Massive MIMO Power Reduction

Jinseok Choi, Junmo Sung, Yunseong Cho, and Brian L. Evans

January, 31, 2019

The University of Texas at Austin
Wireless Networking & Communications Group
Embedded Signal Processing Laboratory

Overview

Receiver Design

- I. Resolution-Adaptive ADC
- 2. Two-stage analog combining
- 3. Antenna selection
- 4. Learning-based one-bit detection

Channel Estimation

- I. MmWave One-bit ADC
- 2. Deterministic beamforming design

User Scheduling

- I. New user scheduling criteria
- 2. Partial CSI-based scheduling

Selected Topics Summary and Future work

Channel Estimation

☐ Summary

Compressive-sensing (CS)-based millimeter wave channel estimation in hybrid beamforming systems

I. Hybrid Beamforming with One-bit ADCs

System

- PS Hybrid Architecture w/ I-bit ADC
- Frequency-Flat Channels
- Beamformer w/ Random Configuration
- Downlink

Key Technique

Modified one-bit GAMP*

2. Universal and Deterministic Beamformer Design

System

- PS/SW/Lens Hybrid Architecture
- Frequency-Flat Channels
- Beamformer w/ Deterministic Configuration
- Downlink

Key Technique

Deterministic optimal beamformer design

Channel Estimation

☐ Future work

: development of universal channel estimation technique

Deterministic hybrid beamformer design for channel estimation

Goal

: Design beamformer codebooks and pilots that minimize the mutual coherence of sensing matrix

Mutual Coherence

$$\mu(\mathbf{A}) = \max_{i \neq j} \frac{|\mathbf{a}_i^\mathsf{H} \mathbf{a}_j|}{\left\|\mathbf{a}_i\right\|_2 \left\|\mathbf{a}_j\right\|_2} = \max_{i \neq j} \frac{|(\mathbf{A}^\mathsf{H} \mathbf{A})_{ij}|}{\left\|\mathbf{a}_i\right\|_2 \left\|\mathbf{a}_j\right\|_2}$$

Possible targets for extension:

- Frequency-selective channels
 - > OFDM
- Low-resolution ADCs
 - > AQNM
- Arbitrary antenna array
 - > Unstructured matrix into account
- Uplink
 - > Multi-user into account

Receiver: Two-Stage Analog Combining

☐ Summary

Receiver: Two-Stage Analog Combining

☐ Future work

- Implementation complexity reduction
- First analog combiner W_{RFI}
 : use subarray structure to reduce # of phase shifters

ex.

- Disjoint subarray simplest
- 2. Joint subarray few overlaps among subarrays
- 3. Dynamic subarray adaptive subarray structure
- Second analog combiner W_{RF2}
 : use simpler unitary matrix with constant amplitude
 ex.

Hadamard matrix

- only composed of Is and -Is
- requires $(N_{
 m RF}^2-N_{
 m RF})/2$ phase shifters with -180 phase

$$(N_r = 128, N_{RF} = 32, N_{ue} = 8, b = 3, channel paths = 3)$$

Receiver: I-Bit Detection without Channel State Information

□ Summary

Dithering-and-learning

- Maximum likelihood detection
- Add dithering to robustly learn likelihood probability

$$k^* = \underset{k \in \mathcal{K}}{\operatorname{argmax}} \prod_{i=1}^{2N_r} p_{k,i}^{(b)} = \begin{cases} p_{k,i}^{(1)} = \frac{1}{N_{tr}} \sum_{t=1}^{N_{tr}} \mathbb{1}(y_i[(k-1)N_{tr} + t] = 1) \\ p_{k,i}^{(-1)} = 1 - p_{k,i}^1 \end{cases}$$

Receiver: I-Bit Detection without Channel State Information

☐ Future work

- I-bit detection with coded MIMO system
- Computation of soft metric (e.g., log likelihood ratio)
 : uses subset of likelihood probability

LLR computation

$$\begin{split} L^{u}_{mn-(p-1)}(\mathbf{y}[n]) \\ &= \log \frac{\prod_{k \in \mathcal{A}^{u}_{(p,0)}} \prod_{i=1}^{2Nr} \left\{ \hat{p}^{(1)}_{k,i} \mathbf{1}(y_{i}[n]=1) + \hat{p}^{(-1)}_{k,i} \mathbf{1}(y_{i}[n]=-1) \right\}}{\prod_{k \in \mathcal{A}^{u}_{(p,1)}} \prod_{i=1}^{2Nr} \left\{ \hat{p}^{(1)}_{k,i} \mathbf{1}(y_{i}[n]=1) + \hat{p}^{(-1)}_{k,i} \mathbf{1}(y_{i}[n]=-1) \right\}} \end{split}$$

Subset of Collected symbols

where
$$\mathcal{A}^{\boldsymbol{u}}_{(\boldsymbol{p},j)} = \bigcup_{\mathbf{b} \in \{0,1\}^m, \ b^u_p = j} \{k : \mathcal{S}^u = f(\mathbf{b})\} \begin{cases} u \in \{1,\dots,N_u\} \\ f : M - \text{QAM modulation} \end{cases}$$

$$m = \log_2 M$$

$$p \in \{1,\dots,m\}$$

Subset filtering by SIC

- Successive Interference Cancellation
 - Detection of next bit
 - Computation over refined subset
 - : reduces size of subset
 - : removes detection ambiguity (improves accuracy)

Refined subset

$$\mathcal{A}^{u}_{(p,j|\underline{\hat{\mathbf{b}}}_{p}^{n})} = \bigcup_{\substack{\mathbf{b} \in \{0,1\}^{m}, \ b_{p}^{n} = j \\ \underline{\mathbf{b}}_{p}^{n} = \underline{\hat{\mathbf{b}}}_{p}^{n}}} \{k: \mathcal{S}^{u} = f(\mathbf{b})\} \quad \text{where} \\ \underline{\mathbf{b}}^{n}_{p} = \left[b_{1}^{1}, \dots, b_{p}^{1}, b_{1}^{2}, \dots, b_{p-1}^{u}\right]$$

User Scheduling in Coarse Quantization System

☐ Summary

- Goal
 - :To mitigate quantization error by effectively scheduling users
- Key idea
 - : Derive new scheduling criteria that reduce quantization error
- Optimization
 - : Maximum sum rate user scheduling

New criteria

*Angle of arrivals

- I. Unique *AoAs for channel paths of each scheduled user
- 2. Equal power spread across complex path gains

Proposed Scheduler vs. Other Schedulers

 $(N_r = 128, N_{RF} = 40, N_{ue} = 12 \text{ out of } 200, b = 3, \text{ channel paths} = 3)$

User Scheduling in Coarse Quantization System

☐ Updated Results: scheduling with partial CSI

- Alternative to instantaneous full CSI
 - : Exploit Angles of arrival (AoA) long-term characteristics
- Chordal distance-based user scheduling

$$\mathbf{h}_k = \sqrt{\frac{N_r}{L_k}} \sum_{\ell=1}^{L} g_{k,\ell} \mathbf{a}(\phi_{k,\ell})$$

$$\mathbf{A}_k = [\mathbf{a}(\phi_{k,1}), \dots, \mathbf{a}(\phi_{k,|\mathcal{V}_k|})]$$

measure separation between channel subspaces

Chordal
$$d_{\mathrm{cd}}\left(k, k'\right) = \sqrt{L_{min} - \mathrm{tr}\left(\mathbf{Q}_{k}^{H} \mathbf{Q}_{k'} \mathbf{Q}_{k'}^{H} \mathbf{Q}_{k}\right)}$$

$$\mathbf{Q}_k = \text{column basis of } \mathbf{A}_k$$

Proposed Scheduler vs. Other Schedulers

$$(N_r = 128, N_{RF} = 40, N_{ue} = 12 \text{ out of } 200, b = 3, \text{ channel paths} = 3)$$

User Scheduling in Coarse Quantization System

☐ Future work

- Fairness among scheduled user
- I. Round-Robin manner: schedule users repeatedly by using proposed method
- 2. Proportional fairness: schedules users by using weighted objective function
 - Weighted objective function

$$S_t(i) = \arg \max_{k \in \mathcal{K}_i} \frac{\log_2(1 + SINR_k(\mathbf{H}_b(t)(S_t \cup \{k\})))}{\mu_k(t)}$$

Weight update (previously supported rate)
 : first-order autoregressive (AR) filter

$$\mu_k(t+1) = (1-\delta)\mu_k(t) + \delta R_k(t) \mathbf{1}_{\{k \in \mathcal{S}_t\}}$$

Preliminary – Proportional Fairness

SNR = 6 dB

 $(N_r = 128, N_{RF} = 40, N_{ue} = 12 \text{ out of } 200, b = 3, \text{ channel paths} = 3)$

Related Publications

- [1] Junmo Sung and Brian L. Evans, "Deterministic Hybrid Beamformer Design to Improve Compressed Sensing Narrowband mmWave Channel Estimation Algorithm Performance," *IEEE Trans. Wireless Comm.* (under revision)
- [2] Junmo Sung, Jinseok Choi, and Brian L. Evans, "Narrowband Channel Estimation for Hybrid Beamforming Millimeter Wave Communication Systems with One-bit Quantization," *IEEE ICASSP* 2018
- [3] Jinseok Choi, Gilwon Lee, and Brian L. Evans, "Two-Stage Analog Combining in Hybrid Beamforming Systems with Low-Resolution ADCs", *IEEE Trans. Commun.* (under revision)
- [4] Jinseok Choi, Gilwon Lee, and Brian L. Evans, "A Hybrid Combining Receiver with Two-Stage Analog Combiner and Low-Resolution ADCs", IEEE ICC 2019, (under revision)
- [5] Jinseok Choi, Yunseong Cho, Brian L. Evans, and Alan Gatherer, "Robust Learning-Based ML Detection for Massive MIMO Systems with One-Bit Quantized Signals", *IEEE ICC* 2019, (submitted)
- [6] Jinseok Choi and Brian L. Evans, "Analysis of Ergodic Rate for Transmit Antenna Selection in Low-Resolution ADC Systems", IEEE Trans. Veh. Techonol.
- [7] Jinseok Choi, Brian L. Evans, and Alan Gatherer "Antenna Selection for Large-Scale MIMO Systems with Low-Resolution ADCs", IEEE ICASSP 2018
- [8] Jinseok Choi, Brian L. Evans, and Alan Gatherer, "Resolution-Adaptive Hybrid MIMO Architecture for Millimeter Wave Communications", IEEE Trans. Signal Process.
- [9] Jinseok Choi, Junmo Sung, Brian L. Evans, and Alan Gatherer, "ADC Bit Optimization for Spectrum- and Energy-Efficient Millimeter Wave Communications", *IEEE GLOBCOM* 2017
- [10] Jinseok Choi, Gilwon Lee, and Brian L Evans, "User Scheduling for Millimeter Wave Hybrid Beamforming Systems with Low-Resolution ADCs", *IEEE Trans. Wireless Commun.* (under revision)
- [11] Jinseok Choi and Brian L. Evans, "User Scheduling for Millimeter Wave MIMO Communications with Low-Resolution ADCs", IEEE ICC 2018
- [12] Yunseong Cho, Seonho Kim, and Songnam Hong, "Successive Cancellation Soft-Output Detector for Uplink MIMO system with One-bit ADCs", IEEE ICC 2018, Kansas city, MO, USA.
- [13] Songnam Hong, Seonho Kim, and Namyoon Lee, "A Weighted Minimum Distance Decoding for Uplink Multiuser MIMO Systems With Low-Resoultion ADCs", IEEE Transactions on Communications, 2018.