User Scheduling for Millimeter Wave MIMO Communications with Low-Resolution ADCs

Jinseok Choi and Brian L. Evans
Wireless Networking and Communications Group
Electrical and Computer Engineering
The University of Texas at Austin

EXCESSIVE POWER CONSUMPTION

Millimeter wave communications "large number of antennas" + "high sampling rate"

- Full-resolution ADC (12 16 bits)
- Full RF chains $(N_{RF} = N_r)$

Conventional Solution A

Low-resolution ADC receiver

- Fixed low-resolution ADC (<<12bits)
- Full RF chains $(N_{RF} = N_r)$

Conventional Solution B

- Full-resolution ADC (12 16 bits)
- Fewer RF chains (NRF << Nr)

USER SCHEDULING

- ☐ Scheduling gain in single-cell environment
 - Performance gains by increasing channel gains while decreasing inter-user interference (IUI)
 - Previous scheduling algorithms
 - Random beamforming (RBF) [Sharif&Hassibi05]
 - Semi-orthogonal user scheduling (SUS) [Yoo&Goldsmith06]
 - Millimeter wave beam aggregation scheduling (mBAS) [Lee&Sung16]

-Perfect quantization
Channel orthogonality
Channel magnitude

- ☐ Non-negligible quantization error
 - Change in SINR computation:

$$SINR = \frac{SIGNAL}{AWGN+IUI+QN}$$

Prop. to channel gain h Inv. prop to quantization bits b $\propto h2^{-2b}$

Analog signal
—Quantized signal
—Quantization error

QN needs to be considered to maximize SINR with scheduling

SYSTEM MODEL

(i)

- ☐ Multi-user MIMO uplink system
 - Single cell environment
 - N_u users in single cell
 - Single-antenna user

• Schedule $N_S \leq N_{RF}$ users

Zero-forcing combiner

Quantized signal vector (linear approx.)

$$\mathbf{y}_{\mathbf{q}} = \mathcal{Q}(\operatorname{Re}\{\mathbf{y}\}) + j\mathcal{Q}(\operatorname{Im}\{\mathbf{y}\})$$
$$= \alpha\sqrt{\rho}\mathbf{H}_{\mathbf{b}}\mathbf{s} + \alpha\boldsymbol{\eta} + [\mathbf{q}]$$

Beam domain channel matrix

Additive quantization noise

*Discrete Fourier transform

PROBLEM FORMULATION

- Maximum sum rate scheduling
 - Schedule users to maximize sum rate

$$\mathcal{P}1: \quad \mathcal{R}(\mathbf{H}_{b}(\mathcal{S}^{\star})) = \max_{\mathcal{S} \subset \{1, ..., N_{u}\}: |\mathcal{S}| \leq N_{s}} \sum_{k \in \mathcal{S}} \mathcal{R}_{k}(\mathbf{H}_{b}(\mathcal{S}))$$

 \mathcal{S} : scheduled user set $\mathbf{H}_{b}(\mathcal{S})$: \mathbf{H}_{b} of users in \mathcal{S}

Achievable rate of user *k*

$$\mathcal{R}_{k}(\mathbf{H}_{b}) = \log_{2} \left(1 + \frac{\alpha^{2} p_{u}}{\alpha^{2} \|\mathbf{w}_{\mathrm{zf},k}\|^{2} + \mathbf{w}_{\mathrm{zf},k}^{H} \mathbf{R}_{\mathbf{qq}}(\mathbf{H}_{b}) \mathbf{w}_{\mathrm{zf},k}} \right)$$

minimize AWGN

AWGN

ON Minimize

Previous scheduling condition

- (I) $\mathbf{h}_{\mathrm{b},k} \perp \mathbf{h}_{\mathrm{b},k'}, \ k \neq k'$ (2) maximize $\|\mathbf{h}_{\mathrm{b},k}\|^2$

Additional condition

$$\mathbf{R_{qq}}(\mathbf{H_b}) = \alpha\beta \operatorname{diag}(p_u\mathbf{H_b}\mathbf{H_b}^H + \mathbf{I}_{N_{\mathrm{RF}}})$$

(3) minimize $\|[\mathbf{H}_{\rm b}]_{i,:}\|^2$

: minimize quantization error

PROBLEM RE-FORMULATION

- ☐ Optimal channel design problem
 - Characterize channel matrix that maximizes uplink sum rate

$$\mathcal{P}2: \quad \mathcal{R}(\mathbf{H}_{b}^{\star}) = \max_{\mathbf{H}_{b} \in \mathbb{C}^{N_{\mathrm{RF}} \times N_{u}}} \sum_{k=1}^{N_{u}} \mathcal{R}_{k}(\mathbf{H}_{b}), \quad \text{s.t. } \|\mathbf{h}_{b,k}\| = \sqrt{\gamma_{k}} \quad \forall k.$$

- Virtual channel representation [Sayeed02]
 - provides geographical interpretation for analysis

 \mathbf{h}_{b} : L-sparse vector (L nonzero complex gains for propagation paths)

(i)

NEW USER SCHEDULING CRITERIA

- \square Solution of $\mathcal{P}2$: structural scheduling criteria
 - For total # of channel paths $\leq N_{RF}$

Theorem I

 \mathcal{L}_k : index set of nonzero elements

I. Unique *AoAs at receiver for channel paths of each scheduled user:

$$\mathcal{L}_{\mathcal{S}(k)} \cap \mathcal{L}_{\mathcal{S}(k')} = \emptyset \text{ if } k \neq k'.$$

II. Equal power spread across beamspace complex gains within each channel:

$$|h_{\mathrm{b},i,\mathcal{S}(k)}| = \sqrt{\gamma_{\mathcal{S}(k)}/L_{\mathcal{S}(k)}} \text{ for } i \in \mathcal{L}_{\mathcal{S}(k)}.$$

*Angle of arrivals

Aggregated channel gain at ADC

- Unique AoAs
- Equal power spread

minimize $\|[\mathbf{H}_{\mathrm{b}}]_{i,:}\|^2$

USER SCHEDULING CRITERIA

☐ User scheduling criteria under coarse quantization

Previous criteria

- (A) Orthogonality among scheduled users $\mathbf{h}_{\mathrm{b},k} \perp \mathbf{h}_{\mathrm{b},k'}, \ k \neq k'$
- (B) Large channel gain for each user $\|\mathbf{h}_{\mathrm{b},k}\|^2$

Additional criteria

- (C) Unique angle of arrivals for each user $\mathcal{L}_{\mathcal{S}(k)} \cap \mathcal{L}_{\mathcal{S}(k')} = \phi$ if $k \neq k'$
- (D) Equal power spread within each user channel $|h_{\mathrm{b},i,\mathcal{S}(k)}| = \sqrt{\gamma_{\mathcal{S}(k)}/L_{\mathcal{S}(k)}}$ for $i \in \mathcal{L}_{\mathcal{S}(k)}$

: structural scheduling criteria

Previous algorithms only consider (A) and (B)

New scheduling algorithm satisfying (A - D) is necessary

(i

PROPOSED ALGORITHM I

Channel structure-based scheduling (CSS)

Step I. Set filtering: modified semi-orthogonality filtering

Cond.A $\mathbf{h}_{\mathrm{b},k} \bot \mathbf{h}_{\mathrm{b},k'}$	$\frac{ \mathbf{f}_{\mathcal{S}(i)}^H \mathbf{h}_{\mathrm{b},k} }{\ \mathbf{f}_{\mathcal{S}(i)}\ \ \mathbf{h}_{\mathrm{b},k}\ } < \epsilon$	$\mathbf{f}_{\mathcal{S}(i)}$: component of $\mathbf{h}_{\mathrm{b},\mathcal{S}(i)}$ such that $\mathbf{f}_{\mathcal{S}(i)} \perp \mathrm{span}\{\mathbf{f}_{\mathcal{S}(1)},\ldots,\mathbf{f}_{\mathcal{S}(i-1)}\}$
Cond. C $\mathcal{L}_k \cap \mathcal{L}_{k'} = \phi$	Spatial orthogonality $ \mathcal{B}_{\mathcal{S}(i)} \cap \mathcal{B}_k \leq N_{\mathrm{OL}}$	\mathcal{B}_k : index set of dominant beamspace gains

: remaining users become semi-orthogonal to scheduled users

Step2. Selection: maximum approximated SINR

Repeat step I and 2

PROPOSED ALGORITHM 2

- ☐ Greedy User Scheduling
 - Schedules user who provides max. sum rate
 - Provides sub-optimal performance
 - Requires prohibitively high complexity

Algorithm 2 Greedy User Scheduling

- 1) BS initializes $\mathcal{T}_1 = \{1, \dots, N_u\}, \mathcal{S}_G = \phi$, and i = 1.
- 2) BS selects a user who maximizes sum rate as

$$S_G(i) = \underset{k \in \mathcal{T}_i}{\operatorname{argmax}} \sum_{j \in S_G \cup \{k\}} \mathcal{R}_j ([\mathbf{H}_b(S_G), \mathbf{h}_{b,k}])$$

where \mathcal{R}_i is given in (6).

3) Update $\mathcal{T}_{i+1} = \mathcal{T}_i \setminus \{S_G(i)\}$, $S_G = S_G \cup \{S_G(i)\}$, and i = i + 1, and go to step 2 until select N_s users.

 \Box At *i* th scheduling stage (iteration)

Greedy

Compute \mathcal{R}_j $|\mathcal{T}_i| imes i$

CSS

Approx. SINR $|\mathcal{K}_i|$

Matrix inversion involved in \mathcal{R}_i

VS.

VS.

No inversion in SINR

No set filtering $|\mathcal{T}_i| \gg |\mathcal{K}_i|$

VS.

Set filtering $|\mathcal{T}_i| \gg |\mathcal{K}_i|$

High complexity

Low complexity

SIMULATION RESULTS

[19] Yoo&Goldsmith06

(i)

[15] Lee&Sung16

128 antennas, 128 RF chains, 200 candidate users, 10 scheduled users, 4 channel paths / user

SIMULATION RESULTS

of Users in Set vs. Selection Stage

Figure 3

- CSS has smallest candidate user sets over most of stages
- CSS becomes more efficient than
 Greedy as more users are scheduled

CSS becomes more efficient than
 Greedy as total candidate user increases

CONCLUSION

- ☐ Contributions
 - Provided optimal channel structure analysis: offers channel structural scheduling criteria
 - ◆ Proposed efficient user scheduling algorithm in low-resolution ADC systems
 : achieves sub-optimal sum rate performance with low complexity
- ☐ Future work
 - ◆ Develop efficient user scheduling algorithm that jointly optimizes RF chain

Thank you

REFERENCES

- [Fletcher&Rangan07] Fletcher, Alyson K., Sundeep Rangan, Vivek K. Goyal, and Kannan Ramchandran. "Robust predictive quantization: Analysis and design via convex optimization." IEEE Journal of selected topics in signal processing 1, no. 4 (2007): 618-632
- [Lee&Sung16] Lee, Gilwon, Youngchul Sung, and Marios Kountouris. "On the performance of random beamforming in sparse millimeter wave channels." *IEEE Journal of Sel. Topics in Signal Processing* 10.3 (2016): 560-575.
- [Sayeed02] Sayeed, Akbar M. "Deconstructing multiantenna fading channels." *IEEE Trans. on Signal Processing* 50.10 (2002): 2563-2579.
- [Sharif&Hassibi05] Sharif, Masoud, and Babak Hassibi. "On the capacity of MIMO broadcast channels with partial side information." *IEEE Trans. on Info. Theory* 51.2 (2005): 506-522.
- [Yoo&Goldsmith06] Yoo, Taesang, and Andrea Goldsmith. "On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming." *IEEE Journal on Sel. Areas in Comm.* 24.3 (2006): 528-541.