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Recent wireless communication research faces the challenge of meeting

a predicted 1000× increase in demand for wireless Internet data over the next

decade. Among the key reasons for such explosive increase in demand include

the evolution of Internet as a provider of high-definition video entertainment

and two-way video communication, accessed via mobile wireless devices.

One way to meet some of this demand is by using multiple antennae at

the transmitter and receiver in a wireless device. For example, a system with 4

transmit and 4 receive antennae can provide up to a 4× increase in data through-

put. Another key aspect of the overall solution would require sharing radio fre-

quency spectral resources among users, causing severe amounts of interference

to wireless systems. Consequently, wireless receivers with multiple antennae

would be deployed in network environments that are rife with interference pri-

marily due to wireless resource sharing among users. Other significant sources
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of interference include computational platform subsystems, signal leakage, and

external electronics. Interference causes severe degradation in communication

performance of wireless receivers.

Having accurate statistical models of interference is a key requirement

to designing, and analyzing the communication performance of, multi-antenna

wireless receivers in the presence of interference. Prior work on statistical model-

ing of interference in multi-antenna receivers utilizes either the Gaussian distri-

bution, or non-Gaussian distributions exhibiting either statistical independence

or spherical isotropy. This dissertation proposes a framework, based on underly-

ing statistical-physical mechanism of interference generation and propagation,

for modeling multi-antenna interference in various network topologies. This

framework can model interference which is spherically isotropic, or statistically

independent, or somewhere on a continuum between these two extremes.

The dissertation then utilizes the derived statistical models to analyze

communication performance of multi-antenna receivers in interference-limited

wireless networks. Accurate communication performance analysis can highlight

the tradeoffs between communication performance and computational com-

plexity of various multi-antenna receiver designs.

Finally, using interference statistics, this dissertation proposes receiver

algorithms that best mitigate the impact of interference on communication per-

formance. The proposed algorithms include multi-antenna combining strate-

gies, as well as, antenna selection algorithms for cooperative communications.
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Chapter 1

Introduction

This chapter begins with a description of wireless communications in

Section 1.1, with an emphasis on wireless systems utilizing multiple antennae.

In Section 1.2, I introduce the notion of interference in wireless systems, and

its impact on communication performance. Due to the ever increasing demand

for higher wireless data rates, interference mitigation is a crucial challenge that

must be overcome. Section 1.3 summarizes this dissertation, presenting the the-

sis statement, providing a synopsis of the key contributions, and discussing the

overall organization of this dissertation. I conclude this chapter with Section 1.4

providing the mathematical notation used throughout the dissertation, along

with a list of commonly used mathematical symbols and acronyms.

1.1 Wireless Communications

In this decade, wireless technologies have defined the way we commu-

nicate, gather, and disseminate information. Wireless mobile devices are con-

stantly finding new and innovative uses of high-speed ‘always connected’ wire-

less Internet, to the point that they are becoming victims of their own success.

Current and next-generation of wireless communication research and standards
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face the challenge of meeting a predicted 1000× increase in demand for wire-

less Internet data over the next decade[13]. Much of this explosive increase in

demand can be attributed to the ubiquity of small form factor devices access-

ing high-definition video entertainment and two-way video communication, to

such an extent that video traffic is expected to account for two-thirds of all mo-

bile Internet traffic by 2015[1].

Wireless communications is made possible via transmission of electro-

magnetic (EM) waves over the air. The magnitude of the electro-magnetic field

generated by EM waves is sinusoidal in nature, and the frequency of an EM wave

is defined as the number of sinusoidal cycles per second, or hertz (Hz). In all long

range wireless communications, the frequency of EM waves is usually within

3kHz to 30GHz. This block of frequencies, also known as the Radio frequency

(RF) spectrum, is managed by the Federal Communications Commission (FCC)

for commercial and other non-federal uses, and by the National Telecommu-

nications and Information Administration (NTIA) for federal government use

within the United States[53].

A mobile wireless device, also known as user equipment (UE) uses the

RF spectrum to transfer data to a base-station. The base-station acts as hub

for wireless networking within a small area around it. The base-station is also a

gateway between the wireless network, and a wired network connected to other

base-stations and the Internet. Mobile UEs can connect to other mobile UEs, or

access Internet data via the link to their base-stations. Thus, base-stations can

be considered as a tool used by Internet service providers (ISP) to deliver wireless
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Figure 1.1: A typical wireless data network.

Internet services to their subscribers. In this model, each wireless connection be-

tween the UE and the base-station is called a ‘link’; data transfer from the base

station to UE is termed ‘downlink’, whereas data transfer from UE to base station

is termed ‘uplink’. The wireless ‘network’ comprises of many links transferring

data simultaneously. Figure 1.1 describes this model of wireless Internet access.

To ensure wireless communications on a global scale, and to guarantee

compatibility among wireless devices, standardization in the methods of wire-

less communications is needed. Wireless standards cover a large swath of wire-

less communication applications, ranging from personal area networks such as

Bluetooth[24] and ZigBee[185], to local area networks such as WiFi[85], and city-
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wide metropolitan area networks such as the 3rd generation partnership program

(3GPP) long term evolution (LTE)[2, 120]. These standards specify the subset of

the RF spectrum used for communication, the communication techniques used

by devices to transfer data over the air, and the protocols through which multi-

ple users simultaneously transfer data. Base-station and UE manufacturers build

wireless communication systems and devices that adhere to these standards.

ISPs, mobile wireless system manufacturers, and wireless standards bod-

ies have to work in concord, in order to ensure that mobile wireless systems of

the future are able to reliably accommodate an ever increasing number of users,

simultaneously accessing the Internet with ever higher data rates. Proffered so-

lutions to support this growth in demand must address the inherent difficulties

in wireless communications.

At the link level, wireless transmissions suffer from path loss[65], whereby

the EM signal strength decays according to an inverse power-law function of the

distance traveled. Objects between the source and destination absorb and reflect

EM transmissions. The motion of the source, destination, or these objects causes

the received signal strength at the destination to vary in a random fashion, some-

times dropping precipitously, a phenomenon also known as fading[23]. Wireless

receivers also pick up unwanted signals along with the desired signal. These un-

wanted signals may arise from the receiver circuitry, or from other transmitting

users. These are interchangeably referred to as either noise, or interference.

At the network level, the simultaneous operation of many links causes in-

terference. Further compounding the problem of interference is that ISPs are
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allowing base stations to share spectral resources in order to increase the num-

ber of supported users. Increased spectrum sharing in one area of coverage

causes interference in nearby areas of coverage[109]. In addition, interference

may also come from emissions from computational platform subsystems and

external electronics and from leakage in wireless services in nearby frequency

bands[147]. The data rate available to wireless mobile users is increasingly lim-

ited by interference.

1.1.1 Wireless Communications using Multiple Antennae

Wireless communications research over the past decade has increasingly

focused on the use of multiple antennas at the transmitter and receiver to im-

prove data rate and enhance communication reliability in wireless networks[23].

Standards such as 3GPP-LTE also support multi-antenna wireless communica-

tions[120]. Multi-input multi-output (MIMO) communication involves the use

of multiple transmit and receive antennas to communicate information over a

single link. While conventional single-antenna wireless systems exploit the time

and frequency dimensions of the communication link, MIMO wireless systems

can realize further gains in communication performance by leveraging the addi-

tional spatial dimension. Communication performance of wireless systems can

be improved by the use of multiple antennae via the following avenues:

• Multiplexing: Multiplexing simply denotes the notion of transmitting mul-

tiple independent streams of data via multiple transmit antennae, and sub-

sequently receiving these streams at multiple receive antennae. Under
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ideal channel conditions, and if the number of receive antennae equals

the number of transmit antennae, the communication system can be con-

sidered to comprise of multiple independent wireless links. For example,

a wireless system with 4 transmit and 4 receive antennae may ideally be

considered as 4 independent wireless links with 1 transmit and 1 receive

antenna each. In such a scenario, it is fairly straightforward to see that the

MIMO wireless system can communicate data 4 times as fast as the single-

antenna wireless system.

• Spatial diversity: A wireless receiver with multiple antennae receives mul-

tiple copies of the same transmitted signal, increasing the chances that

atleast one of these copies is relatively impairment-free, a phenomenon

known as spatial diversity. Spatial diversity can be obtained from antenna

arrays at the transmitter, receiver, or both. Diversity can be used to im-

prove wireless communication performance via various transmit and re-

ceive strategies depending on the available computational complexity and

the level of wireless channel information available to the transmitter or re-

ceiver.

• Interference mitigation: A common method of interference mitigation in

MIMO systems is to use either transmit beamforming or receive beamform-

ing. In transmit beamforming, multiple transmit antennae direct signal

energy at the intended receiver and minimize interference to other users.

In receive beamforming, multiple receive antennae capture signal energy
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only from the direction of the transmitter and minimize interference re-

ceived from other users.

Each of the benefits described above exploit the spatial degrees of free-

dom afforded by the wireless channel between the multiple transmit and receive

antennae. Consequently, it follows that all of these benefits may not be real-

ized simultaneously, indeed, typical MIMO system design uses a combination of

some or all of these techniques to increase data rate and improve communica-

tion reliability.

1.1.2 Wireless Communications using Distributed Antennae

A special case of multiple antenna communication involves using dis-

tributed antennae for transmission, reception, or both. In distributed antennae

systems (DAS), antenna modules are geographically distributed and each an-

tenna is connected to a centralizing node via a wired, or wireless link[10]. While

conventional multi-antenna systems also comprise of physically separate anten-

nae, they are present on the same device; in DAS, however, the antenna sepa-

ration is orders of magnitude larger than that of conventional multi-antennae

devices. The distributed antenna modules and the base-station together can be

construed as a macroscopic multiple-antenna system.

It has been shown that using DAS at the transmitter can reduce trans-

mission power, and combat wireless channel fading via spatial separation to

improve the signal-to-interference-plus-noise ratio (SINR) at the receiver[39, 45,

128, 180]. Based on these advantages, many cellular service providers or system
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manufacturers are seriously considering replacing legacy cellular systems with

distributed antenna systems or adopting the distributed antenna architecture in

the future.

1.2 Interference

Wireless transceivers suffer degradation in communication performance

due to radio frequency interference (RFI) generated by both human-made and

natural sources. Human-made sources of interference include uncoordinated

wireless devices operating within the same frequency band (co-channel interfer-

ence), devices communicating in adjacent frequency bands (adjacent channel

interference), computational platform subsystems radiating clock frequencies

and their harmonics, and power lines. Interference is also generated from en-

vironmental sources such as atmospheric noise and electrical discharge. Based

on the nature of its sources, interference can be classified into the following cat-

egories[42].

1.2.1 Circuit Noise

Circuit noise is unavoidable noise which arises from electronic circuitry

present at a wireless receiver. Walter Schottky classified circuit noise as either

thermal noise, or shot noise[142]. Thermal noise occurs due to random mo-

tion of electrons in a conductor, caused by thermal agitation at any tempera-

ture above absolute zero. The rate of such motion is independent to the voltage

applied across the conductor, subsequently the level of thermal noise in a circuit
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depends only on the ambient temperature. Shot noise, on the other hand, occurs

due to the quantized nature of current flow. In reality, current flowing through

a conductor is a quantized stream of electrons. When current is high, electrons

flow through a conductor in such large quantities that they can be well approx-

imated as a continuous stream. However, when current is low and electrons are

flowing through the conductor in small quantities, the quantized nature of the

flow cannot be ignored. Statistical variations in electrical current occur when

electrons arrive in ‘bursts’ from time to time. Thus, the level of shot noise in

a conductor is highly dependent on the voltage applied across the conductor.

Schottky’s study on the electromagnetic generation mechanisms of circuit noise

showed that fluctuations caused by thermal noise and shot noise follow a Gaus-

sian distributed statistics. In this dissertation, the term circuit noise refers to

thermal noise and is assumed to be Gaussian distributed.

1.2.2 Interference from Extraneous Sources

There are several ways to classify interference caused by sources external

to a receiver. Interference can arise due to conductive contact between a receiver

and an interferer, and is known as Electromagnetic Interference (EMI). Interfer-

ence can also arise when a receiver radio picks up a radiated emission from an

interfering source, also known as Radio Frequency Interference (RFI). In this dis-

sertation, I study the impact of RFI on communication systems, thus the term

interference denotes RFI unless explicitly stated. Figure 1.2 illustrates the typi-

cal sources of interference in a wireless receive antenna embedded on a mobile
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platform, which are classified into the following categories:

1.2.2.1 Interference from Intelligent Sources

Intelligent sources of interference are typically communication devices

emitting radiation that carries some information content within it. Intelligent

sources cause most severe interference when the interfering emission from the

source is radiated across the same frequencies that the receiver is tuned to ob-

serve. This phenomenon is also known as co-channel interference. Co-channel

interference usually arises when users in a dense wireless network environment

are forced to share the same frequency spectrum to communicate[44, 109]. Co-

channel interference is also caused when the same frequency spectrum is home

to many co-existing wireless standards. This is especially true in the unlicensed

2.4 GHz Industrial, Scientific and Medical (ISM) band[38]. This band is used

by a multitude of wireless communication standards such as IEEE 802.16 (Wi-

Fi)[85], IEEE 801.2 (Bluetooth)[24], and IEEE 802.15.4 (ZigBee)[185]. Co-channel

interference can be severe in environments with a large density of computing

devices such as universities, business and apartment complexes, and entertain-

ment hotspots[131]. Such locations contain a large number of devices using

the same communication standards, as well as devices using co-existing tech-

nologies, such as a Bluetooth mouse, that interfere with wireless communica-

tions[38].

Another weaker, but significant, form of intelligent interference is caused

by source radiations that lie outside the frequency band used by the victim re-
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ceiver. While the intention of using non-overlapping frequency bands is pri-

marily to ensure that devices do not cause interference to each other, the non-

ideal nature of transmitter circuitry may cause some of the transmitted energy to

leak outside the desired transmission frequency band. Such interference is com-

monly referred to as adjacent channel interference (ACI). This can be a severe

problem in wireless standards such as Wi-Fi, which divides the frequency spec-

trum into discrete smaller blocks of spectrum, also known as channels. Power

leakage from a transmitter into neighboring channels is a very common occur-

rence in Wi-Fi based communications. The level of power leakage into adjacent

channels is controlled by strict regulations by the FCC in United States[53]. Yet,

adjacent channel interference is may aggregate from multiple nearby users and

is a significant impairment to unencumbered high speed wireless communica-

tions.

1.2.2.2 Interference from Non-Intelligent Sources

Non-intelligent sources of interference emit radiation that does not bear

any information, and is usually an unintended consequence of their primary op-

eration. Commercial electronic devices, such as microwave ovens, emit electro-

magnetic radiations as a integral aspect of their operation. However, due to lack

of adequate shielding, some radiation may leak into the environment outside the

device and cause interference to wireless receivers. Other devices, such as pow-

erlines, radiate interference emissions due to the electronic circuitry present in

them. Commercial electronic devices are required to abide by regulations (from
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regulatory organizations such as the FCC in United States) that limit the elec-

tromagnetic interference that they can produce with regards to human health

and safety, and devices operating within these limits may still cause significant

degradation to other communicating devices. For example, microwave ovens

may radiate as high as 50 dBm power at a distance of 15m in the 2.4 GHz ISM

band, which is comparable to the transmit power of an access point of a Wi-Fi

network[94]. Thus, interference from microwave interference is a cause for con-

cern for 802.11b/g networks working in the 2.4GHz ISM band.

With ever-increasing complexity and computational density of electronic

devices, coupled with their ever shrinking size, sometimes the most significant

source of interference to a wireless receiver is the platform on which the receiver

is deployed. In-platform sources of interference include clocks and busses in

the computational platform on which the wireless transceiver is embedded[147].

Because of their close proximity, in-platform sources do not need to emit high-

levels of radiation to cause interference in the wireless devices operating on the

platform; even regulatory organizations do not regulate emitted power as such

close distances around an electronic device.

1.2.3 Self Interference

In wireless telecommunications, multipath is the term given to the prop-

agation phenomenon that results in radio signals reaching the receiving antenna

by two or more paths. Causes of multipath include atmospheric ducting, iono-

spheric reflection and refraction, and reflection from water bodies and terrestrial
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Figure 1.2: Typical sources of interference in wireless communication systems.

objects such as mountains and buildings[65]. Self-interference arises when a re-

ceiver observes delayed replicas of the transmitted signal due to multipath[23].

Such delays can cause interference as the received signal may be contaminated

by replicas of earlier transmissions. Self-interference is particularly destructive

to single carrier communication techniques such as CDMA. Other communica-

tion techniques allow for guard intervals in time (TDMA), or actually exploit mul-

tipath to improve communication performance (FDMA)[65]. In this disserta-

tion, the problem of self-interference and wireless channel multipath is ignored,

as techniques to mitigate self-interference work in complement with our tech-

niques to mitigate extraneous interference.

1.3 Dissertation Summary

In this dissertation, I defend the following thesis statement:

Accurate statistical modeling of interference observed by multi-antenna
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wireless receivers facilitates design of multi-antenna wireless systems with signif-

icant improvement in communication performance in interference-limited net-

works.

1.3.1 Contributions

1. Statistical modeling: I formulate a statistical-physical network model with

a multi-antenna wireless receiver surrounded by interfering sources dis-

tributed randomly as a Poisson point process. The Poisson point process

is typically used to model interferer locations in wireless networks. Based

on this formulation, I derive the joint statistics of resultant interference.

The interference statistics follow the symmetric alpha stable distribution

in decentralized wireless networks such as ad hoc and sensor networks. I

show that the joint statistics of interference in decentralized networks are

well approximated by the symmetric alpha stable distribution even when

the multiple receiver antennae are geographically disparate. In centralized

wireless networks that can enforce a interferer-free guard zone around the

receiver, I show that the interference statistics follow the Middleton Class

A distribution.

2. Communication performance analysis: Using the system model of inter-

ference generation in decentralized wireless networks, I analyze the com-

munication performance of typical multi-antenna receive algorithms in

such networks. A key aspect of my system model is that interference statis-

tics are modeled to exist within a continuum between spatial isotropy and

14



spatial independence, in other words, joint statistics of interference ex-

hibit partial spatial dependence. I study the impact of spatial dependence

on communication performance, in this case interpreted as probability

that a receiver experiences communication outage. Results show that the

derived outage probability expressions closely match a simulated multi-

antenna receiver in the presence of interferers.

3. Receiver Design: A key motivation of deriving interference statistics is to

use these statistics to design wireless systems with improved communica-

tion performance in the presence of interference. I develop non-linear re-

ceiver algorithms that are able to outperform conventional multi-antenna

receivers in the presence of impulsive interference. I also use knowledge

of interference statistics in geographically distributed receivers to develop

antenna selection strategies for cooperative MIMO systems.

1.3.2 Organization

This dissertation is organized as follows. Chapter 2 presents a thorough

survey of prior research on statistical modeling of interference in multi-antenna

wireless receivers, communication performance analysis of conventional multi-

antenna wireless receivers in interference-limited wireless networks, and design

of novel reception strategies with improved performance in interference-limited

wireless networks. The relative merits and weakness of prior literature in each of

these topics are discussed in great detail.

Chapter 3 derives the joint interference statistics in wireless networks
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with interferer-free regions, also known as guard zones. I refer to such networks

as centralized networks, as these networks usually require a central authority to

enforce guard zones around an active receiver.

Chapter 4 derives the joint statistics of interference in networks without

guard zones. I denote these networks to be decentralized; i.e., any device can

choose to transmit or receive at any time as there is no central coordinating au-

thority.

Chapter 5 derives the probability of outage for different multi-antenna re-

ceiver algorithms in interference-limited wireless networks without guard zones.

Outage is defined as an event where the wireless receiver is unable to correctly

receive transmitted data due to overwhelming corruption by interference. The

outage probability expressions provide insight into the impact of interference on

different types of multi-antenna reception schemes, and can inform design of

receivers that are more robust to interference.

Chapter 6 proposes novel multi-antenna receiver algorithms for receivers

with co-located or geographically distributed antennae. Proposed receiver de-

signs include multi-antenna signal combining algorithms, and antenna selec-

tion algorithms for receivers with distributed antennae.
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1.4 Nomenclature

1.4.1 General Mathematical Notation

The following general mathematical notation is used throughout this dis-

sertation:

Z Scalar

z Column vector

Z Matrix

EX

�

f (X)
	

Expected value of the f (X) w.r.t. the random variable X

P(E ) Probability of a random event E

|Z | Absolute value of Z

‖z‖p p−norm of vector z

‖z‖ 2−norm of vector z

R Set of real numbers

Rk Set of real vectors with dimension k

1.4.2 List of Abbreviations

3GPP Third Generation Partnership Project

3GPP2 Third Generation Partnership Project 2

ACI Adjacent Channel Interference

AF Amplify and Forward

AWGN Additive White Gaussian noise

BER Bit-error-rate

BPSK Binary Phase-Shift Keying

CCI Co-channel Interference
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CDMA Code Division Multiple Access

CSMA Carrier Sense Multiple Access

DAS Distributed Antenna Systems

DF Decode and Forward

EGC Equal Gain Combining

EMI Electromagnetic Interference

FWC Fixed Weight Combining

FDMA Frequency Division Multiple Access

GMM Gaussian mixture model

i.i.d. independent and identically distributed

LCD Liquid Crystal Display

LTE Long Term Evolution

MAC Medium Access Control

MCA Middleton Class A

MRC Maximum Ratio Combining

MSE Mean squared error

MUD Multi-User Detection
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NTIA National Telecommunications and Information Administration

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

PDC Post Detection Combining

PGFL Probability Generating Functional

PHY Physical

PPP Poisson Point Process

QAM Quadrature Amplitude Modulation

RAS Random Antenna Selection

RF Radio Frequency

RFI Radio Frequency Interference

SAS Symmetric Alpha Stable

SC Selection Combining

SIC Successive Interference Cancellation

SINR Signal-to-interference-plus-noise ratio

SIR Signal-to-interference ratio

SNR Signal-to-noise ratio

19



TDMA Time Division Multiple Access

UE User Equipment

Wi-Fi Wireless Fidelity (WLAN)

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Networks

w.r.t. with respect to
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Chapter 2

Background

2.1 Introduction

In Chapter 1, I briefly discussed how the demand for wireless Internet

data is exponentially increasing, and interference is the key bottleneck prevent-

ing service providers from meeting this demand. This has motivated active re-

search into mitigating the harmful impact of interference on wireless communi-

cation performance. In this dissertation, I propose to develop statistical models

of interference, and use them to analyze communication performance of con-

ventional wireless receivers and design novel algorithms better suited to data re-

ception in the presence of interference.

In this chapter, I begin by reviewing the vast variety of techniques used to

mitigate interference in wireless communications. Section 2.2 categorizes and

discusses common interference mitigation strategies. I review recent and semi-

nal prior work on statistical modeling of interference in wireless networks in Sec-

tion 2.3. Next, I review prior literature on communication performance analysis

of interference-limited wireless receivers in Section 2.4 . Finally in Section 2.5,

I present a survey of prior research on design of single-antenna, multi-antenna,

and distributed-antenna receivers in interference-limited networks.
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2.2 Interference Mitigation in Multi-Antenna Wireless Commu-

nications

Interference mitigation methods can be classified as either static meth-

ods that avoid interference through device design or network planning, or as

active methods that estimate and cancel interference during data transmission.

Following is a discussion on key interference mitigation strategies from both cat-

egories.

2.2.1 Static Methods

• Receiver shielding: Shielding at the wireless receiver is typically used to

prevent the receiver from observing platform noise generated from other

subsystems from the wireless device such as a laptop or mobile phone.

While shielding can reduce interference from non-communicating plat-

form sources, it incurs a cost of materials and weight on mobile devices,

and cannot prevent co-channel interference from other communicating

devices[147].

• Spectrum allocation: The frequency spectrum can be considered a finite

resource pool in wireless communications. Devices communicating across

a non-intersecting subset within this spectrum generally do not cause co-

channel interference to each other, as shown in Figure 2.1. Through spec-

trum sharing, adjacent cells on the network can transmit and receive data

without causing interference to each other.

The key disadvantage of this approach is that it severely reduces the peak
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Figure 2.1: Out-of-cell interference caused by resource allocation.

available data rates as each cell can only use a small amount of spectral

resource. Furthermore, devices communicating in neighboring blocks of

frequency spectrum can still interfere with each other, also known as ad-

jacent channel interference[141]. Due to a high demand in wireless data

rates, network providers are increasingly using overlapping segments of

the frequency spectrum in adjacent cells (frequency reuse), and deploying

interference mitigation strategies on base-stations and mobile devices[44,

89, 109].
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2.2.2 Dynamic Methods

• Multiple access protocols: In wireless communications, data transmission

uses a chunk of resource in the time, frequency or code dimension. If two

users transmit in different subspaces in this resource space, they generally

do not cause interference to each other. For example, two users transmit-

ting during different time periods do not interfere with each other even if

they transmit over the same chunk of frequency, just as two users trans-

mitting in different chunks frequency spectrum do not interfere with each

other even if they transmit at the same time.

Multiple access protocols allow many users to transmit in non-intersecting

subsets of either the time, frequency, or code dimension. The correspond-

ing orthogonal multiple access schemes are referred to as time division

multiple access (TDMA), frequency division multiple access (FDMA), and

code division multiple access (CDMA). Current and future wireless stan-

dards employ one or many of such schemes in order to accommodate the

increasing density of wireless devices. Multiple access schemes can be un-

derstood as algorithms that distribute a finite number of resource blocks

among users based on resource availability and user demand, trying to

prevent interference by ensuring that two users do not use the same re-

source.

There is significant prior research on multiple access algorithms[18, 166,

176]. Schemes such as ALOHA and time/frequency hopping attempt to

reduce simultaneous user transmissions over the same frequency spec-
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trum[18], and carrier sense multiple access (CSMA) involves listening to

the wireless medium and schedule a user transmission only if no ongoing

transmissions are observed[97]. Dynamic spectrum allocation in networks

is also a well researched method for allowing multiple access while mini-

mizing interference[32, 33]. While multiple access protocols are a require-

ment for any wireless network, they alone are unable to eliminate interfer-

ence because of the following key reasons:

1. Multiple access schemes require user coordination in order to work.

Users from adjacent cells, or co-existing networks may not be coordi-

nated to each other, thereby causing interference.

2. As the number of wireless users grow, there may not be enough re-

sources to satisfy user demand, inevitably causing interference be-

tween nearby users sharing the same resource.

• Interference cancellation: Interference cancellation denotes the class of re-

ceiver algorithms which attempt to estimate, and subsequently subtract

the interference component within the received signal. Typical interfer-

ence cancellation algorithms include multi-user detection (MUD), succes-

sive interference cancellation (SIC), and multi-antenna beamforming[14,

80]. Interference cancellation has been well studied in literature, with a

multitude of receiver-side algorithms[12, 58], theoretical bounds on com-

munication performance [80, 133, 173, 174], and reduced computational

complexity implementations[5, 52, 104, 108, 110]. It requires high compu-
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tational resources from wireless devices and generally cancels dominant

interferers, leaving residual interference from uncoordinated users.

• Interference alignment: While interference cancellation is a receiver side

technique that removes interference, interference alignment is a transmit

side technique where a transmitter manipulates the signal in such a man-

ner that the interference caused to other wireless device is orthogonal to its

signal[31]. Interference alignment has shown great promise, however, in

order to achieve proposed gains, each transmitter and receiver must have

a global knowledge of all interfering links in the network, and the trans-

mitter must have a large number of antennae depending upon the num-

ber of interferers to be canceled. This requires a high amount of chan-

nel state feedback between receivers and transmitters, and the residual in-

terference from uncoordinated devices cannot be canceled. Methods for

interference alignment in cellular networks[31, 150], wireless ad hoc net-

works[121, 153], cognitive networks[183], and MIMO wireless networks[28,

49, 99, 154] have been studied in recent past. The feasibility of interference

alignment techniques in practice, due to limited capacity, accuracy and

delay in the feedback channels, has also been studied extensively[6, 21, 31,

81, 87, 164, 181, 182].

• Statistical mitigation: In this category, interference is treated as random

noise at the receiver and special receiver blocks are designed to improve

communication performance. Thus, while interference is strictly not can-

celed at the receiver, the goal of these algorithms is to improve data rates
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or reduce bit errors. These methods require an accurate knowledge of the

statistical properties of interference. This dissertation focuses on this ap-

proach of statistical modeling and receiver design around statistical mod-

els of interference. The following sections present a detailed survey of prior

work on statistical modeling of interference, and receiver design to miti-

gate interference.

2.3 Statistical Modeling of Interference

In typical communication receiver design, interference is usually mod-

eled as a Gaussian distributed random variable[23]. While the Gaussian distribu-

tion is a good model for thermal noise at the receiver[65], interference has pre-

dominantly non-Gaussian statistics[50, 115, 130] and is well modeled using im-

pulsive distributions such as symmetric alpha stable[140] and Middleton Class

A distributions[114]. The impulsive nature of interference may cause significant

degradation in communication performance of wireless receivers designed un-

der the assumption of additive Gaussian noise[118].

The statistical techniques used in modeling interference can be divided

into two categories: (1) empirical methods and (2) statistical-physical methods.

Empirical approaches fit a mathematical model to interference signal measure-

ments, without regard to the physical generation mechanisms behind the in-

terference. Statistical-physical models, on the other hand, model interference

based on the physical principles that govern the generation and propagation

of interference-causing emissions. Statistical-physical models can therefore be
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more useful than empirical models in designing robust receivers in the presence

of interference[115]. The following sub-sections discuss key prior results in sta-

tistical modeling of interference in single- and multi-antenna receivers.

2.3.1 Prior Work in Single-Antenna Interference Models

In [149], it was shown that interference from a homogeneous Poisson field

of interferers distributed over the entire plane can be modeled using the sym-

metric alpha stable distribution[140]. This result was later extended to include

channel randomness in [86]. In [115], it was shown that the Middleton Class A

distribution well models the statistics of sum interference from a Poisson field of

interferers distributed within a circular annular region around the receiver. Their

results were generalized in [70], by using the Gaussian mixture distributions to

model interference statistics in network environments with clustered interfer-

ers. Recent work on statistical modeling of interference, and network capacity

evaluations also assumes a homogeneous Poisson Point Process distribution of

interferers[16, 17, 19, 74, 131, 139, 175].

The Middleton Class A and the Gaussian mixture distributions can also

incorporate thermal noise present at the receiver without changing the nature of

the distribution, unlike the symmetric alpha stable distribution. The Middleton

Class A models are also canonical, i.e, no knowledge of the physical environment

is needed to estimate the model parameters[179]. The symmetric alpha stable

and Middleton Class A distribution functions are listed in Table 2.1.
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Table 2.1: Key statistical models of interference observed by single-antenna re-

ceiver systems

Model Name Statistical Model

Symmetric

alpha stable

Characteristic Function

ΦY(ω) = e−σ|ω|
α

α : Characteristic exponent. Range: (0,2]

σ : Dispersion parameter. Range: (0,∞)
Wireless Network

Decentralized (e.g. ad hoc and femtocells)

Middleton

Class A

Amplitude Distribution

f Y(y ) =

∞
∑

k=0

e−AAk

k !
Æ

2π k /A+Γ

1+Γ
σ2

e
− y 2

2
k/A+Γ

1+Γ
σ2

A : Overlap index. Range: (0,∞)
Γ : Ratio of Gaussian to non-Gaussian variance. Range: (0,∞)
σ2 : Noise power. Range: (0,∞)
Wireless Network

Centralized (e.g. LTE, Wimax, and WiFi)

2.3.2 Prior Work in Multi-Antenna Interference Models

Prior work on statistical modeling of interference in multi-antenna wire-

less systems has typically focused on using multi-variate extensions of single-

antenna interference statistical models. As described in Section 2.3.1, key statis-

tical models of single antenna interference include the Middleton Class A and

symmetric alpha stable models. The two common approaches of generating

multi-variate extensions of uni-variate distributions assume that either (a) in-

terference is independent across the receive antennae, or (b) the multi-variate

interference model is isotropic.

In [86], the authors apply the spherically isotropic symmetric alpha sta-

ble distribution [125] to model interference generated from a Poisson distributed
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field of interferers. The authors assume that each receiver is surrounded by the

same set of active interferers, and receiver separation is ignored. The spheri-

cally isotropic alpha stable model is derived under both homogeneous and non-

homogeneous distribution of interferers, with the signal propagation model in-

corporating pathloss, lognormal shadowing and Rayleigh fading. The study is

limited to baseband signaling and neglects any correlation in the interferer to re-

ceive antenna channel model or correlation in the interference signal generation

model.

In [47], the author proposes three possible extensions to the univariate

Class A model. The three multidimensional extensions, whose distribution func-

tions are listed in Table 2.2, are as follows:

1. Model I - Each receive antenna experiences additive uni-variate Class A

noise with the identical parameters. interference is spatially and tempo-

rally independent and identically distributed. Model I cannot capture spa-

tial dependence or sample correlation of interference across receive anten-

nae.

2. Model II - interference is assumed to be spatially dependent and correlated

across receive antennae. Model II can represent correlated or uncorrelated

random variables; however, it cannot represent independent Class-A ran-

dom variables.

3. Model III - This model incorporates spatial dependence in multi-antenna

interference, but does not support spatial correlation across antenna sam-
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ples. Model III can represent uncorrelated and spatially dependent Class

A random variables but it cannot represent independent or correlated ran-

dom variables.

These models are multivariate extensions of the Class A distribution and are not

derived from physical mechanisms that govern interference generation. While

these models have been very useful in analyzing MIMO receiver performance

under interference [62] and designing receiver algorithms to improve communi-

cation performance in presence of interference[113], a statistical-physical basis

for these models would further enhance their appeal[112] in linking wireless net-

work performance with environmental factors such as interferer density, fading

parameters, etc.

In [112], the authors attempt to derive interference statistics for a two an-

tenna receiver based on the statistical-physical mechanisms that produce the

interference. The authors use a physical generation model for the received inter-

ference at each of the two antennae that is the sum of interference from stochas-

tically placed interferers which include interferers observed by both antennae

as well as interferers observed exclusively by a single antenna. Their resulting

model is canonical in form and also incorporates an additive Gaussian back-

ground noise component. However, it is incomplete as it enforces statistical de-

pendence among receive antennae similar to Model II. In other words, either

both receive antennae observe an impulsive event or no antenna observes an

impulsive event. This is contrary to their statistical-physical generation mecha-
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Table 2.2: Key statistical models of interference observed by multi-antenna re-

ceivers.
Model Name Statistical Model

Isotropic

symmetric alpha

stable

Characteristic Function:

ΦY(w) = e−σ||w||
α

α : Characteristic exponent

σ : Dispersion parameter

Multidimensional

Class A – Model I

Amplitude Distribution:

f Y

�

y
�

=

∞
∑

k=0

e−AAk

k !

1
Æ

2π k /A+Γ

1+Γ
|Σ|

e
− yT Σ−1y

2
k/A+Γ

1+Γ

A : Overlap index

Γ : Ratio of Gaussian to non-Gaussian variance

Σ : Noise covariance matrix

Multidimensional

Class A – Model II

Amplitude Distribution:

f Y

�

y
�

=

NR
∏

n=1

∞
∑

k=0

e−An An
k

k !
Æ

2π k /An+Γn

1+Γn
σ2

n

e
− y 2

n

2
k/An+Γn

1+Γn
σ2

n

For each antenna n ,

An : Overlap index

Γn : Ratio of Gaussian to non-Gaussian noise power

σ2
n

: Noise power

Multidimensional

Class A – Model III

Amplitude Distribution:

f Y

�

y
�

=

∞
∑

k=0

e−AAk

k !

1
p

2π|Σk |
e−

yT Σ−1
k

y

2

Σk = (I+Γ)
−1
�

k

A
I+Γ

�

A : Overlap index

Γ : Diagonal matrix of Gaussian to non-Gaussian

variance ratios

Bivariate Class A

Amplitude Distribution:

f n(n 1,n 2) =
e−A

2π|K0 |
1
2

e
−nT K−1

0
n

2 +
(1−e−A)

2π|K1 |
1
2

e
−nT K−1

1
n

2

Km =

�

c 2
m

κcm ĉm

κcm ĉm ĉ 2
m

�

,c 2
m
=

m
A
+Γ1

1+Γ1
, ĉ 2

m
=

m
A
+Γ2

1+Γ2

A : Overlap index

Γn : Ratio of Gaussian to non-Gaussian variance

at antenna n

κ : Correlation coefficient
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nism which assumes that each receive antenna has a subset of surrounding in-

terferers that are observed exclusively by that antenna alone. For example, their

interference model cannot accommodate a scenario in which each of the two re-

ceivers observe interference distributed as independent univariate Class A den-

sity functions, a scenario entirely possible within the framework of their system

model. While their model is strictly limited to two antenna receivers[112], it has

found application in receiver design[37] and efficient parameter estimation al-

gorithms for this distribution are also available[69, 90]. This dissertation extends

their work by using a similar interference generation and propagation framework

to develop statistical-physical interference distributions for any number of re-

ceive antenna. Table 2.2 lists the different joint statistical models of interference

that have been proposed in prior work.

Models of interference in multi-antenna receivers are multidimensional

since the random interference is observed at multiple spatial coordinates. In a

similar vein, multidimensional models of interference are also developed to rep-

resent random interference observed at multiple temporal coordinates, to study

the joint temporal characteristics of interference. The physical generation mech-

anism of temporally separate interference observations can be similar to that of

spatially separated interference observations[178]. In [178], the authors study

second-order statistics and temporal correlation in interference, and establish a

link between the hold times of the interfering sources and the long-range depen-

dence of resulting sum interference.

The multivariate extensions to the Middleton Class A model and the sym-
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metric alpha stable model are not based on derivation of sum interference statis-

tics from stochastic placement of interferers around the receiver. The extension

to the Class A distribution based on an underlying statistical-physical generation

model is limited to receivers with two antennas and does not translate spatial

correlation of the active interferer location distribution into spatial dependence

of the interference distribution. These are serious limitations in prior work on

multi-antenna interference modeling as these models are subsequently used to

analyze MIMO receiver performance under interference and design receiver al-

gorithms to improve communication performance in presence of interference.

Thus, derivation of multi-antenna interference statistical models would provide

a clear link between interferer distribution parameters and communication per-

formance. To the best of my knowledge, such a link does not exist right now

due to the paucity of statistical-physical models of multi-antenna interference.

The motivation of deriving accurate multidimensional statistical-physical inter-

ference models is evidenced by the use of the multivariate Class A and alpha sta-

ble distributions in literature, even though these models have not been justified

by an underlying stochastic interference generation mechanism.

2.4 Communication Performance of Wireless Recievers

Multiple antenna communication systems have been extensively studied

with regard their communication performance, under the assumption of Gaus-

sian distributed additive noise[23]. Such analysis showed increased throughput

and reliability as the key benefits of using MIMO communications, consequently,
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most of the current and future standards, such as LTE, support multiple anten-

nae at transmitter and receiver. With increasing deployment of multi antenna

wireless systems, it is imperative to study the impact of interference on conven-

tional MIMO communication techniques.

For uncoded communication systems, bit-error rate (BER) is a funda-

mental metric of communication performance. Prior work on BER analysis of

receiver diversity algorithms under interference has usually focused on analysis

of various single antenna reception schemes in the presence of additive impul-

sive noise[123, 130, 156]. BER analysis is highly dependent on the assumption

regarding interference statistics. Thus, it is important that interference mod-

els based on statistical physical generation mechanisms be used for accurate

analysis. For multi-antenna communication systems, typical statistical distri-

butions that have been used to model interference are the spherically invariant

symmetric alpha-stable distribution[86], spherically invariant Middleton Class

A distribution[47], and multi-dimensional independent Middleton Class A noise

model[47]. These statistical distributions model two extreme cases of interfer-

ence statistics; i.e, interference is either statistically isotropic across antennae or

statistically independent across receive antennae.

In [88], the isotropic symmetric alpha-stable noise model was used to

evaluate BER of the optimal detector by assuming that the alpha stable noise

follows the Cauchy distribution. This work was extended in [134] to more recep-

tion techniques, but only considered Binary Phase Shift Keying (BPSK) modu-

lation. In [152], the authors investigated the performance of different diversity
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combining techniques over fading channels with impulsive noise modeled us-

ing either isotropic or independent multi-dimensional Middleton Class A dis-

tribution. In [77], the authors analyze performance bounds for optimum and

sub-optimum receivers in the presence of Middleton Class A impulsive noise

over non-fading channels. In [41], the authors evaluate performance bounds of

2×2 MIMO communication with Alamouti codes using a generalized statistical-

physical interference model from [113]. In [102] the performance of maximum

ratio combining techniques was investigated in multi-user environments and in

presence of receiver channel estimation error. While the authors did use the no-

tion of statistical-physical interference propagation mechanisms, they assumed

a fixed number and locations of the interference generating sources. In [7], a

statistical-physical model similar to ours was used to study performance of opti-

mum diversity combining. However, this model also assumed that interference

was isotropic and the optimum receiver was impractical to implement as it re-

quired information about interferer locations at each sampling instant. Simula-

tion based results have also been used in lieu of closed form expressions to show

the impact of interference on multi antenna receivers[34, 135]. By using impul-

sive statistical distributions to model interference, communication performance

analysis can provide a link between communication performance and noise pa-

rameters. On the other hand, starting from a statistical-physical noise generation

mechanism, performance analysis can provide a link between communication

performance and network parameters such as user density and user distribution.

Table 2.3 provides a summary of the interference models and receiver algorithms
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studied in prior literature and proposed in this dissertation.

While evaluating the performance of a point-to-point wireless link is im-

portant, another aspect of performance analysis lies in accurately characterizing

the network performance. Network performance takes into account the point-

to-point link performance, access control protocols, and user demand and traf-

fic patterns, among others. Capacity analysis has been performed on networks

of randomly distributed nodes[56, 72, 119], showing that the link throughput de-

cays as O
�

1p
n

�

for n nodes per unit area in the network. An alternative and

widely used method of evaluating physical layer techniques with regard to net-

work performance is the framework of transmission capacity, defined in [174].

Transmission capacity evaluates the number of successful transmissions per unit

area within the network, subject to an outage probability constraint. The Poisson

Point Process distribution of user nodes has enabled much of the network perfor-

mance analysis[172], however, there also exist results on network performance

with non-Poisson distribution of user nodes[60]. In ad hoc networks, transmis-

sion capacity analysis can accommodate both PHY layer techniques such as in-

terference cancellation[173], and MAC layer scheduling[172]. Transmission ca-

pacity has also been evaluated for networks with multiple antennae[83, 164].

2.5 Prior Work on Receiver Design in Interference

As interference has rapidly become a bottleneck to the performance of

wireless communication systems, many receiver structures have been proposed

to combat interference. With MIMO communications being the key focus of
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Table 2.3: Prior work on analysis of receive diversity performance in a Poisson

field of interferers. (SAS: Symmetric alpha stable, MCA: Middleton Class A, ‘Iso.’:

Isotropic, ‘Ind.’: Independent, ‘Cont.’: Continuum)

Interference Model Diversity Combiner

Paper Type Iso. Ind. Cont. FWC EGC MRC SC PDC MMSE

[134] SAS Ø Ø Ø Ø

[152] MCA Ø Ø Ø Ø Ø Ø

[102] SAS Ø Ø

[7] SAS Ø Ø

this SAS Ø Ø Ø Ø Ø Ø Ø Ø

the past decade, many studies have been performed on MIMO communications

in interference-limited networks[29, 95, 96]. The subject of interference cancel-

lation in multi-antenna receivers has also been well studied in literature[12],

with results on time-, frequency-, and code-domain cancellation algorithms[159,

171], and transmitter side algorithms (interference alignment)[28]. Proposed re-

ceiver structures usually remove a few dominant interfering sources[46], whose

channel state information must be known to the receiver[46].

Wireless systems utilizing interference cancellation or interference align-

ment may not be able to remove all co-channel interference from devices within

and outside the cellular coverage boundary. Residual interference may still be

present, arising from other uncoordinated wireless users, devices that are using

co-existing wireless protocols, and other non-communication devices. To miti-

gate such interference, receivers are designed to contain filtering and detection

algorithms using accurate statistical models of interference.
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2.5.1 Single-Antenna Receiver Design

The key statistical models of additive interference are the symmetric al-

pha stable[86] and the Middleton Class A distributions[115]. A major hindrance

to developing optimal hypothesis tests in the presence of additive symmetric al-

pha stable noise, is that no closed-form probability density function exists for

most values of the parameter α. Thus, optimum detection structures exists only

for scenarios when closed-form distributions are known, such as the Gaussian

distribution (α= 2), and the Cauchy distribution (α= 1)[155].

In [100], Kuruoglu proposed a non-linear Volterra type filtering approach

to mitigate interference, showing improved performance over linear signal esti-

mation structures. Other non-linear filtering structures include the myriad filter,

shown to be optimal for signal estimation in alpha stable noise[68], and subse-

quently used for receiver design in alpha stable noise[66, 67, 118]. Prior work also

includes non-linear receiver structures to estimate signals in a mixture of alpha

stable and Gaussian noise[127].

Middleton Class A noise is a special case of the Gaussian mixture distri-

bution. Consequently, the multitude of estimation and filtering structures de-

signed for Gaussian mixture distributions[9, 51, 148] can be applied to MCA noise

as well[55]. In particular, code division multiple access (CDMA) network interfer-

ence has been widely modeled as Gaussian mixture impulsive interference and

CDMA receivers need to compensate for multipath fading. Detection and pre-

filtering based CDMA receiver algorithms in impulsive environments are thus

common in literature [98, 111, 138, 159, 170, 171].
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Finally, non-parametric approaches do not assume knowledge of noise

distribution parameters, and involve using median filters, or removing signal

samples thought to be corrupted by an impulsive noise event[27, 75]. Some non-

parametric approaches do not assume any density distribution model for noise,

and only regard noise as “impulsive”[15, 82, 167]; i.e., extreme values of noise oc-

cur more commonly than they would if noise followed the Gaussian distribution.

The parametric and non-parametric approaches lie on different points of design

tradeoff curve between robustness and estimation performance.

2.5.2 Multi-Antenna Receiver Design

The applicability MIMO receiver design in prior work is limited due to

lack of accurate statistical models of interference[69, 106, 116]. In [37], the au-

thors investigate sequence detection algorithms, such as the Viterbi decoder in

impulsive noise modeled using the Gaussian mixture distribution model. The

Gaussian mixture noise model used in the study is not linked to any statistical

physical noise model and furthermore the noise is assumed to be independent

across receiver antennas. Thus the receiver design may not be optimal in en-

vironments where interference is expected to show spatial dependence across

receiver antennas. In [22], the authors propose decision feedback equalizer re-

ceivers to improve communication performance in symmetric alpha stable noise.

As is usually the case in the presence of symmetric alpha stable noise, much of

the receiver performance can be attributed to non-linear blanking, or clipping

filters in the receive chain.
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Prior work typically assumes statistically independent impulsive noise

across receive antennae[11, 25, 127, 136, 177]. The filter structures proposed in

prior work are limited in applicability to multi-antenna wireless receivers due to

lack of statistical-physical generation based interference models. In particular,

there is little prior work that considers spatial dependence in interference across

receive antennas, which is a key factor in multi-antenna interference. Analyzing

the effect of such spatial dependence on typical receiver algorithms is relevant

to improving the communication performance of wireless receivers in frequency

selective fading.

2.5.3 Distributed-Antenna Receiver Design

A recently proposed extension to MIMO systems utilizes distributed an-

tennae to obtain capacity gain and diversity gain associated with MIMO com-

munications. Cooperative reception in two distributed antennae can be con-

sidered analogous to the two-hop relay problem. There exists a bevy of prior

research on two-hop relay communications: from information-theoretic perfor-

mance analysis[40, 54, 144, 169], to signal design[145], to practical receiver im-

plementations[59, 107].

Prior work in cooperative reception focuses primarily on improve trans-

mission capacity by mitigating the impact of deep channel fades between the

source and the destination[36, 64, 76, 165]. There exists a significant body of re-

search on evaluating the tradeoffs between different relay signaling and relay se-

lection techniques[117, 161–163]. Other research focuses on selecting the best
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relays[93], using relays to improve channel diversity[160], or suppress interfer-

ence[63, 117, 151, 160] via receive side cancellation[20], or transmit side align-

ment[151]. Usually, inteference cancellation removes a few dominant interfer-

ers, and residual interference is assumed to be Gaussian distributed.

In [35], the authors consider a symmetric alpha stable model of interfer-

ence in a two-hop amplify and forward cooperative reception scheme. How-

ever, only the marginal distribution at the relay and the destination is modeled

as symmetric alpha stable, while the joint statistics of interference are completely

ignored.

2.6 Conclusions

In this chapter, I have summarized recent and seminal prior work on

statistical modeling of interference in multi-antenna receivers, communication

performance analysis of multi-antenna receivers in the presence of interference,

and design of multi-antenna receivers to mitigate the impact of interference on

data rates. Typical non-Gaussian statistical models of interference are not de-

rived from a statistical-physical mechanism of interference generation. This lim-

its the usefulness of subsequent communication performance analysis or re-

ceiver design performed using such statistical models. In Chapter 3 and 4, I de-

rive interference statistics using a statistical-physical model of interference gen-

eration and propagation.
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Chapter 3

Statistical Modeling of Interference in Centralized

Networks

3.1 Introduction

In Chapter 2, I motivated the need for accurate statistical modeling of

multi-antenna interference and subsequent receiver, or network, design based

on the resultant models. Robust and accurate statistical models of wireless net-

work interference can be derived using stochastic-physical models of interferer

distribution, interference generation, and signal propagation. Prior work on sta-

tistical models of interference observed by multi-antenna receivers lacks such a

statistical-physical derivation.

In this chapter, I derive statistical models of interference observed by

multi-antenna receivers, in wireless networks in which a central authority has

the ability to create an interferer-free guard zone around the receiver. In such

centralized networks, interferers are located only outside of this guard zone. As

many wireless networks employ contention-based MAC protocols (e.g. CSMA

and multiple access with collision avoidance) or other local coordination tech-

niques to limit the interference, they create a guard zone around the receiver

(e.g. in wireless ad hoc networks [79] and in dense Wi-Fi networks [17, 85]). Guard
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zones around the receiver can also occur due to scheduling-based MAC proto-

cols, such as in cellular networks in which the users in the same cell site are or-

thogonal to each other and all interfering users are outside the cell site in which

the receiver is located[139].

3.2 Organization and Notation

Section 3.3 presents a brief survey of multi-dimensional statistical models

of interference. Section 3.4 discusses the system model of interference genera-

tion and propagation. Section 3.5 derives the joint interference statistics. Section

3.6 discusses the impact of removing certain system model assumptions on in-

terference statistics. Section 3.7 presents numerical simulations to corroborate

the validity of the derived statistical distributions. Section 3.8 provides a sum-

mary of key insights and concludes this chapter. Table 3.1 provides a summary

of the key symbols used in this chapter.

3.3 Prior Work

Prior work on statistical modeling of interference in multi-antenna wire-

less systems has typically focused on using multi-variate extensions of single-

antenna interference statistical models. The two common approaches of gener-

ating multi-variate extensions of uni-variate distributions assume that either (1)

interference is independent across the receive antennae, or (2) the multi-variate

interference model is isotropic.
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Table 3.1: Summary of key symbols used in this chapter

Symbol Description

Indexing Variables

i Interferer index in a set of interferers

n Antenna index in a multi-antenna receiver

Sets

S0 Set of interferers observed by all receive antennae

Sn Set of interferers observed by n th receive antenna

Constants

γ Power pathloss exponent

λ0,λn Intensity of the Poisson interferer fields Π0,Πn

δ↓,δ↑ Inner, outer radii of annular interferer region

Random Variables

B ,χ Amplitude and phase of interferer emissions

H ,Θ Amplitude and phase of fast fading channel

Z= ZI+j ZQ (Complex) Vector sum interference at receiver

ΦZ(w) Joint characteristic function of Z

ΨZ(w) Joint log-characteristic function of Z

ωn ,I ,ωn ,Q Frequency variables for ΦZ(w)(n = 1, . . . ,N )

w [ω1,I ,ω1,Q ,ω2,I . . .ωN ,Q ]
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In [47], the author proposes three possible multi-variate extensions to the

uni-variate Middelton Class A distribution. The three multidimensional exten-

sions, whose distribution functions are listed in Table 3.2, are as follows:

1. Model I - Each receive antenna experiences additive uni-variate Class A

noise with the identical parameters. interference is spatially and tempo-

rally independent and identically distributed. Model I cannot capture spa-

tial dependence or sample correlation of interference across receive anten-

nae.

2. Model II - interference is assumed to be spatially dependent and correlated

across receive antennae. Model II can represent correlated or uncorrelated

random variables; however, it cannot represent independent Class-A ran-

dom variables.

3. Model III - This model incorporates spatial dependence in multi-antenna

interference, but does not support spatial correlation across antenna sam-

ples. Model III can represent uncorrelated and spatially dependent Class

A random variables but it cannot represent independent or correlated ran-

dom variables.

These models are multivariate extensions of the Class A distribution and are not

derived from physical mechanisms that govern interference generation. While

these models have been very useful in analyzing MIMO receiver performance

under interference [62] and designing receiver algorithms to improve commu-

nication performance in presence of interference, a statistical-physical basis for
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these models would further enhance their appeal[112] in linking wireless net-

work performance with environmental factors such as interferer density, fading

parameters, etc.

In [112], the authors attempt to derive interference statistics for a two an-

tenna receiver based on the statistical-physical mechanisms that produce the

interference. The authors use a physical generation model for the received inter-

ference at each of the two antennae that is the sum of interference from stochas-

tically placed interferers which include interferers observed by both antennae as

well as interferers observed exclusively by a single antenna. Yet, their resulting

model enforces statistical dependence among receive antennae similar to Model

II. In other words, either both receive antennae observe an impulsive event or

no antenna observes an impulsive event. This is contrary to their statistical-

physical generation mechanism, as their resultant model cannot accommodate

a scenario in which each of the two receivers observe interference distributed

as independent univariate Class A density functions.While the model proposed

in [112] is strictly limited to two antenna receivers, it has found application in

receiver design[37] and efficient parameter estimation algorithms for this distri-

bution are also available[69, 90]. This dissertation extends the results in [112] by

using a similar interference generation and propagation framework to develop

statistical-physical interference distributions for any number of receive antenna.
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Table 3.2: Key statistical models of interference observed by multi-antenna re-

ceivers in interference-limited networks with guard zones.

Model Name Statistical Model

Multidimensional

Class A – Model I

Amplitude Distribution:

f Z (z) =

∞
∑

k=0

e−AAk

k !

1
Æ

2π k /A+Γ

1+Γ
|Σ|

e
− zT Σ−1z

2
k/A+Γ

1+Γ

A : Overlap index

Γ : Ratio of Gaussian to non-Gaussian variance

Σ : Noise covariance matrix

Multidimensional

Class A – Model II

Amplitude Distribution:

f Z (z) =

NR
∏

n=1

∞
∑

k=0

e−An An
k

k !
Æ

2π k /An+Γn

1+Γn
σ2

n

e
− z 2

n

2
k/An+Γn

1+Γn
σ2

n

For each antenna n ,

An : Overlap index

Γn : Ratio of Gaussian to non-Gaussian noise power

σ2
n

: Noise power

Multidimensional

Class A – Model III

Amplitude Distribution:

f Z (Z) =

∞
∑

k=0

e−AAk

k !

1
p

2π|Σk |
e−

zT Σ−1
k

z

2

Σk = (I+Γ)
−1
�

k

A
I+Γ

�

A : Overlap index

Γ : Diagonal matrix of Gaussian to non-Gaussian

variance ratios

Bivariate Class A

Amplitude Distribution:

f Z(z 1,z 2) =
e−A

2π|K0 |
1
2

e
−zT K−1

0
z

2 +
(1−e−A)

2π|K1 |
1
2

e
−zT K−1

1
z

2

Km =

�

c 2
m

κcm ĉm

κcm ĉm ĉ 2
m

�

,c 2
m
=

m
A
+Γ1

1+Γ1
, ĉ 2

m
=

m
A
+Γ2

1+Γ2

A : Overlap index

Γn : Ratio of Gaussian to non-Gaussian variance

at antenna n

κ : Correlation coefficient
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Figure 3.1: Illustration of interferer placement around a 3-antenna receiver at a

sampling time instant.

3.4 System model and list of assumptions

I describe a multi-antenna receiver within an interference-limited net-

work via the following assumptions:

Assumption 3.1. A receiver with N antennae is located at the origin.

Assumption 3.2. Interferers are located in a two-dimensional plane around the

receiver.

This assumption is used only for ease of analysis. Distributing interferers

in a three-dimensional volume does not alter the nature of any results, other than

certain parameter values.
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Assumption 3.3. Interferers are distributed as a spatial Poisson Point Process.

At each sampling time instant, the locations of the active interferers in Sn

∀ n = 0, · · · ,N are distributed according to a homogeneous spatial Poisson Point

Process in the two-dimensional plane around the receiver. The intensity of set Sn

is denoted by λn ∀ n = 0, . . . ,N . The Poisson Point Process distribution is usually

applied to modeling the statistical distribution of interfering sources in wireless

communication systems[12]. A spatial Poisson point process distribution of in-

terferers allows each interferer set Sn to have potentially infinite number of in-

terferers. The distance of each interferer from the origin provides an ordering

function, ensuring that the interferers in each set are countable. In other words,

the i th interferer in Sn , located at coordinates Rn ,i , is defined by implicitly assum-

ing ‖Rn ,1‖2 < ‖Rn ,2‖2 < ‖Rn ,3‖2 < · · · .

Assumption 3.4. The interferers are located within a annulus with inner and

outer radii δ↓ and δ↑, respectively.

By allowing δ↓ > 0, I constrain the active interferers to be located out-

side of a finite disk around the multi-antenna wireless receiver. This models a

wireless network where interferers are placed such that there exists a guard zone

around the receiver in which no interferer is present. n many centralized com-

munication systems, a central authority such as a base station may limit trans-

missions within a radius around an active receiver. Many medium access control

protocols can also enforce such a guard-zone around the receiver[17, 79]. Such a

model can be applied to cellular and ad-hoc networks with contention-based or
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scheduling-based MAC protocols which have the effect of creating a guard zone

around the receiver [79].

Assumption 3.5. Inter-antenna separation at the receiver is insignificant com-

pared to the distance between interferers and the receiver.

This is a reasonable assumption, given the rise of small form-factor mo-

bile devices utilizing multiple antennae. Inter-antenna separation gains import

when modeling interference generated from the receiver platform itself[147], or

in cooperative networks where the distance between two nodes is comparable

to their distance from other interference causing users. Incorporating antenna

separation into joint statistical models of interference is beyond the scope of this

paper and a very interesting topic of future research.

Assumption 3.6. Inteferers are either observed by all antennae, or by only one

antenna.

At each time snapshot, the active interfering sources are classified into

N + 1 independent sets S0,S1, · · · ,SN . S0 denotes the set of interferers that cause

interference to every receive antenna. Sn ∀ n = 1, · · · ,N denotes the set of in-

terferers that are observed by antenna n alone. This is the key assumption in

the proposed framework for modeling spatial dependence in interference ob-

served by a multi-antenna receiver. In prior work, interference is typically mod-

eled as one of two extremes, either all interferers are observed by every receive

antenna, or different receivers observe independent sets of interferers. My pro-
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posed model generalizes this notion, ensuring that the results are not only ap-

plicable to these two extreme scenarios, but also to a continuum between these

two extremes.

A common scenario in which such an interferer environment may arise

is with the use of sectorized antennae with full frequency reuse, which are co-

located wireless directional antennae with radiation patterns shaped as partially

overlapping sectors that combine to cover the entire space around the receiver

[48]. Combining the signals received by sectorized antennae can be useful as

it can provides the advantages of spatial diversity and mitigates the harm from

multipath delay[105]. Interference signals common to all antennae may arise in

the overlapping sections, i.e., where the antenna gain for all antennae is similar,

and individual antennae may still see independent interference in sectors where

one antenna exhibits high gain while others exhibit a null. While antenna radia-

tion patterns are not accounted for in my analysis, they can easily be combined

with the fading channel and my results would be applicable.

To simplify the derivation of the multi-antenna interference model, the

notion of interferers observed only by one antenna and interferers observed by

all receive antennas can be applied to the system model. This results in NR + 1

sets of active interferers that include NR sets of interferers observed by one of the

NR receive antennas and one set of interferers observed by all of the receive an-

tennas. Each receive antenna now observes interference from two sets of active

interferers, similar to the two antenna interference model. This greatly simplifies

the system model, yet it still maintains the key aspect of modeling correlation be-
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tween the set of active interferers across antennas. This model can be applied to

scenarios where each antenna observes interference generated from indepen-

dent interferers as well as scenarios where each receiver observes interference

generated from the same set of interferers.

Case I - Interferer set S0 is empty, i.e., λn>0 and λ0=0. In this scenario,

each receiver is under the influence of an independent set of interferers. It is triv-

ial to see that the resulting interference would also exhibit independence across

the receive antennae, i.e., Case I results in interference that has characteristics of

Model I in Table 2.2.

Case II - Interferer sets Sn ∀ n = 1, · · · ,N are empty sets, i.e., λn=0 and

λ0>0. Both receivers observe the same set of interferers, thereby causing the re-

sulting interference to have spatial dependence across receive antennae. Model

II and III in [47], also shown in Table 2.2, have the same characteristic in spa-

tial statistics but there is no statistical physical derivation linking these models

to any interference generation mechanism, such as one described in my system

model.

Case III - All interferer sets are non-empty, i.e., λn>0 andλ0>0. This mod-

els partial correlation in the interferer field observed by each of the receive an-

tennae. The common set of interferers in S0 models correlation between the in-

terferer fields of two antennae. The level of correlation can be tuned by changing

the intensity of the Poisson point process representing each set in the interferer

field. This model is quite commonly used in multi-dimensional temporal[178]

and spatial interference modeling[25]. The resulting interference is spatially de-

53



pendent across receive antennae and neither of Models I, II, or III appropriately

capture the joint spatial statistics of interference generated in such an environ-

ment. A statistical model that represents the amplitude distribution of interfer-

ence resulting from interferer fields in Case III would unify the disparate Models

I, II and III.

Assumption 3.7. The wireless signal energy decays according to the power-law

path-loss model with coefficient γ.

Assumption 3.8. There is fast fading between the interferer and receiver.

The fast-fading channel between the interfering sources and the receiver

is modeled using the Rayleigh distribution[65].

Assumption 3.9. Additive thermal noise is ignored at the receiver.

With high user density and frequency reuse, many communication sys-

tems are interference-limited; i.e., interference at the receiver is much stronger

than the thermal noise component. Consequently, the resulting statistical model

is applicable to interference-limited communication scenarios.

Assumption 3.10. The receiver is placed at the origin of the two-dimensional

plane.

Without loss of generality, the receiver is placed at the origin of the two-

dimensional plane. Since the spatial Poisson Point Process is invariant to trans-

lation, any derived results remain unchanged by the choice of origin.
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Figure 3.1 illustrates the interferer distribution model for a three antenna

receiver.

3.5 Joint Statistics of Interference across Multiple Antennae

In this section, I derive joint interference statistics under the assumption

that the antenna are co-located. This is a reasonable assumption in many mo-

bile devices where the distance between other interfering users and the device is

much larger than the distance between the antennae on the device. At each re-

ceive antenna n , the baseband sum interference signal at any sampling time in-

stant can be expressed as the sum total of the interference signal observed from

common interferers and the interference signal from interferers visible only to

antenna n . I can express the interference signal at the n th antenna as

Zn =Z ′S0,n +Z ′Sn
(3.1)

where Z ′Sn
, Z ′S0,n represent the sum interference signal from interfering sources

in Sn (visible only to antenna n), and interfering sources in S0 (visible to all an-

tennae), respectively. The sum interference signal Z ′Sn
from interferers in Sn can

be written as [114]

Z ′Sn
=
∑

i∈Sn

B n
i

e jχn
i (Dn ,i )

− γ
2 H n

i
e jΘn

i . (3.2)

Z ′Sn
is the sum of interfering signals B n

i e jχn
i (Dn ,i )

− γ
2 H n

i e jΘn
i emitted by each in-

terferer i ∈ Sn located at Rn ,i . B n
i e jχn

i denotes interferer emissions from inter-

fering source i where B n
i is the emission signal envelope and χn

i is the phase of

the emission. I assume that the signal envelope B n
i is constant. Dn ,i = ||Rn ,i ||
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denotes the distance between the receiver n (located at origin) and the inter-

ferer, and γ is the power pathloss coefficient (γ > 2), consequently, (Dn ,i )
− γ

2 indi-

cates the reduction in interfering signal energy during propagation through the

wireless medium. H n
i e jΘn

i denotes the complex fast-fading channel between the

interferer and receiver n . For the fast fading channel model, I assume that the

channel amplitude H n
i follows the Rayleigh distribution, and that the channel

phase Θn
i is uniformly distributed on [0,2π]. H n

i , Θn
i , B n

i , and χn
i are assumed to

be i.i.d. across all interfering sources i ∈ Sn . In Sections 3.6.1 and 3.6.3, I study

the impact of removing many of these assumptions on the statistics of interfer-

ence. The signal from the common set of interferers S0 is expressed as

Z ′S0,n =
∑

i 0∈S0

B 0
i

e jχ0
i (D0,i )

− γ
2 H 0

n ,i
e jΘ0

n ,i . (3.3)

Note that the difference between (3.2) and (3.3) is that the interferer emission

signal B 0
i e jχ0

i and the distance D0
i between interferer i and the receive antenna

n (placed at origin), is independent of the antenna under observation (n). This

is because I ignore inter-antenna spacing and assume all antennae are located

at the origin. The channel between the interferer and n th receiver, denoted by

H 0
n ,i e j θ 0

n ,i , is also assumed i.i.d. across n and i . In Section 3.6.3, I will discuss

the impact of spatial correlation of the channel model on interference statistics.

Combining (3.1), (3.2), and (3.3) I can write the resultant interference signal at

the n th receive antenna as

Zn =
∑

i 0∈S0

B 0
i 0

D
− γ

2

0,i 0
H 0

n ,i 0
e

j (χ0
i 0
+Θ0

n ,i 0
)
+
∑

i∈Sn

B n
i

D
− γ

2

n ,i H n
i

e j (χn
i +Θ

n
i ). (3.4)
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The complex baseband interference at each receive antenna can then be decom-

posed into its in-phase and quadrature components Zn =Zn ,I + j Zn ,Q , where

Zn ,I =
∑

i 0∈S0

B 0
i 0

D
− γ

2

0,i 0
H 0

n ,i 0
cos (χ0

i 0
+Θ0

n ,i 0
)+
∑

i∈Sn

B n
i

D
− γ

2

n ,i H n
i

cos (χn
i
+Θn

i
), (3.5)

and

Zn ,Q =
∑

i 0∈S0

B 0
i 0

D
− γ

2

0,i 0
H 0

n ,i 0
sin (χ0

i 0
+Θ0

n ,i 0
)+
∑

i∈Sn

B n
i

D
− γ

2

n ,i H n
i

sin (χn
i
+Θn

i
). (3.6)

In order to study the spatial statistics of interference across multiple receive an-

tennae, I will derive the joint characteristic function of the in-phase and quadra-

ture components of interference. Using (3.1), (3.5) and (3.6), the joint character-

istic function ΦZ can be written as

ΦZ(w) =E
n

e
∑N

n=1 jωn ,I Zn ,I+jωn ,Q Zn ,Q

o

(3.7)

where w =
�

ω1,I ω1,Q ω2,I ω2,Q · · · ωN ,I ωN ,Q

�

. Note that the expecta-

tion is evaluated over the random variables |S0|, |Sn |, D0,i , Dn ,i , H 0
n ,i , H n

i , B 0
i ,

B n
i ,χ0

i , χn
i , Θ0

n ,i and Θn
i ∀ n = 1, . . . ,N . For the sake of brevity and readability, I

refrain from listing all of these random variables in the subscript of the expecta-

tion operator. I can separate the independent terms in the expectation by noting

that the interferers in the different sets Sn are distributed in space as indepen-

dent homogeneous processes, and their emissions and channel realizations are

also independent as well. Substituting (3.4) in (3.7) and separating independent
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terms in the expectation, I get

ΦZ(w) =

N
∏

n=1

E

�

e j
∑|Sn |

i=1 D
− γ2
n ,i Hn

i B n
i (ωn ,I cos(χn

i +Θ
n
i )+ωn ,Q sin(χn

i +Θ
n
i ))
�

×E
¨

e
j
∑N

n=1

∑|S0|
i 0=1 D

− γ2
i 0

H0
n ,i 0

B 0
i 0

�

ωn ,I cos(χ0
i 0
+Θ0

n ,i 0
)+ωn ,Q sin(χ0

i 0
+Θ0

n ,i 0
)
�

«

. (3.8)

To simplify notation, (3.8) is decomposed into the product form

ΦZ(w) = ΦS0
(w)

N
∏

n=1

ΦSn
(w) (3.9)

where,

ΦS0
(w) =E

¨

e
j
∑N

n=1

∑|S0|
i 0=1 D

− γ2
i 0

H0
n ,i 0

B 0
i 0

�

ωn ,I cos(χ0
i 0
+Θ0

n ,i 0
)+ωn ,Q sin(χ0

i 0
+Θ0

n ,i 0
)
�

«

(3.10)

ΦSn
(w) =E

�

e j
∑|Sn |

i=1 D
− γ2
n ,i Hn

i B n
i (ωn ,I cos(χn

i +Θ
n
i )+ωn ,Q sin(χn

i +Θ
n
i ))
�

. (3.11)

Each component term in (3.9) is the characteristic function of the interference

contribution by one of each interferer sets {S0,S1, . . . ,Sn}. I can rewrite (3.10) and

(3.11) in their polar forms as

ΦS0
(w) =E

�

e j
∑N

n=1 |ωn |
∑|S0|

i=1 D
− γ2
0,i H0

n ,i B 0
i cos(χ0

i +Θ
0
n ,i+ξω,n )

�

(3.12)

ΦSn
(w) =E

�

e j |ωn |
∑|Sn |

i=1 D
− γ2
i Hn

i B n
i cos(χn

i +Θ
n
i +ξω,n )

�

(3.13)

where |ωn | =
p

ω2
n ,I
+ω2

n ,Q and ξω,n = tan−1
�

ωn ,I

ωn ,Q

�

. I will now evaluate each

component term in (3.9) for interferer environments with and without guard

zones, as described in Section 5.4.

3.5.1 Evaluation of ΦS0
(w) (Interference Contribution from S0)

In this section, I evaluate the contribution of the interferers in set S0 to

the joint spatial statistics of interference, denoted by the term ΦS0
(w) in (3.7).
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In the constrained interferer placement system model, the interferers within S0

are distributed according to a homogeneous spatial Poisson Point Process in-

side an annulus with finite inner and outer radii δ↓ and δ↑, respectively. Conse-

quently, the number of interferers |S0| is a Poisson random variable with param-

eter λπ(δ2
↑ −δ2

↓ ). Conditioned on |S0|, (3.12) can be expressed as

ΦS0
(w) =E

�

e j
∑N

n=1|ωn |
∑|S0|

i=1 D
− γ2
0,i H0

n ,i B 0
i cos(χ0

i +Θ
0
n ,i+ξω,n )

�

(3.14)

=

∞
∑

k=0

E

�

e j
∑N

n=1 |ωn |
∑k

i=1 D
− γ2
0,i H0

n ,i B 0
i cos(χ0

i +Θ
0
n ,i+ξω,n )

�

�

� |S0|= k

�

P (|S0|= k ) (3.15)

=

∞
∑

k=0

E

�

e j
∑N

n=1 |ωn |D
− γ2
0 H0

n B 0 cos(χ0+Θ0
n+ξω,n )

�k

P (|S0|= k ) (3.16)

Once conditioned on a fixed number of total points, the points in a Poisson Point

Process are distributed independently and uniformly across the region in consid-

eration. This allows us to remove the interferer index i and treat the contribution

to interference from each interferer as an independent random variable. H 0
n ,i ,

B 0
n ,i , χ0

n ,i andΘ0
n ,i are all i.i.d and can be replaced in (3.16) by H 0

n
, B 0

n
, χ0

n
andΘ0

n
,

respectively. D0,i is assumed to be increasing with the index i , since I assumed

that the interferers are ordered according to how close they are located to the ori-

gin. However, by virtue of a property of Poisson Point Processes, the points are

uniformly distributed within the region of the Point Process when conditioned

on the total number of points k . Thus, I replace D0,i by the random variable D0,

that follows the distribution

f D0 |k (D0|k ) =
(

2D0

δ2
↑−δ

2
↓

if δ↓ ≤D0 ≤δ↑,
0 otherwise.
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This distribution arises when I consider the annular disc with inner and outer

radius of δ↓ and δ↑, and k points distributed uniformly in this region. The num-

ber of interferers k within the annular region is a Poisson random variable with

mean λ0π(δ
2
↑ −δ2

↓ ). Combining this notion with (3.16) I get

ΦS0
(w) =

∞
∑

k=0

E

�

e j
∑N

n=1|ωn |D
− γ2
0 H0

n B 0 cos(χ0+Θ0
n+ξω,n )

�k

e−λ0π(δ
2
↑−δ

2
↓ )

�

λ0π(δ
2
↑ −δ2

↓ )
�k

k !

(3.17)

=e−λ0π(δ
2
↑−δ

2
↓ )
∞
∑

k=0

�

�

λ0π(δ
2
↑ −δ2

↓
�

E

�

e j
∑N

n=1 |ωn |D
− γ2
0 H0

n B 0 cos(χ0+Θ0
n+ξω,n )

��k

k !

(3.18)

=e−λ0π(δ
2
↑−δ

2
↓ )e

E







e
j
∑N

n=1 |ωn |D
− γ2
0

H 0
n B0 cos(χ0+Θ0

n+ξω,n )







λ0π(δ
2
↑−δ

2
↓ )

(3.19)

=e











E







e
j
∑N

n=1 |ωn |D
− γ2
0

H 0
n B0 cos(χ0+Θ0

n+ξω,n )







−1











λ0π(δ
2
↑−δ

2
↓ )

(3.20)

By taking the logarithm of ΦZ,S0
(w) in (3.20), the log-characteristic function is

ΨS0
(w)¬ logΦZ,S0

(w) (3.21)

=λ0π(δ
2
↑ −δ

2
↓ )

�

E

�

e j
∑N

n=1 |ωn |D
− γ2
0 H0

n B 0 cos(χ0+Θ0
n+ξω,n )

�

−1

�

(3.22)

=K

 

E

(

N
∏

n=1

e j |ωn |D
− γ2
0 H0

n B 0 cos(χ0+Θ0
n+ξω,n )

)

−1

!

(3.23)

where K =λ0π(δ
2
↑ −δ2

↓ ). Next I use the identity

e j a cos(b ) =

∞
∑

m=0

j mεm Jm (a )cos(m b ) (3.24)
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where ε0 = 1, εm = 2 for m ≥ 1, and Jm (·) denotes the Bessel function of order

m . Combining (3.24) and (3.23), the log-characteristic function ΨZ,S0
(w) can be

expressed as

ΨS0
(w)

= K

 

E

(

N
∏

n=1

∞
∑

mn=0

j mnεmn
Jmn

�

|ωn |D
− γ

2

0 H 0
n

B 0 cos
�

mn

�

χ0+Θ0
n
+ξω,n

��

�

)

−1

!

.

(3.25)

Since χ0 and Θ0
n

are uniform random variables within [0,2π], for any value of

ξω,n and mn , mn

�

χ0+Θ0
n
+ξω,n

�

modulo 2π is also uniformly distributed over

[0,2π]. Thus, all terms in (3.25) with mn > 0 ∀ n = 1 → N reduce to zero after

taking expectation with respect toΘ0
n

, and (3.25) reduces to

ΨS0
(w) = K

 

E

(

N
∏

n=1

J0

�

|ωn |D
− γ

2

0 H 0
n

B 0

�

)

−1

!

. (3.26)

Note that the expectation is now with respect to the remaining random variables

in (3.26). To evaluate the expectation in (3.26), I re-write it as

ΨS0
(w) = K

 

E

(

N
∏

n=1

EH0
n

§

J0

�

|ωn |D
− γ

2

0 H 0
n

B 0

�ª

)

−1

!

. (3.27)

Note that I used the assumption that the fast-fading channel between interferer

and receive antennae are spatially independent across the antenna index n . Us-

ing the series expansion of the zero-order Bessel function,

J0(x ) =

∞
∑

m=0

(−1)m x 2m

22m m !Γ(m +1)
(3.28)
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I can rewrite (3.27) as

ΨS0
(w) = K











E







N
∏

n=1

EH0
n







∞
∑

m=0

(−1)m
�

|ωn |D
− γ

2

0 H 0
n

B 0

�2m

22m m !Γ(m +1)













−1











(3.29)

= K











E







N
∏

n=1

∞
∑

m=0

(−1)m
�

|ωn |D
− γ

2

0 B 0

�2m

EH0
n

¦

(H 0
n
)2m
©

22m m !Γ(m +1)







−1











(3.30)

Under the assumption that the fading channel is Rayleigh distributed, the 2m th

moment of H 0
n

is
�

E
¦

H 02
©�m

Γ(1+m ). Applying to (3.30), I get

ΨS0
(w) =K











E







N
∏

n=1

∞
∑

m=0

(−1)m
�

|ωn |D
− γ

2

0 B 0

�2m
�

E
¦

H 02
©�m

Γ(1+m )

22m m !Γ(m +1)







−1











(3.31)

=K











E







N
∏

n=1

∞
∑

m=0

(−1)m
�

|ωn |D
− γ

2

0 B 0

Æ
�

E
¦

H 02
©�

�2m

22m m !







−1











(3.32)

=K











E







N
∏

n=1

e−



|ωn |D
− γ2
0

B0
Ç
�

E

§

H 02
ª�





2

4







−1











(3.33)

=K











E







e−



D
− γ2
0

B0





2

E

§

H 02
ª

4

∑N
n=1(|ωn |)2







−1











(3.34)

=K











E







e−



D
− γ2
0

B0





2

E

§

H 02
ª

||w||2

4







−1











. (3.35)
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Expanding the expectation in (3.35) with respect to the random variable D0, I

have

ΨS0
(w) = lim

δ↑→∞
K











E







δ↑
∫

0

e
−||w||2

�

D
− γ2
0 B 0

�2

E
¦

H02
©

2D0

δ2
↑ −δ2

↓
d D0







−1











(3.36)

Using Taylor series expansion of e x , (3.36) can be written as

ΨS0
(w)

= lim
δ↑→∞

K











E







δ↑
∫

0

∞
∑

m=1

(−1)m |D−
mγ

2

0 E
�

(B 0)2m
	

(E
¦

H 02
©

)m ||w||2m

4m m !

2D0

δ2
↑ −δ2

↓
d D0







−1











(3.37)

=λ0π







∞
∑

m=1

(−1)m |D−
mγ

2

0

�

(B 0)2m
	

(E
¦

H 02
©

)m ||w||2m (δ
−γm−2

↓ −δ−γm−2

↑ )

4m m !

2

mγ−2







(3.38)

valid for γ> 2. Assuming that the interferer emission amplitude B 0 has constant

value B , I get

ΨS0
(w) =λπ

∞
∑

m=1

(−1)m (||w||2σB )mδ
−γm+2

↓

4m m !

2

γm −2
(1− δ↑

δ↓

−γm−2

) (3.39)

In Section 3.6.1, I discuss the impact of applying any general interferer emission

amplitude distribution on the interference statistics. The multiplicative term

2

mγ−2

�

1− δ↑
δ↓

−γm−2
�

prevents us from simplifying (3.39) into an exponential. Note

that in reasonable to assume that for many wireless network scenarios δ↑ ≫ δ↓,

in which case
�

1− δ↑
δ↓

−γm−2
�

→ 1 leaving the term 2

mγ−2
. Similar to an approach

used in [71], I approximate 2

mγ−2
as an power series ηβm for m ≥ 1 and choose
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parameters ηγ and βγ to minimize the mean squared error (MSE)

{ηγ,βγ}= arg min
η∈R,β∈R

∞
∑

m=1

�

2

mγ−2
−ηβm

�2

. (3.40)

Using the non-linear unconstrained optimization toolbox functionality provided

by MATLAB, I am able to determine the appropriate values for {ηγ,βγ} for any

γ> 2 with MSE less than 10−4. In the case where
�

1− δ↑
δ↓

−γm−2
�

cannot be ignored,

I can again use the power series approximation to find parameters {ηγ,βγ} such

that {ηγ,βγ}= arg minη∈R,β∈R
∑∞

m=1

�

2

mγ−2

�

1− δ↑
δ↓

−γm−2
�

−ηβm
�2

.

Using the aforementioned approximation, the log-characteristic expo-

nent in (3.39) can be expressed as

ΨS0
(w) =λπ

∞
∑

m=1

(−1)m (||w||2σB )mδ
−γm+2

↓

4m m !
ηγβ

m
γ

(3.41)

=λπδ2
↓ηγ

�

e−
||w||2δ−γ↓ βγE

§

H 02
ª

B
2

4 −1

�

(3.42)

= A0

�

e−
||w||2Ω0

2 −1

�

. (3.43)

Equation (3.41) is the log-characteristic function of a Middleton Class A where

A0 = λπδ
2
↓ηγ is the overlap index indicating the impulsiveness of the interfer-

ence, andΩ0 =
Aδ
−γ
↓ βγE

¦

H02
©

B
2

2
is the mean intensity of the interference [115]. Thus,

I can write (3.10) as

ΦS0
(w) = e

A0

�

e−
||w||2Ω0

2 −1

�

(3.44)

3.5.2 Evaluation of ΦSn
(w) (Interference Contribution from Sn )

In this section, I derive contribution of interferer sets Si∀i = 1,2...N to

the spatial joint statistics of interference. At each antenna n , the interference
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from the exclusive set of interferers is identical to interference seen by a single

antenna receiver surrounded by interferers distributed according to a Poisson

Point Process. The statistics of such interference have been derived in [71] and

shown to be well modeled by the univariate Middleton Class A distribution. Thus

I can write (3.11) as

ΦSn
(w) = e

An

�

e−
|ωn |2Ωn

2 −1

�

(3.45)

where An = λnπδ↓ηγ and Ωn =
Anδ

−γ
↓ E{Hn 2}B 2

βγ

2
are the parameters of the Class

A distribution. Combining (3.9), (3.44) and (3.45), I get the joint characteristic

function of interference as

ΦZ(w) = e
A0

�

e−
||w||2Ωn

2 −1

�

×
N
∏

n=1

e
An

�

e−
|ωn |2Ωn

2 −1

�

. (3.46)

The corresponding probability density function can be written as

f (Z) =

(

N
∏

n=1

(

∞
∑

mn=1

e−An (An )
mn

p

2πmnΩn mn !
e
−|Zn |2

2mn Ωn + e−Anδ(Zn )

))

×
(

∞
∑

m0=1

e−A0(A0)
m0

p

2πm0Ω0m0!
e
−||Z||2

2m0Ω0 + e−A0δ(Z)

)

(3.47)

where δ(·) is the Dirac-delta function. It indicates the probability that there are

no interferers in the annular region around the receiver, resulting in zero in-

terference. In practical receivers, however, thermal background noise is always

present and is well modeled by the Gaussian distribution. Assuming that an-

tenna n observes independent thermal noise with varianceρn , I can incorporate
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it into my model resulting in the following distribution

f (Z) =

(

N
∏

n=1

(

∞
∑

mn=0

e−An (An )
mn

p

2πΩn (mn +Γn )mn !
e

−|Zn |2
2Ωn (mn+Γn )

))

∞
∑

m0=1

e−A0(A0)
m0

p

2πm0Ω0m0!
e
−||Z||2

2m0Ω0

+ e−A0

N
∏

n=1

∞
∑

mn=0

e−An (An )
mn

p

2πmnΩn mn !
e

−|Zn |2
2Ωn (mn+Γn ) (3.48)

where Γn =
ρn

Ωn
.

3.6 Impact of System Model Assumptions on Derivation

3.6.1 Interference Statistics in General Fading Channel Models

In developing the system model in Section 3.4, I assumed a Rayleigh dis-

tributed fast fading channel between interfering sources and the multi-antenna

receiver. While the Rayleigh distribution is a reasonably accurate and frequently

used model of fading channel amplitude, other distributions have also been used

to characterize wireless channel amplitudes[146].

For unconstrained interferer location distribution, I do not require any

assumptions on the channel amplitude distribution to derive interference statis-

tics. When the interferer locations are constrained, the Rayleigh distribution of

the fading channel between interferers and the receiver was used to simplify the

integral of a Bessel function in (3.30) into the integral of an exponential function.

Removing the Rayleigh distribution assumption would prevent this step in the

proof. However, since I am primarily interested in the tail statistics of the inter-

ference distribution, and Fourier analysis shows that the behavior of the charac-

teristic function Φ in the neighborhood of ||w|| → 0 governs the tail probability
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of the random envelope[115]. An approximation was proposed in [114] for the

log-characteristic function forψ in the neighborhood of zero using

Ex {J0(x )}= e−Ex {x } (1+Λ(x )) (3.49)

where Λ(x ) is a correction factor expressed as

Λ(x ) =

∞
∑

m=2

(E{x 2})k

22k k !
E1F1(−k ;1;

x

E{x } ) (3.50)

where 1F1(·; ·; ·) is the confluent hypergeometric function of the first kind. As x →

0, the slowest decaying term in Λ(x ) is of the order O(x 4). Thus, as ||w|| → 0, I

approximate 1+Λ(|ωn |D
− γ

2

0 H 0
n

B 0)≈ 1. Using (3.49) in (3.26) and ignoring higher

order terms around the region |ωn |= 0, I can show that

ΨS0
(w) = K

 

E

(

N
∏

n=1

J0

�

|ωn |D
− γ

2

0 H 0
n

B 0

�

)

−1

!

(3.51)

= K

 

E

(

N
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n=1

EH0
n

J0

�

|ωn |D
− γ

2

0 H 0
n

B 0

�

)

−1

!

(3.52)

≈ K






E

N
∏

n=1

e
−
(
�

|ωn |D
− γ2
0 E{(H0

n )
2}B 0

�2
)

−1






(3.53)

= K






ED0,B 0 e

−
(
�

||w||2D
− γ2
0 E{H2

n }B 0

�2
)

−1






(3.54)

In stepping from (3.53) to (3.54), I used the assumption that the fading chan-

nel is i.i.d. across the receive antennas, therefore E{(H 0
n
)2} is independent of n .

Since (3.54) has the same form as (3.35), the rest of the joint interference statistics

derivation continues from (3.35) as shown in Section 3.5, yielding joint statistics

of the form given in (3.47).
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3.6.2 Interference Statistics in General Interferer Emission Models

In deriving interferer statistics in the presence of guard zones, I assumed

that the emission amplitude was constant in (3.39) in order to simplify the in-

terference statistics into the form of a Middleton Class A distribution. Without

making this assumption, (3.41) would be replaced by

ΨS0
(w) =λπδ2

↓ηγEB 0

¨

e−
||w||2δ−γ↓ βγE

§

H 02
ª

(B0 )2

4 −1

«

(3.55)

As discussed in Section 3.6.1, in order to accurately model tail probabilities, I

am concerned with the region around ‖w‖ → 0. In this region, I can use the

approximation e x ≈ 1+x , to arrive at

EB 0

¨

e−
||w||2δ−γ↓ βγE

§

H 02
ª

(B0 )2

4 −1

«

≈E
(

−||w||2δ−γ↓ βγE
¦

H 02
©

(B 0)2

4

)

(3.56)

=
−||w||2δ−γ↓ βγE

¦

H 02
©

E
�

(B 0)2
	

4
(3.57)

Again, by using the approximation 1+ x ≈ e x , I can combine (3.55) and (3.57) to

get

ΨS0
(w)≈λπδ2

↓ηγ

�

e
−||w||2δ−γ↓ βγE

§

H 02
ª

E{(B0 )2}
4 −1

�

(3.58)

which has the same form as (3.41). Thus, even if the envelope of the interferer

emission signal is randomly distributed, the interference statistics can be ap-

proximated using the Middleton Class A form, especially in the tail probability

region.
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3.6.3 Interference Statistics in Spatially Correlated Fading Channel Models

To derive the joint statistics of interference in Section 3.5, I assumed that

the wireless fading channel between the interfering source and receiver is spa-

tially independent and identically distributed across the multiple antennae in

the receiver. This assumption may not be true if two antennae are close to each

other. Spatial correlations in the wireless channel are routinely modeled during

performance analysis of multi-antenna receivers[143]. In this section, I study the

impact of channel correlation on the joint spatial interference statistics. I start

from (3.25), which shows that the joint log-characteristic function of interference

can be expressed as

ΨS0
(w) =

K

 

E

(

N
∏

n=1

∞
∑

mn=0

j mnεmn
Jmn

�

|ωn |D−
γ

2 H 0
n ,0

B 0
n ,0

�

cos
�

mn

�

χ0+Θ0
n
+ξω,n

��

)

−1

!

.

(3.59)

In Section 3.5, I used the assumption that the fast-fading channel phase is uncor-

related across receive antennae, to show that all terms with mn > 0 are equal to

zero, resulting in the simplified product of terms expression in (3.26). If there

is phase correlation between receive antennae u and v , then the terms con-

taining E
¦

cos
�

ku (χ0+Θ0
u
+ξω,u )+kv (χ0+Θ0

v
+ξω,v )

�©

are not equal to 0 for

ku ,kv > 0. However, assuming that the interferer emissions are uniformly dis-

tributed in phaseχ0, only the terms with kv =−ku and ku = kv = 0 are non-zero,
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and considering only these terms (3.59) reduces to

ΨS0
(w) = KE
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(3.60)

By applying the following identity,

J0

�p

a 2+b 2−2ab cos(x )
�

=

∞
∑

m=0

Jm (a )Jm (b )εm cos(m x ) (3.61)

(3.60) can be expressed as
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(w) = KE

¨
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−1 (3.62)

I again use the approximation result provided in (3.49) to get

ΨS0
(w) = K
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Note that in addition to the |ωn |2 terms, ΨZ,S0
(w) contains non-zero terms of the

form ωu ,Rωv,R , ωu ,Rωv,I , ωu ,Iωv,I , and ωu ,Iωv,R . These terms indicates sam-

ple level correlation in the sum interference, for example the coefficient of the

ωu ,Rωv,R term is indicative of correlation between Yu ,R and Yv,R . Analogous to

the cross terms in multi-dimensional Gaussian distributions, this coefficient of

theωu ,Rωv,R term is equal to E
�

Yu ,R Yv,R

	

.

ΦZ(w) = e
A0

�

e−
wT K−1w

2 −1

�

×
N
∏

n=1

e
An

�

e−
|ωn |2Ωn

2 −1

�

. (3.65)

The probability density function corresponding to the characteristic function in

(3.46) can be written as

f (Z) =

(

N
∏

n=1

(

∞
∑

mn=1

e−An (An )
mn

mn !
e
−|Zn |2
Ωn

))

∞
∑

m0=1

e−A0(A0)
m0

m0!
e
−ZT K−1Z
Ω0 (3.66)

where the matrix K is a 2N×2N matrix. For all integers u ,v ∈ [1,N ], the elements

of K are given as

K2u ,2v =E
¦

H 0
u

H 0
v

cos(Θ0
u
−Θ0

v
)
©

(3.67)
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H 0
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u
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©
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¦
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H 0
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u
−Θ0

v
)
©

(3.69)

K2u+1,2v =E
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H 0
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sin(Θ0
u
−Θ0
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©

(3.70)

K2u ,2u =E
¦

(H 0
u
)2
©

(3.71)

K2u+1,2u+1 =E
¦

(H 0
u
)2
©

. (3.72)
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Table 3.3: Parameter values used in simulations
Parameter Description Value

λt ot Per-antenna total intensity of interferers 0.01

γ Power path-loss exponent 2.5

B Mean amplitude of interferer emissions 1.0

δ↓ Radius of guard zone around receiver 1.5

E
�

H 2
	

Fast fading channel power 1.0

3.7 Simulation Results

To study the accuracy of my joint amplitude distribution model for con-

strained interferer distributions, I numerically simulate interference observed by

a multi-antenna receiver operating in an interferer environment as described in

Section 5.4. The receiver uses two antennae and the interferers exclusive to each

antennae are distributed with equal densities, i.e. λ1 = λ2 = λe . I choose a value

of λ0 such thatλ0+λe = 0.01, i.e. the density of total interferers observed by each

antenna is the same, regardless of the choice of λ0 or λe . This helps to normalize

my data as the variance of interference observed at each antenna (proportional

to λ0+λe ) remains the same regardless of the value taken by λ0 or λe . Table 3.3

lists the values for the rest of the simulation parameters.

Figure 3.2 shows a simulated random interference sample sequence ob-

served at the two antennae over a span of 40 time samples using different val-

ues of λ0 and λe and other parameters from Table 3.3. When the interference

samples are generated with λ0 = 0, they are independent across receive anten-

nae, causing impulsive events (samples which have a large amplitude) to occur

independently across the two antennae. Setting λe = 0, leads to high spatial de-
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Figure 3.2: Time series plot of simulated interference at a 2−antenna receiver.

λ0 = 0.1 and λ1 = λ2 = 0.0 in the figure on the left, and λ0 = 0.0 and λ1 = λ2 = 0.1

in the figure on the right.

pendence in the resulting interference, consequently, impulse events at the two

receive antennae occur with different strengths but at the same location in time.

Figure 3.3 shows a scatter plot of the amplitude of interference at two receive an-

tenna, where the horizontal axis denotes the amplitude of interference samples

at antenna 1 and the vertical axis denotes the amplitude of interference samples

at antenna 2. As λ0 increases, the interference sample points move towards the

top left of the scatter plot area, indicating that impulsive events occur in a spa-

tially dependent manner.

I use the Kullback-Liebler (KL) divergence as a metric to compare the em-

pirical distribution of the simulated interference amplitude with prior work and

my proposed statistical models. Although KL divergence is not a distance metric,

it is often used to compare probability density distributions and various methods

are available for its efficient computation[168]. A smaller KL divergence between

two density distributions implies high similarity between the density functions.
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Figure 3.3: Scatter plot of simulated interference amplitude at a 2−antenna re-

ceiver.

Figure 3.4 shows the KL divergence calculated for different values of λ0. The

KL divergence between the empirically estimated distribution and the proposed

distribution is lower than the KL divergence between the empirically estimated

distribution and Models I, III from [47] for all values of λ0. The KL divergence

between the empirical interference distribution and Model I increases as λ0 in-

creases since Model I does not account for spatial dependence which increases

withλ0. Similarly, Model II only takes into account spatial dependence and its KL

divergence increases as λ0 decreases. The KL divergence between simulated in-

terference data and multivariate Gaussian distribution of equal variance is very

large, owing to the fact that the Gaussian distribution cannot accurately model

the high frequency with which impulsive events occur in simulated interference.

Note that in all comparisons the variance of the marginal distribution at each

antenna is the same for purposes of normalization.

Next, I compare the tail probabilities of the numerically simulated distri-

bution and the proposed distribution models. The tail probability is the com-

plementary cumulative distribution function of a random variable and in per-
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Figure 3.4: Estimated KL divergence between density distribution of simulated

interference and Middleton Class A distribution vs. λ0 (λe = 0.01−λ0), where a

lower KL divergence means a better fit. D(P ||Q) denotes the KL divergence be-

tween distributions P and Q. KL divergence is also calculated between the sim-

ulated interference distribution and models MCA.I (Independent Class A) and

MCA.III (Isotropic Class A) from Table 2.2.

formance analysis of communication systems, the tail probability of interfer-

ence is related to the outage performance of receivers. Given a threshold τ, I

define tail probability as P (|Y1|>τ, · · · , |YN |>τ). Figure 3.5 shows a comparison

of the tail probabilities of the numerically simulated distribution, my proposed

distribution, and the Gaussian distribution for interference with and without

guard zones, respectively. The tail probability of the multi-dimensional Middle-

ton Class A distribution can be evaluated as a mixture of Gaussian tail probabil-

ities. The tail probabilities of my proposed distribution match closely to simu-

lated interference, while the Gaussian distribution is clearly unable to capture

the large tail probabilities of impulsive interference.
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Figure 3.5: Tail probability vs. threshold τ for simulated interference in the pres-

ence of guard zones. The tail probability is compared between the numerically

simulated interference (“Sim”) and the tail of the proposed multi-variate Middle-

ton Class A distribution (“Expr”). The tail probabilities are generated for isotropic

interference (λ0 = 0.01,λe = 0.0) and a mixture of isotropic and independent in-

terference (λ0 = 0.001,λe = 0.009). Remaining parameter values are given in Ta-

ble 3.3.
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Table 3.4: Channel models used in Figure 3.6

Channel Model Parameters

Rayleigh fading
σ= 1

f (x ) = x

σ2 e
−x 2

2σ2

Rician fading
K = 2,Ω= 1

f (x ) = 2(K+1)x

Ω
e

�

−K− (K+1)x 2

Ω

�

I0

�

2
Æ

K (K+1)
Ω

x

�

Nakagami fading
µ= 0.5,ω= 1

f (x ) =
2µµ

Γ(µ)ωµ
x 2µ−1e (−

µ

ω
x 2)

I also use KL divergence to study the impact of different channel models

on the resulting spatial distribution of interference. Table 3.4 lists the channel

models that are used for this study and the parameter values associated with

each model. The system parameter values are chosen from Table 3.3. Figure 3.6

shows that the KL divergence with Rayleigh fading channel model is the lowest,

which is to be expected. The KL divergence increases slightly upon changing the

channel model, indicating that the approximation used in (3.49) is close to its

true value. I claim that the differences in KL divergence in Figure 3.6 are small by

referencing the significantly larger differences in KL divergence in Figure 3.4 that

arise by not taking into account for spatial dependence or by using the Gaussian

distribution to model impulsive data.

Finally, I simulate correlated fading channels to test whether my model

correctly accounts for spatial correlation. I simulate correlation between the

in-phase components of the channel between an interferer and the two receive

antennae. The Pearson product moment correlation coefficient (PMCC) [137]

between these two random variables is chosen as 0.3. Using (3.67), the PMCC
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Figure 3.6: Estimated KL Divergence between simulated interference distribu-

tion and proposed model vs. λ0, using different fast fading channel models. The

density function corresponding to each channel model is provided in Table 3.4.

λe = 0.01−λ0, and remaining parameters are given in Table 3.3. D(P ||Q) denotes

KL Divergence between distributions P and Q.

between the in-phase components of the two receive antennae has a predicted

value of 0.3∗λ0

λ0+λe
. In this test, I fix λe = 0.04, vary λ0 between 0.0 and 0.1, and the re-

maining parameter values are given in Table 3.3. Figure 3.7 shows that the empir-

ically estimated value of the PMCC follows the model prediction very accurately.

3.8 Conclusions

In this chapter, I proposed a statistical-physical framework for modeling

interference observed by a multi-antenna receiver surrounded by interference

causing emitters. This framework incorporates random distribution of inter-

ferer locations in two-dimensional space around the receiver with an interferer-
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Figure 3.7: Estimated Pearson Product Moment Correlation Coefficient (PMCC)

vs. λ0. λe = 0.04 and other parameter values are given in Table 3.3.

free guard zone, and physical mechanisms describing the generation and prop-

agation of interference through the wireless medium, such as fast fading and

pathloss attenuation. This framework also incorporates partial statistical depen-

dence of interference across the receive antennae and captures a continuum be-

tween spatially independent and spatially isotropic interference.

Using my proposed framework, I derived the joint statistics of interfer-

ence observed across a multi-antenna receiver, with the resulting amplitude dis-

tribution modeling both spatially isotropic and spatially independent observa-

tions of interference as special cases. Depending on the region within which

interferers are distributed, the interference statistics can be modeled using the

Middleton Class A or the symmetric alpha stable distribution. Some of these

distributions find use in designing interference mitigation algorithms or analyz-

ing communication performance of receivers in the presence of interference. By
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providing a link between network models and interference distribution, my pro-

posed models can better inform such analysis and can be used in designing re-

ceivers that are better suited to the network and interference conditions in which

they are expected to operate.

In the next chapter, I derive joint statistics of interference observed by a

multi-antenna receiver operating within a network without any interferer-free

guard zones. Such a network model can be applied to decentralized networks,

such as sensor networks, or ad hoc networks, as well as interference from non-

communicating devices.
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Chapter 4

Statistical Modeling of Interference in Decentralized

Networks

4.1 Introduction

In Chapter 3, I derived joint statistics of interference observed by multi-

antenna receivers in centralized networks. In developing the network model, I

assumed the presence of a central authority that limits interferers to be located

outside of a finite area guard zone around the receiver. This is a reasonable model

for out-of-cell CCI in networks where multiple access protocols within a cell can

limit CCI from coordinated devices nearby an active user[79]. However, inter-

ference can arise from co-existing wireless protocols such as Bluetooth and Wi-

Fi[184], and from non-communicating sources such as clocks and busses on a

computational platform[147]. Such sources of interference are typically not in

the control of a central coordinating authority and may be transmitting arbitrar-

ily close to an active receiver[86].

In this chapter, I randomly distribute the active interferers surrounding

a wireless receiver with no constraints imposed on the minimum distance be-

tween an interferer and the receiver. Such a system model resembles an ad hoc

wireless network without any contention-based medium access control proto-
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col[78]. The same model can also describe interference generated as platform

noise[118], as interference causing components on the device platform can be

located arbitrarily close to the wireless device.

Another key assumption in Chapter 3 was that the receiver antennae are

colocated. In other words, I ignored separation between the antennae of the

wireless receiver. For many small form-factor mobile wireless devices, such a

simplification may be reasonable as the separation between the multiple receive

antennae is significantly smaller than the distance between the device and other

interfering sources. However, there exist network scenarios where the separation

between the multiple receive antennae cannot be ignored and may have an im-

pact on the nature of interference statistics. For example, cooperative MIMO re-

ceivers utilize geographically distributed antennae in order to mitigate the harm-

ful impact of wireless fading on communication performance. Platform interfer-

ence on embedded wireless devices arises from sources so close to the antennae,

that inter-antenna separation is not significantly smaller than antenna-interferer

separation. It is therefore imperative that joint statistical models of interference

account for receive antenna separation, consequently I derive joint statistics of

interference across two physically separate antennae located in a Poisson field

of interferers.

4.2 Organization and Notation

Section 4.3 presents a concise survey of statistical models of interference

in distributed antennae located in decentralized networks. Section 4.4 discusses
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Table 4.1: Summary of key symbols used in this chapter.

Symbol Description

Indexing Variables

i Interferer index in a set of interferers

n Antenna index in a multi-antenna receiver

Sets

S0 Set of interferers observed by all receive antennae

Sn Set of interferers observed by n th receive antenna

Constants

γ Power pathloss exponent

λ0,λn Interferer distribution intensityΠ0,Πn

Random Variables

B ,χ Amplitude and phase of interferer emissions

H ,Θ Amplitude and phase of fast fading channel

Y= YI+j YQ Sum interference at receiver from all sets

Yn = Yn ,I+j Yn ,Q Sum interference at receiver from set Sn

ΦZ(w) Joint characteristic function of Z

ΨZ(w) Joint log-characteristic function of Z

ωn ,I ,ωn ,Q Frequency variables for ΦZ(w)(n = 1,2)

w [ω1,I ,ω1,Q ,ω2,Iω2,Q ]

the system model of interference generation and propagation. Section 4.5 de-

rives interference statistics in a receiver with colocated multiple antennae. Sec-

tion 4.6 derives interference statistics in a wireless receiver with distributed mul-

tiple antennae. In Section 4.8, I remove some of the system model assumptions

and study the impact on interference statistics. Section 4.9 presents numerical

simulations to corroborate my claims and Section 4.10 provides a short summary

of the key takeaways from this chapter. Key symbols are summarized in Table 4.1.
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4.3 Motivation and Prior Work

In typical communication receiver design, interference is usually mod-

eled as a Gaussian distributed random variable [23]. While the Gaussian dis-

tribution is a good model for thermal noise at the receiver[65], interference has

predominantly non-Gaussian statistics[115]and is well modeled using impulsive

distributions such as symmetric alpha stable[140] and Middleton Class A distri-

butions[114]. The impulsive nature of interference may cause significant degra-

dation in communication performance of wireless receivers designed under the

assumption of additive Gaussian noise[118].

The statistical techniques used in modeling interference can be divided

into two categories: (1) statistical inference methods and (2) statistical-physical

methods. Empirical approaches fit a mathematical model to interference signal

measurements, without regard to the physical generation mechanisms behind

the interference[141]. Statistical-physical models, on the other hand, model in-

terference based on the physical principles that govern the generation and prop-

agation of interference-causing emissions[86, 115]. Statistical-physical models

can therefore be more useful than empirical models in designing robust receivers

in the presence of interference[115].

In [149], interference from a Poisson field of interferers was modeled us-

ing the symmetric alpha stable distribution[140]. This result was later extended

to show that interference observed by a multi-antenna receiver in a Poisson field

of interferers follows the isotropic symmetric alpha stable distribution[86]. The

authors assume that each receiver is surrounded by the same set of active inter-
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Table 4.2: Key statistical models of interference observed by multi-antenna re-

ceivers in interference-limited networks without guard zones.

Model Name Statistical Model

Symmetric alpha stable

Characteristic Function

ΦZ (ω) = e−σ|ω|
α

α : Characteristic exponent.

σ : Dispersion parameter.

Isotropic symmetric alpha stable

Characteristic Function:

ΦZ(w) = e−σ||w||
α

α : Characteristic exponent

σ : Dispersion parameter

Independent symmetric alpha stable

Characteristic Function:

ΦZ(w) = e−σ||w||
α
α

α : Characteristic exponent

σ : Dispersion parameter

ferers, and receiver separation is ignored. The spherically isotropic alpha stable

model is derived under both homogeneous and non-homogeneous distribution

of interferers, with the signal propagation model incorporating pathloss, lognor-

mal shadowing and Rayleigh fading.

Prior work on statistical modeling of interference in multi-antenna wire-

less systems has typically focused on using multi-variate extensions of single-

antenna interference statistical models[47]. The two common approaches of

generating multi-variate extensions of uni-variate distributions assume that ei-

ther (a) interference is independent across the receive antennae, or (b) the multi-

variate interference model is isotropic. Table 4.2 describes the uni-variate sym-

metric alpha stable distribution as well as the multi-variate isotropic and inde-

pendent symmetric alpha stable distributions.
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One of the recent strategies to increase data rate and communication re-

liability in the presence of interference is to use geographically distributed multi-

ple antennae at the receiver[160]. Studies have since shown potential advantages

such as improving wireless network capacity and reducing device power utiliza-

tion[63, 129]. In distributed antennae systems (DAS), antenna modules are geo-

graphically distributed and each distributed antenna module is connected to a

home base station (or central unit) via dedicated wires, fiber optics, or an exclu-

sive RF link[39]. In particular, the terms cooperative MIMO, or relay communi-

cation, are connotative of the same RF link being used between the distributed

antennae, and between the base station and each antenna.

In this chapter, I develop a network model where a receiver employing

two distributed antennae is surrounded by a field of randomly distributed in-

terferers, with signal propagation through this medium suffering from pathloss

attenuation and fast fading. I derive the joint statistics of sum interference ob-

served by the distributed antennae and provide closed form expressions approx-

imating the joint characteristic function of interference. These joint statistics are

useful in the many practical applications of distributed antennae receiver sys-

tems, and cooperative communications. Accurate models of interference statis-

tics can inform design of receiver algorithms to combat interference and analysis

of communication performance in the presence of interference.
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4.4 System Model and List of Assumptions

In this section, I describe a interference limited multi-antenna wireless

communication system via the following assumptions:

Assumption 4.1. A wireless receiver with N antennae is observing interference.

Assumption 4.2. Interferers are located in a two-dimensional plane around the

receiver.

This assumption is used only for ease of analysis. Distributing interferers

in a three-dimensional volume does not alter the nature of any results, other than

certain parameter values.

Assumption 4.3. Inteferers are either observed by all antennae, or by only one

antenna.

At each time snapshot, the active interfering sources are classified into

N + 1 independent sets S0,S1, · · · ,SN . S0 denotes the set of interferers that cause

interference to every receive antenna. Sn ∀ n = 1, · · · ,N denotes the set of in-

terferers that are observed by antenna n alone. Under this assumption inter-

ference statistics lie in a continuum between spatially independent, or spatially

isotropic. More justification for this assumption is provided in Section 3.4.

Assumption 4.4. Interferers are distributed as a spatial Poisson Point Process.

At each sampling time instant, the locations of the active interferers in Sn

∀ n = 0, · · · ,N are distributed according to a homogeneous spatial Poisson Point
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Process in the two-dimensional plane around the receiver. The intensity of set Sn

is denoted by λn ∀ n = 0, . . . ,N . The Poisson Point Process distribution is usually

applied to modeling the statistical distribution of interfering sources in wireless

communication systems[12]. A spatial Poisson point process distribution of in-

terferers allows each interferer set Sn to have potentially infinite number of in-

terferers. The distance of each interferer from the origin provides an ordering

function, ensuring that the interferers in each set are countable. In other words,

the i th interferer in Sn , located at coordinates Rn ,i , is defined by implicitly assum-

ing ‖Rn ,1‖2 < ‖Rn ,2‖2 < ‖Rn ,3‖2 < · · · .

Assumption 4.5. The wireless signal energy decays according to the power-law

path-loss model with a patloss coefficient of γ.

Assumption 4.6. There wireless channel between the interferer and receiver expe-

riences Rayleigh fast-fading.

The fast-fading channel between the interfering sources and the receiver

is modeled using the Rayleigh distribution[65].

Assumption 4.7. Additive thermal noise is ignored at the receiver.

With high user density and frequency reuse, many communication sys-

tems are interference-limited; i.e., interference at the receiver is much stronger

than the thermal noise component. Consequently, the resulting statistical model

is applicable to interference-limited communication scenarios.

Assumption 4.8. Inteferers may be arbitrarily close to the receiver.
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Antenna

Interferer

Figure 4.1: Illustration of interferer distribution around a 2-antenna receiver with

colocated antennae at a sampling time instant.

The active interferers surrounding the wireless receiver a located with

no constraints imposed on the minimum distance between an interferer and

the receiver. Such a system model resembles an ad hoc network without any

contention-based medium access control protocol[78]. The same model can

also describe platform noise[118], as interfering sources on the device platform

can be located arbitrarily close to the wireless device. The absence of guard-

zones is vital to modeling interference in decentralized ad hoc networks, as well

as interference from uncoordinated users in centralized networks. Figure 4.1

shows a snapshot of interferer distribution around two colocated antennae in

a Poisson field of interferers.

4.5 Joint Statistics of Interference in Colocated Antennae

In this section, I derive the statistics of interference assuming that the

wireless antennae are colocated. At each receive antenna n , the baseband sum
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interference signal at any sampling time instant can be expressed as the sum

total of the interference signal observed from common interferers and the in-

terference signal from interferers visible only to antenna n . I can express the

interference signal at the n th antenna as

Zn =Z ′0,n +Z ′n (4.1)

where Zn , Z ′0,n represent the sum interference signal from interfering sources in

Sn (visible only to antenna n), and interfering sources in S0 (visible to all anten-

nae), respectively. As shown in Section 3.5, the sum interference signal Z ′n from

interferers in Sn can be written as

Z ′n =
∑

i∈Sn

B n
i

e jχn
i (Dn ,i )

− γ
2 H n

i
e jΘn

i . (4.2)

Z ′
n

is the sum of interfering signals B n
i e jχn

i (Dn ,i )
− γ

2 H n
i e jΘn

i emitted by each inter-

ferer i ∈ Sn located at Rn ,i . B n
i e jχn

i denotes interferer emissions from interfering

source i where B n
i is the emission signal envelope and χn

i is the phase of the

emission. I assume that the signal envelope B n
i is constant. Dn ,i denotes the

distance between the receiver n and the interferer, and γ is the power pathloss

coefficient (γ > 2), consequently, (Dn ,i )
− γ

2 indicates the reduction in interfering

signal energy during propagation through the wireless medium. H n
i e jΘn

i denotes

the complex fast-fading channel between the interferer and receiver n . For the

fast fading channel model, I assume that the channel amplitude H n
i follows the

Rayleigh distribution, and that the channel phaseΘn
i is uniformly distributed on

[0,2π]. H n
i , Θn

i , B n
i , and χn

i are assumed to be i.i.d. across all interfering sources

i ∈ Sn .
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The signal from the common set of interferers S0 is expressed as

Z ′0,n =
∑

i 0∈S0

B 0
i

e jχ0
i (D0,i )

− γ
2 H 0

n ,i
e jΘ0

n ,i . (4.3)

Note that the difference between (4.2) and (4.3) is that the interferer emission

signal B 0
i e jχ0

i and the distance D0
i between interferer i and the receive antenna

n , is independent of the antenna under observation (n). This is because I ig-

nore inter-antenna spacing and assume all antennae are located at the origin.

The channel between the interferer and n th receiver, denoted by H 0
n ,i e j θ 0

n ,i , is also

assumed i.i.d. across n and i .

Following the derivation in Section 3.5, I get the joint characteristic func-

tion of the interference vector Y as

ΦZ(w) = ΦS0
(w)

N
∏

n=1

ΦSn
(w) (4.4)

where,

ΦS0
(w) =E

�

e j
∑N

n=1 |ωn |
∑|S0|

i=1 D
− γ2
0,i H0

n ,i B 0
i cos(χ0

i +Θ
0
n ,i+ξω,n )

�

(4.5)

ΦSn
(w) =E

�

e j |ωn |
∑|Sn |

i=1 D
− γ2
i Hn

i B n
i cos(χn

i +Θ
n
i +ξω,n )

�

(4.6)

where |ωn | =
p

ω2
n ,I
+ω2

n ,Q and ξω,n = tan−1
�

ωn ,I

ωn ,Q

�

. Subsequently, I evaluate

ΦS0
(w), and ΦSn

(w).
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4.5.1 Evaluation of ΦSn
(w) (Interference Contribution from Sn )

In order to evaluate ΦSn
(w), I rewrite (4.6) as

ΦSn
(w) =E

�

e j |ωn |
∑|Sn |

i=1 D
− γ2
n ,i Hn

i B n
i cos(χn

i +Θ
n
i +ξω,n )

�

(4.7)

=E

�

e j |ωn |
∑|Sn |

i=1 sgn(cos(χn ,i+Θn ,i+ξω,n ))D
− γ2
n ,i Hn ,i Bn ,i |cos(χn ,i+Θn ,i+ξω,n )|

�

(4.8)

where sgn(·) denotes the sign function. (4.8) is the characteristic function evalu-

ated at |ωn |, of the random variable

T =

|Sn |
∑

i=1

sgn(cos(χn
i
+Θn

i
+ξω,n ))D

− γ
2

n ,i H n
i

B n
i

�

�cos(χn
i
+Θn

i
+ξω,n )

�

� (4.9)

=

P
∑

i=1

E i R
− γ

2

i Wi (4.10)

where P = |Sn | is a Poisson random variable, E i = sgn(cos(χn
i +Θ

n
i +ξω,n )), Ri =

Dn ,i , and Wi = Hn ,i Bn ,i

�

�cos(χn
i +Θ

n
i +ξω,n )

�

�. χn
i and Θn

i are independent ran-

dom variables distributed uniformly over [0,2π]. It is trivial then to see that for

any value of ξω,n , the random variable cos(χn
i +Θ

n
i +ξω,n ) is positive or negative

with equal probability. Ri is the distance from the origin of points in a Poisson

point Process with intensity λn . Furthermore, Wi , Ri and εi are i.i.d. across i .

From Theorem 1.4.2 in [140], T follows the symmetric alpha stable distribution

with parameters α = 2

γ
and σn =

�

C−1
α
λnE

�

|Wn |α
	
�1/α

. Here Cα is a constant de-

fined as follows

Cα =

¨

1−α
Γ(2−α)cos(πα/2)

if α 6= 1,

2/π if α= 1.
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4.5.2 Evaluation of ΦY,S0
(w) (Interference Contribution from S0)

The contribution to the joint spatial statistics of interference from the in-

terferers in S0 is expressed as the term ΦS0
(w) in the joint characteristic function

of interference given by (4.4). In order to derive a closed form expression for

(4.5), I use an approach similar to one proposed in [86]. Observe that (4.5) is the

characteristic function of a random vector U with 2N elements, whose n th and

n +1th elements Un and Un+1 are given as

Un =
∑

i 0∈S0

B 0
i 0

D
− γ

2

0,i 0
H 0

n ,i 0
cos (χ0

i 0
+Θ0

n ,i 0
) (4.11)

=
∑

i 0∈S0

E ′
i 0

D
− γ

2

0,i 0
Wn ,i 0

(4.12)

where E ′i 0
= sgn(cos (χ0

i 0
+Θ0

n ,i 0
)) and Wn ,i 0

= B 0
i 0

H 0
n ,i 0

cos (χ0
i 0
+Θ0

n ,i 0
), and

Un+1 =
∑

i 0∈S0

B 0
i 0

D
− γ

2

0,i 0
H 0

n ,i 0
sin (χ0

i 0
+Θ0

n ,i 0
) (4.13)

=
∑

i 0∈S0

E ′′
i 0

D
− γ

2

0,i 0
Wn+1,i 0

(4.14)

where E ′′i 0
= sgn(sin (χ0

i 0
+Θ0

n ,i 0
)) and Wn ,i 0

= B 0
i 0

H 0
n ,i 0

sin (χ0
i 0
+Θ0

n ,i 0
). I can create

the vector W comprising of Wn+1 (n = 1,2, · · · ,2N ) with characteristic function

ΦW(·). Un and Un+1 follow the symmetric alpha stable distribution with expo-

nent α = 2

γ
and dispersion σn =

�

C−1
α
E |Wn |α

�1/α
. Since the characteristic ex-

ponent of each coordinate Un is the same and is independent of n , any linear

combination of U1,U2 . . .U2N is a symmetric stable random vector. Using The-

orem 2.1.5 in [140], U is a symmetric alpha stable vector. Furthermore, each

coordinate Un and Un+1 can be decomposed into a product of a univariate ran-

dom variable B 0
i 0

D
−γ/2
0,i 0

, and a Gaussian random variable H 0
n ,i 0

cos (χ0
i 0
+Θ0

n ,i 0
) or
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H 0
n ,i 0

sin (χ0
i 0
+Θ0

n ,i 0
), respectively. The Gaussian random variables are indepen-

dent across the antenna index n . Since a random vector comprised of indepen-

dent Gaussian random variables is spherically symmetric, it follows from [140]

that U is spherically symmetric. Combining this result with the fact that U is a

symmetric alpha stable random vector, I arrive at the result that U is a spherically

symmetric alpha stable vector. I can then write (4.5) as

ΦS0
(w) = e−σ0||w||α (4.15)

where α= 4

γ
, ||w|| is the 2-norm of the vector w, andσ0 =λ0π

∫∞
0

ΦW(||t ||)
||t ||α d t [86].

Combining (4.4),(4.5), and (4.6), I arrive at the characteristic function of

interference as

ΦZ(w) = e−σ0 ||w||α
N
∏

n=1

e−σn |ωn |α (4.16)

(4.16) is the characteristic function of random variable that is a mixture of inde-

pendent and spherically isotropic symmetric alpha stable vectors. The disper-

sion parameters σ0 and σn n = 1,2, · · · ,N depend linearly on the intensities λ0

and λn n = 1,2, · · · ,N , respectively. It is easy to see, that by setting λ0 to 0, my

model degenerates into spatially independent interference, while setting λn to 0

for all n = 1,2, · · · ,N causes isotropic interference at the receiver.

4.6 Joint Statistics of Interference in Distributed Antennae

In this section, I derive the joint statistics of interference observed by two

distributed receive antennae in a Poisson field of interferers. In this scenario

there are two antennae, one of which is located at the origin. The location of
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Antenna

Interferer

d

Figure 4.2: Illustration of interferer distribution around a 2-antenna receiver with

colocated antennae at a sampling time instant.

the second antenna can be denoted by the two-dimensional vector coordinate

d. Figure 4.2 shows two separate antennae in a Poisson field of interferers. From

(4.4), the joint characteristic function of interference in two distributed antennae

can be written as

ΦZ,d(w) = ΦS0,d(w)ΦS1
(w)ΦS2

(w) (4.17)

Observe that the characteristic function ΦZ,d(w) now reflects its dependence on

antennae geometry via the subscript d.

4.6.1 Evaluation of ΦSn
(w) (Interference contribution from Sn )

Since the interferers are distributed as a homogeneous Poisson Point Pro-

cess in two-dimensional space, the distribution of the independent set of inter-

ferers is invariant to translation of the antenna. Using the derivation of (4.6) in

Section 4.5, I can write

ΦSn
(w) = e−σn |ωn |α (4.18)
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whereσn and α have been defined in Section 4.5.

4.6.2 Evaluation of ΦY,S0
(w) (Interference contribution from S0)

The key step in deriving joint statistics of interference in distributed an-

tennae is the evaluation of ΦS0,d(w). First, I rewrite (4.5) to incorporate antenna

locations to get

ΦS0
(w) =E

�

e j
∑2

n=1|ωn |
∑|S0|

i=1 D
− γ2
0,i H0

n ,i B 0
i cos(χ0

i +Θ
0
n ,i+ξω,n )

�

(4.19)

=E

§

e j
∑2

n=1|ωn |
∑|S0|

i=1 ‖R0,i−di ‖−
γ
2 H0

n ,i B 0
i cos(χ0

i +Θ
0
n ,i+ξω,n )

ª

. (4.20)

Note that di denotes the location coordinate of the i th receive antenna. In

this case d1 = 0, and d2 = d. Substituting di in (4.20), and expanding the summa-

tion yields

ΦS0,d(w) =E

(

∏

i∈S

�

eω1,I B 0
i H0

1,i cos(χ0
i +Θ

0
1,i )‖Ri ‖−

γ
2 +ω1,Q B 0

i H0
1,i sin(χ0

i +Θ
0
1,i )‖Ri ‖−

γ
2

(4.21)

× eω2,I B 0
i H0

2,i cos(χ0
i +Θ

0
2,i )‖Ri−d‖−

γ
2 +ω2,Q B 0

i H0
2,i sin(χ0

i +Θ
0
2,i )‖Ri−d‖−

γ
2

�ª

. (4.22)

Noting that the H 0
1,i and H 0

2,i are Rayleigh distributed and χ0
i +Θ

0
1,i and

χ0
i +Θ

0
1,i are i.i.d. uniformly distributed over [0,2π], the products H 0

1,i cos(χ0
i +

Θ0
1,i ), H 0

1,i sin(χ0
i +Θ

0
1,i ), H 0

2,i cos(χ0
i +Θ

0
2,i ), H 0

2,i sin(χ0
i +Θ

0
2,i ) are i.i.d. Gaussian ran-

dom variables. Taking expectation over these Gaussian distributed random vari-

ables is akin to evaluating the characteristic function of a Gaussian distributed
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random variable, which yields

ΦS0,d(w)

=E







∏

i∈S0

e−ω
2
1,I (B

0
i )

2σ2
H‖Ri ‖−γ−ω2

1,Q (B
0
i )

2σ2
H ‖Ri ‖−γ−ω2

2,I (B
0
i )

2σ2
H ‖Ri−d‖−γ−ω2

2,Q (B
0
i )

2σ2
H ‖Ri−d‖−γ







(4.23)

=E







∏

i∈S0

e−|ω1|2(B 0
i )

2σ2
H‖Ri ‖−γ−|ω2|2(B 0

i )
2σ2

H ‖Ri−d‖−γ







(4.24)

where |ωn | =
p

ω2
n ,I
+ω2

n ,Q . Next, I take the expectation over (B 0
i )

2, which is

the equivalent to evaluating the characteristic function of an exponentially dis-

tributed random variable to get

ΦS0,d(w) =E







∏

i∈S0

1

1+ |ω2
1
|σ2

H
σ2

B
‖Ri‖−γ+ |ω2

2
|σ2

H
σ2

B
‖Ri −d‖−γ







(4.25)

Using the point generating functional property of Poisson Point Processes dis-

cussed in Appendix A (Definition A.3), the log-characteristic function ΨS0,d(w)

can be written as

ΨS0,d(w) = log
�

ΦS0,d(w)
�

(4.26)

=−λ0

∫

R2

¨

1− 1

1+ |ω2
1
|σ2

H
σ2

B
‖r‖−γ+ |ω2

2
|σ2

H
σ2

B
‖r−d‖−γd r

«

(4.27)

The above integral denotes the interferer statistics observed across the receiver

antennae. In the remainder of this section, I will attempt to solve the integral. I

first look at the two extreme cases of |d|= 0 and |d| →∞, subsequently analyzing

the general scenario of |d|> 0.
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4.6.2.1 Antennae are colocated (‖d‖= 0)

In the first scenario, the receive antennae are assumed to be colocated;

i.e., d= 0. In Section 4.5, I showed that the joint statistics of resulting interference

are distributed according to the isotropic symmetric alpha stable distribution.

Setting d= 0 in (4.27), I get

ΨS0,0(w) =−λ0

∫

R2

¨

1− 1

1+ |ω1|2σ2
H
σ2

B
‖r‖−γ+ |ω2|2σ2

H
σ2

B
‖r‖−γd r

«

(4.28)

=−λ0

∫

R2

¨

1− 1

1+(|ω1|2+ |ω2|2)σ2
H
σ2

B
‖r‖−γd r

«

(4.29)

=−λ0

∫

R2

¨

1− 1

1+ ‖w‖2σ2
H
σ2

B
‖r‖−γd r

«

(4.30)

=−λ0

∫

R2

¨

1− 1

1+σ2
H
σ2

B
‖‖w‖4/γr‖−γd r

«

(4.31)

By applying a change of variables t= ‖w‖4/γr in the integration, I get

ΨS0,0(w) =−‖w‖4/γλ
∫

R2

¨

1− 1

1+σ2
H
σ2

B
‖t‖−γd t

«

(4.32)

=−‖w‖4/γσ0 (4.33)

=−‖w‖ασ0 (4.34)

where σ0 = λ
∫

R2

n

1− 1

1+σ2
Hσ

2
A‖t‖−γ

d t
o

, is the same as σ0 evaluated in (4.16). Conse-

quently, I can write the characteristic function ΦS0,0(w) as

ΦS0,0(w) = e−‖w‖
4/γσ0 (4.35)
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which is the characteristic function of the isotropic symmetric alpha stable ran-

dom variable as shown in Table 4.2, as well as Section 4.5. Predictably, the inter-

ference at two colocated wireless antennae in a Poisson field of interferers follows

the isotropic symmetric alpha stable distribution.

4.6.2.2 Antennae are located infinitely far apart (‖d‖→∞)

In this scenario, the receive antennae are separated by an extreme dis-

tance. Intuitively, one can see that the interference observed by these antennae

should be statistically independent. And since it has been shown that the in-

terference at each antenna follows the symmetric alpha stable distribution, the

joint distribution of interference should follow the independent symmetric al-

pha stable multivariate distribution. I start from (4.27) , which is

ΨS0,d(w) =−λ
∫

R2

¨

1− 1

1+ |ω2
1
|σ2

H
σ2

A
‖r‖−γ+ |ω2

2
|σ2

H
σ2

A
‖r−d‖−γd r

«

(4.36)
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When d→ ∞, for any value of r, either ‖r‖−γ or ‖r− d‖−γ is 0. When r is in the

neighborhood of d/2, both are equal to 0. This allows us to write (4.36) as

ΨS0,∞(w) = lim
d→∞
−λ0

∫

R2

¨

1− 1

1+ |ω2
1
|σ2

H
σ2

B
‖r‖−γ+ |ω2

2
|σ2

H
σ2

B
‖r−d‖−γd r

«

(4.37)

= lim
d→∞
−λ0

∫

R2

¨

1− 1

1+ |ω1|2σ2
H
σ2

B
‖r‖−γ −

1

|ω2
2
|σ2

H
σ2

B
‖r−d‖−γd r

«

(4.38)

=−λ0

∫

R2

¨

1− 1

1+σ2
H
σ2

B
‖|ω1|2/γr‖−γd r

«

− lim
d→∞

λ0

∫

R2

¨

1
1

σ2
H
σ2

B
‖|ω2|4/γ(r−d)‖−γd r

«

(4.39)

=−λ0

∫

R2

¨

|ω1|2/γ1− 1

1+σ2
H
σ2

A
‖t1‖−γ

d t1

«

− lim
d→∞

λ0

∫

R2

¨

|ω2|2/γ1
1

σ2
H
σ2

A
‖t2−d‖−γd t2

«

(4.40)

=−λ0|ω1|4/γσ0−λ0|ω2|4/γσ0 (4.41)

Subsequently, I can write the characteristic function as

ΦS0,∞(w) = e−‖ω1‖4/γσ0+‖ω2‖4/γσ0 (4.42)

= e−‖ω1‖ασ0+‖ω2‖ασ0 (4.43)

which is the characteristic function of the independent symmetric alpha stable

distribution as shown in Table 4.2.

100



4.6.2.3 Antennae are separated by a finite distance(‖d‖> 0)

In the final case, I consider the scenario where the receive antennae are

separated, however, the separation is not close enough to 0 or large enough that

I can approximate the interference statistics by the ΦS0,0(w) or ΦS0,∞(w). Again, I

have to solve the integral

ΨS0,d(w) =−λ0

∫

R2

¨

1− 1

1+ |ω1|2σ2
H
σ2

B
‖r‖−γ+ |ω2|2σ2

H
σ2

B
‖r−d‖−γd r

«

. (4.44)

I am not aware of a closed form solution to (4.44). While there are many methods

available for approximating integrals, I choose to approximate ΨS0,d(w) in (4.44)

by Ψ̂S0,d(w), given as

Ψ̂S0,d(w) = v (d)ΨS0,0(w)+ (1− v (d))ΨS0,∞(w) (4.45)

=σ0 (−v (d)‖w‖α− (1− v (d))(|ω1|α− |ω2|α)) (4.46)

=σ0

�

−v (d)‖w‖α− (1− v (d))‖w‖α
α

�

. (4.47)

This approximation is equivalent to assuming that the joint statistics of inter-

ference across the two antennae are a weighted mixture of isotropic and inde-

pendent interference, with the weights given as w (δ) and 1−w (δ), respectively.

When the antennae are colocated (δ = 0), interference is demonstrably jointly

isotropic thus v (0) = 1, and when the antennae are far apart (‖d‖→∞), interfer-

ence is demonstrably jointly independent and consequently v (∞) = 0.
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The optimal weighting function v (d)would ideally be evaluated as

v (d) = arg min
R

∫

RN

�

�ΨS0,d(w)− Ψ̂S0,d(w)
�

�

2
d w (4.48)

= arg min
R

∫

R

∫

R

∫

R2

�

�

�

�

1

1+ |ω1|2σ2
H
σ2

B
‖r‖−γ+ |ω2|2σ2

H
σ2

B
‖r−d‖−γ

− 1− v

1+ |ω2
1
|σ2

H
σ2

A
‖r‖−γ −

1− v

1+ |ω2
2
|σ2

H
σ2

A
‖r‖−γ

− v

1+(|ω2
1
|+ |ω2

2
|)σ2

H
σ2

A
‖r‖−γ

�

�

�

�

2

d rd |ω1|2d |ω2|2. (4.49)

The solution to the above optimization problem can be written as

v (d) =
∫

R

∫

R

∫

R2

1

1+|ω1 |2σ2
Hσ

2
B ‖r‖−γ+|ω2|2σ2

Hσ
2
B ‖r−d‖−γ −

1

1+|ω1|2σ2
Hσ

2
A‖r‖−γ
− 1

1+|ω2 |2σ2
Hσ

2
A‖r‖−γ

d rd |ω1|2d |ω2|2

∫

R

∫

R

∫

R2

1

1+|ω2
1|σ2

Hσ
2
A‖r‖−γ

+ 1

1+|ω2
2|σ2

Hσ
2
A‖r‖−γ
− 1

1+(|ω2
1|+|ω2

2|)σ2
Hσ

2
A‖r‖−γ

d rd |ω1|2d |ω2|2
.

(4.50)

I cannot solve this problem in closed-form, but v (d) can be easily evaluated nu-

merically. Using curve fitting solutions provided by MATLAB, I am able to well

approximate v (d) as

v (d) = e−a (γ)d b (γ). (4.51)

Numerically evaluating the minimization function in MATLAB and finding the

closest weights, I can reduce the square error given in (4.48). Figure 4.3 shows

the square error for the approximation for different values of ‖d‖, while Figure

4.4 shows the error as a function ofω1 andω2. Since the fitting function matches

exactly at ‖d‖ = 0 and when ‖d‖ grows very large, the square error term in those
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Figure 4.3: Mean square error of integral approximation in (4.48) vs. distance

between receive antennae.

regions is very close to 0. Figure 4.5 shows the weight v (d) for different values of

‖d‖. Figure 4.6 shows the values of the fitting parameters.

Thus, the joint statistics of interference across two separate antennae are

approximated as

ΨS0,d(w)≈−σ0(v (d‖w‖α+(1− v (d)‖w‖α
α
) (4.52)

and consequently,

ΦS0,d(w) = e−σ0(v (d‖w‖α+(1−v (d)‖w‖αα) (4.53)

By combining (4.17), (4.20), and (4.6), I get

ΦZ(w) = e−σ0v (d‖w‖α−(σ0(1−v (d)+σn )‖w‖αα . (4.54)

Thus, I have derived the joint statistics of interference observed across

two physically separate wireless antennae and shown the intuitively satisfying
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result that the statistics move within a continuum between spatially isotropic

and spatially independent, as the receivers move from being colocated to being

infinitely far apart.

4.7 Joint Statistics of Interference Observed by More than Two

Antennae

In the previous section, I derived the joint statistics of interference ob-

served across two physically separate antennae. In order to extend this result to

N antennae where N may be greater than 2, I write the interference observed at

the N th antenna as

Zn =
∑

i∈S
B 0

i
e jχ0

i ‖Ri −dn‖−
γ

2 H 0
n ,i

e jΘ0
n ,i (4.55)

where B 0
i e jχ0

i is the interferer emission, H 0
n ,i e jΘ0

n ,i is the fast fading channel be-

tween the interferer and the n th receive antenna, and xn is the two dimensional

coordinate of the n th antenna. Following the same steps as I did in Section 4.6, I

arrive at the log-characteristic function

ΨS0
(w) =−λ

∫

R2











1− 1

1+
N
∑

n=1

|ω2
n
|σ2

H
σ2

A
‖r−dn‖−γ

d r











(4.56)

Solving the above integral is non-trivial and a worthy subject for future

work.
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4.8 Impact of System Model Assumptions

4.8.1 Interference Statistics in General Fading Channel Models

In developing my system model in Section 4.4, I assumed a Rayleigh dis-

tribution for the fading channel amplitude between the interfering source and

the multi-antenna receiver. While the Rayleigh distribution is a reasonably ac-

curate and widely used model of fading channels, other distributions have also

been widely used to characterize wireless channel amplitudes[146].

I can rewrite (4.5) and (4.6) as

ΦS0
(w) =E

�

e j
∑N

n=1 |ωn |
∑|S0|

i=1 D
− γ2
0,i H0

n ,i B 0
i cos(χ0

i +Θ
0
n ,i+ξω,n )

�

(4.57)

The number of interferers k within the annular region is a Poisson random vari-

able with mean λ0π(δ
2
↑ −δ2

↓ ) (δ↓ → 0 and δ↑ →∞). Combining this notion with

(4.57), I can expand (4.57) as the sum of k i .i .d . interference signals, with k being

a Poisson distributed integer. Thus, I obtain

ΦS0
(w) =

∞
∑

k=0

E

�

e j
∑N

n=1|ωn |D
− γ2
0 H0

n B 0 cos(χ0+Θ0
n+ξω,n )

�k

e−λ0π(δ
2
↑−δ

2
↓ )

�

λ0π(δ
2
↑ −δ2

↓ )
�k

k !

(4.58)

=e−λ0π(δ
2
↑−δ

2
↓ )
∞
∑

k=0

�

�

λ0π(δ
2
↑ −δ2

↓
�

E

�

e j
∑N

n=1 |ωn |D
− γ2
0 H0

n B 0 cos(χ0+Θ0
n+ξω,n )

��k

k !

(4.59)

=e−λ0π(δ
2
↑−δ

2
↓ )e

E







e
j
∑N

n=1 |ωn |D
− γ2
0

H 0
n B0 cos(χ0+Θ0

n+ξω,n )







λ0π(δ
2
↑−δ

2
↓ )

(4.60)

=e











E







e
j
∑N

n=1 |ωn |D
− γ2
0

H 0
n B0 cos(χ0+Θ0

n+ξω,n )







−1











λ0π(δ
2
↑−δ

2
↓ )

(4.61)
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By taking the logarithm of ΦS0
(w) in (4.61), the log-characteristic function is

ΨS0
(w)¬ logΦS0

(w) (4.62)

=λ0π(δ
2
↑ −δ

2
↓ )

�

E

�

e j
∑N

n=1|ωn |D
− γ2
0 H0

n B 0 cos(χ0+Θ0
n+ξω,n )

�

−1

�

(4.63)

=λ0π(δ
2
↑ −δ

2
↓ )

 

E

(

N
∏

n=1

e j |ωn |D
− γ2
0 H0

n B 0 cos(χ0+Θ0
n+ξω,n )

)

−1

!

. (4.64)

(4.64) can be reduced to

ΨS0
(w) =λ0π(δ

2
↑ −δ

2
↓ )

 

E

(

N
∏

n=1

J0

�

|ωn |D
− γ

2

0 H 0
n

B 0

�

)

−1

!

. (4.65)

This step is discussed in detail in Section 3.5. Next, I use the identity

e j a cos(b ) =

∞
∑

m=0

j mεm Jm (a )cos(m b ) (4.66)

where ε0 = 1, εm = 2 for m ≥ 1, and Jm (·) denotes the Bessel function of order

m . Combining (4.66) and (4.64), the log-characteristic function ΨY,S0
(w) can be

expressed as

ΨS0
(w) =

K

 

E

(

N
∏

n=1

∞
∑

mn=0

j mnεmn
Jmn

�

|ωn |D
− γ

2

0 H 0
n

B 0 cos
�

mn

�

χ0+Θ0
n
+ξω,n

��

�

)

−1

!

(4.67)

where K =λ0π(δ
2
↑ −δ2

↓ ). Since I am interested in the tail statistics of interference

distribution and from Fourier analysis, the behavior of the characteristic func-

tionΦ in the neighborhood of ||w|| → 0 governs the tail probability of the random

envelope[115]. An approximation was proposed by Middleton [114] for the log-

characteristic function forψ in the neighborhood of zero using

Ex {J0(x )}= e−Ex {x } (1+Λ(x )) (4.68)
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where Λ(x ) is a correction factor expressed as

Λ(x ) =

∞
∑

m=2

(E{x 2})k

22k k !
E1F1(−k ;1;

x

E{x } ) (4.69)

where 1F1(·; ·; ·) is the confluent hypergeometric function of the first kind. As x →

0, the slowest decaying term in Λ(x ) is of the order O(x 4). Thus, as ||w|| → 0, I

approximate 1+Λ(|ωn |D
− γ

2

0 H 0
n

B 0)≈ 1. Using (4.68) in (4.65) and ignoring higher

order terms around the region |ωn |= 0, I get

ΨS0
(w) =λ0π(δ

2
↑ −δ

2
↓ )

 

E

(

N
∏

n=1

J0

�

|ωn |D
− γ

2

0 H 0
n

B 0

�

)

−1

!

(4.70)

=λ0π(δ
2
↑ −δ

2
↓ )

 

E

(

N
∏

n=1

e−|ωn |D
− γ2
0 H0

n B 0

)

−1

!

(4.71)

and the remainder of the derivation follows in the same manner as shown in

Sections 4.5 and 4.6.

4.8.2 Interference Statistics in General Interferer Emissions

In deriving interferer statistics, I assumed that the emission amplitude

was Gaussian distributed in (4.55) in order to simplify the interference statistics

into the form of a Middleton Class A distribution. Without making this assump-

tion, (4.25) would be replaced by

ΦS0,d(w) =E

(

∏

i∈S
e |ω1|2 B 2

i σ
2
H ‖Ri ‖−γ+|ω2|2 B 2

i σ
2
H ‖Ri−x‖−γ

)

(4.72)

=E

(

∏

i∈S
φB 2

�

|ω1|2σ2
H
‖Ri‖−γ+ |ω2|2σ2

H
‖Ri − x‖−γ

�

)

(4.73)

where φB 2(·) is the characteristic function of the interferer emission power. Sub-

sequently, after taking the log of the characteristic function and applying the
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point generating functional property, (4.72) can be written as

ΨS0,d(w) =−λ
∫

R2

φB 2

�

|ω1|2σ2
H
‖Ri‖−γ+ |ω2|2σ2

H
‖Ri − x‖−γ

�

(4.74)

Again, I can apply the approximation used in (4.45). From here on, the derivation

of the joint statistics for the three cases discussed under Section 4.6 follows the

same path, with a change in some of the constants.

4.9 Simulation Results

To study the accuracy of my joint amplitude distribution model for con-

strained interferer distributions, I numerically simulate interference observed by

a multi-antenna receiver operating in an interferer environment as described in

Section 4.4.

First, I compare the tail probabilities of the numerically simulated distri-

bution and my proposed distribution models. The tail probability is the comple-

mentary cumulative distribution function of a random variable and in perfor-

mance analysis of communication systems, the tail probability of interference

is related to the outage performance of receivers. Given a threshold τ, I define

tail probability as P (|Y1|>τ, · · · , |YN |>τ). Figure 4.8 shows a comparison of the

tail probabilities of the numerically simulated distribution, my proposed distri-

bution, and the Gaussian distribution, respectively. The tail probabilities of my

proposed distribution match closely to simulated interference, while the Gaus-

sian distribution is clearly unable to capture the large tail probabilities of impul-

sive interference.
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Table 4.3: Parameter values used in simulations
Parameter Description Value

λt ot Per-antenna total intensity of interferers 0.01

γ Power path-loss exponent 2.5

B Mean amplitude of interferer emissions 1.0

δ↓ Radius of guard zone around receiver 1.5

E
�

H 2
	

Fast fading channel power 1.0

In Figure 4.8, the receiver uses two antennae and the interferers exclusive

to each antennae are distributed with equal densities, i.e. λ1 = λ2 = λe . I choose

a value of λ0 such that λ0+λe = 0.01, i.e. the density of total interferers observed

by each antenna is the same, regardless of the choice of λ0 or λe . This helps

to normalize my data as the variance of interference observed at each antenna

(proportional to λ0+λe ) remains the same regardless of the value taken by λ0 or

λe . Table 4.3 lists the values for the rest of the simulation parameters.

In Figure 4.9, the receiver uses two antennae and interferers are observed

by all antennae, i.e. λ1 = λ2 = 0. λ0 = 0.01. Figure 4.9 shows the simulated and

the predicted tail probability of interference at τ= 1 vs. the distance between the

receiver antennae. The simulated and predicted values match very well, thereby

validating the approximations needed to arrive at closed form solutions for in-

terference statistics across two distributed antennae. Table 4.3 lists the values

for the rest of the simulation parameters.
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Figure 4.8: Tail probability vs. threshold τ for simulated interference in the ab-

sence of guard zones. The tail probability is compared between the numerically

simulated interference (“Sim”) and the tail of the proposed multi-variate Sym-

metric alpha stable distribution (“Expr”). The tail probabilities are generated for

isotropic interference (λ0 = 0.01,λe = 0.0) and a mixture of isotropic and inde-

pendent interference (λ0 = 0.001,λe = 0.009). Remaining parameter values are

given in Table 4.3.
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Figure 4.9: Tail probability vs. antennae separation |d| for simulated interference

in the absence of guard zones. The tail probability is compared between the

numerically simulated interference (“Sim”) and the tail of the proposed multi-

variate Symmetric alpha stable distribution (“Expr”). The tail probabilities are

generated for isotropic interference (λ0 = 0.01,λe = 0.0) . Remaining parameter

values are given in Table 4.3.
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4.10 Conclusions

In this chapter, I derived joint statistics of interference in a multi-antenna

receiver located in a field of Poisson distributed interferers. I model a decentral-

ized wireless network; i.e., the interferers can be arbitrarily close to the receiver.

The joint statistics of interference are well modeled by the multi-dimensional

symmetric alpha stable distribution. In my proposed framework, the resulting

interference is a mixture of a spatially isotropic and spatially independent sym-

metric alpha stable random vector.

I also derived the joint amplitude statistics of interference observed by

two physically separate wireless antennae placed in a Poisson field of interfer-

ers. Depending on the distance between the antennae, the proposed ampli-

tude distribution exists in a continuum between the statistically isotropic bi-

variate symmetric alpha stable distribution and the statistically independent bi-

variate symmetric alpha stable distribution. My proposed distribution reduces

to isotropic and independent statistics when the wireless antennae are colocated

or extremely far apart, respectively. I discussed the impact of some of my system

model assumptions on the interference statistics and showed that my proposed

distribution is quite robust to the choice of fading channel or interferer emission

statistics. Finally, I present some initial discussion on extending my results to

modeling joint statistics of interference across more than two wireless antennae.

The statistical models of interference resulting from this chapter can be

used to improve communication systems employing colocated or distributed

antennae operating in the presence of interference. In the next chapter, I ana-
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lyze communication performance of various conventional receiver diversity al-

gorithms in the presence of multi-antenna interference.
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Chapter 5

Communication Performance of

Interference-Limited Networks Without Guard Zones

5.1 Introduction

Wireless transceivers suffer degradation in communication performance

due to interference generated by both human-made and natural sources[73].

Human-made sources of interference include uncoordinated wireless devices

operating in the same frequency band (co-channel interference) [44], devices

communicating in adjacent frequency bands (adjacent channel interference),

and computational platform subsystems radiating clock frequencies and their

harmonics[147]. Dense spatial reuse of the available radio spectrum, which is

key in meeting increasing demand in user data rates[13], also causes severe co-

channel interference and may limit communication system performance.

Recent communication standards and research have focused on the use

of multiple receive antennae to increase data rate and communication reliabil-

ity in wireless networks. Single input multiple output (SIMO) communication

systems can achieve higher data rates with fewer errors through spatial diver-

sity; i.e., receiving multiple copies of the signal increases the chance that some of

these copies are relatively impairment free. Consequently, wireless receivers with
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multiple antennae are increasingly being deployed in networks that are rife with

interference due to resource re-use[44, 73]. Multi-antenna wireless receivers have

generally been designed and their communication performance analyzed under

the assumption of additive Gaussian noise. While the Gaussian distribution is a

good statistical model for thermal noise at the receiver, interference has predom-

inantly non-Gaussian statistics. This mismatch between design assumptions

and the actual interference statistics may degrade the communication perfor-

mance of multi-antenna wireless receivers. Since communication systems uti-

lizing multiple antennae are being deployed on mobile platforms, it becomes

essential to characterize the relative performance of spatial diversity techniques

in the presence of interference.

In this chapter, I analyze the uncoded communication performance of di-

versity combining techniques in the presence of interference modeled via statistical-

physical mechanisms of interferer distribution, interference generation, and in-

terference propagation. The diversity combining receivers under study are the

equal gain combiner (EGC), fixed weight combiner (FWC), maximum ratio com-

biner (MRC), selection combiner (SC), and the post-detection combiner (PDC).

A detailed discussion on each of these receivers can be found in Sections 5.5 and

5.6. Evaluating the performance of these diversity combining algorithms in in-

terference highlights the relative merits or disadvantages of different algorithms

in different interference environments.

Communication standards typically employ some form of error correc-

tion coding. In the presence of coding, communication performance metrics
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such as channel capacity or mutual information[43] are more relevant for link

level analysis. Closed form expressions for SIMO channel capacity in symmet-

ric alpha stable interference are not analytically expressible, given the lack of

closed form density functions for the symmetric alpha stable distributions. Anal-

ysis of communication performance in presence of coding also requires accu-

rate statistical-physical modeling of interference in the time domain, whereas in

this dissertation interference is assumed to be statistically independent across

time samples. I evaluate uncoded communication performance as the ccdf of

signal to interference ratio (SIR) at the receiver, referred to as outage probabil-

ity. Outage probability provides a baseline physical layer performance metric for

different receiver diversity combining structures, and can even inform analysis

of coded communication performance when used in conjunction with coding

gain[146]. Outage probability is also used in analysis of network level perfor-

mance, where it is the basis of evaluating metrics such as network capacity, area

spectral efficiency[8] or transmission capacity[172].

5.2 Organization and Notation

In Section 5.3 I discuss the key contributions and limitations of prior work

on communication performance in interference limited systems. Section 5.4 de-

tails my system model for interferer location distribution, and interference gen-

eration and propagation. In Section 5.5 I derive the outage probability of pre-

detection diversity combining techniques. I derive closed-form outage proba-

bility expressions for fixed weight combining, maximum ratio combining and
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selection combining. In Section 5.6 I derive the outage probability expression

for a post detection combining receiver. Section 5.7 presents numerical simu-

lations to compare my closed-form outage probability to simulated outage in

a multi-antenna receiver located within a space containing Poisson distributed

interferers. I conclude by a summary of the key contributions and insights in

Section 5.8.

5.3 Prior Work

Prior work on analyzing communication performance of receiver diver-

sity algorithms in the presence of interference has usually focused on bit-error

rate (BER) analysis of various reception schemes in the presence of additive im-

pulsive noise. Typical statistical distributions that model impulsive noise are

the spherically invariant symmetric alpha-stable distribution[86], spherically in-

variant Middleton Class A distribution[47], and multi-dimensional independent

Middleton Class A noise model[47]. These statistical distributions model two

extreme cases of interference statistics; i.e, interference is either statistically in-

variant across antennae or statistically independent across receiver antennae.

In [88], the isotropic symmetric alpha-stable noise model was used to

evaluate BER by using the Cauchy distribution to model alpha stable noise. This

work was extended in [134] to more reception techniques, but only considered

BPSK modulation. In [152], the authors investigated the performance of different

diversity combining techniques over fading channels with impulsive noise mod-

eled using either isotropic or independent multi-dimensional Middleton Class
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A distribution. In [77], the authors analyze performance bounds for optimum

and sub-optimum receivers in the presence of Middleton Class A impulsive noise

over non-fading channels. In [41], the authors evaluate performance bounds of

2×2 MIMO communication with Alamouti codes using a generalized statistical-

physical interference model from [113]. In [102] the performance of maximum

ratio combining techniques was investigated in multi-user environments and in

presence of receiver channel estimation error. While the authors did use the no-

tion of statistical-physical interference propagation mechanisms, they assumed

a fixed number and locations of the interference generating sources. In [7], a

statistical-physical model similar to mine was used to study performance of op-

timum diversity combining. However, this model also assumed that interference

was isotropic and the optimum receiver was impractical to implement as it re-

quired information about interferer locations at each sampling instant. By using

impulsive statistical distributions to model interference, communication perfor-

mance analysis can provide a link between communication performance and

noise parameters. On the other hand, starting from a statistical-physical noise

generation mechanism, performance analysis can provide a link between com-

munication performance and network parameters such as user density and user

distribution. Table 2.3 provides a summary of the interference models and re-

ceiver algorithms studied with regards to BER analysis.

In wireless systems, communication performance analysis can also apply

to the performance of the overall network. Early studies on interference-limited

MIMO networks modeled interference as the sum signal from multiple finite
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sources, but did not model a decentralized network of randomly distributed in-

terfering sources [26, 30, 46]. Such an interference generation model was most

appropriate for interference in the downlink of single-tier networks, with uni-

formly placed basestations as the dominant interfering sources.

More recently, decentralized network models have been formulated with

interferers and receivers randomly distributed as a Poisson Point Process[83],

and using tools from stochastic geometry and Laplace transforms, statistical anal-

ysis is carried out on the received signal and interference power at a node[172].

These studies typically evaluate the network capacity trends for single-antenna[57]

and multi-antenna networks[83] with a large number of users, and incorporate

both physical layer as well as access control techniques into their analysis. For

example, transmission capacity under linear diversity combination techniques

such as maximum ratio combining, maximum ratio transmission, and orthogo-

nal space-time block codes were studied in [83]. Transmission capacity assum-

ing no channel state information at the transmitter and cancellation of inter-

ference from nearby users was studied in [164]. In [91], transmission capacity

comparisons were made between receivers that performed some level of inter-

ference cancellation vs. receivers that simply treated interference as noise. In

terms of the impact of access control on transmission capacity, [84]derives trans-

mission capacity in the presence of interference mitigation through carrier sens-

ing. These studies use outage probability expressions to analyze network perfor-

mance rely heavily on a homogeneous Poisson Point Process distribution of the

user nodes, although there does exist prior work using non-Poisson distributions
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to model user locations[60].

My approach uses a system model that is based on the amplitude of the

desired signal and interference observed at a multi-antenna receiver. One of its

benefits is the ease of deriving accurate closed form expressions of outage prob-

ability, especially with different statistical distributions of the fading channel and

the interfering source emissions. The disadvantage of this approach is that cer-

tain approximations are accurate only in the low outage probability regime, how-

ever, simulation results and derived expressions match well even when outage

probability is high. Later, in Section 5.5, I show that some of the derived outage

probability results using amplitude statistics exhibit similar trends as the closed

form outage probability expressions for diversity combiners derived using power

statistics[83]. Thus, the alternate approaches in prior work and proposed in this

dissertation offer different benefits, with communication performance analysis

using amplitude statistics being amenable to incorporating different fading and

interfering emission distributions, and receiver algorithms, while analysis using

signal power statistics being useful in translating link performance analysis into

network performance results[172].

5.4 System Model

Figure 5.1 illustrates the interferer placement model for a 3-antenna re-

ceiver. The key assumptions are:

Assumption 5.1. The communication link comprises of one transmit antenna

and N receive antennae.
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Figure 5.1: System model of a 3−antenna receiver located in a field of randomly

distributed interferers. The interferers are classified according to the receiver

antenna impacted by their emissions.
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Assumption 5.2. The interferers are located in a two-dimensional plane around

the receiver.

Assumption 5.3. At each time snapshot, the active interfering sources are classi-

fied into N +1 independent sets S0,S1, · · · ,SN .

S0 denotes the set of interferers that cause interference to every receive

antenna. Sn ∀ n = 1, · · · ,N denotes the set of interferers that are observed by

antenna n alone. This also models antenna separation using the results derived

in Chapter 4.

Assumption 5.4. At each sampling time instant, the locations of the active in-

terferers in Sn ∀ n = 0, · · · ,N are distributed according to a homogeneous spatial

Poisson Point Process in the two-dimensional plane around the receiver.

The intensity of set Sn is denoted by λn ∀ n = 0, . . . ,N . The distance of

each interferer from the origin provides an ordering function.

Assumption 5.5. As the wireless signal traverses through the environment, its en-

ergy decays according to the power-law path-loss model [65] with a coefficient of

γ.

Assumption 5.6. The fast-fading channel between the transmitting source and

the receiver as well as other interfering sources and the receiver is modeled using

the Rayleigh distribution[65].

Assumption 5.7. Additive thermal noise is ignored at the receiver; i.e., the com-

munication system is considered to be interference limited.
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5.4.1 Signal and Interference Representation

The received signal in a 1×N SIMO communication system can be de-

noted in vector form as

R=Gs +Z (5.1)

where R is a complex 1×N vector where each element Rn denotes the received

signal at n th of the N receive antennae. The n th receive antenna observes the

transmitted signal s after it has encountered a Rayleigh fading medium Gn and

additive interference Yn . In (5.1), random variablesGn and Zn are stacked to form

1×N vectors G and Z, respectively.

In Section 5.4, I classified interfering sources into different sets, such that

each receive antenna observes interference from two sets that contain (1) inter-

ferers are observed by all antennae, and (2) interferers are observed only by said

antenna, respectively. Following this system model, the total interference at an-

tenna n , denoted by Zn , can be expressed as

Zn =
∑

i 0∈S0

B 0
i 0

D
− γ

2

0,i 0
H 0

n ,i 0
e

j (χ0
i 0
+Θ0

n ,i 0
)
+
∑

i∈Sn

B n
i

D
− γ

2

n ,i H n
i

e j (χn
i +Θ

n
i ) (5.2)

where B 0
i 0

e
j (χ0

i 0 indicates the emission from the i th
0 interferer in set S0, and B n

i e j (χn
i

indicates the emission from the i th interferer in set Sn . H n
i is the Rayleigh fading

channel between the i th interferer and the n th receive antenna, the other receive

antennae do not observe interferer i . Since the interferers in set S0 are observed

by all receive antennae, the Rayleigh fading channel between the interferer and

the n th receive antenna is denoted by H 0
n ,i 0

. Dn ,i n
denotes the distance between

the i th interferer in set Sn and the receiver. γ is power path-loss parameter.
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Figure 5.2: Block diagram of a receiver in which diversity combining is performed

before symbol detection.

In the following sections, I derive the outage performance of various lin-

ear and non-linear diversity combining techniques. The expression for the out-

age probability of each receiver allows us to study the impact of network param-

eters such as interferer density, path-loss exponent, and interferer field correla-

tion on outage performance.

5.5 Outage Performance of Conventional Linear Multi-Antenna

Receivers

In this section, I evaluate the outage performance of linear diversity com-

bining receivers, placed within a field of Poisson distributed interferers as de-

scribed in Section 5.4. In such a receiver, the signal samples at the multiple

receive antennae are linearly combined before symbol detection, as shown in

Figure 5.2. During diversity combining, the signal output from each antenna
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n is multiplied by a corresponding complex scalar weight wn and the result is

summed across all N receive antennae. The key behind different diversity com-

bining schemes lies in the selection of the weights w i ∀ i = 1,2, . . . ,N , henceforth

denoted in vector form as the weight vector w = [w1 w2 . . . wn ]
T . To main-

tain linearity, w is either a constant value, or depends on the channel G if the

receiver has channel state information.

For a general weight vector w, the output of the linear diversity combiner

can be expressed as

v =wT R (5.3)

= s

N
∑

n=1

wnGn +

N
∑

n=1

wnZn (5.4)

= s

N
∑

n=1

wnGn +
∑

i 0∈S0

N
∑

n=1

wn B 0
i 0

D
− γ

2

0,i 0
H 0

n ,i 0
e

j (χ0
i 0
+Θ0

n ,i 0
)
+

N
∑

n=1

wn

∑

i∈Sn

B n
i

D
− γ

2

n ,i H n
i

e j (χn
i +Θ

n
i )

(5.5)

= s

N
∑

n=1

wnGn+
∑

i 0∈S0

B 0
i 0

D
− γ

2

0,i 0

N
∑

n=1

wn H 0
n ,i 0

e
j (χ0

i 0
+Θ0
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)
+
∑

i∈Sn

B n
i

D
− γ

2

n ,i

N
∑

n=1

wn H n
i

e j (χn
i +Θ

n
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(5.6)

The SIR at combiner output can then be written as

SIRw =

E s

�

�

�

∑N

n=1
wnGn

�

�

�

2

�

�

�
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2
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�

�

2
.

(5.7)

I define the outage probability as

Pout
w
(θ ) =ESIRw

[P (SIRw <θ )] (5.8)
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where θ is the SIR threshold for correct detection. The outage probability can

then be written as

Pout
w
(θ )

=E






P
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Since the union of independent Poisson Point Processes is another Poisson Point

Process with intensity equal to the sum of intensities of the component pro-

cesses[19], I can write (5.11) as
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where d ′i is the distance from origin of each point (indexed by i ) in the combined

process, x ′i is a random variable indicating the interferer source emissions, and

H ′i is a N + 1 term complex Gaussian mixture random variable with variances

‖w ‖2σ2
I , |w1|2σ2

I , |w2|2σ2
I , . . . |wN |2σ2

I , and mixing probabilities λ0
∑N

n=0λn
, λ1
∑N

n=0λn
, . . .

λn
∑N

n=0λn
, respectively.

∑

i∈∪N
n=0Sn

x ′i‖d ′i‖−γh ′i is a random variable that follows the

isotropic symmetric alpha-stable distribution, as shown in Chapter 4. Using the

ccdf of an isotropic symmetric alpha-stable random variable, I can express (5.12)

as
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where α = 4

γ
, and Γ(·) is the well-known Gamma function[3]. Note that the ccdf

result used in (5.13) is an approximate result with low approximation error when

θ is small, consequently, my results are useful in low-outage regimes. Next, I

simplify (5.13) under the assumption that the fast-fading channel between trans-

mitter and receiver, and interferer and receiver is a complex Gaussian random

variable. Taking expectation over h ′
0

and Gn ∀ n = 1, · · · ,N , I get
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From (5.15), I can make intuitively satisfying observations such as the outage

probability is directly proportional to the detection SIR threshold θ , and inter-

ferer density λn (n = 0,1, . . . ,N ), whereas it is inversely proportional to the signal

power E s . The following subsections analyze the outage probability for some

typical diversity combining receivers.

5.5.1 Linear Receivers Lacking Channel Information

Fixed Weight Combining: A receiver with no channel state information

and no knowledge of interference statistics may choose to use the same weight

on all antennae outputs. The outage probability for a receiver using a weight

vector w is provided in (5.15). In fixed weight diversity combining, w remains

constant and independent from the received signal. If all the weights are equal

to 1, the outage performance of such a scheme is given as

Pout
FWC
(θ )≈πE−α

s
σ−α

S
σα

I
Γ(1+

α

2
)Γ(1−α/2)E [X α]

∑N

n=1
λn +λ0N

α
2

N
α
2

θ
α
2 . (5.16)

I consider a reasonable scenario where the intensity of each of the interferer sets

Sn ∀ n = 1, . . . ,N is equal to λe . Applying to (5.16), I get

Pout
FWC
(θ )≈πE−α

s
σ−α

S
σα

I
Γ(1+

α

2
)Γ(1−α/2)E [X α] (λe N 1− α

2 +λ0)θ
α
2 . (5.17)

From (5.17), I can deduce that the common set of interferers does not provide

any diversity gain in outage performance, while interference from the indepen-

dent set of interferers actually worsens outage performance upon increasing the

number of receive antennae. This reduction in outage performance is due to in-

terference diversity where increasing the number of receive antennae increases
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the chances that one of them might be suffering from an impulsive interference

event which corrupts the entire combiner output. Also note that when interfer-

ence statistics are close to Gaussian distribution the N 1− α
2 term disappears and

the combiner has no diversity gain or loss, a well-known fact [23]which acts as a

confirmation of my results.

Random Antenna Selection: Another receiver with no channel state in-

formation may simply choose to decode a receive antenna at random. Thus the

weight vector is a random vector with a single element equal to 1 and the re-

maining elements equal to zero. Using 1n to denote a vector with the n th ele-

ment equal to 1 and remaining elements equal to 0, the outage probability of the

random antenna selection receiver is

Pout
RAS
(θ ) =

N
∑

n=1

Pout
w=1n
(θ )

N
(5.18)

=

N
∑

n=1

πE−α
s
σ−α

S
σα

I
Γ(1+

α

2
)Γ(1−α/2)E [X α] (λn +λ0)θ

α
2 (5.19)

=πE−α
s
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α

2
)Γ(1−α/2)E [X α]

 

N
∑

n=1

λn

N
+λ0

!

θ
α
2 . (5.20)

5.5.2 Linear Receivers With Channel Information

Maximum Ratio Combining: In this diversity combining technique, the

receiver chooses a weight vector directly proportional to the channel conjugate

and inversely proportional to interference power. Assuming i.i.d. interferer emis-

sions and i.i.d. fading between interferer and receiver, the interference power at

each antenna would be proportional to λ0 + λn . Thus the n th element of the
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combining weight vector wn would be given by wn =
G ∗n
λ0+λn

. Again assuming that

λn = λe ∀ n , and inserting the MRC weight vector into (5.14), the outage proba-

bility of MRC combining can be expressed as

Pout
MRC
(θ )≈πσα

I
2
α
2 Γ(1+

α

2
)E [X α]E





∑N

n=1
λn |Gn |α+λ0‖G‖α

‖G‖2α



θ
α
2 (5.21)
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For the special case where intensities of the independent set of interferersλn (n =

1, . . . ,N ) are equal to λe , I can compact (5.21) to

Pout
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(θ )≈πE−α

s
σα

I
2
α
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2
)E [X α]E

�
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2
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θ
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Note that channel diversity does provide some improvement in outage

performance, especially in the case of isotropic interference. By setting λe = 0,

the MRC outage probability reduces to

Pout
MRC,isotropic

(θ )≈πE−α
s
σα

I
2
α
2 Γ(1+

α

2
)E [X α]E

�
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2

�

θ
α
2 (5.24)

Noting that ‖G‖2
2

is a sum of exponentially distributed random variables, which

in turn follows the Erlang density distribution. Thus, the −α
2

th
moment of ‖G‖2

2

can be substituted in (5.24), yielding

Pout
MRC,isotropic

(θ )≈πE−α
s
σα

I
2
α
2 Γ(1+

α

2
)E [X α]

λ02
−α
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θ
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2 (5.25)

The spatially isotropic interference model is used in [83] to derive the outage

probability for maximum ratio combining. [83]models statistics of received in-

terference power as compared to this dissertation that models received ampli-

tude statistics. The MRC outage probability in this dissertation (eq. (5.25)) and
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the MRC outage probability expression derived in [83] (Theorem 1) are identical

in their linear dependence on the interferer intensity λ, and their dependence

on θ α/2, where θ is the SIR threshold. The contrasting terms arise in the terms

involving number of antennae N ; while (5.25) contains
Γ(N− α

2
)

Γ(N )
in the derived ex-

pression, [83] contains
�

1+
∑N−1

n=1
1

n !

∏n−1

k=0

�

k − α
2

�
�

Γ(1−α/2) in the derived ex-

pression. While these two terms look dissimilar, numerical evaluation shows that

these expressions are identical. Thus, the outage probability expressions in this

dissertation and [83] lead to the same result via different approaches.

Equal Gain Combining: In this diversity combining technique, the re-

ceiver chooses a weight vector with each element having an absolute value of

1 and the same phase as the channel conjugate. Thus, in essence the receiver is

only estimating the channel phase and ensuring that the signals from the mul-

tiple antennae are combined in a phase coherent manner. The n th element of

the combining weight vector wn would be given by wn =
G ∗n
|Gn | . Substituting this

weight vector into (5.14), the outage probability of EGC combining can be ex-

pressed as
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Note that channel diversity does provide some improvement in outage perfor-

mance, especially in the case of isotropic interference.

Selection Combining: Selection combining is a technique where the re-

ceiver chooses to decode the signal from one antenna. The advantages of se-

lection combining are that no gain and phase multiplication block is needed
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in the receiver hardware, at the cost of negatively impacting the communica-

tion performance since the signal energy from other antennae is not used. In

the pre-detection diversity combining setting, I study the sub-optimal selection

combiner which selects the receive antenna with the strongest channel. In this

combiner, the weight vector has value 1 at the antenna with the strongest chan-

nel and value 0 for the rest. Using this weight vector, I can write the output of the

diversity combiner as

v =wT y (5.27)

= s
|Gn |2

λ0+λn

+
Gn z n

λ0+λn

(5.28)

= sGm +Zm (5.29)

where index m indicates the index of the receiver with the strongest channel; i.e.,

|Gm |2 ≥ |Gn |2 ∀n = 1,2, . . . ,N . The outage probability can simply be written as
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5.6 Outage Performance of Non-Linear Receivers

In Section 5.5, I evaluated outage performance for receivers implement-

ing a weighted combiner, as shown in Figure 5.2. In this section, I evaluate the
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Figure 5.3: Block diagram of a receiver in which diversity combining is performed

after symbol detection.

outage performance for a receiver that implements selection combining after

performing detection. Such a receiver attempts to detect the transmitted sig-

nal individually at each antenna and then selects the output based on the post-

detection SIR. The block diagram for this receiver is shown in Figure 5.3. This

receiver has higher complexity since it implements a detection block for each

antenna as opposed to the receiver in Figure 5.2 which implements only one de-

tection block. I assume that the SIR estimate obtained at the receiver after de-

tection at antenna n is the true SIR, in other words SIRn =
|Gn |2
|z n |2

, which provides

us with a lower bound on the outage performance. Under these conditions, such

a receiver would be in outage when the per-antenna SIR is below the detection

threshold at every antenna. The probability of this event can be expressed as
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I proceed by setting the number of receive antennae, N = 2, in order to

facilitate brevity and comprehension of this derivation. Later, I will provide the

outage probability for any number of receive antennae. Assuming N = 2 , I can
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expand (5.34) as
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Taking expectation over H , I get
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Using the point generating functional property of Poisson point processes[61], I

can write the outage probability Pout
PDC as
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(5.38)

After integration and subsequent simplification, and noting that in a low outage

regime the operand in the exponential is close to 0, I get an approximation of the

137



outage probability as

Pout
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=
(1−α/2)απ2

sin(απ)
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�2
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α (5.39)

(5.39) shows the contribution to the outage probability from the inter-

ferer set S0 and the interferer sets Sn for n = 1, . . . ,N . Extending this result to

an N antenna receiver is simple but leads to a more involved outage probabil-

ity expression. The outage probability expression is a summation of terms con-

taining θ kα/2 with k = 1, . . . ,N . The θ α/2 term is the outage component purely

due to interferers from S0, the θNα/2 term is purely due to interferers from Sn for

n = 1, . . . ,N , and the θ kα2 terms are due to interference from all the sets Sn for

n = 0, . . . ,N . I approximate the outage probability by keeping only the θ α/2 and

θNα/2 terms and ignoring the rest. The justification is that when λ0 6= 0, the θ α/2

term dominates the overall sum, and whenλ0 = 0, the outage probability reduces

to contain only the θNα/2 term. Thus, by continuing the derivation from (5.34) for

N > 2 and keeping only the two significant terms, I get the outage probability as
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It is important to note that full diversity order is achieved if there are no com-

mon interferers, however, there is no diversity gain in PDC when interference is

spherically isotropic.
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Table 5.1: Parameter values used in simulations.
Parameter Description Value

λt ot Per-antenna total intensity of interferers 0.001

γ Power path-loss exponent 3.5

B Mean amplitude of interferer emissions 1.0

σH
Variance of in-phase and quadrature

1.0
components of the fading channel

5.7 Simulation Results

To validate my outage probability derivations, I numerically simulate a

multi-antenna receiver located within a field of Poisson distributed interferers.

I transmit a 16−QAM signal and interference is simulated according to the sys-

tem model described in Section 5.4. Incorrect symbol detection is considered

an outage event and the outage probability is calculated accordingly. Based on

the average signal energy and modulation index, the effective SIR threshold for

correct detection can be calculated and plugged into the derived outage proba-

bility expressions to compare with simulated results. Table 5.1 lists the various

parameter values used in simulations.

Figure 5.4 shows the impact of spatial dependence on outage probabil-

ity of the various diversity combining receivers with channel state information.

In Figure 5.4, the intensities of interferer sets observable by a single antenna

(λi , i = 1, . . . ,N ) are set to the same value, denoted by λe . Further, λ0+λe is set to

a fixed value 0.001, so that the total interference observed by each antenna has

the same power. Varyingλ0 from 0.0 to 0.001 essentially changes the interference

statistics from spatially independent to spherically isotropic. It is easy to see that
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increasing spatial dependence in interference negatively impacts the communi-

cation performance of all receiver algorithms. In interference with low spatial de-

pendence, PDC receiver has the best performance, while the other pre-detection

receivers still show poor performance. This shows that exploiting channel di-

versity may not compensate for impulsive events. The proposed pre-detection

diversity algorithm however shows much better outage performance compared

to the typical pre-detection diversity algorithms. It thus provides a good trade-off

between communication performance and computational complexity.

Figures 5.5, 5.6, and 5.7 show the impact of receive antennae on outage

probability for receivers with channel state information, and Figures 5.8, 5.9, and

5.10 show the impact of receive antennae on outage probability for receivers

without channel state information (and the MRC receiver added as a bench-

mark). In Figures 5.5 and 5.8, I simulate spatially independent interference by

setting λ0 = 0 and λe = 0.001. In Figures 5.6 and 5.9, I set λe = 0 and λ0 = 0.001

to simulate spherically isotropic interference. It is interesting to see that the di-

versity gain is lost in all algorithms in the presence of spherically isotropic inter-

ference. In Figure 5.7 and 5.10 I simulate partial spatial dependence by setting

λ0 = 5× 10−5 and λe = 9.5× 10−4. Even a low amount of spatial dependence

can severely reduce the diversity gain in interference. In all of these figures, I see

that the theoretical expressions derived in Sections 5.5 and 5.6 match very well

to the simulated receiver. The theoretical expressions are useful as they allow us

to analyze the impact of parameters such as γ diversity performance of typical

multi-antenna receivers.
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Figure 5.4: Outage probability vs. λ0 for equal gain combining (EGC), maximal

ratio combining (MRC), selection combining (SC), and post-detection combin-

ing (PDC) in a 3−antenna receiver. The symbols indicate the theoretical outage

probability (’Expr’), whereas the lines indicate the simulated outage probability

(’Sim’). λe = 10−3−λ0.
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Figure 5.5: Outage probability vs. number of receive antennae for for equal

gain combining (EGC), maximal ratio combining (MRC), selection combining

(SC), and post-detection combining (PDC) in presence of spatially independent

interference. The symbols indicate the theoretical outage probability (’Expr’),

whereas the lines indicate the simulated outage probability (’Sim’). Parameter

values λ0 = 0,λe = 10−3 are used in simulations.
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Figure 5.6: Outage probability vs. number of receive antennae for for equal

gain combining (EGC), maximal ratio combining (MRC), selection combining

(SC), and post-detection combining (PDC) in presence of spherically isotropic

interference. The symbols indicate the theoretical outage probability (’Expr’),

whereas the lines indicate the simulated outage probability (’Sim’). Parameter

values λ0 = 10−3,λe = 0 are used in simulations.
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Figure 5.7: Outage probability vs. number of receive antennae for equal gain

combining (EGC), maximal ratio combining (MRC), selection combining (SC),

and post-detection combining (PDC) in presence of partially spatially dependent

interference. The symbols indicate the theoretical outage probability (’Expr’),

whereas the lines indicate the simulated outage probability (’Sim’). λ0 = 5 ×
10−5,λe = 9.5×10−4 are used in simulations.
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Figure 5.8: Outage probability vs. number of receive antennae for maximal ratio

combining (MRC), fixed weight combining (FWC), and random antenna selec-

tion (RAS) in presence of spatially independent interference. The symbols in-

dicate the theoretical outage probability (’Expr’), whereas the lines indicate the

simulated outage probability (’Sim’). Parameter values λ0 = 0,λe = 10−3 are used

in simulations.
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Figure 5.9: Outage probability vs. number of receive antennae for maximal ratio

combining (MRC), fixed weight combining (FWC), and random antenna selec-

tion (RAS) in presence of spherically isotropic interference. The symbols indicate

the theoretical outage probability (’Expr’), whereas the lines indicate the simu-

lated outage probability (’Sim’). Parameter values λ0 = 10−3,λe = 0 are used in

simulations.
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Figure 5.10: Outage probability vs. number of receive antennae for maximal ratio

combining (MRC), fixed weight combining (FWC), and random antenna selec-

tion (RAS) in presence of partially spatially dependent interference. The symbols

indicate the theoretical outage probability (’Expr’), whereas the lines indicate the

simulated outage probability (’Sim’). λ0 = 5×10−5,λe = 9.5×10−4 are used in sim-

ulations.
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5.8 Conclusion

In this chapter, I derived outage probability expressions for different di-

versity combining algorithms in the presence of interference, such as equal gain

combining, fixed weight combining, maximum ratio combining, selection com-

bining, and post-detection combining. From Chapter 4, I used a framework to

model spatially dependent wireless interference with joint statistics in a con-

tinuum from spatially independent interference to spherically isotropic inter-

ference. While this framework can be used to model interference in common

scenarios which usually fall at either extreme of this continuum, it provides a key

advantage when modeling scenarios which fall within the continuum.

The post-detection diversity combiner exhibits significantly better out-

age performance compared to the pre-detection diversity combining receivers.

In spatially independent interference, the post-detection combiner achieves full

diversity order in outage performance. This diversity order is quickly lost upon

increasing spatial dependence in interference observed across receiver anten-

nae. The post-detection combiner suffers from high computational complexity

requirements as it requires a symbol decoding block for each receiver antenna,

compared to the pre-detection combiner which requires one symbol decoding

block regardless of the number of receiver antennae. My results can inform anal-

ysis of communication performance vs. computational complexity tradeoffs of

multi-antennae receivers designed to operate in the presence of impulsive inter-

ference.

In the next chapter, I use the statistical framework of spatially depen-
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dent interference, and develop two novel diversity combining algorithms which

improve upon the outage performance of pre-detection diversity combining re-

ceivers, while using the same amount of computational complexity. In Chapter

4, I showed that this statistical framework also captures antenna separation in

a Poisson field of interferers. In the next chapter, I use this framework to de-

velop antenna selection strategies in distributed antenna receivers operating in

interference-limited networks.
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Chapter 6

Receiver Design in Interference-Limited Wireless

Networks

6.1 Introduction

The recent increase in the density of users in wireless networks and in-

creasing demand for high data rates motivates the design of multi-antenna wire-

less transceivers that are robust to interference. Wireless receivers have typically

been designed and their performance analyzed under the assumption of Gaus-

sian distributed additive noise[23]. While thermal noise at the receiver certainly

exhibits Gaussian statistics[92, 126, 142], interference at the receiver from exter-

nal sources is also assumed to exhibit Gaussian statistics due to the Central Limit

Theorem[103].

In Chapters 3 and 4, I developed a statistical-physical model of interferer

distribution, interference generation and propagation, in centralized and de-

centralized wireless networks, respectively. From this statistical-physical frame-

work, I derived the joint and marginal statistics of interference observed by wire-

less receivers placed in a randomly distributed field of interferers. In particu-

lar, I showed that joint interference statistics across receiver antennae are ei-

ther isotropic, independent, or lie in a continuum between the isotropic and
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independent. Subsequently in Chapter 5, I analyzed the communication per-

formance of conventional linear multi-antenna signal combining algorithms in

the presence of non-Gaussian interference.

Using accurate statistical models of interference from Chapters 3 and 4, I

develop novel algorithms for multi-antenna signal combining as well as cooper-

ative antenna selection in the presence of interference. In this chapter, I propose

new wireless receiver algorithms that offer significant improvement in commu-

nication performance in interference-limited channels.

6.2 Contributions, Organization, and Notation

In Section 6.3, I propose new non-linear diversity combiners and evaluate

their performance in the presence of spatially dependent interference. In Section

6.3, I propose novel strategies for distributed antenna selection in the presence

of interference. These two sections represent two different areas in wireless com-

munication systems where accurate statistical models of interference can facil-

itate design of better receivers. Within each of these sections, I present a short

survey of prior work on the subject, a detailed discussion on the novel receiver al-

gorithm, and numerical simulations to demonstrate improved communication

performance of the proposed algorithms in face of interference.
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6.3 Receiver Design in Interference

In Chapter 5, I evaluated the performance of several multi-antenna com-

bining algorithms in the presence of interference. The performance analysis re-

sults indicated that the post-detection combining receiver can outperform pre-

detection diversity combining algorithms in the presence of impulsive interfer-

ence, especially when interference exhibits low spatial dependence across re-

ceive antennae. However, the post-detection combiner is impractical to imple-

ment as it assumes perfect knowledge of SIR at the receiver, and practical ver-

sions of the algorithm require deploying multiple signal decoding blocks in the

receiver hardware as shown in Figure 5.3. In this section, I propose alternative

pre-detection diversity combining algorithms are designed with the knowledge

that interference is impulsive in nature.

6.3.1 Background and Prior Work

The design of detection and estimation strategies in impulsive noise has

been an active area of research[4]. Interference in many wireless networks has

been well modeled to exhibit impulsive statistics, typically using the symmet-

ric alpha stable distribution. Prior work has typically focused on single antenna

receiver design in the presence of additive alpha stable distributed interference.

In the seminal work on signal detection in alpha stable noise[156, 158],

the authors studied a multitude of linear and non-linear detectors in alpha stable

noise for a single antenna receiver. This work was complemented by [155] with

incoherent detection techniques in alpha stable noise, and [157]with parameter
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estimation algorithms for alpha stable noise. Many suboptimal detectors have

also been proposed for detection in alpha stable noise[100, 101, 106, 122].

In [22], the authors propose receivers with decision feedback equalizers

to improve wireless communication performance in symmetric alpha stable dis-

tributed interference. As is usually the case in the presence of symmetric alpha

stable noise, much of the receiver performance can be attributed to non-linear

blanking, or clipping filters in the receive chain. In [123] and [124], the authors

derive the BER optimal receivers for CDMA communication systems in the pres-

ence of alpha stable noise. These combiner algorithms assume statistically inde-

pendent noise samples across the various combining paths.

Since the probability density function of the alpha stable distribution is

not known for most values of theα parameter, optimal detectors are hard to find.

If α = 1, however, the probability density function has a known closed-form ex-

pression[140], consequently, the optimal detector is well known. The optimal

detector, also known as the Cauchy detector, is practical to implement for binary

signal schemes such as BPSK. While it is optimal only when α = 1, it has been

applied for different values of α[50].

The filter structures proposed in prior work are limited in applicability

to multi-antenna wireless receivers due to lack of statistical-physical generation

based interference models. In particular, there is little prior work that considers

spatial dependence in interference across receive antennas, which is a key factor

in multi-antenna interference. Analyzing the effect of such spatial dependence

on typical receiver algorithms is relevant to improving the communication per-
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formance of wireless receivers in frequency selective fading.

6.3.2 System Model

6.3.3 Linear Receivers Without Channel Information

Assuming that the receiver has knowledge of interference statistics, I can

choose w to minimize the outage probability as

Pout
FWC
(θ ) =

4
p
πcos(πα

4
)

E−α
s
σ−α

S
σα

I
Γ(

1+α

2
)Γ(1−α/2)E [X α]θ

α
2×

min
w∈RN

(
∑N

n=1
λn w α

n
+λ0‖w ‖α2

‖w‖α
2

)

. (6.1)

(6.1) attains its minimum value when the receiver selects the antenna with the

minimum average interference power. Since interference power is directly pro-

portional to the intensity, I can write (6.1) as

Pout
FWC
(θ ) =

4
p
πcos(πα

4
)

E−α
s
σ−α

S
σα

I
Γ(

1+α

2
)Γ(1−α/2)E [X α]θ

α
2 min

n=1,...,N
{λn +λ0}.

(6.2)

6.3.4 Linear Receivers With Channel Information

In this section, I attempt to derive linear receivers which minimize outage

probability. First, I analyze the two extreme scenarios of spatially independent

and spatially isotropic interference. In spatially isotropic interference, λn = 0 ∀
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n > 0, consequently, I can write the outage probability as

Pout
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The appropriate weight vector w
opt

iso that minimizes this outage probability

is given as

w
opt

iso = arg min
Rn

‖w‖α
2

�

�
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wnGn
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α (6.4)
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�

(6.5)

Using the Cauchy-Schwarz inequality, the optimum value of w
opt

iso is the conjugate

of the channel vector G∗. Thus, the MRC weighting vector is the optimum linear

combiner in isotropic interference.

If interference in spatially independent across receive antennae, the out-

age probability can be evaluated by setting λ0 = 0 in (5.14), yielding

Pout
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and consequently, the optimum weight vector is given by

w
opt

ind = arg min
Rn

‖w‖α
α

�

�

�

∑N

n=1
wnGn

�

�

�

α . (6.7)
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Using Cauchy-Schwarz inequality and Holders inequality, I can write

�

�

�

�

�

N
∑

n=1

wnGn

�

�

�

�

�

≤
N
∑

n=1

|wnGn | (6.8)

≤ ‖w‖α‖G‖ α
α−1

(6.9)

(6.10)

which is equivalent to

‖w‖α
�

�

�

∑N

n=1
wnGn

�

�

�

≥ 1

‖G‖ α
α−1

(6.11)

Note that Holders inequality can be applied only if α > 1. Substituting wn =

G ∗
n
|Gn |

2−α
α−1 into (6.11), the left and the right sides of the equation become equal.

Thus the optimal linear combiner weight vector can be derived for α> 1.

Deriving the optimal weight vector for alpha stable interference with joint

statistics in a continuum between isotropic and independent is not mathemat-

ically tractable. However, I can lower bound the optimal linear receiver outage

probability as

Pout
OPT
(θ )≥ Pout

IND
(θ )+Pout

ISO
(θ ) (6.12)

where Pout
IND(θ ) and Pout

ISO (θ ) are the outage probability components from the in-

dependent and isotropic components of interference, respectively. Figure 6.1

shows the outage performance of the optimal linear combiner in the presence

of spatially independent interference. The optimal combiner offers very little

reduction in outage probability compared to the MRC combiner. Since the opti-

mal combiner for spatially isotropic interference is the MRC combiner, the lower

bound on the outage probability for spatially dependent interference should be
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Figure 6.1: Outage probability vs. number of receiver antennae for optimal linear

combiner in spatially independent interference. λe = 0, γ= 3, and λ0 = 0.001.

very close to the outage probability of the MRC combiner. This indicates that

there is little benefit to be obtained by developing a optimal linear combiner for

symmetric alpha stable interference with joint statistics that are in a continuum

between isotropic and spatially independent. Thus, in the next section, I study

non linear receivers in the presence of interference.

6.3.5 Non-Linear Receivers

6.3.5.1 Hard-Limiting Combiner

Conventional pre-detection diversity combiners, discussed in Chapter 5,

do not distinguish between an antenna suffering from an impulsive interference

event and an antenna observing a non-impulsive interference event. Diversity

combining only utilizes spatial independence of fast fading across the multiple

receive antennae to mitigate the impact of deep channel fades on one of the an-

157



tennae.

I propose a multi-antenna combiner that first attempts to detect whether

an antenna is observing an impulsive event, and if so, removes the signal from

that antenna from the combining block. Thus the combiner decides a ’hard limit’

within which an receive antenna’s contribution must lie. The weight vector of

this combiner is written as

w H L
n
=

¨

h∗
n

if ‖yn −median(y)‖ ≤ τ
0 if ‖yn −median(y)‖ ≥ τ . (6.13)

The receiver assumes that an impulsive interference event has occurred if

the sample at an antenna is significantly deviated from the median of the all the

receive antenna samples. In signal processing with impulsive noise, the median

is often used as a metric to denote the typical value of a signal[118]. If the data

sample is determined as non-impulsive, then the receiver uses the MRC algo-

rithm for incorporating channel diversity into combining, otherwise the sample

from that antenna does not contribute to the combiner output.

Note that the HL combiner uses a parameter τ to determine the range

within which a receive antenna’s signal can deviate from the median. If τ = 0,

the combiner essentially becomes a spatial median filter, whereas τ→∞ would

cause the receiver to act as a conventional MRC combiner. It is non-trivial to

derive the best possible value ofτ given the noise parameters. However, τ should

depend on the parameters α, σ0, andσn .

Consider the case where interference is independent across the receive

antennae. It is well known that the MRC combiner is optimal in the presence
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of Gaussian distributed noise, therefore for α= 2, τ→∞ is the best possible pa-

rameter setting. On the other hand, asα→ 0, noise becomes extremely impulsive

and the median filter (τ→ 0) is the optimal filter[68].

6.3.5.2 Soft-Limiting Combiner

The hard-limiting combiner completely removes an antenna from the

diversity combination process if it detects the presence of an interference im-

pulse event. The soft-limiting combiner, on the other hand, gradually reduces

the weighting of an antenna if it estimates an impulse event at the antenna. The

soft-limiting weight vector is given as

w SL
n
= e−η‖yn−median(y)‖h∗

n
. (6.14)

Here the MRC combining algorithm is modified to reduce the weight of

an antenna if its received signal deviates highly from the signals at other anten-

nae. Unlike the hard-limiting combiner, this algorithm gradually reduces the sig-

nal weight as the signal becomes more impulsive. If η= 0, this combiner reduces

to the MRC algorithm, while η→∞ converts it into a median antenna selector.

Both diversity combiners are suboptimal modifications to the MRC re-

ceiver. These combiners are non-linear in nature and derivation of their outage

probability expressions is mathematically intractable. Subsequently, evaluating

the optimal value of parameters τ and η is also difficult and would make for an

interesting subject of future work. Practical implementations of these receivers

is also a interesting problem as it would require tracking τ and η based on im-
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Table 6.1: Parameter values used in simulations.
Parameter Description Value

λt ot Per-antenna total intensity of interferers 0.001

γ Power path-loss exponent 3

B Mean amplitude of interferer emissions 1.0

σH
Variance of in-phase and quadrature

1.0
components of the fading channel

pulsive noise parameter estimation[132].

6.3.6 Numerical Simulations

Using the parameters from Table 6.1, I show the outage performance of

my proposed algorithms in Figure 6.2 and 6.3. I can observe that at low spatial

dependence in interference my proposed algorithms outperform the other pre-

detection diversity combining receivers. Consequently, these algorithms may be

used as an alternative to the computationally intensive post-detection combin-

ing receiver.

6.4 Cooperative Antenna Selection in Interference-Limited Net-

works

In this section, I apply interference modeling to improve communica-

tion performance of relay assisted wireless networks. As discussed in Chapter 1,

the introduction of relays in wireless networks can yield improvements in com-

munication performance, and lower costs such as power usage[129, 160]. Re-

lays, however, are not immune to the impairments of wireless communications

such as the fading channel[160], and interference. In the following subsections,
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Figure 6.2: Outage probability vs. λ0 for maximal ratio combining (MRC), post-

detection combining (PDC), and the novel hard-limiting (HL) and soft-limiting

(SL) combiners in a 3−antenna receiver. λe = 10−3−λ0, τ= 1, and η= 1.
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Figure 6.3: Outage probability vs. number of receive antennae for maximal ratio

combining (MRC), post-detection combining (PDC), and the novel hard-limiting

(HL) and soft-limiting (SL) combiners in presence of partially spatially depen-

dent interference. λ0 = 5× 10−5,λe = 9.5× 10−4, τ = 1, and η = 1 are used in

simulations.
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I derive joint interference statistics across a wireless receiver and its assisting re-

lay. Subsequently, the joint interference statistics are used in deriving the outage

probability of relay-assisted reception, and I derive a relay-selection strategy to

minimize power usage of the assisting relay.

6.4.1 Background

Typical relay assisted communication systems assume that relays are sit-

uated between the source and the destination, consequently, the destination

is expected to receive more reliable information from the relays than from the

source.

Prior work in cooperative reception focuses primarily on improve trans-

mission capacity by mitigating the impact of deep channel fades between the

source and the destination. For example, in [117] the authors analyze tradeoffs

between various relay-forwarding strategies, such as AF, DF and hybrid DF strat-

egy that forwards the relay signal only when relay decoding is reliable. Other

research focuses on using relays to improve channel diversity[160], or suppress

interference[63, 117, 151, 160] via receive side cancellation[20], or transmit side

alignment[151]. Interference is usually assumed to be Gaussian distributed.

In [35], the authors consider a symmetric alpha stable model of interfer-

ence in a two-hop amplify and forward cooperative reception scheme. Interfer-

ence at the relay and the destination nodes is individually modeled as a sym-

metric alpha stable random variable, while the joint statistics of interference are

ignored.
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6.4.2 System model and List of Assumptions

In this section, I describe a interference-limited distributed antenna wire-

less communication system via the following assumptions:

Assumption 6.1. A base-station WS intends to communicate information to a re-

ceiver WD .

Assumption 6.2. The location of WD is fixed at origin.

Assumption 6.3. As the wireless signal traverses through the environment, its en-

ergy decays according to the power-law path-loss model [65] with a coefficient of

γ.

Assumption 6.4. The fast-fading channel between the transmitting source and

the receiver as well as other interfering sources and the receiver is modeled using

the Rayleigh distribution[65].

Assumption 6.5. Additive thermal noise is ignored at the receiver.

Assumption 6.6. Interferers are distributed in the two-dimensional plane around

the receiver.

The set SI contains all interfering users distributed randomly in space.

At each sampling time instant, the locations of the active interferers in SI are

distributed according to a homogeneous spatial Poisson Point Process in the two

dimensional plane around the receiver. The intensity of set SI is denoted by λI .

Assumption 6.7. Cooperating antennae are distributed in the two-dimensional

plane around the receiver.
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The set SR contains all non-transmitting users also distributed randomly

in space as a two dimensional Poisson point process with intensity λR . The in-

tensity of set SR is denoted by λR .

Assumption 6.8. The destination receiver WD can employ any other cooperating

antenna from SR to help it decode the signal. This assisting node, or relay, is de-

noted by WR .

Assumption 6.9. WD and WR can estimate the state of the fading channel be-

tween themselves and the transmitter.

However, WD does not know the channel state of WR . On the other hand,

WD has knowledge of the distances between it and cooperating antennae in SR .

Assumption 6.10. The overhead associated with selecting another user to cooper-

atively receive the transmitted signal is neglected.

Assumption 6.11. Atleast one of the receiver node or relay node must decode the

signal correctly for successful transmission.

If both the nodes receive the signal incorrectly, a retransmission request

is sent to the transmitter. The signal is transmitted again, until either the relay

or destination node are able to decode it correctly. The receiver or the relay can

correctly decode the signal if the SIR is greater than a fixed threshold.

Assumption 6.12. There is a cost associated with every re-transmission between

the WR and WD .
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d

Figure 6.4: System model of two distributed antennae in a Poisson field of inter-

ferers.

This cost is denoted using the function C(d ), where d is the distance be-

tween WR and WD . A simple example of this cost function is power usage at

the relay. Due to power-law pathloss through the medium, the relay to destina-

tion transmission uses power proportional d γ; i.e., C(d ) = CPd γ, where CP is a

constant. In wireless systems, typically this cost function C(d ) increases as the

distance d increases. Figure 6.4 shows a realization of this system model.

6.4.3 Antenna Selection to Minimize Relay Power Consumption

The receiver WR observes interference from all interfering users in SI .

The sum interference at WR can be expressed as

ZWR
=
∑

i∈SI

Bi e jχi‖Ri‖−
γ

2 Hi e jΘi . (6.15)

ZWR
is the sum of interfering signals Bi e jχi (Di )

− γ
2 Hi e jΘi emitted by each inter-

ferer i ∈ SI located at Ri . Bi e jχi denotes emissions from interfering user i where

Bi is the emission signal envelope and χi is the phase of the emission. γ is the
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power pathloss coefficient (γ> 2), consequently, ‖Ri‖−
γ

2 indicates the energy loss

during propagation through the wireless medium. Hi e jΘi denotes the complex

fast-fading channel between the interferer and destination. For the fast fading

channel model, I assume that the channel amplitude Hi follows the Rayleigh dis-

tribution, and that the channel phase Θi is uniformly distributed on [0,2π]. Hi ,

Θi , Bi , and χi are assumed to be i.i.d. across all interfering sources i ∈ ST .

The receiver WD employs one non-transmitting node from SR , known as

the relay node WR in order to aid in signal reception. Consequently, the sum

interference from the transmitters surrounding the relay nodeWR can be written

as

ZWR
=
∑

i∈SI

Bi e jχi ||Ri −RWR
||−

γ

2 H ′
i
e jΘ′i . (6.16)

Here, RWR
denotes the location of the relay node. H ′ and Θ′ are the fast

fading channels between the relay node and the transmitter node, which are in-

dependent to fast fading channel between the transmitter and the destination

node. The joint characteristic function of interference across WD and WR can be

written as

ΦWD ,WR
(ωD ,ωR ) =E

¦

eωD,I ZWD ,I+ωD,QZWD ,Q+ωR ,I ZWR ,I+ωR ,QZWR ,Q

©

(6.17)

where ZWD ,I and ZWD ,Q represent the in-phase and quadrature components of

ZWD
, respectively. ZWR ,I and ZWR ,Q represent the in-phase and quadrature com-

ponents of ZWD
, respectively. ωD and ωR are the frequency parameters of the

joint characteristic functionΦWD ,WR
(ωD ,ωR ). ωD,I andωD,Q are the real and imag-
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inary components ofωD , respectively. ωR ,I and ωR ,Q are the real and imaginary

components ofωR , respectively.

In Chapter 4, I derived the joint interference statistics across two dis-

tributed antennae. Using the results from (4.54), the joint characteristic function

of interference across WD and WR can be expressed as

ΦWD ,WR
(ωD ,ωR ) =e−σ0(1−e

−a (γ)‖RWR
‖b (γ)
)(|ωD |4/γ+|ωR |4/γ)−σ0(e

−a (γ)‖RWR
‖b (γ)
)(|ωD |2+|ωR |2)

2/γ

(6.18)

The parameter values for a (γ) and b (γ) are shown in Section 4.6. In the

wireless system model described in Section 6.4.2, an outage occurs when both

the relay and destination node are unable to correctly detect the signal. Assum-

ing a SIR threshold requirement to correctly decode the transmitted signal, the

outage probability in this system is given as

Pout = P{SIRD < θ ,SIRD < θ }

(6.19)

where SI RD denotes the signal-to-interference ratio at the destination receiver

WD ,SI RR denotes the signal-to-interference ratio at the assisting relayWR , and θ

denotes the threshold for correct signal detection. From (5.39) this outage prob-

ability is given as

Pout = P{SIRD <θ ,SIRD <θ }

=
(1−α/2)απ2

sin(απ)
σ0(e

−a (γ)‖RWR
‖b (γ))θ α/2+

�

απ2

4 sin(απ)

�2

σ2
0
θ α (6.20)
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The cost of using the relay can be expressed as the number of re-transmissions

that are needed in order for the receiver to correctly decode the transmitted sig-

nal, times the per transmission cost. This is given as

NT X =C(d )(1−Pout)+2C(d )(Pout)(1−Pout)+3C(d )(Pout)2(1−Pout)+ . . . (6.21)

=C(d )
1

(1−Pout)2
(6.22)

Using relay transmit power as an example, the cost function can be defined as

C(d ) = P0+Pd d g a m m a . Applying the cost function definition in (6.22), the excess

power usage at the relay can be expressed as

PWD
=C(d )

1

(1−Pout)
(6.23)

=C(d )
1

1− (1−α/2)απ2

sin(απ)
σ0(e

−a (γ)‖RWR
‖b (γ))θ α/2+

�

απ2

4sin(απ)

�2

σ0θ α
(6.24)

= P0d γ
1

1− (1−α/2)απ2

sin(απ)
σ0(e

−a (γ)‖RWR
‖b (γ))θ α/2+

�

απ2

4sin(απ)

�2

σ0θ α
(6.25)

using the power law model for relay transmission power. Clearly, there exists an

optimum distance at which the relay should be located in order to minimize this

excess power. In the network model described in Section 6.4.2, the relay nodes

are also distributed randomly as a spatial Poisson point process. Therefore, the

destination node must select a cooperative relay which is expected to be closest

to the optimum location. Given that the relays are distributed as a Poisson point

process with intensityλR , the distance d between the receiver and the k th nearest

relay follows the distribution

f (d ;k ) = e−λ0πd 2

 

2λ0πd

k−1
∑

i=0

(λ0πd 2)k

k !
−

k−1
∑

i=1

2(λ0π)k d 2k−1

(k −1)!

!

(6.26)
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Figure 6.5: Outage probability vs. distance between two physically separate an-

tennae. The intensity of signal emitting interferers λT = 0.1.

Thus, the expected power usage of choosing the k th nearest neighbor as the co-

operating node is given as

Pk =

∫ ∞

0

PWD ,‖RWR
‖=d f (d ;k )dd (6.27)

and the proposed selection algorithm selects the k ∗ nearest neighbor, such that

k ∗ = arg min
k∈N+

Pk . (6.28)

6.5 Conclusions

This chapter demonstrates the advantages of incorporating interference

statistics into receiver design for wireless systems in interference-limited net-

works. In the first example, multi-antenna receivers are improved by adding a

filtering component to the receiver that removes, or reduces the strength of sig-
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nals that are determined to be corrupted by impulsive component of interfer-

ence. Interference statistics are also applied in designing cooperative reception

strategies. Using accurate joint statistics of interference, I showed that antenna

selection strategies can reduce power usage in cooperative communications.
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Chapter 7

Conclusions

Interference in wireless communications has become a significant im-

pairment, limiting network throughput and user density in wireless networks.

In the face of exponentially increasing demand for wireless Internet data acces-

sible by mobile users, interference mitigation has become a very active area of

research. In this dissertation, I focus on the problem of interference mitigation

in wireless networks and propose the following thesis statement:

Accurate statistical modeling of interference observed by multi-antenna

wireless receivers facilitates design of multi-antenna wireless systems with signif-

icant improvement in communication performance in interference-limited net-

works.

My contributions towards defending this thesis statement are listed in the

following section.

7.1 Summary

In this dissertation, I derive closed-form interference statistics to ana-

lyze and improve the communication performance of multi-antenna wireless

receivers in interference-limited networks. There is extensive literature on statis-
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tical models of interference observed by a single antenna in a variety of wireless

networks. Prior work on statistics of multi-antenna interference has been limited

to using multi-dimensional extensions of the single antenna statistical models.

The specific contributions of this dissertation towards improving com-

munication performance of wireless networks are as follows:

In Chapter 3, I propose a statistical-physical framework for interference

generation and propagation to a multi-antenna wireless receiver located within

a field of randomly distributed interferers. I assume that the wireless receiver is

part of a centralized network, such that a coordinating central authority limits

the interferers to be located outside of a interferer-free guard zone around the

receiver. I also allow interferers to be observed by either one antenna, or all an-

tennae in the wireless receiver. I show that my proposed framework results in

joint statistics of interference that are distributed as either isotropic Middleton

Class A, independent Middleton Class A, or a mixture of the two.

In Chapter 4, I start with the statistical-physical network model proposed

in Chapter 3, and remove the assumption of a interferer-free guard zone around

the receiver. This network model is well applicable to decentralized, or ad hoc

networks, where communicating devices are free to transmit data without regard

to the interference caused to their neighbors. Such a framework is also useful

in modeling interference from non-communicating devices such as computa-

tional platforms. I show that my proposed framework results in joint statistics

of interference that are distributed as either isotropic symmetric alpha stable,

independent symmetric alpha stable, or a mixture of the two. Furthermore, I
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derive the statistics of interference in a wireless receiver with two antennae that

are distributed in space. I show that the joint interference statistics are isotropic

symmetric alpha stable, independent symmetric alpha stable, or a mixture of the

two when the receiver antennae are colocated, infinitely far apart, or finitely sep-

arated, respectively. Thus, I have proposed a single generalized framework that

can model interference in colocated as well as distributed antennae receivers.

In Chapter 5, I derive closed form expressions for communication perfor-

mance of typical multi-antenna receivers in interference-limited network envi-

ronments. I use the statistical-physical framework of interference generation in

order to link network parameters to interference statistics. Accurate communi-

cation performance analysis can provide insight into the robustness of different

multi-antenna receiver algorithms to interference.

In Chapter 6, I use interference statistics to improve the performance of

multi-antenna wireless receivers. First, I add a non-linear spatial filtering block

to conventional diversity combining receivers in order to increase their robust-

ness against impulsive interference. Next, I analyze the communication perfor-

mance and power cost of cooperative reception in the presence of interference.

Using accurate statistics of interference in distributed antennae, I am able to de-

rive the optimal distance between cooperating antennae. These results inform

improved antenna selection strategies for mesh networks employing cooperat-

ing receiver nodes.
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7.2 Future Work

In this section, I enumerate possible avenues of future research.

• Interference statistics in a non-Poisson distributed field of interferers The as-

sumption of homogeneous Poisson distributed interferer locations is typi-

cally made for two reasons; (1) it provides analytical tractability in deriva-

tions, and (2) it has the highest entropy of a spatial Point Process and there-

fore yields very robust results. However, in realistic wireless networks, MAC

protocols may break the homogeneity of interferer distribution, and the

distribution of users may not be well modeled by Poisson Point Processes

simply due to user clustering. There exists prior literature on deriving closed

form statistics of interference using non-Poisson Point Process models of

interferer distribution. It should be interesting to extend these models to

deriving statistics of multi-antenna interference, which should intuitively

follow the same isotropic and independent mixture model as proposed in

this dissertation.

• Interference statistics with more realistic pathloss function

In this dissertation, I assumed the power law pathloss model for interfer-

ence propagation. While the power law pathloss model is very realistic at

relatively large propagation distances, it may not be very accurate for inter-

ferers arising close to the wireless receiver. Incorporating realistic pathloss

models into deriving interference statistics is a interesting avenue for fu-

ture research. Another possible change to the pathloss model can be the
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use of a random pathloss exponent. In many communication scenarios,

especially indoor communications, pathloss can be modeled well using

power law decay with random coefficients.

• Interference statistics across two distributed antennae in centralized wireless

networks

In this dissertation, I derived approximate statistics of interference in two

physically separate wireless antennae in decentralized networks. A very

useful extension of this work would be to derive joint interference statis-

tics in centralized wireless networks; i.e., wireless networks with interferer-

free guard zones around the receiver. A key aspect to deriving interference

statistics would be to first define what a guard zone is in a distributed an-

tenna system. One could develop three possible models: (1) the guard zone

is a circular region with the two antennae located symmetrically about the

center of the circle, (2) the guard zone is a circular region with one antenna

located at the center, and the other antenna located within the circle, and

(3) the guard zone is a circular region with both antennae located within

this circle. Figures 7.1, 7.2, and 7.3 describe the guard zone models 1, 2,

and 3, respectively.

• Interference statistics across more than two distributed antennae in decen-

tralized wireless network

In this dissertation, I derive joint statistics of interference for only two dis-

tributed antennae. A natural extension to this work would be extending
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Receiver Antenna

Interferer 

Figure 7.1: System model 1 of a receiver with 2 distributed antennae in a field of

randomly distributed interferers in a centralized wireless network.

Receiver Antenna

Interferer 

Figure 7.2: System model 2 of a receiver with 2 distributed antennae in a field of

randomly distributed interferers in a centralized wireless network.
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Receiver Antenna

Interferer 

Figure 7.3: System model 3 of a receiver with 2 distributed antennae in a field of

randomly distributed interferers in a centralized wireless network.

these results to N distributed antennae. The basic equations for such an

extension are laid out in Section 4.6. However, instead of allowing anten-

nae to be distributed in any manner, one could start with some potentially

simpler antenna geometries. For example, Figures 7.4 and 7.5, show the

antennae distributed as a uniform linear array and a uniform circular ar-

ray, respectively. Intuitively, one can see that interference between a subset

of antennae would exhibit a mixture of isotropic and independent statis-

tics. The maximum separation between two antennae in each subset of

antennae should impact the isotropy of joint interference statistics within

that particular subset.

• Joint spatio-temporal statistics of interference

Multi-dimensional statistical models of interference arise when interfer-

ence is observed from different points in space, or time. In this disserta-

tion, I study multi-dimensional statistics of interference in a multiple spa-
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Receiver Antenna

Interferer 

Figure 7.4: System model of a 5−antenna linear array receiver located in a field

of randomly distributed interferers.

Receiver Antenna

Interferer 

Figure 7.5: System model of a 5−antenna circular array receiver located in a field

of randomly distributed interferers.
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tial observation framework. These results can be extended to modeling

temporal statistics of interference, and finally integrating the spatial and

temporal statistics into a unified model. Such results would be very useful

in modeling a network with mobile receivers and mobile interferers.

• Outage performance analysis of non-linear multi-antennae receivers in pres-

ence of interference

In this dissertation, I analyze the outage performance of linear receivers

in the presence of interference. However, non-linear receivers are shown

to better mitigate non-Gaussian interference and closed-form communi-

cation performance analysis including bounds on performance of such re-

ceivers would yield incredible insights into receiver design to mitigate in-

terference.

• Estimation of key parameters from time-domain interference data

In this dissertation, I derived statistical models of interference based on

network models. The parameters of interference are consequently a func-

tion of the parameters of the underlying wireless network model. A typi-

cal receiver deployed within this network would usually not have network

parameter information. In such scenarios, receivers capture interference

data and extract key parameters of interference statistics from these cap-

tured samples. Thus, fast receiver algorithms to analyze time domain inter-

ference samples, and fit these samples to the derived interference distribu-

tions would be essential to receivers operating in networks dominated by
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interference[132]. Such algorithms would also require low computational

complexity, fixed-point analysis for implementation in modern embedded

wireless platforms.
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Appendix A

Poisson Point Processes

Let S be the set of all sequences of points in Rd , such that any sequence

X ∈ S

• is finite, i.e.,has only a finite number of points in any bounded subset ofRd

• is simple, i.e., a 6= b for any a ,b ∈X.

Let X(B ), for X ∈ S and B ∈ Rd , denote the number of points of the se-

quence X that lie in the set B .

A stationary Poisson point process (PPP) of intensityλ is characterized by

the following two properties:

• The number of points in any set B ∈Rd is a Poisson random variable with

mean λ|B |, or in other words

P(X(B ) = k ) =
e−λ|B |(λ|B |)k

k !
(A.1)

• The number of points in disjoint sets are independent random variables.

Definition A.1. PPP thinning: The thinning of a PPP is defined as selecting a

point of the process with probability p independently of the other points and
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discarding it with probability 1p . Thinning results in two independent PPPâĂŹs

of intensities pλ and (1p )λ.

Definition A.2. Inhomogeneous PPP: An inhomogeneous PPP of intensity mea-

sure Λ is defined in a similar manner as the stationary PPP, except that the num-

ber of points in a set B is a Poisson random variable with meanΛ(B ) =
∫

B
Λ(x )d x .

A stationary PPP is a special case of the inhomogeneous PPP with Λ(B ) = λ|B | .

Theorem A.1. Campbell’s Theorem: Let f (x ) :Rd → [0,∞) be a measurable func-

tion. Then

E





∑

Φ

f (x )



=

∫

Rd

f (x )Λ(d x ) (A.2)

When Φ is stationary with intensity λ the right side is equal to λ
∫

Rd
f (x )d x .

Definition A.3. Probability generating functional (PGFL): Let (x ) :Rd → [0,∞) be

measurable. The PGFL of the point process X is defined as

G(v ) =
∏

x∈Φ
v (x ) (A.3)

Observe that the PGFL is a functional, i.e., acts on a function and when the func-

tion is a multivariate, a dot ‘·’ is used to represent the variable that the PGFL acts

on. The probability generating functional of a PPP it is equal to

G(v ) = e−
∫ d

R
(1−v (x ))Λ(x )d x (A.4)
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