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== EXCESSIVE POWER CONSUMPTION

Millimeter wave communications “large number of antennas” + “high sampling rate”
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== USER SCHEDULING

1 Scheduling gain in single-cell environment

* Performance gains by increasing channel gains while decreasing inter-user interference (1UI)
" Previous scheduling algorithms
* Random beamforming (RBF) [Sharif&Hassibi05]

«  Semi-orthogonal user scheduling (SUS) [Yoo&Goldsmith06] —Perfect quantization

*  Millimeter wave beam aggregation scheduling (mBAS) [Leegsungls] | Channel orthogonality
— Channel magnitude

1 Non-negligible quantization error

* Change in SINR computation:

SINR= __ SIGNAL
AWGN+UI+QN «

| Prop. to channel gain h
_4 Inv. prop to quantization bits b

x h22b

--------------------------------------

N —————— — —
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\
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QN needs to be considered to maximize SINR with scheduling

*QN: Quantization Noise




== SYSTEM MODEL

Submatrix of *DFT matrix
Base station / Low-resolution ADCs
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1 Quantized signal vector (linear approx.

ya = QRe{y}) +7Q(Im{y})

=
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*Discrete Fourier transform Beam domain channel matrix Additive quantization noise




== PROBLEM FORMULATION

1 Maximum sum rate scheduling

= Schedule users to maximize sum rate

1: H,(S¥)) = H
Pl RS =y BE% g oy, 2 ReE(E)

S: scheduled user set  Hy(S): Hy of users in S

= Achievable rate of user k

a’p
Ri(Hy,) =log, | 1+ -
S ; ( 2| Wt k||* + Wi  Raq (Hb) Wyt i

1S P
gV 7AWGN QN Zy
((\\(\\ //b/.?@

(" Previous scheduling condition ) 4 Additional condition )

() hy s Lhy o, k2 K Rqq(Hy) = af diag(pHyHI 4 Iy, )

(2) maximize H hb,k H 2 2

\(3) minimize ||[Hyp];.. ||

: minimize quantization error



== PROBLEM RE-FORMULATION

1 Optimal channel design problem

* Characterize channel matrix that maximizes uplink sum rate

HbECNRF XNu

Ny,
P2: RMH}) = max > Rip(Hp), st |hpil =% V.
k=1

" Virtual channel representation [sayeedo2]

* provides geographical interpretation for analysis

hy,: L-sparse vector (L nonzero complex gains for propagation paths)
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== NEW USER SCHEDULING CRITERIA ®

1 Solution of P2: structural scheduling criteria
* For total # of channel paths < Nyp

L.: index set of nonzero elements
Theorem |

|.  Unique *AoAs at receiver for channel paths of each scheduled user:

ll.  Equal power spread across beamspace complex gains within each channel:

|Ab,i.s00)| = \/VS(k)/LS(k:) for i € L)

*Angle of arrivals

Channel Hb

-1 Aggregated channel gain at ADC

* Unique AoAs
* Equal power spread
I*

minimize ||[Hyp]; .

hy; hy2 hy3 hyg




== USER SCHEDULING CRITERIA

1 User scheduling criteria under coarse quantization

Previous criteria

: structural scheduling criteria

=  Previous algorithms only consider (A) and (B)

New scheduling algorithm satisfying (A - D) is necessary




== PROPOSED ALGORITHM |

d Channel structure-based scheduling (CSS)

Stepl. Set filtering: modified semi-orthogonality filtering

Semi-orthogonality
s b
fs¢) [l Do &

< €

fs(;): component of hy, 5¢;) such that fs(;) L span{fs(y),..

fsa-1}

Spatial orthogonality

|Bsiy N Bi| < Now

Br: index set of dominant beamspace gains

: remaining users become semi-orthogonal to scheduled users

Step2. Selection: maximum approximated SINR

................
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== PROPOSED ALGORITHM 2

J Greedy User Scheduling O At i th scheduling stage (iteration)
= Schedules user who provides max. sum rate
" Provides sub-optimal performance Greedy CSS
= Requires prohibitively high complexity Cemmaie Approx. SINR
J .
Tilxa " il

Algorithm 2 Greedy User Scheduling

1) BS initializes 7; = {1,...,N,}, S = ¢, and i = 1. Matrix inversion . No inversion

2) BS selects a user who maximizes sum rate as involved in Rj . in SINR
Sa(i) = ?11§1{;3'X Z R ([Hb (S), h k) No set filtering Set filtering
e p ) .
jeSa0 k) 75> 1K Y T > 1K)
where R ; is given in (6).
3) Update Tiy1 = Ti \ {Sc(i)}, Sa¢ = S¢ U{Sc(i)}, and High complexity Low complexity

t =1+ 1, and go to step 2 until select Ny users.
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== SIMULATION RESULTS
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The Number of Quantization Bits b

Quantization error becomes negligible
: CSS is also effective under perfect quantization

Transmit Power p [dBm]

Quantization error dominates thermal noise
: CSS is effective under quantization error

128 antennas, 128 RF chains, 200 candidate users, 10 scheduled users, 4 channel paths / user



== SIMULATION RESULTS [19] YooaGoldsmith0
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# of Users in Set vs. Selection Stage
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== CONCLUSION

1 Contributions

4 Provided optimal channel structure analysis

: offers channel structural scheduling criteria

4 Proposed efficient user scheduling algorithm in low-resolution ADC systems

: achieves sub-optimal sum rate performance with low complexity

] Future work

4+ Develop efficient user scheduling algorithm that jointly optimizes RF chain
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