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Receiver Design
|. Resolution-Adaptive ADC

2. Two-stage analog combining
3. Antenna selection
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4. Learning-based one-bit detection
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Channel Estimation
|. MmWave One-bit ADC

2. Deterministic beamforming design
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User Scheduling
|. New user scheduling criteria
2. Partial CSl-based scheduling
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*GAMP: generalized approximate message passing

== Channel Estimation

d Summary

= Compressive-sensing (CS)-based millimeter wave channel estimation in hybrid beamforming systems

|. Hybrid Beamforming with One-bit ADCs 2. Universal and Deterministic Beamformer Design

System System
* PS Hybrid Architecture w/ |-bit ADC * PS/SW/Lens Hybrid Architecture
* Frequency-Flat Channels * Frequency-Flat Channels
* Beamformer w/ Random Configuration * Beamformer w/ Deterministic Configuration
* Downlink * Downlink
Key Technique Key Technique
e Modified one-bit GAMP* * Deterministic optimal beamformer design
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== Channel Estimation

] Future work

: development of universal channel estimation technique

Deterministic hybrid beamformer design for channel estimation

Goal
: Design beamformer codebooks and pilots that minimize the mutual coherence of sensing matrix

Mutual Coherence
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Possible targets for extension:
RFFER
* Frequency-selective channels
» OFDM 5 _ Phase e 0
* Low-resolution ADCs g Shifters Low g
» AQNM O,
* Arbitrary antenna array : Analog 2
» Unstructured matrix into account Precoder =
* Uplink

> Multi-user into account




== Receiver:Two-Stage Analog Combining

d Summary

Two-Stage Analog Combining Two-stage analog combining vs. One-stage analog combining
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Two-stage solution

20 == Greedy-MI |
ARV
project on lower dim. Spreads signals evenly " :-e—-SVD—upper Cib in Eq.(17)
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== Receiver:Two-Stage Analog Combining

U Future work
* |mplementation complexity reduction

* First analog combiner Whei

: use subarray structure to reduce # of phase shifters 40
ex. l
|. Disjoint subarray — simplest g %
=
2. Joint subarray — few overlaps among subarrays &34
3. Dynamic subarray — adaptive subarray structure ® 32
Z30)
. g 28
* Second analog combiner Wkrr A
O
. . . . . o ,_5 26 L
: use simpler unitary matrix with constant amplitude 2 T ARV-TSAC (DFT)
= 24 2 A ARV-TSAC (Hadamard) |-
ex. Vo' o —x— Greedy-MI
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Hadamard matrix *2g e SVD
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only comp025ed of Isand -1s 10 5 0 5 10
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(Nr =128, Nrr = 32, Nue = 8, b = 3, channel paths = 3)



== Receiver: | -Bit Detection without Channel State Information

U Summary

Robust Learning-based 1-Bit Detection
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* Add dithering to robustly |
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= Maximum likelihood detection
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Proposed Method vs. other |-Bit Detectors

Training length: Ntr = 50

- — Learning 1-bit ML
—£— 1-bit ZF

-6~ empirical MLD (eMLD)

—A~ Minimum-Mean-Distance (MMD)

—¥— Minimum-Center-Distance (MCD)

—>— Biased Learning 1-bit ML
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(32 BS antennas, 4 users, 4-QAM, |-bit ADCs, Rayleigh fading)



== Receiver: | -Bit Detection without Channel State Information

] Future work

= |-bit detection with coded MIMO system

* Computation of soft metric (e.g., log likelihood ratio)
: uses subset of likelihood probability

LLR computation Subset of Collected symbols
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= Successive Interference Cancellation §  Subset filtering by SIC

e Detection of next bit Refined subset

* Computation over refined subset

) : where
: reduces size of subset ?p.jlkg) _ U (k:S* = £(b))

: removes detection ambiguity (improves accuracy) beio AT, b b} = [b{, ..., by, b7, ..., b} ]
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== User Scheduling in Coarse Quantization System

U Summary

- Goa! , o . , Proposed Scheduler vs. Other Schedulers
: To mitigate quantization error by effectively scheduling users

= Key idea

: Derive new scheduling criteria that reduce quantization error

= Optimization
: Maximum sum rate user scheduling

New criteria *Angle of arrivals

|. Unique *AoAs for channel paths of each scheduled user
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== User Scheduling in Coarse Quantization System
J Updated Results: scheduling with partial CSI

" Alternative to instantaneous full CSI Proposed Scheduler vs. Other Schedulers

: Exploit Angles of arrival (AoA) - long-term characteristics

* Chordal distance-based user scheduling
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== User Scheduling in Coarse Quantization System

] Future work

" Fairness among scheduled user Preliminary - Proportional Fairness

|. Round-Robin manner SNR = 6 dB
: schedule users repeatedly by using proposed method

—>— CSS-PF (proposed)

2. Proportional fairness Lol susPE
: schedules users by using weighted objective function

Random Selection

Eozs
*  Weighted objective function £
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*  Weight update (previously supported rate)
: first-order autoregressive (AR) filter 0

pe(t+1) = (1= 6)px(t) + 0Rk(t)1{kes,)

0 50 100 150 200
User Index

(Nr =128, NrRr = 40, Nue = 12 out of 200, b = 3, channel paths = 3)
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