1.0 INTRODUCTION

The purpose of this report is to present a write-up of my 464H project. The project involves automation of the photographic composition technique of the rule of thirds in real-time on a digital still camera. The objective of this project is to demonstrate the automation of the rule of thirds by creating a C program to run on a Digital Signal Processor (DSP). The report gives a background on my project, details on the design problem, my design solution, and the challenges of implementing this project. The report also gives an evaluation of my implementation, and recommendations for future work and research.

Dr. Brian L. Evans and the Digital Still Camera Research Group at the University of Texas at Austin have developed low-complexity image processing algorithms in MATLAB to automate select techniques of photographic composition [1; 2]. Under the sponsorship of Dr. Evans, I implemented the automation of one of these image processing algorithms, the rule of thirds, in real-time on a fixed-point DSP. For this project, real-time means the time to process an image should be a few seconds, and fixed-point means the precision of numbers is limited to integers. A fixed-point DSP is typically the main processing unit in a digital still camera. The design project solution is a fixed-point C program that automates the rule of thirds in real-time. The C program is optimized to run on a Texas Instruments (TI) TMS320C6701 DSP. Currently, digital still cameras do not offer features that involve automation of photographic composition techniques or significant post-processing of an acquired image in real-time. The contribution of my project is to demonstrate the implementation of efficient image processing algorithms on digital still cameras in real-time.
2.0 DESIGN PROBLEM STATEMENT

The rule of thirds is a photographic composition technique used by professional photographers to take appealing pictures of a main subject with a background [1]. According to this rule, the main subject should be placed one-third of the image height or width away from the top or bottom edge of the picture [1]. Figure 1 depicts the rule of third. The main subject, the man on the boat, is placed a third of the picture height from the top edge and a third of the picture width from the right edge. Such a placement of the main subject creates balance and a sense of interaction with the background in the picture. According to the rule [image: image3.png]

of thirds the main subject should be placed on any one or more of the four red circles in Figure 1.

Figure 1. Image depicting rule of thirds [3]

By automating the rule of thirds on a digital camera, an image with a main subject and background can be shifted automatically to center the main subject on the nearest rule of third position. Algorithms and MATLAB implementations for the automation of several photographic composition techniques involving a main subject and a background have already been proposed [1; 2]. The motivation of this project is to show the possibility of automating the technique of the rule of thirds in a digital still camera for the average user. An accurate and efficient automation of the rule of thirds can enable a digital camera user to take well-composed images in real-time. Real-time is the time a digital camera user is willing to wait for the image to be processed before he or she can take another picture, which is a few seconds. The design problem was to implement the automation of the rule of thirds in real-time on a fixed-point DSP.

The main goal of my project was to write a C program to automate the rule of thirds on a fixed-point DSP that would run in real-time. The C program was written and optimized to run on a TI TMS320C6701 DSP. Some specifications of the DSP are given on the next page in Table 1. Limited internal data and program memory in the DSP requires an efficient and optimized image-processing program. Such a program must take advantage of the architecture of the DSP

Table 1. TI TMS320C6701DSP Specifications [4]

	TI TMS320C6701 DSP
	Specification

	Instruction Cycle Time
	6.7 ns

	Clock Rate
	166 MHz

	Internal Program Memory
	16 KB

	Internal Data Memory
	64 KB

	External Memory
	256 KB SBSRAM, 8MB SDRAM

to process an image in the minimum possible time. The problem specification for this project was to process a 1024 x 1024 pixel color image on the TI DSP in one to two seconds within 10% accuracy of existing MATLAB implementations. The time to process the image is defined as the point in time from when the image is completely loaded into memory to the point in time when it is completely processed. The constraint on the algorithm was that processed images must contain a main subject in focus with the background blurred [1]. A digital camera user can acquire such images by focusing on the main subject and opening the shutter aperture of the camera to blur the background [1].

The design approach in this project was to write an optimized one-pass program that can give real-time performance in view of the memory and speed constraints of the TI DSP. In this case, a one-pass program is where the image is read from memory, processed, and if required written to memory only once to save on processing time and memory consumption. Since reading and writing to the small internal memory of the DSP is much faster than reading and writing to the large external memory, I designed a program to process the image in blocks. I configured the TI DSP to move blocks of the image from the large external memory space into the smaller internal data memory space until the entire image is processed.

3.0 DESIGN PROBLEM SOLUTION

My design problem solution is based on the MATLAB implementation algorithm developed by the Digital Still Camera Research Group. Since my C program was optimized to run on the TI DSP, I developed my own variations to these algorithms to achieve real-time performance with accurate results. The following sections explain the algorithms for MATLAB and DSP implementation.

3.1 MATLAB ALGORITHM

The MATLAB implementation uses floating-point numbers that offer a high level of precision. The algorithm for MATLAB implementation can be divided into two main steps as shown in Appendix A. Step 1 is the main subject detection [2]. In this step the main subject of the image is masked. In the original image the main subject is in focus and the background is blurred to meet design constraint. As a result, the main subject contains high frequencies due to sharper contrasts in pixel values while the blurred background contains lower frequencies due to softer contrasts in pixel values [2]. First, a sharpening filter is used to smooth the background and sharpen the main subject in focus [2]. The form of the sharpening filter is:

[image: image4.png]

[image: image1.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

-

+

-

-

-

-

+

a

a

a

a

b

a

a

a

a

a

a

1

1

1

1

1

1

The filter characteristics α and β can be adapted according to the image features [2]. Once the image is filtered, it is subtracted from the original image to produce an image with high pixel values in the edges of main subject [2]. An edge detector such as the Canny Edge Detector is used to obtain the edge map of the main subject [2]. After the edge detection, a contour detection framework such as the Gradient Vector Flow (GVF) algorithm is applied to close the gaps in the edges of the main subject [2]. Once the gaps in the contours of the main subject are filled, the closed main subject can be masked. In Step 2, an automated photographic composition technique, in this case the rule of thirds is applied to the image with the masked main subject. The image with the masked main subject is processed to calculate the center of gravity of the main subject. Once the center of gravity is calculated, the image is shifted and mirrored around the edges. The center of gravity of the main subject in the rule of thirds image now falls on the nearest rule of thirds location [2].

3.2 OPTIMIZED ALGORITHM FOR DSP
The algorithm for DSP implementation follows the same basic steps of filtering, main subject detection and calculation of center of gravity. Since my approach was to write a one-pass C program to process the image in blocks in real-time, I optimized each step of the algorithm to process the image in blocks. The C program was designed to read and write images in Portable Pixel Map (PPM) format. To implement my C program, I configured the DSP to read the entire image into external memory. Once the entire image is loaded, each block of the image is copied to internal data memory and processed. The size of the block is limited by the size of the internal data memory and other temporary memory requirements. The program performs the steps of main subject detection and center of gravity calculation on each block in one pass. Once all the blocks are processed, the overall center of gravity of the image is calculated and a shifted version of the original image that obeys the rule of thirds is written to the hard disk of the host computer. I optimized my program to reduce temporary memory consumption, reads and writes to external memory, and redundant code. To achieve real-time implementation, I made use of several TI DSP compiler-specific directives to ensure maximum throughput of code and parallelism of instructions in loops. The program uses fixed-point numbers or integers for fast execution. The implementation of the optimized C algorithm posed several challenges explained in the next section.
4.0 DESIGN IMPLEMENTATION

Implementing my design solution on the TI DSP posed some interesting challenges. The challenges were software related and hardware related. The hardware challenges were due to limited memory resources on the DSP board and I/O speed limitations of the TI DSP. The software challenges were related to the algorithms for processing the image in blocks using a one-pass program.

4.1 HARDWARE CHALLENGES

One of the hardware challenges was due to the slow I/O capability of the DSP board. In the program, the image pixel values are read to and from the host computer to the external memory of the DSP. Typically, a 512 x 512 pixel image takes six minutes to load into memory and about three minutes to write to the host computer. The speed of the I/O is a specification of the DSP board and was impossible to optimize. However the slow I/O was not a problem in the implementation of the program, since the image processing begins only when the entire image is loaded in memory. In a real world situation, the image pixel values would already be loaded into memory when a user takes a picture with a digital camera. For this reason, only the time taken to process the image once it is loaded is considered for the real-time requirement. The second hardware challenge was limited external memory space, and slow read and writes times for data in external memory. Due to slow read and write times I implemented a one-pass C program to read data only once from the external memory. Due to limited external memory space, I configured the program to write the resulting rule of thirds image directly to the host computer from external memory. Writing directly to the host computer saved the processing time and memory consumption of rearranging pixels in memory. With these issues resolved, I concentrated on the algorithms for processing the image to calculate the center of gravity of the main subject.

4.2 SOFTWARE CHALLENGES

Optimizing the C program to process image blocks in one-pass resulted in inaccurate results. I discovered two issues that arose from creating a one-pass program to process an image in blocks, as opposed to processing an image in its entirety. The following sections explain both issues.

4.2.1 False Edges
One issue was false edges in image blocks. False edges appeared in blocks where less than two percent of the entire block contained main subject pixels. The phenomenon is depicted in Figure 2 on the next page. The block in consideration is enclosed by the black rectangle in Figure 2 (a). In this block the main subject in nearly absent except for a small section of the bottom-left corner. Due to the small number of main subject pixels in this block, the overall variation between the high frequency content of the main subject pixels and the low frequency content of the background pixels is low. As a result, an edge detector such as the Canny Edge Detector picks up the soft contours or edges in the background as edges of the main subject as shown in Figure 2 (b).

[image: image5.png]

(a)

 (b)

 (c)

Figure 2. False edges: (a) Original image with image block enclosed in black rectangle [1]; (b) image block with false edges; (c) image block with false edges removed
False edges in image blocks that contained a little to no part of the main subject generated inaccurate results in the main subject detection and the center of gravity calculation. To solve this problem, I used a threshold in the edge detection step. The change in frequency content at each pixel in the block is compared to a threshold value. If the change in frequency content is lower than this threshold, the edges are suppressed. Frequency-variation thresholding cleared away all false edges as shown in Figure 2(c). However the additional thresholding increased the complexity and processing time of the edge detection step in my C program.

4.2.2 Main Subject Masking in Image Blocks
Once the problem of false edges was solved, I discovered an issue in the contour detection algorithm that is needed to mask the main subject. The GVF algorithm proves to work well when an image is processed in its entirety, but not in a one-pass program that processes the image in blocks. In the case of an entire image, the edge map of the main subject manifests itself as a closed contour inside the image. A closed contour is essential in masking the main subject. The GVF algorithm works by filling the gaps in the edges of the closed main subject [2]. Once the gaps are filled the main subject can be masked as shown in Appendix A. Masking the main subject using the GVF algorithm did not work well with image blocks. Figure 3 on the next page illustrates this issue. Figure 3 (b) shows the block enclosed by the white rectangle in Figure 3 (a). Figure 3 (b) contains a section of the edge of the main subject. Once the GVF algorithm closes the gaps in the edges in the image block it is impossible to determine which side of the contour is the main subject. Since the contour is not closed with respect to the block, it is impossible to correctly mask the main subject in the block. To overcome this problem I decided not to implement the edge detection or the GVF contour detection algorithm. The main subject of the image contains high frequency content while the background contains low frequency content. Using this property, I used a threshold on the original image based on its intensity content after it was filtered with the sharpening filter and subtracted from the original image. A simple threshold was a practical alternative.

[image: image6.png]

 (a)

 (b)

Figure 3. Edge map of main subject: (a) Edge map of original image with image block enclosed in white rectangle [1]; (b) Edge map of image block [1]
Removing the edge detection, false edge suppression and contour detection algorithms decreased processing time by 75%. The thresholding also masks the main subject in close statistical approximation to the MATLAB implementation. Thresholding the image block suppresses the regions in the image block containing low frequencies, which is the background. Thresholding effectively masks the main subject by leaving the high frequency pixels that are part of the main subject. Since the edge detection and contour detection algorithms were removed, false edges were no longer an issue either. After masking the main subject by thresholding, a second threshold is applied to the number of main subject pixels in a block. If the number of main subject pixels in a block is less than this threshold value, the entire block is considered to have no main subject pixels. The second threshold cleans up small high frequency regions that appears in the background region of the image but are not part of the main subject. Figure 4 (b) shows the masked main subject by simple thresholding in the C program implementation on the DSP. Figure 4 (a) shows the masked main subject in the MATLAB implementation using edge detection and GVF algorithm.

 (a)

 (b)

Figure 4. Masking main subject: (a) Main subject masked by MATLAB implementation [2]; (b) Main subject masked by C program

5.0 TEST AND EVALUATION

The C program was successfully tested for functionality and robustness. The C program was also evaluated for processing speed and accuracy. The main design specification for this project was to process a 1024 x 1024 pixel image within two seconds and within 10% accuracy of the MATLAB implementation. The following section is an evaluation of my C program implementation on the DSP in view of the desired specifications.

 5.1 PROCESSING TIME
I used several TI DSP compiler-specific directives, and optimal memory allocation to optimize my code to give near real-time performance. I used the clock function on the DSP to count the number of instruction cycles. The instruction cycle time specification in Table 1 was used to determine the processing time in seconds. Table 2 shows the average number of cycles for the different sizes of images after code and memory optimizations. The code was profiled with program level (level 2) optimization and software pipelining turned on. The block size is 90 x 90 pixels. Table 2 contains one column for pixel values stored as type 'int' and one column for pixel values stored as type 'short'. For the TI DSP, type 'int' requires four bytes of memory storage per pixel while type 'short' requires only two bytes of memory storage per pixel. Smaller number of bytes per pixel translates into fewer memory locations to read and write which explains the slightly better performance for type 'short'.

Table 2. Count of Instruction Cycles

	Image size
	Type 'int'
	Type 'short'

	
	Cycles
	Seconds
	 Cycles
	Seconds

	1024 x 1024
	447,673,640
	2.9994
	366,079,472
	2.4527

	768 x 768
	252,462,684
	1.6914
	205,728,304
	1.3783

	512 x 512
	111,918,410
	0.7498
	91,519,868
	0.6131

	256 x 256
	27,871,106
	0.1867
	22,933,414
	0.1536

	128 x 128
	7,001,312
	0.0469
	5,699,948
	0.0381

	64 x 64
	1,731,048
	0.0115
	1,439,086
	0.0096

The coding optimizations were C level and not assembly level. I believe assembly level optimization can further decrease processing time. The program was also profiled for number of cycles that the Central Processing Unit (CPU) of the DSP actually performed calculations and for number of cycles that the CPU was not operational. I found that 36% of the processing time was spent in Non Operational (NO-OP) instructions. A large percentage of NO-OP instructions suggest faster processing times with assembly level optimizations.
5.2 PROGRAM ACCURACY

To test the accuracy of program, I compared the calculation of the row and column center of gravity between my C program and the MATLAB implementation. Only images containing a main subject in focus with blurred background were picked to test accuracy. The C program differs from the MATLAB implementation in two ways. The C program uses fixed-point numbers or integer level precision while the MATLAB implementation uses floating-point numbers that offer greater accuracy due to higher precision. Secondly, the C program is optimized to perform the processing in blocks. In spite of these differences, the accuracy of the C program is well within 10% of MATLAB implementation for a majority of images. Table 3 shows the row and column center of gravity comparisons for a few of the images between the MATLAB and C program implementation. The pixels of an image are indexed as the co-ordinate system of a plane where the top-left corner pixel of the image has row = 0 and column = 0. In the C program implementation, the threshold for intensity content used in main subject detection following filtering and subtraction is t = 15, and the threshold for minimum main subject pixels per block is n = 25. The percentage error is normalized by image size. The images referenced in this table and their rule of thirds equivalents generated by the C program can be found in Appendix B.

Table 3. Center of Gravity Accuracy Comparison

	Image
	Image Size
	MATLAB
	C; t = 15, n = 25
	Normal. Error

	
	
	Row
	Column
	Row
	Column
	Row
	Column

	swan.ppm [5]
	200 x 300
	113
	139
	116
	138
	1%
	0%

	eagle.ppm [6]
	229 x 343
	115
	175
	121
	178
	2%
	1%

	mnjckt.ppm [7]
	600 x 547
	383
	273
	301
	299
	29%
	7%

	mnblr.ppm [1]
	280 x 350
	175
	150
	172
	146
	1%
	1%

	mnblr2.ppm [1]
	246 x 276
	176
	118
	159
	123
	3%
	2%

The image mnjckt.ppm shows the largest error in accuracy and has uncovered a limitation of my C program. The limitation arises in cases where the body of the main subject has low frequency variation. Such a case is illustrated in Figure 5 (a). The smooth black jacket of the man has almost no frequency variation. The C program fails to detect the pixels in the body, although the pixels in the face and hair are detected as shown in Figure 5(c). Since the C program cannot mask the entire body of the main subject, the center of gravity calculation for the row shows a large error when compared to the MATLAB implementation. The main subject masked by the MATLAB implementation is shown in Figure 5(b).

[image: image2.png]

(a)

 (b)

(c)

Figure 5. Limitation of C program: (a) Original image [7]; (b) Main subject masked by MATLAB implementation; (c) Main subject masked by C program

6.0 TIME, COST AND SAFETY CONSIDERATIONS

There were no cost considerations for this project. I used my desktop computer for C and MATLAB programming. Additionally, the TI DSP boards were available in the computers in the ENS labs. All the software and hardware components were available free of charge. The project was completed within time to achieve the desired goals. Since this project was mainly comprised of software development on a DSP, there were no issues related to the safety aspect of the design in terms of danger to users or the environment.

7.0 CONCLUSIONS AND RECOMMENDATION

In conclusion, this project was a positive research and development opportunity for me.

I learned a great deal about photography, image processing algorithms as well as software development on DSP platforms. I was able to successfully implement and run a one-pass C program to automate the rule of thirds on the TI DSP. I achieved my goal to develop an algorithm to process images in blocks and in real-time. I identified and overcame several challenges in implementing an algorithm to process images in blocks. I identified the limitation of my C program when processing images with a main subject containing little to no frequency variation. The C program gives near real-time performance while maintaining the desired level of accuracy in center of gravity calculation for a majority of images. I recommend two approaches to achieve better performance from my code. One way is to use a higher performance DSP, with faster memory bus speeds. A high performance DSP can make it possible to process a 1024 x 1024 pixel image without having a write a one-pass program. Another way is to optimize code at the assembly level to promote better pipelining of instructions and more parallelism in loops.

The limitation of my C program has created opportunities for future research and development. One area of possible research is developing algorithms to mask the main subject in blocks based on a statistical method depending on the location of the block within the image. Such an algorithm can solve the problem of masking a main subject when processing by blocks and can remove the limitation in my C program. In this project, real-time was defined to be between one and two seconds. True real-time implementation is where images are processed as they are streamed into the DSP. A project to implement a protocol for images so they can be streamed as blocks into a DSP and processed on the fly could be revolutionary in the field of digital image processing suited for real-time communication. Currently, digital still cameras do not offer features that involve automation of photographic composition techniques or significant post-processing of an acquired image in real-time. The project was successful research and development endeavor into real-time image processing for digital cameras. I believe my project has made a contribution to research and development that can be pursued to make image processing on digital cameras a possibility. Real-time image processing could revolutionize the way digital cameras are used in the future.

REFERENCES

[1]
S. Banerjee and B. L. Evans, “Unsupervised Automation of Photographic Composition Rules in Digital Still Cameras,” draft copy, in Proc. IS&T/SPIE Conf. on Sensors, Color, Cameras, and Systems for Digital Photography, Santa Clara, CA USA., Jan. 18-22, 2004.

[2]
S. Banerjee and B. L. Evans, “A Novel Gradient Induced Main Subject Segmentation Algorithm for Digital Still Cameras,” draft copy, in Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA USA, Nov. 9-12, 2003.

[3]
C. Hudson, “Composition Basics,” Wavelength Magazine,

http://www.wavelengthmagazine.com/2002/as02compo.php (current 29 Apr. 2004).

[4]
“Product Folder: TMS320C6701 – Digital Signal Processor,” Texas Instruments Incorporated, http://focus.ti.com/docs/prod/folders/print/tms320c6701.html (current 29 Apr. 2004).

[5]
M. Thackston, “Imaging Techniques,” PSP 7 Moving Mountains, http://www.marythackston.com/PSPmm/pspmm5.html (current 29 Apr. 2004).

[6]
“Photoshop Art Backgrounds,” Wetzel & Company Inc.,

http://www.wetzelandcompany.com/Tip19/01.jpg (current 29 Apr. 2004).

[7]
“Hoppler Portrait,” Bison Systems, http://www.bison-systems.ch/

de/public/presse/images/hoppler-portrait.jpg (current 29 Apr. 2004).

[2]

PAGE
11

_1144698941.unknown

