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Abstract—In this paper, we propose space-time fronthaul com-
pression of baseband uplink LTE signals for cellular networks, in
which baseband units (BBUs) support remote radio heads (RRHs)
through fronthaul links. In particular, we assume massive an-
tenna arrays in which the number of antennas in a RRH is much
larger than the number of active users. The proposed method
consists of two phases: dimensionality reduction phase and
individual quantization phase. The key idea of the first phase is to
apply principal component analysis (PCA). It performs low-rank
approximation of a matrix — composed of received signals — by
exploiting the correlation of the received signals across space and
time. In the second phase, our method individually quantizes the
dimensionality-reduced signal by applying transform coding with
bit allocation to reduce the number of quantization bits. An LTE
link-level simulator provides numerical results which show that
the method achieves up to 8× compression ratio for the uplink
with 64 antennas and 4 active users, along with improvement in
communication system performance as a result of denoising.

Index Terms—LTE uplink, space-time compression, correla-
tion, PCA, dimension reduction, denoising, transform coding, bit
allocation

I. INTRODUCTION

To reduce capital and operating expenses while support-
ing exponential growth in mobile data traffic, some cellular
network deployments separate remote radio heads (RRHs)
from baseband units (BBUs). In this deployment, one BBU
can support RRHs on multiple basestations. Fronthaul links
connect RRHs to BBUs and may be optical fiber, Gigabit
ethernet or microwave links. A cloud radio access network [1]
is an extreme example of such a network.

Separating RRHs and BBUs over fronthaul links requires
substantial transport network resources and corresponding
investment for the link structure. Current link standards of
common public radio interface [2] and open radio interface [3]
have insufficient capacity to support the ever increasing data
rate. This stresses the importance of lowering transmit data
rate of the fronthaul links.

Time domain compression methods for baseband long term
evolution (LTE) uplink signals have been proposed to re-
duce data rate. The following methods result in error vector
magnitude (EVM) of about 2%. A low latency compression
algorithm in [4] first resamples an LTE signal to remove
spectral redundancies, then converts it to a block floating
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Fig. 1. RRHs with massive multi-antennas connected to BBUs via fronthaul
links receive correlated signals from active UEs, and the number of active
UEs is far less than the number of receiving antennas at the RRH.

point representation and finally quantizes the I/Q samples in
each block with a non-linear quantizer. This method achieved
3× rate reduction with about 2% EVM. In [5] and [6],
similar approaches to [4] were proposed with dithering and
modified block scaling respectively. These methods reported
a compression gain of 3× with 1.5% EVM and 3.3× with
2% EVM. In [7], a Lloyd-Max scalar quantizer designed for a
zero-mean Gaussian distribution combined with noise-shaped
feedback coding gave 3× compression ratio for both uplink
and downlink with less than 2% EVM. Since scalar quanti-
zation is not capable of exploiting time correlations in LTE
signals, a multi-stage vector quantization based compression
was proposed in [8] to exploit the time correlation in the
signals. This method achieved 4× compression ratio for uplink
with approximate 2% EVM.

Spatial domain compression methods have been proposed
as well as time domain methods. [9] developed compress-
and-forward schemes with joint decompression and decoding
for the linear Wyner cellular uplink channel with single-
antenna terminals, and [10] presented estimate-compress-
forward strategies. Distributed compression methods were
developed by using distributed Wyner-Ziv coding in [11],
and by solving distributed Karush-Kuhn-Tucker conditions



Fig. 2. Space-time fronthaul compression applied between the remote radio head and the baseband unit for uplink LTE signals.

to exploit the correlation of the received signals in [12].
While the proposed strategy in [12] is based on single-
layer transmission and compression, [13] studied a layered
transmission and compression method to effectively handle
the existing uncertainties in the quality of backhaul links. The
spatial domain compression methods [9]–[13] do not report
LTE EVM results.

In contrast, we aim to jointly exploit both temporal and
spatial correlation of received signals to achieve higher com-
pression gain. In particular, we focus on the case in which the
receiving antennas outnumber the active user equipment (UE),
as large-scale antenna systems have been studied for mil-
limeter wave mobile systems [14] and massive multiple-input
multiple-output wireless communications [15]. In millimeter
wave cellular communications, for example, a basestation
operating at 28 or 38 GHz with a large number of antennas
can support UEs up to 200m outdoors [16] — i.e. basestations
need to be densely deployed, and consequently the number of
the active UEs will be far less than the number of the receiving
antennas as shown in Fig. 1.

In such a network, we propose a space-time fronthaul
compression of complex baseband uplink time domain LTE
signals, which exploits the correlation of received signals
across space and time. The proposed method consists of
two phases which are dimensionality reduction and individual
quantization. The key feature of the dimensionality reduction
phase is to perform low-rank approximation, applying princi-
pal component analysis (PCA) [17] to leverage the correlation
structure across space and time. Since low-rank approximation
is often used for denoising image or video signals [18],
this method can obtain denoising gain. In the quantization
phase, the dimensionality-reduced signals are quantized by
using transform coding, which allocates a different number
of quantization bits to each sequence of the signals.

II. SYSTEM MODEL

In LTE uplink, symbols generated by each UE are precoded
using discrete Fourier transform (DFT), and the output of the
DFT is mapped by an inverse-DFT to produce an orthogo-
nal frequency-division multiplexing (OFDM) symbol in time
domain. Before the OFDM symbol is transmitted, a cyclic
prefix (CP) is appended to the symbol. After the transmission

of OFDM frames from different UEs, antennas in the RRH
receive the time domain signals with noise and interference.

We consider fronthaul compression of this time domain
signal for LTE uplink network, which consists of massive
multi-antenna RRHs and multiple single-antenna UEs, i.e.
each RRH covers each cell, and M antennas in the RRH
receive signals from active UEs in the cell. The received signal
at mth antenna ym is

ym[n] =
∑
u

xu[n] ∗ hm,u[n] + wm[n] (1)

m ∈ {1, 2, · · · ,M}, n ∈ {0, 1, 2, · · · }

where (∗) represents convolution, xu is an OFDM symbol
of uth user, hm,u is a channel response of uth user to mth

antenna and wm is additive white Gaussian noise (AWGN) of
mth antenna. From (1), we build a matrix of received signals
Y ∈ CN×M , where N is the number of samples taken for
each compression and M is the number of antennas at RRH.
The matrix Y is shown as

Y =


y1[0] y2[0] · · · yM [0]
y1[1] y2[1] · · · yM [1]

...
...

. . .
...

y1[N − 1] y2[N − 1] · · · yM [N − 1]

 (2)

and each column in Y is denoted as

yi =
[
yi[0] yi[1] · · · yi[N − 1]

]ᵀ
.

Since we consider that the columns yi, i ∈ {1, 2, · · · ,M}
are highly correlated, we apply low-rank approximation to Y.
In other words, we model the matrix Y based on (1) as

Y = Y0 + E (3)

where Y0 ∈ CN×M denotes a low-rank matrix without noise,
which includes information of x and h, and E ∈ CN×M

indicates a complex Gaussian noise matrix.

After the compression based on the model in (3), the
compressed signals are sent to the BBU via the fronthaul link.
Then, the signals are decompressed to recover Y and decoded
at the BBU in the reverse order of the compression process.
Fig. 2 shows the uplink compression process at the RRH, and
decompression and OFDM decoding process at the BBU.



III. PROPOSED COMPRESSION METHOD

In this section, we first explore a low-rank approximation
approach using PCA to reduce the dimension of the matrix
Y, which results in fewer signal samples to be sent over the
fronthaul link. Then we discuss a possible performance gain
from the denoising effect of low-rank approximation. Finally,
we apply transform coding with bit allocation to achieve
additional compression.

A. Low-Rank Approximation with PCA

Low-rank approximation reduces the dimension of the ma-
trix Y which, in turn, reduces the number of signal samples
to be sent. Assuming that Y0 in (3) is a rank-L matrix of
dimensions N × M , and N � M > L without loss of
generality, the low-rank approximation of Y is

Ȳ = argmin
rank(Ŷ)=L

‖Y − Ŷ‖F (4)

where the norm ‖ · ‖F represents Frobenius norm, and the
optimal solution for (4) is

Ȳ = ULΣLVH
L (5)

with

UL =
[
u1 u2 · · · uL

]
VL =

[
v1 v2 · · · vL

]
ΣL = diag

[
σ1 σ2 · · · σL

]
where (·)H , ui ∈ CN , vi ∈ CM and σi are conjugate
transpose, left eigenvectors, right eigenvectors and singular
values. Since various methods of determining the true rank
of a noisy matrix have been proposed [19], [20], we assume
that the rank L is known.

Using PCA, the proposed method reduces the dimension of
Y and obtains the low-rank approximation of Y at the BBU.
In this work, we perform PCA without mean-centering. Our
method finds the matrix of the first L principal components
VL— equivalent to L eigenvectors — using singular value
decomposition (SVD). Then, we transform the matrix Y by
multiplying VL. This transformation maps the received signal
vector yi from an original space of M variables to a new
space of L variables which are uncorrelated over the dataset.
The transformed matrix PL ∈ CN×L is represented as

PL = YVL = ULΣL (6)

where pi, i ∈ {1, 2, · · · , L} denotes ith column of PL, and
is a decorrelated data vector.

After the linear transformation, the samples of the matrix
VL and PL, instead of Y are quantized and sent to the BBU
via the fronthaul link, and the approximated low-rank matrix
Ȳ is obtained at the BBU as follows:

Ȳ = PLVH
L = ULΣLVH

L . (7)

Thus, the number of samples to be sent via link becomes
ML + NL, and the compression ratio for the number of

samples achieved by dimension reduction is

CRDR =
MN

L(M +N)
. (8)

We now discuss the denoising performance of low-rank
approximation represented in (7). An analytic interpretation
is as follows. The rank-L matrix Y0 has all desired signal
components lying on the L-dimensional subspace, so elimi-
nating the (M −L)-dimensional subspace only removes noise
components that span the subspace of dimension (M−L). To
quantify the denoising performance, we rewrite Ȳ based on
the signal matrix model in (3) as

Ȳ = Y0 + ∆ (9)

where ∆ is the error matrix after low-rank approximation.
The matrix ∆ contains the error from both residual noise and
signal information loss due to low-rank approximation. The
matrix Ȳ is considered as a denoised matrix, and the denoising
SNR gain is defined as G = ‖E‖F

‖∆‖F , which is the ratio of
the total power of the noise before and after the low-rank
approximation. The gain G is derived [21] as

G =

√√√√∑M
i=1 λi(E)∑L
i=1 λi(E)

(10)

where λi(E) is ith eigenvalue of E. The signal to noise ratio
(SNR) gain is represented as 20log10G in dB. For the case in
which eigenvalues λi are all equal, the denoising gain becomes√

M
L ; accordingly, the SNR gain in dB for this case is

GdB = 10log10

M

L
. (11)

B. Transform Coding with Bit Allocation

Here we discuss a more efficient way of quantizing the
matrix PL and VL. This quantization is applied to each
real and imaginary part of the matrix PL and VL, and
quantizers are considered to be uniform quantizers. For the
sake of brevity, we consider the matrix PL as either its real
components Re(PL) or imaginary components Im(PL), and
same applies to VL hereinafter.

Since the matrix PL is a linearly transformed matrix of Y
by its principal components matrix VL, we can individually
quantize each transform variable pi and its corresponding
principal component vi, in order to use less number of
quantization bits for additional compression. Such method is
called transform coding. The problem here is to determine the
number of bits for each quantizer, which achieves a minimum
total quantization error for a target compression ratio. Our
method solves a bit allocation problem for the individual
quantization to optimize the overall coder performance given
a bit budget for a target compression ratio.

To solve the bit allocation problem, we aim to minimize
weighted overall distortion measure D of quantizing PL for a
given bit budget B, with respect to b =

[
b1 b2 · · · bL

]
.

bi represents the number of quantization bits for pi. We use
eigenvalues λi as weights for the distortion measure D. In



other words, we can find b which minimizes D(b) by solving
the cost function, such that

minimize D(b) =

L∑
i=1

λiWi(bi) (12)

subject to
∑L

i=1 bi = B, bi ∈ Z+

where Z+ indicates nonnegative integers and Wi(bi) rep-
resents the mean-squared error incurred in quantizing the
elements of pi with bi bits. Assuming Pi is a random variable
for the samples in pi, we can approximate Wi(bi) [22].

Wi(bi) ≈ var(Pi)hi2
−2bi (13)

Here, var(Pi) is the variance of Pi and the constant hi
is determined by the pdf fP̄i

(p) of the normalized random
variable P̄i = Pi/

√
var(Pi) as

hi =
1

12

{∫ ∞
−∞

[fP̄i
(p)]1/3 dp

}3

. (14)

We can find the approximate var(Pi) and hi using an empirical
distribution of the samples in pi.

A greedy algorithm modified from the algorithm in [22]
can solve (12). This modified greedy algorithm increases the
number of quantization bits bi by one for the quantizer with
maximum weighted mean-squared error λiWi(bi) in each
iteration, until it allocates all B bits. This bit allocation
algorithm is shown in Algorithm 1.

Since the principal component vi also has the same weight
λi as its corresponding transformed variable pi, our method
assigns the same bi bits to the quantizer of vi. Fig. 3 shows the
overall compression process using PCA and transform coding
with bit allocation. After the quantization, the quantized pi

and vi are transmitted to the BBU via the fronthaul link.
Regarding the total number of bits required to quantize pi

and vi, the proposed quantization method reduces the number
of the aggregate quantization bits from (M + N)L bSD to
(M +N)

∑L
i=1 bi, where bSD denotes the number of standard

quantization bits. Therefore, the compression gain of transform
coding with bit allocation is

CRBA =
L bSD∑L
i=1 bi

. (15)

Without considering the number of additional bits to be sent
for quantization side information (QSI), the overall compres-
sion ratio regarding both dimensionality reduction and bit

Algorithm 1 Greedy Algorithm for Bit Allocation
1: Initialize bi = 0 for all i ∈ {1, 2, · · · , L}
2: Input B, λi,Wi, i ∈ {1, 2, · · · , L}
3: while

∑L
i=1 bi < B do

4: Find k = argmaxi∈{1,2,··· ,L} λiWi(bi)
5: bk = bk + 1
6: end while
7: Return b = [b1, b2, · · · , bL]

Fig. 3. Space-time fronthaul compression using PCA and transform coding
with bit allocation.

allocation becomes CRDR CRBA.
The side information includes quantization ranges for each

pi and vi, quantization bit bi information and rank informa-
tion. The information of quantization ranges can be transmitted
with 2L bSD bits by representing each range with bSD bits. The
information for all bi, i ∈ {1, 2, · · · , L} requires L log2bSD
bits as the maximum possible value of bi is bSD, and the rank
information can be represented with log2M bits. Thus, the
final compression ratio is derived as

CRDRBA =
MN bSD

(M +N)
∑L

i=1 bi + bQSI
(16)

with
bQSI = L(2bSD + log2bSD) + log2M

where bQSI is the number of bits for QSI. (16) is the worst
case compression ratio as it assumes that there is no QSI
to be transmitted for the non-compression case. Since bQSI is
almost proportional to the rank L, and N is much larger than L
from the assumption; N � M > L, bQSI becomes negligible
compared to the other terms in (16). In this case, the overall
compression ratio becomes CRDRBA ≈ CRDR CRBA.

IV. SIMULATION RESULTS

In this paper, we evaluate the performance of the proposed
compression method by using an LTE uplink link-level simu-
lator, and using two performance metrics. First, the simulator
records uncoded bit error rates (BERs) to measure the impact
of the compression method. Second, it measures EVM, which

TABLE I
EVM REQUIREMENTS

Modulation Scheme Required EVM [%]

QPSK 17.5 %

16QAM 12.5 %

64QAM 8 %

256QAM 3.5 %



(a) (b)
Fig. 4. The graphs show uncoded bit-error rate (BER) for compression with dimension reduction (DR), DR with Bit Allocation (DRBA) and 4-bit uniform
quantization, and for no compression with 15-bit uniform quantization in (a) the network with 64 receiving antennas and 4 active users, and (b) the network
with 64 receiving antennas and 8 active users. All active users transmitted 64-QAM.

(a) (b)
Fig. 5. The graphs show error-vector magnitude (EVM) for compression with dimension reduction (DR), DR with Bit Allocation (DRBA) and 4-bit uniform
quantization, and for no compression with 15-bit uniform quantization in (a) the network with 64 receiving antennas and 4 active users, and (b) the network
with 64 receiving antennas and 8 active users. All active users transmitted 64-QAM.

shows the difference between the ideal symbols and the
decoded symbols after equalization. EVM requirements for
QPSK, 16-QAM, 64-QAM and 256-QAM modulations are
shown in the Table I [23].

Pedestrian A channel model is considered with 10 MHz
LTE, which supports 50 resource blocks. The exponential
correlation model [24] is used to generate antenna correlation
assuming uniform linear array antennas. 64-QAM modulation
is applied for symbol mapping. We simulate the proposed
method in two cases: (a) 64 receiving antennas with 4 users,
and (b) 64 receiving antennas with 8 users. Equally allocating
the resource blocks to each user, overall 48 resource blocks
are occupied with user signals for both cases. The number of

compression samples N is 1096 (1024 IDFT outputs plus CP)
and M is 64, so Y is the matrix of dimensions 1096× 64.
The true ranks of the matrix Y0 for each case are 16 and 32
(L = 16, 32) respectively, and bSD is 15.

The simulation shows the BER and EVM curves of the 4
following cases: dimension reduction without bit allocation
(DR), dimension reduction with bit allocation (DRBA), 4-
bit uniform quantizer and 15-bit uniform quantizer. The 4-bit
uniform quantizer case is a simple compression case, in which
the number of quantization bits for I/Q samples is reduced to 4
bits without other compression procedures. The 15-bit uniform
quantizer case is equivalent to non-compression case as we
consider the standard quantization bit bSD = 15. The number



of bits specified is the number of quantization bits per real or
imaginary part of the samples. The compression ratios shown
in the graphs are drawn based on (16) to take into account all
required bits that are transmitted via the fronthaul link.

Fig. 4 shows BER curves for cases (a) and (b). In Fig. 4(a),
DR achieves 3.8× compression with 6 dB SNR gain compared
to the 15-bit uniform quantizer case. This corresponds to (11)
as GdB = 10 log104 ≈ 6 (dB) with M = 64 and L = 16.
Accomplishing an additional 2.1× rate reduction from the
quantization, DRBA attains 8.0× compression. Except for
the very high SNR region, DRBA’s SNR gain is similar to
DR. The 4-bit uniform quantizer results in significant BER
increase compared to the non-compression case with 3.75×
compression ratio, which is lower than the compression ratios
of both DR and DRBA.

The simulation results in Fig. 4(b) show that DR achieves
1.9× compression with 3 dB SNR gain compared to the 15-
bit uniform quantizer curve. This also corresponds to (11) as
GdB = 10log102 ≈ 3 (dB) with M = 64 and L = 32.
Although this compression ratio is relatively small as more
active users increases the rank L, it can escalate up to 5.0×
due to the additional 2.7× rate reduction from the quantization
in DRBA. Except for the very high SNR region in which the
DRBA curve shows slight increase of BER compared to the
non-compression case, DRBA’s SNR gain is similar to DR.
The 4-bit uniform quantizer shows serious BER increment
compared to the non-compression case, achieving 3.75× com-
pression which is lower than the compression ratio of DRBA.

EVM curves for cases (a) and (b) are shown in Fig. 5. DR
curve presents about 6 dB and 3 dB SNR gain respectively,
compared to the 15-bit quantizer case. These gains also cor-
respond to (11) with given M and L values. Besides the very
high SNR region, DRBA shows similar EVM curves with DR,
achieving higher compression ratios — 8.0× in case (a) and
5.0× in case (b). Since DR and DRBA show improvements
in EVM due to the denoising effect, both methods meet the
EVM requirement for 64-QAM with about 1.5% to 3% EVM
improvement in case (a) and 0.5% to 1% EVM improvement
in case (b) for a typical LTE SNR range, whereas the 4-bit
uniform quantizer results in catastrophic EVM increase.

V. CONCLUSION

In this paper, we have proposed a space-time fronthaul com-
pression method of uplink LTE signals for the case, in which
the number of receiving antennas at the RRH outnumbers the
number of active users in the cell. Since neighboring antennas
at the RRH receive spatially correlated signals, the propose
method leverages both spatial and temporal correlation of the
received signals. PCA performs low-rank approximation by
exploiting the correlation structure across space and time to re-
duce dimensionality of the signals. Transform coding with bit
allocation is applied for additional compression by individually
quantizing the dimensionality-reduced signals with less num-
ber of bits. Via numerical results, we demonstrate the validity
of the proposed compression method; 8.0× compression is

achievable with 6 dB SNR gain in EVM compared to the non-
compression in the case of 64 receiving antennas and 4 users.
Thus, the application of the proposed compression method can
significantly lower transport data rate while simultaneously
improving EVM performance.
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