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== MILLIMETER WAVE COMMUNICATIONS FOR 5G ™"

* Key Properties e
Conventional MIMO Receiver
* High frequency: 30 — 300 GHz [ ]
* lLarge bandwidth: |00MHz — |GHz
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== Goal

d Design new analog combining to incorporate quantization error

Conventional low-power solutions (A, B) New low-power solution

Low-resolution ADC system Hybrid beamforming system Hybrid + Low-resolution ADCs

Split into two combiners
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Reduced number of ADC bits, Reduced number of RF chains, (1) Reduces number of RF chains
BUT full RF chains (Ngr = N,.) BUT full-resolution ADCs (b = 12) (2) Low-resolution ADCs

Key Idea: |5t AC*: aggregates channel gain + 2" AC: spread gains

*AC:Analog combiner




== SYSTEM MODEL
1 Multi-user MIMO uplink system
.

Single cell environment

Y/ ' Analog Combiner | ) = Serve N, < Ny users w.single antenna
i 2 Analog Combiner Lowfgs_o_ltitlon/_\
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*ARV:Array response vector




== PROBLEM FORMULATION

1 Maximizing mutual information

" Maximum Ml problem: c(Wgr) £ I(s;yq)
* Assume semi-unitary constraint: WL Wgp = Iy,
* No constant modulus constraint on analog combiner

Pl: Wit = arg max C(Wrr), s.t. WipWgr = L.
RF

1 Optimal scaling law with respect to number of RF chains Nrr

Theorem |: Optimal scaling law

Optimal solution to P1 achieves following scaling law with respect to number of RF chains:
C(WORI?) ~ Ny logy Nrp
It can be also achieved by using following two-stage combiners:

(’I,) ﬁFl = [UlzNu UJ_] : matrix of left singular vectors :conventional optimal solution for perfect quantization systems

(47) Wxp, :any Nre x NRF unitary matrix with constant modulus



== OPTIMAL SCALING LAW (cont’d)

1 Optimal scaling law with respect to number of RF chains Nrr

Corollary |: Upper bound for conventional solution

Conventional optimal solution Wiy = [U1.x,U || for perfect quantization
systems cannot achieve optimal scaling law in coarse quantization systems.
It is upper bounded by Y quantization gain < |

C(WSL) < C = N, log, <1+1ab >

Captures channel gains: Increases quantization noise:
Nu largest singular values ' Large gains on a few ADCs

Second analog combiner WRF: in Theorem | resolves quantization noise enhancement




== OPTIMAL MUTUAL INFOMATION

d Optimal Ml for special case : Homogeneous channel singular values

Theorem 2: Maximum Mutual Information

For homogeneous channel singular value case, two-stage analog
combining solution in Theorem |, Wiy = Wgip, Wi, , maximizes Ml:

Wgp = argmaxC(Wrp)
Wrr
S.t. WPP{IFWRF = INRF and )\1 = = )\N =)\

Optimal mutual information:

AN
Copt 2 C(Wip) = Ny log, (1 + Qb2 RE )

)\Nu(l — Ozb) -+ NRF/,O

Proposed two-stage analog combining achieves optimal Ml for homogeneous massive MIMO



== TWO-STAGE ANALOG COMBINING ALGORITHM (cont’d)

1 Two-stage analog combiner under practical constraints

" Array response vector-based two-stage analog combining

Algorithm 1: ARV-based TSAC

1 Initialization: set Wgp, = empty matrix, Hy,,, = H, and V = {94, ..., J)y|} where
9 :AoA codebook
1971 == —1 st i
VI | analog combiner

") for 2 =1: Nrp do
3 Maximum channel gain aggregation
(a) a(¥*) = argmaxy.y, ||a(d)? Hom||* : capture max channel gain
(b) Wgr, = [ Wgp, | a(9*) ]
(¢) Hm = Pi(ﬂ*)Hrm, where ’Pi(ﬂ) =TI —a(¥)a(?)™ :null space projection (for orthogonality)
(d) V=V\ {9}

. 4 end

Set Wrr, = Wprr where Wppr is a normalized Nrr X Nrp DFT matrix. 2" analog combiner

i

return Wgyp, and Wep,:
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== SIMULATION RESULTS

d Millimeter wave channels
Ml vs. SNR

=  Simulation cases Figure 5

) ARV-TSAC: proposed two-stage analog combining 451
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2) ARV: one-stage analog combining
with Wrp = Wgy, designed from ARV-TSAC
Infeasible to implement .
{ 3) SVD+DFT: two-stage analog combining in Theorem |
- with Wgrr, = Ui.npe sWRr, = WppT
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== SIMULATION RESULTS (cont’d)

MI vs. NRF (Fixed Nv) MI vs. NRF (Fixed k = Nr#/Nr)

Figure 2 Figure 3
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Proposed receiver architecture
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( Optimality D)

Optimal scaling law

C(W?{%) ~ Ny logy NrF

Optimal mutual information

Copt 2 C(Whp) = N, log, (1 . ay ANRp >

Ny(1 — o) + Nrr/p
\ J

(- )

Algorithm

ARV-TSAC algorithm
Wir = WaoaWppr
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