A Hybrid Beamforming Receiver with Two-Stage Analog Combiner and Low-Resolution ADCs

Jinseok Choi, Gilwon Lee, and Brian L. Evans

ICC 2019 Presentation

May 21, 2019

The University of Texas at Austin
Wireless Networking & Communications Group
Embedded Signal Processing Laboratory

MILLIMETER WAVE COMMUNICATIONS FOR 5G [Pi&Khan11]

Key Properties

- High frequency: 30 300 GHz
- Large bandwidth: I00MHz IGHz
- Large pathloss / blockage

Excessive power consumption

- large number of antennas and radio frequency chains
- high sampling rate

Goal

Design new analog combining to incorporate quantization error

- (I) Reduces number of RF chains
- (2) Low-resolution ADCs

Key Idea: Ist AC*: aggregates channel gain + 2nd AC: spread gains

SYSTEM MODEL

Two-stage solution

- ☐ Multi-user MIMO uplink system
 - Single cell environment
- Serve $N_u \leq N_{RF}$ users w. single antenna
- Millimeter wave channel

Large scale fading gain Small scale path gain Angle of arrival $\mathbf{h}_{\gamma,k} = \frac{1}{\sqrt{\gamma_k}} \mathbf{h}_k = \sqrt{\frac{N_r}{\gamma_k L_k}} \sum_{\ell=1}^{L_k} g_{\ell,k} \mathbf{a}(\theta_{\ell,k})$

[Akdeniz&Rappaport I 4]

Array response vector

*ARV for uniform linear array (ULA)

$$\mathbf{a}(\theta) = \frac{1}{\sqrt{N_r}} \Big[1, e^{-j\pi\vartheta}, \dots, e^{-j(N_r - 1)\pi\vartheta} \Big]^\mathsf{T}$$
 and $\vartheta = \frac{2d}{\lambda} \sin \theta$

☐ Received signal after power control

$$\mathbf{r} = \mathbf{H}_{\gamma}\mathbf{x} + \mathbf{n} = \mathbf{H}\mathbf{B}\mathbf{P}\mathbf{s} + \mathbf{n} = \sqrt{\rho}\mathbf{H}\mathbf{s} + \mathbf{n}$$

$$\mathbf{B} = \operatorname{diag}\{\sqrt{1/\gamma_1}, \dots, \sqrt{1/\gamma_{N_u}}\}$$

$$\mathbf{P} = \operatorname{diag}\{\sqrt{\rho\gamma_1}, \dots, \sqrt{\rho\gamma_{N_u}}\}$$

$$\mathbf{n} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}_{N_r})$$

PROBLEM FORMULATION

- ☐ Maximizing mutual information
 - Maximum MI problem: $C(\mathbf{W}_{RF}) \triangleq I(\mathbf{s}; \mathbf{y}_q)$
 - Assume semi-unitary constraint: $\mathbf{W}_{\mathrm{RF}}^H\mathbf{W}_{\mathrm{RF}}=\mathbf{I}_{N_{\mathrm{RF}}}$
 - No constant modulus constraint on analog combiner

$$\mathcal{P}1: \mathbf{W}_{RF}^{opt} = \arg\max_{\mathbf{W}_{RF}} \mathcal{C}(\mathbf{W}_{RF}), \text{ s.t. } \mathbf{W}_{RF}^H \mathbf{W}_{RF} = \mathbf{I}.$$

 \Box Optimal scaling law with respect to number of RF chains N_{RF}

Theorem 1: Optimal scaling law

Optimal solution to $\mathcal{P}1$ achieves following scaling law with respect to number of RF chains:

$$\mathcal{C}(\mathbf{W}_{\mathrm{RF}}^{\mathrm{opt}}) \sim N_u \log_2 N_{\mathrm{RF}}$$

It can be also achieved by using following two-stage combiners:

- $(i)~\mathbf{W}^\star_{\mathrm{RF}_1} = [\mathbf{U}_{1:N_u}\mathbf{U}_\perp]$: matrix of left singular vectors : conventional optimal solution for perfect quantization systems
- (ii) $\mathbf{W}_{\mathrm{RF}_2}^{\star}$: any N_{RF} x N_{RF} unitary matrix with constant modulus

OPTIMAL SCALING LAW (cont'd)

 \Box Optimal scaling law with respect to number of RF chains N_{RF}

Corollary I: Upper bound for conventional solution

Conventional optimal solution $\mathbf{W}^{\mathrm{cv}}_{\mathrm{RF}} = [\mathbf{U}_{1:N_u}\mathbf{U}_{\perp}]$ for perfect quantization systems cannot achieve optimal scaling law in coarse quantization systems. It is upper bounded by

$$\mathcal{C}(\mathbf{W}_{\mathrm{RF}}^{\mathrm{cv}}) < \mathcal{C}_{\mathrm{svd}}^{\mathrm{ub}} = N_u \log_2 \left(1 + \frac{\alpha_b}{1 - \alpha_b} \right)$$

Captures channel gains: Nu largest singular values

VS.

Increases quantization noise: Large gains on a few ADCs

Second analog combiner WRF2 in Theorem 1 resolves quantization noise enhancement

OPTIMAL MUTUAL INFOMATION

Optimal MI for special case: Homogeneous channel singular values

Theorem 2: Maximum Mutual Information

For homogeneous channel singular value case, two-stage analog combining solution in Theorem 1, $\mathbf{W}_{\mathrm{RF}}^{\star} = \mathbf{W}_{\mathrm{RF}_{1}}^{\star} \mathbf{W}_{\mathrm{RF}_{2}}^{\star}$, maximizes MI:

$$\mathbf{W}_{\mathrm{RF}}^{\star} = \arg \max_{\mathbf{W}_{\mathrm{RF}}} \mathcal{C}(\mathbf{W}_{\mathrm{RF}})$$
s.t. $\mathbf{W}_{\mathrm{RF}}^{H} \mathbf{W}_{\mathrm{RF}} = \mathbf{I}_{N_{\mathrm{RF}}} \text{ and } \lambda_{1} = \cdots = \lambda_{N_{u}} = \lambda$

Optimal mutual information:

$$C_{\text{opt}} \triangleq C(\mathbf{W}_{\text{RF}}^{\star}) = N_u \log_2 \left(1 + \frac{\alpha_b \lambda N_{\text{RF}}}{\lambda N_u (1 - \alpha_b) + N_{\text{RF}}/\rho} \right)$$

Proposed two-stage analog combining achieves optimal MI for homogeneous massive MIMO

TWO-STAGE ANALOG COMBINING ALGORITHM (cont'd)

- ☐ Two-stage analog combiner under practical constraints
 - Array response vector-based two-stage analog combining

Algorithm 1: ARV-based TSAC

1 Initialization: set $\mathbf{W}_{\mathrm{RF}_1}=$ empty matrix, $\mathbf{H}_{\mathrm{rm}}=\mathbf{H},$ and $\mathcal{V}=\{\vartheta_1,\ldots,\vartheta_{|\mathcal{V}|}\}$ where $\vartheta_n=\frac{2n}{|\mathcal{V}|}-1$

Ist analog combiner

- **2** for $i = 1 : N_{RF}$ do
- 3 Maximum channel gain aggregation
 - (a) $\mathbf{a}(\vartheta^\star) = \operatorname{argmax}_{\vartheta \in \mathcal{V}} \|\mathbf{a}(\vartheta)^H \mathbf{H}_{\mathrm{rm}}\|^2$: capture max channel gain
 - (b) $\mathbf{W}_{\mathrm{RF}_1} = \left[\mathbf{W}_{\mathrm{RF}_1} \mid \mathbf{a}(\vartheta^{\star}) \right]$
 - (c) $\mathbf{H}_{\mathrm{rm}} = \mathcal{P}_{\mathbf{a}(\vartheta^{\star})}^{\perp} \mathbf{H}_{\mathrm{rm}}$, where $\mathcal{P}_{\mathbf{a}(\vartheta)}^{\perp} = \mathbf{I} \mathbf{a}(\vartheta) \mathbf{a}(\vartheta)^{H}$: null space projection (for orthogonality)
 - (d) $\mathcal{V} = \mathcal{V} \setminus \{\vartheta^{\star}\}$
- 4 end
- 5 Set $W_{RF_2} = W_{DFT}$ where W_{DFT} is a normalized $N_{RF} \times N_{RF}$ DFT matrix. 2nd analog combiner
- 6 **return** W_{RF_1} and W_{RF_2} ;

SIMULATION RESULTS

- Millimeter wave channels
 - Simulation cases
 - I) ARV-TSAC: proposed two-stage analog combining
 - 2) ARV: one-stage analog combining with $\mathbf{W}_{RF} = \mathbf{W}_{RF_1}$ designed from ARV-TSAC Infeasible to implement
 - 3) **SVD+DFT**: two-stage analog combining in Theorem I with $\mathbf{W}_{\mathrm{RF}_1} = \mathbf{U}_{1:N_{\mathrm{RF}}}$, $\mathbf{W}_{\mathrm{RF}_2} = \mathbf{W}_{\mathrm{DFT}}$
 - 4) **SVD**: one-stage analog combing with $\mathbf{W}_{\mathrm{RF}} = \mathbf{U}_{1:N_{\mathrm{RF}}}$.
 - 5) **Greedy-MI**: one-stage analog combining with greedy-based MI maximization

SIMULATION RESULTS (cont'd)

SUMMARY

Optimality

Optimal scaling law

$$\mathcal{C}(\mathbf{W}_{\mathrm{RF}}^{\mathrm{opt}}) \sim N_u \log_2 N_{\mathrm{RF}}$$

Optimal mutual information

$$C_{\text{opt}} \triangleq C(\mathbf{W}_{\text{RF}}^{\star}) = N_u \log_2 \left(1 + \frac{\alpha_b \lambda N_{\text{RF}}}{\lambda N_u (1 - \alpha_b) + N_{\text{RF}} / \rho} \right)$$

Algorithm

ARV-TSAC algorithm

$$\tilde{\mathbf{W}}_{\mathrm{RF}}^{\star} = \mathbf{W}_{\mathrm{AoA}} \mathbf{W}_{\mathrm{DFT}}$$

Related Articles

Conference paper

Jinseok Choi, Gilwon Lee, and Brian L. Evans, "A Hybrid Beamforming Receiver with Two-Stage Analog Combiner and Low-Resolution ADCs", *IEEE Int. Conf. on Communications*, 2019, accepted for publication.

Journal article

Jinseok Choi, Gilwon Lee, and Brian L. Evans, "Two-Stage Analog Combining in Hybrid Beamforming Systems with Low-Resolution ADCs", *IEEE Transactions on Signal Processing*, vol. 67, no. 9, pp. 2410-2425, May 1, 2019.

Thank you