition (D2), it
is straightforward to show [31] that the input MMSE esti-
mation functions are E{hj |Y, r̂, γr} = νj r̂/(νj + γr) and
V{hj |Y, r̂, γr} = νjγ

r/(νj + γr).
After GAMP(Y,H,

√
NF,h) is iterated to convergence,

the outputs {Ĥk} and {γHk } of steps (R4)–(R3) are close
approximations to the marginal posterior mean and variance,
respectively, of {Hk}. These outputs will be used in the next
step of the message-passing schedule, as described below.
Similarly, the outputs {ĥl} and {γhl } of steps (R10)–(R9)
are close approximations to the marginal posterior mean and
variance, respectively, of {hl}.

5During the first turbo iteration, we use Îk = 0 and γIk = γi ∀k.
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TABLE II
GAMP OUTPUT MMSE ESTIMATION FUNCTIONS USED IN JCISB

Tone Type
GAMP(Y ,H,

√
NF,h)

E{Hk|Yk; p̂, γp} V{Hk|Yk; p̂, γp}
Pilot: k ∈ P p̂+ γpp∗(Yk − Îk − pp̂)/(γ(0) + γIk + ρpγp) γp(γ(0) + γIk)/(γ(0) + γIk + ρpγp)

Data: k ∈ D
p̂+

∑|S|
l=1 λ

(l)
k

γpS∗(l)(Yk−̂Ik−p̂S(l))
(γ(0)+γI

k
+|S(l)|2γp)

where λ(l)k = p(Yk|S(l))β
(l)
k /

∑
j p(Yk|S(j))β

(j)
k and

p(Yk|S(l)) = N(Yk; Îk + p̂S(l), γ(0) + γIk + |S(l)|2γp)

∑|S|
l=1 λ

(l)
k

[
γp(γ(0)+γIk)

γ(0)+γI
k
+|S(l)|2γp

+∣∣∣p̂+
γpS∗(l)(Yk−̂Ik−p̂S(l))
(γ(0)+γI

k
+|S(l)|2γp)

∣∣∣2]− |E{Hk|Yk; p̂, γp}|2

Tone Type
GAMP(Y , I,F, i)

E{Ik|Yk; p̂, γp} V{Ik|Yk; p̂, γp}
Null: k ∈ N (γpYk − γ(0)p̂)/(γ(0) + γp) γpγ(0)/(γ(0) + γp)

Pilot: k ∈ P p̂+ γp(Yk − p̂− Ĥkp)/(γ(0) + γp + ρpγHk ) γp(γ(0) + ρpγHk )/(γ(0) + γp + ρpγHk )

Data: k ∈ D
p̂+

∑|S|
l=1 λ

(l)
k

γp(Yk−p̂−ĤkS
(l))

(γ(0)+γp+|S(l)|2γH
k
)

where λ(l)k = p(Yk|S(l))β
(l)
k /

∑
j p(Yk|S(j))β

(j)
k and

p(Yk|S(l)) = N(Yk; p̂+ ĤkS
(l), γ(0) + γp + |S(l)|2γHk )

∑|S|
l=1 λ

(l)
k

[
γp(γ(0)+|S(l)|2γHk)

(γ(0)+γp+|S(l)|2γH
k
)
+∣∣∣p̂+

γp(Yk−p̂−ĤkS
(l))

γ(0)+γp+|S(l)|2γH
k

∣∣∣2]− |E{Ik|Yk; p̂, γp}|2

3) Turbo-GAMP for Noise Estimation: The next step in our
schedule is to pass messages between the factor nodes {Yk},
the time-domain impulse-noise nodes {it}, and the noise-state
nodes {zt}. According to the SPA, the message passed from
Yk to it is

µYk→it(it) =
∑
Sk

∫
i\t,h

p(Yk|Sk,h, i)µSk→Yk
(Sk)

×
∏
l

µhl→Yk
(hl)

∏
j 6=t

µij→Yk
(ij) (17)

which poses the same difficulties as (12) and (14).
Although GAMP can help approximate the messages in

(17), GAMP alone is insufficient due to connections between
the {dt} nodes, which are used to model the burstiness of the
time-domain impulse-noise {it}. However, recognizing that
the underlying problem is estimation of a clustered-sparse
sequence {it} from compressed linear measurements, we can
use the solution proposed in [34], which alternated GAMP
with the forward-backward (FB) algorithm [26], as described
below.

First, by temporarily treating the messages {µdt→it},
{µSk→Yk

}, and {µhl→Yk
} as fixed, we can apply

GAMP(Y, I,F, i) under the likelihood model

p(Yk|Ik)=


N(Yk; Ik, γ

(0)) if k ∈ N
N(Yk; pĤk + Ik, ρpγ

H
k +γ

(0)) if k ∈ P
|S|∑
l=1

β
(l)
k N(Yk;S

(l)Ĥk + Ik, ρpγ
H
k +γ

(0)) if k ∈ D
(18)

implied by (3) and (15), and the coefficient prior

p(it) = π
(0)
t δ(it) +

K−1∑
k=1

π
(k)
t N(it; 0, γ

(k)) (19)

implied by (5). In (18), β(i)
k = µSk→Yk

(S(i)) are the sym-
bol beliefs coming from the {Sk} nodes and {Ĥk, γ

H
k } are

the frequency-domain channel estimates previously calculated
by GAMP(Y,H,

√
NF,h). Meanwhile, in (19), {π(k)

t }K−1k=0

represents the pmf on the noise state zt that is set as π(k)
t =

µzt→dt
(k)/(

∑K−1
l=0 µzt→dt

(l)). The resulting output MMSE
estimation functions, derived in Appendix C, are listed in
TABLE II, and the input MMSE estimation functions are

E{it|Y, r̂, γr} =
K−1∑
k=0

α
(k)
t

γ(k)r̂

γ(k) + γr
(20)

V{it|Y, r̂, γr} =
K−1∑
k=0

α
(k)
t

γr + γ(k)

(
γrγ(k) +

|γ(k)r̂|2

γr + γ(k)

)
− |E{it|Y, r̂, γr}|2. (21)

Here, {α(k)
t }K−1k=0 is the posterior pmf for noise-state zt, with

α
(k)
t = P(zt=k|r̂) =

p(r̂|zt = k)π
(k)
t∑K−1

l=0 p(r̂|zt = l)π
(l)
t

(22)

where p(r̂|zt = k) = N(r̂; 0, γr + γ(k)) is the noise state
likelihood.

Using these input and output MMSE estimation functions,
GAMP(Y, I,F, i) is iterated until convergence, generating (for
each t) an outgoing belief µit→dt

(it) = N(it; r̂, γ
r) about the

noise-impulse it. This belief flows through the factor node
dt which, according to the SPA, gives the rightward flowing
noise-state belief

µdt→zt(zt=k) ∝ N(r̂; 0, γr + γ(k)) (23)

that acts as a prior for “Markov-chain (MC) decoding,” i.e.,
inference on the rightmost sub-graph in Fig. 3. Since the
MC sub-graph is non-loopy, it suffices to apply one pass of
the forward-backward algorithm; see [26] for details. Subse-
quently the refined noise-state beliefs {µzt→dt} are passed
back to the noise subgraph where each is used to compute
the corresponding pmf {π(k)

t }K−1k=0 used in (22) by the next
invokation of GAMP(Y, I,F, i).

When the noise-state beliefs {µzt→dt
} have converged,

the impulse-noise iterations are terminated and the {̂Ik, γIk}
produced by GAMP(Y, I,F, i) are close approximations to
the marginal posterior means and variances of {Ik} that will
be used by GAMP(Y,H,

√
NF,h) in the next turbo iteration.
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In addition, for each data tone k ∈ D, GAMP(Y, I,F, i) yields
the leftward flowing soft symbol beliefs

µYk→Sk
(S) = N(Yk;SĤk + Îk, |S|2γHk + γIk + γ(0)) (24)

that are subsequently used for decoding (as described below).
Here, {Ĥk, γ

H
k } and {̂Ik, γIk} play the role of soft frequency-

domain channel and impulse-noise estimates, respectively.
Note that if the noise {it} is not modeled as bursty, then

there is no need to apply the forward-backward algorithm and
it suffices to run GAMP(Y, I,F, i) only once per turbo itera-
tion. In this case, (19) reduces to (5) and π(k)

t reduces to the
time-invariant prior parameter π(k) discussed in Section II-C.

4) Symbols to Bits: The SPA dictates that the messages
flowing leftward through the symbol nodes {Sk} come out
unchanged, i.e., µSk→Mk

= µYk→Sk
. Moreover, it dictates

that the message flowing leftward out of the symbol-mapping
node Mk and into the coded-bit node ck,m takes the form

µMk→ck,m
(c) =

|S|∑
l=1

∑
ck\cm

P(S(l)|ck)µSk→Mk
(S(l))

×
∏

m′ 6=m

µck,m′Mk→(cm′) (25)

=

∑
l:c

(l)
m =c

µSk→Mk
(S(l))µMk→Sk

(S(l))

µck,m→Mk
(c)

(26)

where the last step is derived in [30].
Finally, the computed coded-bit beliefs are passed to the

coding/interleaving factor node. This can be viewed as passing
(extrinsic) soft information into a soft-input/soft-output (SISO)
decoder, where it is treated as prior information for decoding
according to the “turbo” principle. SISO decoding has been
studied extensively and we refer the interested reader to [35]
for a detailed account. After SISO decoding terminates, it
will produce extrinsic soft information, in the form of beliefs
{µck,m→Mk

}, that will be passed rightward to the symbol-
mapping nodes at the start of the next turbo iteration. The
turbo iterations are terminated after either the decoder detects
no bit errors, the beliefs {µck,m→Mk

} have converged, or a
maximum number of turbo iterations has elapsed.

D. Simplified Receivers

Although the JCISB receiver, as presented in Section III-C,
utilizes all data, pilot, and null tones to perform inference over
the complete factor graph in Fig. 3, the proposed framework is
flexible in that it can be easily modified to provided a desired
trade-off between performance and computational complexity.
For example, due to computational or architectural constraints,
one might opt to simplify the receiver by either 1) using only a
subset U of tones, or 2) replacing variable nodes in the factor
graph with fixed exogenous soft estimates of those variables.
(An example of a simplified receiver based on JCISB is given
in [36].)

Since reducing the size of the tone subset U will re-
duce both receiver complexity and performance (see Sec-
tion III-F), the selection of U should be done carefully to

balance these conflicting objectives. In the sequel, we will
denote the JCISB receiver that utilizes only the tone subset
U ⊂ {D ∪ P ∪ N} by JCISB (U). A generic implementation
of JCISB (U) would execute the steps in Section III-F but
with GAMP(YU ,HU ,

√
NFU ,h) and GAMP(YU , IU ,FU , i),

and then compute approximate-MMSE estimates of {Hk}k∈U
and {Ik}k∈U at U = {D ∪ P ∪ N} \ U using GAMP’s time-
domain approximate-MMSE estimates {ĥt, γht } and {̂it, γit}
and the linear relationships H =

√
NFh and I = Fi. That

said, the case U = P ∪ N deserves special attention, since
here it suffices to perform joint channel and impulse (JCI)
estimation in a manner that is decoupled from symbol and bit
estimation.

There are several ways that one might remove variable
nodes from the factor graph in Fig. 3 to simplify the re-
sulting JCISB receiver (at the expense of performance: see
Section IV). For example,

1) Non-bursty JCISB: Here the time-domain impulse-noise
{it} is modeled as non-bursty, in which case it suffices to
remove the noise-state nodes {zt}, use the GM prior (5) in
the factor nodes {dt}, and execute one impulse-noise iteration
(without the forward-backward algorithm) per turbo iteration.

2) Joint channel, symbol, and bit (JCSB) estimation: Here
we separately estimate {Ik} from only the null tones using
GAMP(Y, I,F, i), and then fix the resulting soft estimates
{̂I, γI} over the turbo iterations, avoiding the need to run
GAMP(Y, I,F, i) more than once.

3) Joint impulse, symbol, and bit (JISB) estimation: Here
we compute soft linear-MMSE estimates of the frequency-
domain channel coefficients {Hk} and use these in place of
the GAMP-computed nonlinear-MMSE estimates {Ĥk, γ

H
k },

avoiding the need to ever run GAMP(Y,H,
√
NF,h).

4) GAMP-impulse (GI) estimation: Here we first LMMSE
estimate {Hk} from the pilot tones, then use those outputs
with GAMP(Y, I,F, i) to estimate {Ik} from the pilot and
null tones, and finally use both the soft channel and impulse
estimates to recover the symbols and bits via standard SISO
decoding. The principal feature distinguishing this approach
from conventional OFDM estimation is the use of GAMP-
impulse estimation from pilot and null tones. The GI provides
an important reference point since it uses the same information
provided by the null and pilot tones as the prior work in [21]–
[23].

E. Computational Complexity
The computational complexity of JCISB stems primarily

from repeated calls to the GAMP algorithm, whose complex-
ity grows as O(N logN + N |S|) per GAMP iteration. For
small constellations S, GAMP’s per-iteration complexity is
dominated by steps (R2) and (R8) of TABLE I, which can
each be implemented in N

2 log2N multiplies using an N -
length FFT; due to the constant-modulus nature of the entries
of the DFT-matrix Φ, steps (R1) and (R7) reduce to simple
summations. For large constellations like 1024-QAM, steps
(R3)–(R4), which involve Nd summations of |S| terms each
(see TABLE II), may also be of significant complexity.

As discussed, the simplifications discussed in Section III-D
can be used to reduce the complexity. For example, when U
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does not include data tones, the GAMP likelihoods (16) and
(18) do not involve the |S|-term summations and so GAMP
complexity is no longer dependent on |S|. Even in that case,
though, the final Nd symbol beliefs (24) must be evaluated at
all |S| symbol possibilities S ∈ S, and so the proposed receiver
complexity order remains at O(N logN +N |S|), as does that
of the conventional OFDM receiver.

In contrast, the state-of-the-art approach [23] uses the SBL
algorithm for impulse-noise estimation, an iterative approach
that computes a matrix inversion at each iteration, and thus
has overall complexity O(N3 + N |S|). Thus, given that N
is usually in the hundreds or thousands, the proposed JCISB
approach will require much less computation than [23].

F. Pilot and Null Tone Placement and Selection

In conventional OFDM systems, it is typical to place pilot
tones on a uniformly spaced grid, as this yields MMSE optimal
channel estimates in AWGN-corrupted frequency-selective
channels [50]. Meanwhile, it is customary to place null tones
at the spectrum edges in order to reduce out-of-band emissions
[51]. These practices, however, should be re-examined when
the receiver is expected to operate in the presence of impulsive
noise, since there the MMSE channel estimator is nonlinear
and the frequency-domain noise is dependent across tones,
making it suboptimal to ignore null-tones while decoding.

Viewing impulse-noise estimation as a sparse reconstruction
problem [21], we realize that the placement U of the tones
used for estimation strongly affects the isometry of the linear
transformation FU relating the sparse tone sequence i to
the linearly compressed measurements YU . For sparse signal
reconstruction, recovery guarantees can be stated when the
measurement matrix Φ has sufficiently low coherence [52]

µ(Φ) = max
k,l,k 6=l

|φ∗kφl|
‖φk‖2‖φl‖2

(27)

using φk to denote the kth column of Φ. Section IV pro-
vides evidence that µ(FU ) predicts the performance of tone
placement U in impulse-noise corrupted OFDM.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of our pro-
posed JCISB receivers using Monte-Carlo simulations, com-
paring to both existing work and fundamental bounds. We
demonstrate that, in both coded and uncoded scenarios, the
proposed JCISB framework provides significant performance
gains over existing techniques at a computational complexity
only slightly higher than the conventional DFT receiver and
thus significantly lower than the best performing prior work.
In fact, we show that JCISB performs within 1dB of theo-
retical performance bounds, establishing its near-optimality.
Furthermore, we conduct numerical studies that investigate the
impact of receiver simplifications, impulse-noise modeling and
mitigation, and pilot/null tone placement.

A. Setup

Unless stated otherwise, pilot tones were spaced on a
uniform grid while the null tones were placed randomly. Noise

realizations were generated according to one of the two models
described in Section II-C: non-bursty i.i.d-GM noise, having
two impulsive noise states with powers 20dB and 30dB above
the background noise occurring 7% and 3% or the time,
respectively; and bursty GHMM noise, with the same marginal
statistics but with temporal dynamics governed by the state
transition matrix in (8). Unless noted otherwise, JCISB was
run using at most 5 turbo iterations, 5 noise iterations, and
15 GAMP iterations. Throughout, signal-to-noise ratio (SNR)
refers to the ratio of the received signal power to the total
noise power.

B. Comparison with Existing Schemes

Fig. 4 plots uncoded symbol-error rate (SER) versus SNR
for a prototypical PLC setting: 4-QAM modulated OFDM with
256 subcarriers, of which 80 tones are nulls and 15 are pilots,
under a 5-tap Rayleigh-fading channel corrupted by i.i.d GM
noise. In Fig. 4, the “JCIS” trace represents our proposed
JCISB approach but without bit estimation (since here we
evaluate uncoded SER), and the “GI” trace represents the
proposed GI simplification from Section III-D. The “DFT”
trace represents the conventional OFDM receiver, which per-
forms LMMSE pilot-aided channel estimation, LMMSE equal-
ization, and decoupled symbol-detection on each equalized
tone. The “PP” trace refers to [13], which performs MMSE-
optimal processing prior to conventional OFDM reception and
has been shown to perform best among the “pre-processing”
techniques discussed in Section I-B. The “SBL” trace refers
to [23], which was recently shown to perform best among
the “sparse reconstruction” methods. Here, the PP and SBL
approaches include LMMSE channel estimation, whereas in
the original formulations [13], [23] the channel was treated
as known. The “MFB” trace shows the matched-filter bound,
which computes tone-averaged SER assuming that each sym-
bol is detected under perfect knowledge of every other symbol
as well as the channel. By subtracting the known effect of the
other symbols, the received signal under MFB is given by

y = HF∗(Sek) + n = Sf̄k + n (28)

where the unknown symbol S is sent on tone k and where
ek is the standard basis and f̄k is the k-th column of HF∗.
Using the factorization of the noise pdf in time domain, it is
straightforward to find the MAP detection rule for S [53]. Due
to the non-Gaussianity of the noise, we evaluated the MFB via
Monte-Carlo.

The SER curves in Fig. 4 show that the proposed JCIS
receiver drastically outperforms the conventional OFDM re-
ceiver (by 15dB), the PP receiver (by 15dB in the high SNR
regime), and the state-of-the-art SBL receiver (by 13dB). We
attribute these huge performance gains to the fact that JCIS
utilizes all received tones (pilots, nulls, and data) for joint
channel, impulse, and symbol estimation. In contrast, PP does
not use OFDM signal structure for impulse-noise mitigation;
and SBL decouples the estimation of the channel, impulses,
and symbols, and performs linear MMSE channel estimation
using only pilot tones, which not only ignores information
on data and null tones, but is also strongly suboptimal in
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Fig. 4. Uncoded SER versus SNR for 4-QAM OFDM with 256 total tones,
80 null tones, and 15 pilot tones over a 5-tap Rayleigh-fading channel in i.i.d
GM noise.

the presence of impulsive noise. Moreover, the proposed JCIS
receiver follows the MF bound to within 1dB over the full SNR
range, demonstrating its near-optimality. Fig. 4 also shows that
the proposed JCI simplification performs only 3dB worse than
JCIS, and that the GI simplification performs 13dB worse than
JCIS but 2dB better than the state-of-the-art6 SBL receiver.

C. Impact of Impulse-Noise Modeling and Mitigation

In this section, we evaluate the relative success of various
strategies for modeling and mitigating impulsive noise in
OFDM, again restricting our attention to uncoded transmis-
sions. For clarity, we consider a trivial (unit-gain non-fading)
channel that is perfectly known to the receiver, and thus we
include no pilot tones. Without channel estimation and bit
decoding, our proposed JCISB approach then reduces to JIS.
Below, we compare JIS to the SBL receiver [23] and to the
GI simplification proposed in Section III-D. Given the absence
of pilot tones, GI and SBL are quite similar: both perform
impulse-noise estimation using only null tones and in a manner
that is decoupled from symbol estimation.

We first compare the noise-estimation performance of JIS,
GI, and SBL using the normalized mean squared estimation
error metric NMSE = E{|nt − ît|2}/E{|nt|2} = E{|Nk −
Îk|2}/E{|Nk|2}, which can be interpreted as follows. Recall-
ing that SER increases proportionally to MSE = E{|Nk −
Îk|2} = E{|Gk + (Ik − Îk)|2}, which includes both back-
ground noise and impulse-estimation error, and noticing7 that
MSE−1 = SNR/NMSE, we recognize NMSE as the factor
by which the effective signal-to-noise ratio MSE−1 is smaller
than the stated signal-to-noise ratio SNR.

Figure 5(a) plots NMSE in the estimation of i.i.d GM noise
versus SNR for the JIS, GI, and SBL receivers. The GI traces
in Fig. 5(a) imply that GAMP is a uniformly better estimator of
i.i.d GM noise than SBL, although the difference is < 1dB for
SNRs between −15 and 8 dB. This behavior is expected, given

6Although PP outperforms both SBL and GI when SNR < 3, the achieved
SERs are unusably high.

7For a unit signal power, SNR−1 = E{|Nk|2}, so that NMSE = MSE×
SNR and thus MSE−1 = SNR/NMSE.
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Fig. 5. NMSE versus SNR when estimating the noise sequence n for
(a) i.i.d-GM and (b) GHMM noise models, for OFDM with 256 total tones
and 60 null tones, under a known trivial channel. The corresponding SER
performance is plotted in Fig. 6.

that the underlying problem is one of estimating a length-
256 i.i.d-GM sequence from 60 randomly selected Fourier
observations, for which the superiority of GM-GAMP over
SBL was established in [54]. The JIS traces in Fig. 5(a) show
NMSEs that are significantly (i.e., ≥ 5dB) better than GI and
SBL across the SNR range, and this is because JIS uses both
null and data tones, rather than just null tones. To extract
meaningful noise information from the data tones, JIS must
accurately infer the data symbols. The latter is easier with 4-
QAM than with 16-QAM, which explains the gap between the
traces in Fig. 5(a).

Figure 5(b) plots NMSE in the estimation of GHMM noise
versus SNR for the proposed JIS receiver with the forward-
backward (FB) iterations, and two simplifications: JIS without
FB (labelled as “JIS” for consistency with Fig. 5(a)) and GI.
Comparing Fig. 5(b) to Fig. 5(a), we see that GHMM noise is
significantly more challenging than i.i.d-GM noise: the NMSE
of JIS is 7dB worse, and that of GI is 5dB worse, in the
GHMM case. However, the FB iterations help significantly:
they restore approximately 6dB of the lost NMSE .

Next we compare the SER performance of JIS, GI, and
SBL in the same trivial-channel setting. Figure 6(a) shows
the case of i.i.d-GM noise. There we see that JIS significantly
outperforms SBL with both 4-QAM (red) and 16-QAM (blue)
constellations, as expected from the superior noise-estimation
NMSE in Fig. 5 and from the fact that JIS estimates the
symbols jointly with the noise impulses. Meanwhile, it shows
GI performing on par with SBL with 4-QAM but somewhat
better than SBL with 16-QAM, especially at medium SNR.

Figure 6(b) then shows SER under GHMM (i.e., bursty)
noise. Comparing Fig. 6(b) to Fig. 6(a), we see that the
burstiness of the noise causes the SER of all receivers to
degrade significantly. Moreover, this degradation persists when
the JIS receiver uses MC iterations, even though the NMSE
results in Fig. 5 show only about a 1dB loss due to burstiness.
We attribute the SER sensitivity to the fact that the noise
burstiness makes some OFDM-symbols much more noise-
corrupted than others, and those heavily corrupted symbols
lead to a degradation in SER, reported in Fig. 6(b), that
exceeds the degradation expected of 1dB i.i.d. Gaussian noise
(unreported simulations show that the errors in GHMM noise
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Fig. 6. Uncoded SER versus SNR for OFDM with 256 total tones and
60 null tones under a known trivial channel for (a) i.i.d GM and (b) GHMM
noise. Red traces denote 4-QAM while blue traces denote 16-QAM.

estimation under JIS-FB are non-Gaussian and dependent).
Regardless, Fig. 6(b) shows that the FB-assisted JIS receiver
significantly outperforms non-FB-assisted JIS, GI, and the
state-of-the-art SBL algorithm, especially at medium SNR.
To investigate whether the kink in the JIS+FB trace was due
to suboptimality of the FB noise-state inference, we simulated
a genie-aided receiver that knows the true state of the GHMM
noise at each time index. Since the genie trace also exhibits
the kink, it is evidently not due to suboptimality of FB.

D. Impact of Pilot and Null Tone Placement

In this section, we investigate the impact of pilot and null
tone placement. For this, we examine the uncoded SER of
a 4-QAM 256-tone OFDM system under a 5-tap Rayleigh-
fading channel in i.i.d-GM noise for both the proposed JCIS
receiver and its JCI simplification, the latter of which ignores
data tones during channel and impulse-noise estimation. Fig. 7
shows that the conventional placement of sideband null tones
and uniform pilot tones produces the worst SER performance.
Randomizing the pilot locations alone provides a modest
performance gain for both JCI and JCIS, while randomizing
the null locations alone improves the SER performance dra-
matically, especially for JCI.8 By randomizing the locations of
pilot and null tones, we effectively observe the impulsive noise
vector through random projections that typically achieve good
“coherence” properties (i.e. roughly the measurements have
low correlation) which is beneficial for reconstruction (see
[52] and references therein). We conjectured in Section III-F
that the performance improvement observed with randomized
pilot and null tone placements can be explained by the
corresponding reduction in coherence µ(FP) and µ(FN ), and
the coherence values reported in Fig. 7 lend credence to this
conjecture.

E. Coded Systems

Finally, we investigate the bit error rate (BER) performance
of JCISB in the coded scenario. For this, we used an LDPC-
coded 16-QAM 1024-tone OFDM system with 150 pilot and

8We expect JCI to be more sensitive to null/pilot-tone placement than JCIS,
since the former observes the channel and noise impulses only through those
tones.
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Fig. 7. Uncoded SER for OFDM with 256 total tones, 60 null tones, and 25
pilot tones under a 5-tap Rayleigh-fading channel and i.i.d-GM noise. Several
null and pilot tone placements are considered: random (R), uniform (U), and
sideband (S), with the corresponding coherence [µ(FN ) or µ(FP ), recall
(27)] specified in the legend.
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Fig. 8. Coded BER for OFDM with 1024 total tones, 150 pilot tones, and
0 null tones under a 10-tap Rayleigh-fading channel in i.i.d-GM noise. Here,
JCISB-# corresponds to JCISB after # turbo iterations, and similar for JCIS-#.

0 null tones under a 10-tap Rayleigh-fading channel and i.i.d-
GM noise. The LDPC codes had code-word length ≈ 60 000
and rate 1/2, with a modified coder/decoder implementations
from [55]. We also investigate the conventional OFDM re-
ceiver (“DFT”) as well as the JCIS simplification, which omits
SISO decoding from the turbo iterations. For both JCIS and
DFT, we performed SISO decoding as the final step. For all
receivers, the maximum number of LDPC iterations was 50.

Fig. 8 shows that, after only one turbo iteration, the pro-
posed JCISB9 outperforms the conventional OFDM receiver
by 10dB. Additional turbo iterations result in further gains
of 4dB. Fig. 8 also shows that JCIS’s decoupling of bit
estimation from channel, impulse, and symbol estimation costs
approximately 1dB.

V. CONCLUSION

In a this paper, we presented a factor-graph approach to
OFDM reception in multipath distorted and impulse-noise

9Note that, with only a single turbo iteration, JCISB and JCIS are equiva-
lent.
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corrupted channels that performs near-optimal joint chan-
nel, impulse-noise, symbol, and bit (JCISB) estimation. Our
approach merges recent work on generalized approximate
message passing (GAMP) [31], its “turbo” extension to larger
factor graphs [34], and soft-input-soft-output SISO decoding
[35]. Extensive numerical simulations show that the proposed
JCISB receiver provides drastic performance gains over ex-
isting receivers for OFDM in impulsive noise, and performs
within 1dB of the matched-filter bound, all while matching
the complexity order of the conventional OFDM receiver.
Furthermore, JCISB is easily parallelized, providing a natural
mapping to FPGA implementations (see [36] for a recent
FPGA implementation of the GI receiver). Additional numer-
ical simulations investigated the impact of JCISB simplifi-
cations, noise modeling and mitigation, and null/pilot tone
placement. Throughout this paper we have assumed prior
knowledge of the noise parameters while in practical settings
this information might have to be estimated by the receiver.
Incorporating parameter estimation in the proposed framework
is an interesting topic for future work.

APPENDIX A
GENERALIZED APPROXIMATE MESSAGE PASSING (GAMP)

The GAMP algorithm, an extension of AMP from [46],
was developed in [31] to address the estimation of a vector of
independent possibly-non-Gaussian random variables x that
are linearly mixed via a linear transform Φ ∈ CM×N to
form z = Φx = [z1 · · · zM ]T and subsequently observed as
y = [y1 · · · yM ]T according to the general likelihood function
p(y|z) =

∏M
i=1 p(yi|zi). The GAMP algorithm is intended

for the case when the dimensions M and N are both large, in
which case the central limit theorem suggests approximating
the product of messages flowing leftward into each factor node
fi = p(yi|zi) in Fig. 9 as

∏
j µxj→fi(zi) ≈ N(zi; p̂i, γ

p
i )

and the product of messages flowing rightward into each
variable node xj as

∏
i µfi→xj (xj) ≈ N(xj ; r̂j , γ

r
j ), where

the quantities p̂i, γ
p
i , r̂j , and γrj can be computed from Table I.

Similarly, to remain computationally tractable, the pdf repre-
senting each message leaving a factor or a variable node is
simplified by taking its second order Taylor series expansion.
As a result, each of those messages can be approximated
by two parameters resulting from the Taylor expansion. The
corresponding “GAMP(y, z,Φ,x)” algorithm is summarized
in Table I. The detailed derivation and theoretical guarantees
of the GAMP algorithm are beyond the scope of this paper;
we refer the interested reader to [31] and [48] for more
information.

APPENDIX B
DERIVATION OF GAMP(Y,H,

√
NF,h) LIKELIHOOD

This appendix derives the output MMSE estimation func-
tions E{Hk|Yk; p̂, γ

p} and V{Hk|Yk; p̂, γ
p} used in steps

(R3)–(R4) of GAMP(Y,H,
√
NF,h). We start with the case

of data tones k ∈ D, where

Yk = SkHk + Ik + Gk.

... ... ...

Fig. 9. Factor graph used to derive GAMP with illustrations of message
approximations.

Yk is Gaussian when conditioned on Sk, and so according to
the definition (D1) in Table I this is a standard linear MMSE
problem whose solution is given by [56, Ch. 12],

E{Hk|Sk,Yk; p̂, γ
p} = p̂+

S∗kγ
p(Yk − Îk − Skp̂)

γ(0) + γIk + |Sk|2γp
. (29)

Given the belief {β(l)
k }
|S|
l=1 about symbol Sk, the law of total

expectation implies

E{Hk|Yk; p̂, γ
p} = ESk|Yk

{E{Hk|Sk,Yk; p̂, γ
p}} (30)

= p̂+

|S|∑
l=1

λ
(l)
k

γI(Yk − Îk − p̂S(l))
γ(0) + γIk + |S(l)|2γp

(31)

where

λ
(l)
k = P(Sk = S(l)|Yk; p̂, γ

p) ∝ p(Yk|Sk; p̂, γp)β(l)
k (32)

is the posterior symbol probability and p(Yk|Sk; p̂, γp) =
N(Yk; Îk + p̂Sk, γ

I + |Sk|2γp + γ(0)). Similarly, the law of
total variance implies

V{Hk|Yk; p̂, γ
p} = ESk|Yk

{V{Hk|Sk,Yk; p̂, γ
p}}

+ VSk|Yk
{E{Hk|Sk,Yk; p̂, γ

p}} (33)

=

|S|∑
l=1

λ
(l)
k

[
γp
(
γ(0) + γIk

)
γ(0) + γIk + |S(l)|2γp

+
∣∣E{Hk|Sk,Yk; p̂, γ

p}
∣∣2]

−
∣∣E{Hk|Yk; p̂, γ

p}
∣∣2. (34)

The derivation for pilot tones k ∈ P reduces to the above
under λ(1)k = 1, λ(l 6=1)

k = 0, and S(1) = p.

APPENDIX C
DERIVATION OF GAMP(Y, I,F, i) LIKELIHOOD

This appendix derives the output MMSE estimation func-
tions E{Ik|Yk; p̂, γ

p} and V{Ik|Yk; p̂, γ
p} used in steps (R9)–

(R10) of GAMP(Y, I,F, i). We start with the case of data
tones k ∈ D, where

Yk = Ik + SkHk + Gk.

Yk is Gaussian when conditioned on Sk, and so according to
the definition (D1) in Table I this is a standard linear MMSE
problem whose solution is given by [56, Ch. 12],

E{Ik|Sk,Yk; p̂, γ
p} = p̂+

γp(Yk − p̂− ĤkSk)

γ(0) + γp + |Sk|2γHk
. (35)
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Given the belief {β(l)
k }
|S|
l=1 about symbol Sk, the law of total

expectation implies

E{Ik|Yk; p̂, γ
p} = ESk|Yk

{E{Ik|Sk,Yk; p̂, γ
p}} (36)

= p̂+

|S|∑
l=1

λ
(l)
k

γp(Yk − p̂− ĤkS
(l))

γ(0) + γp + |S(l)|2γHk
(37)

where λ(l)k is the posterior symbol probability from (32) but
now with p(Yk|Sk; p̂, γp) = N(Yk; p̂+ ĤkSk, γ

p + |Sk|2γHk +
γ(0)). Similarly, the law of total variance implies

V{Ik|Yk; p̂, γ
p}

= ESk|Yk
{V{Ik|Sk,Yk; p̂, γ

p}}+ VSk|Yk
{E{Ik|Sk,Yk; p̂, γ

p}}

=

|S|∑
l=1

λ
(l)
k

[
γp
(
γ(0) + |S(l)|2γHk

)
γ(0) + γp + |S(l)|2γHk

+
∣∣E{Ik|Sk,Yk; p̂, γ

p}
∣∣2]

−
∣∣E{Ik|Yk; p̂, γ

p}
∣∣2. (38)

The derivation for pilot tones k ∈ P reduces to the above
under λ(1)k = 1, λ(l 6=1)

k = 0, and S(1) = p. Meanwhile, the
derivation for null tones k ∈ N is the special case of pilots
with p = 0.
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