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Abstract

Wireless communication devices in embedded computational platforms have become increasingly

common. As these device become more compact, radio frequency interference (RFI) from other sub-

systems, such as clocks and buses, becomes more severe and degrades the performance of the commu-

nication systems. The interference from these components is impulsive in nature, therefore standard

symbol detection techniques based on Gaussian noise statistics are not optimal. In this paper, we

investigate methods of mitigating this interference, modeled as symmetric α-stable noise. We propose

an approximation to the optimal Bayesian detector and then compare it to suboptimum, but lower-

complexity, pre-filtering techniques. These approaches are seen to provide great benefits over the standard

matched filter correlation receiver.



I. INTRODUCTION

As embedded computational platforms with wireless communication capabilities become smaller

and more compact, the radio frequency interference (RFI) from other components becomes an

increasingly important factor in the wireless communication system performance. This interfer-

ence is caused by near-field coupling with the electromagnetic radiation of clocks and busses at

both their operating frequencies as well as their harmonic frequencies.

The RFI interference is an independent combination of non-Gaussian events, and is often

accurately modeled as impulsive non-Gaussian noise. Common models include Middleton [1]

and symmetric α-stable (SαS) models [2]. In this project, we will focus on the symmetric α-

stable model. This can be justifified by the Generalized Central Limit Theorem that states that the

sum of many random variables with identical distributions, not necessarly with finite variances,

converges to a stable distribution. In addition, recent work has experimentally verified that this

measure provides an accurate model of interference in laptop embedded transceivers [3]. As our

simulations show, when attempting to demodulate a signal corrupted by impulsive noise with

a receiver designed for Gaussian noise, the communication performance is severely degraded.

Therefore, methods to mitigate the effects of impulsive noise can be very beneficial to embedded

receivers. First, we derive an approximation to the optimum Bayesian detector in the presence

of SαS impulsive noise. We then compare suboptimum nonlinear approaches of myriad filtering

and hole punching with the performance of the near-optimal MAP approximation and discuss

the performance tradeoffs.

II. BACKGROUND

We begin by reviewing the noise and communication system models used in this paper.
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A. Symmetric α-stable Noise

The symmetric α-stable distribution is described by its characteristic function φ(ω) = ejδω−γ|ω|α

where 0 < α ≤ 2 is the characteristic exponent, δ ∈ < is the location parameter, and γ > 0 is

the dispersion of the distribution. The α parameter describes the impulsiveness of the random

variable; ranging from very impulsive near zero to Gaussian at 2. From the above characteristic

function, it is observed that there is no closed form pdf for SαS distributions except in two

special cases: α = 1 which is the Cauchy distribution, and α = 2 which is the Gaussian

distribution [4].

B. System Model

We employ a simple communications model with additive white gaussian noise replaced by

symmetric α-stable noise. The discrete time received signal is

y(n) =
∑

k

s(k)gtx(n− kT ) + v(n) (1)

where s(n) is a sequence of symbols, gtx(·) is the sampled pulse shape, and v(n) is symmetric

α-stable noise. Two basic receiver structures are used. For the nonlinear pre-filtering, we first

pass the received signal through a nonlinear filter hnl(·), then through a matched filter grx(·)
and into a decision rule Λ(·). This receiver model has been studied in the case of zero-memory

nonlinearity by Miller and Thomas who motivate it by the fact that it is the structure of a locally

optimum detector in additive white noise [5], [6]. The other receiver structure is the standard

matched filter grx(·) followed by a MAP decision rule Λ(·) designed for SαS noise distribution.

For the maximum a posteriori (MAP) detector approximation, both Miller [5] and Middleton

[6] mention that multiple samples of the received signal provide a method to obtain large perfor-

mance gains in impulsive noise. Miller assumes a N -path diversity; thus he has N independent

versions of the signal. On the other hand, Middleton assumes a fractional sampling approach
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with N samples per symbol. In this work, we adopt the approach used by Middleton, although

the results can be easily extended to the framework proposed by Miller.

We assume that the parameters of the impulsive noise are known. This is a reasonable

assumption, since it has been shown that reliable estimates can be computed from samples

of noisy data [2]. An implementation of this processing would then require a noise parameter

estimator followed by either nonlinear filtering and a standard receiver or the more complex

MAP approximation detection rule.

III. IMPULSIVE NOISE MITIGATION METHODS

In this section, we describe three suboptimal methods to aid receiver performance in impulsive

noise. The first algorithm derived provides an approximation to the optimal receiver. Myriad

filtering, typically used for image processing, is applied to our communication problem. Finally,

hole punching provides an low complexity algorithm for reducing the impulsivness of the noise

by acting as a digital hard limiter for the received signal.

A. Maximum a Posteriori Approximation

The MAP detector is derived using the Bayesian formulation for hypothesis testing. The

detected symbol is the symbol that maximizes the probability of it being sent given the received

signal. In the case of binary digital signaling (two hypothesis H1 and H2)in additive symmetric

α-stable noise, the decision rule is given by

Λ(Y) =
p(H2)p(Y|H2)

p(H1)p(Y|H1)
≶H1

H2
1 (2)

where Y is the received signal, and p(·) is the pdf of SαS distribution. However as Section II-A

mentions, SαS distributions don’t have a closed form pdf, leading us to find an approximation

in closed form.

Several approximations have been proposed in the literature. An infinite power series expansion

is derived in [4], but does not behave well when shortened. A better approximation to the power
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series expansion was then proposed, but proves to be numerically unstable and ill-behaved when

the random variable is not very large or close to zero [7]. A polynomial approximation proposed

in [8], provides an alternative fitting of this pdf, but also suffers from numerical instability .

Fortunately, a well-behaved and computationally tractable approximation is proposed by Ku-

ruoglu [9]. The author shows that we can write a symmetric α-stable random variable as the

product of a Gaussian random variable and a positive stable random variable. If we define a

normal random variable X ∼ N(0, 2γx) and another, positive stable random variable Y which

is independent of X , such that Y ∼ Sαz/2(−1, cos(π∗αz

4
)

2
αz , 0), we get a symmetric α-stable

random variable Z = Y
1
2 X . Letting V = Y

1
2 , the author eventually shows that the pdf can be

approximated by

pα,0,γ,µ(z) =

∑N
i=1 v−1

i e
− (z−µ)2

2γv2
i h(vi)∑N

i=1 h(vi)
(3)

To generate this pdf, we can take the characteristic function of the Y and evaluate it at N

equally spaced points by taking the fast fourier transform (FFT). Finally we compute the finite

pdf using the fact that the mixing function h(v) = 2vfY (v2) and plugging in to Equation 3

yielding

pα,0,γ,µ(z) =

∑N
i=1 2e

− (z−µ)2

2γv2
i fY (v2

i )∑N
i=1 fY (v2

i )
(4)

This pdf approximation forms the basis for an approximation is used in the MAP detector in

Equation 2. A better approximation can be obtained by replacing the uniform sampling by a

adaptive optimal sampler that would minimize the squared error.

B. Myriad Filtering

Myriad filtering is a sliding-window based algorithm that exhibits high statistical efficiency in

bell-shaped impulsive distributions like SαS distributions. Gonzalez and Arce [10] have shown

that myriad filters posses important optimality properties along the α-stable distributions. Myriad

filters have been used as both edge enhancers and smoothers in image processing applications
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[11]. In the communication domain, they have been applied in the design of robust matched

detection [12]. In the latter approach, Gonzalez uses myriad filtering to estimate a sent number

over a channel using a known pulse corrupted by additive noise. As a result, the myriad filter

is used as a soft estimator of the sent number. In this work, we propose to use the myriad filter

as an impulse reduction window for the received signal in a similar way it is applied in image

processing applications.

The myriad filter is a sliding window algorithm that outputs the myriad of the sample window.

The myriad of order k of a set of samples x1, x2, . . . , xN is defined as

gM(x1, x2, . . . , xN) = β̂k = arg min
β

N∑
i=1

log[k2 + (xi − β)2] = arg min
β

N∏
i=1

[k2 + (xi − β)2] (5)

The robustness of this filtering stems from the free-tunable linearity parameter k. This parameter

determines the behavior of the myriad filter: for large k the myriad follows the behavior of a

linear estimator, as the value of k decreases the estimator becomes more resilient to impulsive

noise. The choice for k can be determined by the following empirical formula k(α) =
√

α
2−α

γ
1
α

where α and γ are the parameters of the SαS noise [10].

As can be seen from Equation 5, the myriad filter is a constrained optimization problem where

the output β ∈ [xmin, xmax], where xmin and xmax are the minimum and maximum value of the

data samples in the filtered window. To implement this minimization problem, notice that the

objective function under consideration is a polynomial function that is differentiable. Thus the

following algorithm can be used to implement the myriad function:

1) Expand the polynomial in Equation 5 in β.

2) Take its derivative by multiplying the coefficients by the appropriate constant according

to the corresponding power of β.

3) Root the obtained polynomial and retain the real roots.

4) Evaluate the objective function at the roots and the extremeties and output the minimum.

A less complex algorithm, known as the selection myriad filter, is obtained by restricting our
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search space just to the samples in the window, ie. β ∈ S = {x1, x2, . . . , xN} [12].

C. Hole Punching

The complexity of the previous algorithms is rather high. Another approach, which is rather

ad-hoc, is hole-punching [13]. The algorithm is a nonlinear filter that emulates the functionality

of a hard limiter by setting a received sample to zero when it exceeds some threshhold value

THP . Its functionality can be represented as

hhp[n] =





x[n] x[n] ≤ Thp

0 x[n] > Thp

(6)

The intuition is that when a large value is received, we assume it is an impulse and cannot

be sure what the true value is. Hole punching works well in impulsive noise, but provides

no advantage in Gaussian noise. We will see in simulations following in Section IV that hole

punching performs better than the matched filter receiver. The main advantage in hole punching

over the previous two algorithms is the significantly reduced computational complexity.

D. Complexity Analysis

The computational complexity per symbol of the simple hole puncher is O(M), where M is the

oversampling ratio. This follows from the fact that every sample must be evaluated and a decision

made about it. The complexity of the myriad filter depends on the specific implementation.

The polynomial rooting approach has an O(M (W 2 + W + W 3)) complexity, where W is the

window size, since polynomial expansion (equivalent to a convolution) is needed followed by W

multiplications and root finding which is equivalent to eigenvalue decomposition. On the other

hand the selection myriad requires O(M (W 2 + W )) since we need to multiply W values for

each value and compare them. The complexity of the approximate MAP is O(MNS) where

N is the number of Gaussian components in the Gaussian mixture used to approximate the

7



−10 −5 0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Generalized SNR

Myriad fitler Comunication Performance (α=1.5)

 

 

Optimal Myriad
Selection Myriad

(a) Myriad filter performance

−10 −5 0 5 10
10

−3

10
−2

10
−1

Generalized SNR

MAP Detector Performance

 

 

N=12
N=24
N=32
N=6

(b) MAP receiver performance

Fig. 1. Communication Performance of the myriad filter and MAP receiver with varying parameters. The selection myriad filter

compares favorably to the optimal myriad filter. For the MAP receiver, we see that increasing the oversampling up to around

N = 24 provides performance improvement

symmetric α-stable distribution, and S is the constellation size. This follows from the fact the

we need to sum N weighted exponentials for S times.

IV. SIMULATION RESULTS

We have developed a set of MATLAB functions to test the RFI mitigation methods discussed

in Section III. This work is based upon, and had been added to, the RFI mitigation toolbox

developed by our research group (www.ece.utexas.edu/∼bevans/rfi/software). We have used the

symmetric α-stable noise generator from this toolbox, and contributed the MAP detector, myriad

filter, and hole punching filter as well as bit error rate (BER) curve simulation software. Note

that second moments do not exist for symmetric α-stable noise, so the curves are plotted as a

function of the generalized SNR, defined as a function of the dispersion GSNR = 10log(Es

γ
).

We first compare different paramters for the MAP approximation and myriad filtering. First
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(b) α = 1.5

Fig. 2. Communication performance under different values of α. When α is lower, indicating more impulsiveness, the

performance is significantly worse than for higher values of α.

we examine the Myriad filter in Figure IV(a) using both the polynomial rooting approach, and

the signficantly lower complexity selection myriad filter. The polynomial rooting method only

provides marginal benefits, so it is most likely worth the reduction in complexity to use the

simpler selection myriad. Figure IVb) shows how the performance of the approximate MAP

varies as we change the time-bandwidth product N . As N is reduced the performance of the

MAP degrades, which agrees with the results obtained by Middleton for the case of Class A

noise [6]. However, it should be noted that performance variations are relatively small which

will prompt us to use smaller values of N which are more practical to use. As N increases,

the sampling rate of the analog to digital converter must increase as well. For large bandwidth

signals, this may prove intractable. Along with the increased computational complexity, this fact

leads us to the pre-filtering methods.

We see in Figure IV the effectiveness of the different receiver algorithms for α = 0.9 and
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α = 1.5. In both cases, the performance of the MAP detector is the best, followed by the myriad

filter, hole punching, and then the standard correlation receiver. At α = 0.9, the distribution is

extremely impulsive and the performance of all four algorithms suffers. Compared to α = 1.5,

we notice that the difference between the myriad filter and hole punching performance is less

than 1dB. Therefore, when α is higher, the complexity versus performance tradeoff between

the hole puncher and myriad filter may push us towards the significantly simpler hole punching.

Recent work has shown that α around 1.5 is a typical impulsive index in computational platforms

[3], implying that hole punching may be a viable alternative to the more complex algorithms.

V. CONCLUSIONS AND FUTURE WORK

From the simulation results, it is clear that there is a large impact of impulsive noise on

communications receivers designed for Gaussian noise. Using Kuruloglu’s symmetric α-stable

noise pdf approximation, we have derived an approximation to the maximimum a posteriori

detector. We have also used the myriad filter, traditionally seen in image processing applica-

tions, to pre-filter the received signal. Both of these algorithms have been compared to a hole

punching filter and the standard matched filter receiver. The three algorithms provide significant

communication performance benefits, albeit at potentially high computational cost. A real benefit

to the myriad and hole punching filter is that these algorithms may be applied to obtain a signal of

reduced impulsiveness that can be used to improve the performance of many other communication

algorithms such as channel estimation. Thus a potential future research is to study the effect of

these filters on the performance of these algorithms. The hole punching filter, although admittedly

ad-hoc, provides a reasonable benefit at very low computational cost. There may be ways to

further increase the benefits of hole punching type receivers, such as reducing the signal power

instead of zeroing it out when the received signal is between some range. This remains an area

for further research. Additionally, the model we have used is quite simple and does not take

into account the wireless channel. Channel estimation and equalization in impulsive interference
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remains another promising area for further research. Initial results have shown benefit in using the

hole punching and myriad filters before channel estimation to achieve more accurate estimates.

We may use the same pdf approximation to derive a maximum likelihood sequence detector

(MLSD) in a frequency selective channel. Overall, large performance gains can be obtained by

tailoring the receiver to the impulsive noise in embedded transceivers.
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