
Copyright

by

Biao Lu

2000



WIRELINE CHANNEL

ESTIMATION AND EQUALIZATION

by

BIAO LU, B.S., M.S.E.E

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2000



WIRELINE CHANNEL

ESTIMATION AND EQUALIZATION

APPROVED BY

DISSERTATION COMMITTEE:

Brian L. Evans, supervisor

Alan C. Bovik

Joydeep Ghosh

Risto Miikkulainen

Lloyd D. Clark



To my parents with love



Acknowledgements

I would like to express my deepest appreciation and gratitude to Prof.

Brian L. Evans, my dissertation advisor, for his guidance, encouragement, and

enthusiasm throughout the course of my graduate research. For it was his judg-

ment and trust that made my admission to Ph.D. program possible and intro-

duced me to such an interesting �eld. I have been fortunate to be able to bene�t

from his experiences and his attitude towards work. His desire for perfection has

always encouraged me to try to do everything as well as possible. Prof. Evans

is the only person so far who thinks that I have leadership abilities. It has been

my honor to be the lab manager for Embedded Signal Processing Laboratory

(ESPL) for the last two years. It has been indeed great training and experience

from which I will bene�t throughout my career. It has been my great pleasure

and privilege to be his student and work with him.

My sincere appreciation also goes to the other members of the commit-

tee | Prof. Alan C. Bovik, Prof. Joydeep Ghosh, Prof. Risto Miikkulainen, Prof.

Guanghan Xu, and Dr. Lloyd D. Clark | for their helpful comments and un-

derstanding. I took or audited at least one course from each of the professors

on my committee. Their serious attitude toward teaching has shown me their

rich knowledge in their research �elds and their hard work in transferring the

knowledge to all of the students. I owe special thanks to Dr. Lloyd D. Clark.

Dr. Clark has taught me a lot about time-domain equalizers when I worked with

v



him in the summer of 1999.

I have been really grateful to all of the professors who have taught me

di�erent courses from my undergraduate study to graduate school. Among them,

I thank sincerely to Prof. Kai Ouyang, my advisor for the senior project from

the department of biomedical engineering at the Capital Institute of Medicine,

Beijing, China. Prof. Ouyang introduced me to the �eld of neural networks. I

was �rst admitted to the College of Pharmacy at UT Austin. When I struggled to

understand drug design, Prof. Robert S. Pearlman told me that I would not beat

out the competition by using my weak points. I appreciate his encouragement to

transfer to Department of Electrical and Computer Engineering (ECE). I thank

Prof. Gary Wise to recommend me to the ECE department and Prof. J. K.

Aggarwal to support me �nancially for two semesters.

I am thankful for the opportunity to work on a challenging project as

a summer intern at the Austin Technology Center at Schlumberger in Austin,

Texas. I would like to thank Ms. Suzanne Richardson, Dr. Lloyd Clark, Dr.

Terry Mayhugh, Mr. Joe Steiner, Mr. Steve Bissell, and all of the other people

who have taught me so many things which I cannot learn from courses in school.

What I have learned about designing time-domain equalizers in asymmetric dig-

ital subscriber line systems at Schlumberger has become my current research

interest and a key part of this dissertation.

I would like to sincerely thank all of the members of ESPL and Laboratory

for Image and Video Engineering (LIVE) for the great time I had at UT and

great help from them while I was a lab manager of ESPL. They are: Gregory

vi



Allen, G�uner Arslan, Serene Banerjee, David Brunke, Young Cho, Niranjan

Damera-Venkata, Amey Deosthali, Ming Ding, Srikanth Gummadi, Zhengting

He, Tanmoy Mandal, Milos Milosevic, Wade Schwartzkopf, Clint Slatton, and

Magesh Valliappan. I have realized from them that the fundamentals of being a

leader in a group are to get help from them and also to help them when needed. I

own my eternal thanks to Wade Schwartzkopf for his e�orts and help to prepare

the paperwork for my oral exam, bind my dissertation, etc. ESPL has a collection

of excellent graduate students who work on various topics. Among them, I would

like to thank Mr. G�uner Arslan for being such a good system administrator so

that I can use the computer without worry and for the rich discussions with him

on research topics. David and Wade occasionally gave me lectures on God so

that I could have a better understanding of God. Many thanks go to Serene,

Niranjan, and Magesh for their help when I took the real-time DSP lab course.

I was so lucky to take the course while there were two past TAs and one current

TA in ESPL. Clint deserves special thanks since he made all of the banners for

my conference posters. I would also thank the following people for the help I

received over the years | Dr. Dong Wei, Dr. Tom Kite, Dr. Marios Pattichis,

and Dr. Hung-Ta Pai from LIVE. Their success in �nishing their Ph.D. studies

has given me great encouragement. I owe special thanks to Dr. Dong Wei for

introducing me to matrix pencils which are also a part of this dissertation.

I have my eternal gratitude to Dr. Jack Moncrief, his wife Betty and all

of his family members for their love and encouragement. I became one of their

family members right after I came to the United States. I met Jack and Betty

in Beijing, China, when they attended a conference in 1993. It was they who

vii



encouraged me to come to the United States for a higher degree. Their love

and encouragement through these years have been strong support for me. Jack's

hard work always encourages me to learn more things no matter how old I am.

I would also like to thank all of my friends for their encouragement and

friendship. I owe special thanks to my close friends: Dr. Hongyun Wang, Ms.

Haihong Zhuo, Ms. Li Jiang, Dr. Kuiyu Chang and his wife Junyu, and Ms.

Xiaowei Wang for their love and help through so many years. Kuiyu and Junyu

have been helping me buy and set up computers. They also take care of my pet

while I am out of town. They have taught me what true friendship means.

I am especially indebted to my parents for their love, sacri�ce, and sup-

port. They are my �rst teachers after I came to this world and have set great

examples for me about how to live, study, and work.

Biao Lu

The University of Texas at Austin

December 2000

viii



WIRELINE CHANNEL

ESTIMATION AND EQUALIZATION

Publication No.

Biao Lu, Ph.D
The University of Texas at Austin, 2000

Supervisor: Brian L. Evans

Communication involves the transmission of information from one point

to another through a series of processes. The three basic elements in each com-

munication system are the transmitter, channel, and receiver. The transmitter

and receiver are separated in space. A channel is the physical medium that

connects the transmitter and receiver and distorts the transmitted signals in

di�erent ways. Severe distortions occur when data transmits through wireline

channels. One way to counteract channel distortion in the transmission band is

to employ an equalizer in the receiver.

This dissertation focuses on the design of channel equalizers in wireline

communication systems. In particular, I consider equalization with and without

channel estimation. When equalization is considered as a classi�cation problem,

neural networks can be used as equalizers without estimating the channel im-

pulse response. I design a new neural network equalizer by cascading multilayer

ix



perceptron and radial basis function networks. In discrete multitone systems,

the channel impulse response needs to be known at the receiver. Channel equal-

izers, a.k.a. time-domain equalizers (TEQs), are used to shorten the e�ective

channel impulse response to a desired length. Channel impulse responses are

generally in�nite in extent. The long tails of the response are due to the poles

of digital subscriber lines. I develop new matrix pencil methods to estimate the

pole locations. Then, setting zeros of a TEQ at the locations of estimated poles

is one way that I design a TEQ, which is possible with or without the knowledge

of input training sequence. I also design divide-and-conquer TEQs which have

lower computational cost than the current methods and give comparable per-

formance in terms of shortening signal-to-noise ratio. The divide-and-conquer

TEQs can be implemented on �xed-point digital signal processors.
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Chapter 1

Introduction

In the 1970s, telecommunications was virtually synonymous with plain old tele-

phone service. Technology primarily consisted of copper wires and electrome-

chanical switches. In the 1980s, telecommunications services expanded to in-

clude voiceband data modems, facsimile machines, and analog cell phones. Now,

through digitization and technological convergence, telecommunications involves

the transfer of a wide variety of information | data, speech, audio, image, video,

and graphics | over wireless and wireline channels.

Communication is the transmission of information from one point to an-

other through a series of processes. The three basic elements in a communication

system are a transmitter, channel, and receiver. The transmitter and receiver

are separated in space. A channel is the physical medium that connects the

transmitter to the receiver, and it distorts the transmitted signals in various

ways. Data transmission through wireline channels with severe distortion can

be made more reliable by using the following techniques:

1. Transmit and receive �lters to reject distortions that fall outside the band

of transmitted frequencies.

2. Equalizers in the receiver to counteract channel distortion in the transmis-

1
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sion band.

3. Detection techniques to recover transmitted data from noisy data.

Channel equalizer design is the theme of the dissertation. In this chapter,

Section 1.1 describes a general communication system and summarizes standards

for modems. Section 1.2 discusses properties of commercial wireline channels.

Section 1.3 introduces equalization of commercial wireline channels. Section 1.4

presents the goal and organization of this dissertation. Section 1.5 lists the

publications related to this dissertation.

1.1 Wireline communication systems

Figure 1.1 shows a block diagram for connecting to the Internet through a dial-up

connection. In a dial-up connection, the user's personal computer (PC) connects

to a modem that dials up across the public switched telephone network (PSTN)

to a remote access service (RAS) concentrator. The word \modem" is a con-

catenation of modulator and demodulator, but there is a wide range of opinion

as to what constitutes modulation and demodulation, and whether a modem

comprises more than a mod and a demod [1]. Figure 1.2 shows a digital com-

munication system model for modulation and demodulation [2]. A modem is

the combination of a transmitter and receiver that is used to convey information

in the form of digital signal, from one location to another over the appropri-

ate channel. There are three commonly-used modems to make the connection

from a PC to the Internet. They are voiceband modems, digital subscriber line

(DSL) modems, and cable modems, which are discussed in Sections 1.1.1, 1.1.2,

and 1.1.3, respectively.
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PC Modem PSTN

RAS
Concentrator

Router

Internet Firewall Web
Server

Figure 1.1: Block diagram of a dial-up connection from a PC to Web server,

where PSTN is the public switched telephone network and RAS is the remote

access service.

modulator channel demodulator

noise

Figure 1.2: System model of a modem.
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1.1.1 Voiceband modems

One device that makes the connection in Figure 1.1 possible across a wide geo-

graphical area is the voiceband modem. The modem at either end of the PSTN

allows the PC and Web server to communicate with each other. Voiceband

modems are used to carry digital data from a PC (or Web server) through the

available infrastructure of a telephone network. However, the telephone network

was initially designed to carry voice signals in analog form. Later, control oÆces

in telephone companies were redesigned to digitize and transport speech sampled

at 8 kHz with 8 bits/sample (i.e., 64 kbits/s). Therefore, voiceband connections

have to go through multiple analog-to-digital and digital-to-analog converters,

which will delay transmission. This delay is part of the propagation delay time

that signals take to pass through the voice channel of the transmission link.

Table 1.1 lists various standards for voiceband modems [3].

The voiceband is typically considered as the analog frequency band from

0 to 4 kHz [4]. The passband of a voiceband telephone channel is roughly 300

Hz to 3300 Hz. Modem technology is subject to these bandwidth limitations

imposed by the analog voice network between the subscriber and the central

oÆce. Thus, dial-up access through the telephone network is slow and ill-suited

to the Megabit bandwidth requirements of rich and dynamic multimedia content.

1.1.2 Digital subscriber line modems

Many possible solutions for the bandwidth limitation of the PSTN network exist.

In fact, the copper loop used to carry voice traÆc between a subscriber and the

central oÆce at a telephone company (Telco) is inherently capable of suÆcient
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Standard Transmission Duplex Mode Media

Rate Capability

V.21 300 bit/s Full Asynchronous 2 wire PSTN

V.22 1200 bit/s Full Asynchronous 2 wire PSTN

V.22 bis 2400 bit/s Full Asynchronous 2 wire PSTN

V.23 1200 bit/s Full Asynchronous 4 wire leased

V.26 bis 2400 bit/s Full Synchronous 2 wire leased

Half Synchronous 2 wire PSTN

V.27 4800 bit/s Half Synchronous 2 wire PSTN

V.29 9600 bit/s Full Synchronous 4 wire leased

V.32 9600 bit/s Full Asynchronous/ 2 wire PSTN

Synchronous

V.32 bis 14400 bit/s Full Asynchronous/ 2 wire PSTN

Synchronous

V.33 14400 bit/s Full Synchronous 4 wire leased

V.34 28800 bit/s Full Asynchronous/ 2 wire PSTN

Table 1.1: ITU-T V series transmission standards.

bandwidth to carry Megabits of data. Since the voiceband utilizes only 4 kHz

of the bandwidth, the copper loop has unused bandwidth that could be used

to support high data rates depending on the loop length. This fact motivates

digital subscriber line (DSL) technology. The technology forms a family called

x-type digital subscriber line (xDSL), where \x" stands for one of many types of

DSL technology. The following advantages make DSL technology an attractive

choice for high-speed Internet access:

� DSL technology utilizes the existing infrastructure in the PSTN;

� DSL technology does not require replacement of network equipment;

� DSL technology builds upon the techniques developed for modem technol-

ogy for modulation, error correction, and error detection.
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Standard Meaning Transmission Mode Media

Rate (Mbps)

ISDL ISDN DSL 0.144 Symmetric 1 wire pair

SDSL Single 0.768 Symmetric 1 wire pair

Line DSL

HDSL High data 1.544 Symmetric 2 wire pairs

rate DSL

HDSL2 2.048 Symmetric 1 wire pair

CDSL Consumer up to 1 Downstream 1 wire pair

DSL 0.016 to 0.128 Upstream

ADSL Asymmetric 1.5 to 8 Downstream 1 wire pair

DSL 0.016 to 0.640 Upstream

RADSL Rate Adaptive 1.5 to 8 Mbps Downstream 1 wire pair

DSL 16 to 640 Kbps Upstream adapt data

rate to line

conditions

VDSL very high data 13 to 52 Mbps Downstream �ber feeder

(proposed) rate DSL 1.5 to 6.0 Mbps Upstream and ATM

Table 1.2: Transmission standards for xDSL family.

Table 1.2 lists the standards of current xDSLs [5]. In spite of possible confusion

over the relationships among xDSLs, ADSL is the most standardized in terms

of available documentation, service trials, and open speci�cations [6]. In this

dissertation, I focus on ADSL which uses bandwidth from 25 kHz to 1.1 MHz

for data transmission and 0 to 4 kHz for voice transmission.

1.1.3 Cable modems

Many providers of cable television services o�er cable modems as their own so-

lution for high-speed data communication to the home. In fact, the term \cable

modem" is a bit misleading because it works more like a local area network

interface than a modem. In some cable TV networks, cable modems allow com-
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puters to be connected to the same cable system that feeds the television set.

Using a signal splitter, the coaxial cable hosts the modem on the PC side of the

connection. The cable modem is connected to an Ethernet card that resides on

the user's PC. The software installed along with the Ethernet card allows access

to the Internet.

Figure 1.3 shows how the cable modem �ts into the home cable setup

(see www.cablemodems.com). The cable modem is located between the radio

frequency (RF) module and the Ethernet card so that Internet and other data

communications traÆc can be managed separately from the video signals. Cable

modems use the 5 to 50 MHz frequency band for upstream channels and the 50

to 550 MHz band for downstream channels. Cable modems take advantage

of existing cable TV networks and are capable of operating at higher speeds

than ADSL. Table 1.3 compares the transmission speed of di�erent technologies.

Although cable modems achieve high speed, they have several disadvantages [7].

The primary disadvantage is the cable link to a residence is shared among many

users. Therefore, if some of the users log onto the Internet at the same time,

then the achievable communication speeds decrease. Because the line is shared,

security can also be a serious problem for some users. Second, the upstream

bandwidth picks up signals and noise from other home services [5]. Third, cable

modems may not be available in the vast majority of commercial districts since

cable has been deployed primarily for residential use.

Table 1.4 lists the current standards for cable modems [8]. Multimedia

Cable Network System Partners Ltd. (MCNS) was formed in 1996 and released

its draft standard called the Data Over Cable Service Interface Speci�cation

(DOCSIS) in March 1997. In 1998, the International Telecommunications Union
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HFC
network

Cable
Splitter

TV set
top box

RF module

Cable
adapter

Home PC

Figure 1.3: Cable setup.

Technology Downstream upstream

POTS 56.6 kbps 56.6kbps

ISDN 230 kbps 230 kbps

SDSL 384 kbps 384 kbps

HDSL 768 kbps 768 kbps

ADSL 8 Mbps 500 kbps

cable modems 27 Mbps 10 Mbps

Wireless (900 MHz) 28.8 kbps 28.8 kbps

Satellite 400 kbps POTS line used

Table 1.3: Comparison of speed between cable modem and other technologies.

(ITU) accepted DOCSIS as a cable modem standard, called ITU J.112. The

Institute of Electronic and Electrical Engineers (IEEE) 802.14 cable TV media

access control and physical protocol working group was formed in 1994 but did

not develop an international cable modem standard until 1998. Digital Video

Broadcast (DVB)/Digital Audio Council (DAVIC) technology is the incumbent

European standard for digital set-top boxes and is now starting to be employed

for cable modems. As the name suggests, DVB focuses on digitized video delivery
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Standard Transmission Mode

Rate

MCNS/DOCSIS up to 38 Mbps Downstream

up to 10 Mbps Upstream

IEEE802.14 20.5632 Mbps, 30.8448 Mbps, Downstream

or 41.1264 Mbps

132 kbps, 536 kbps, or 2.144 Mbps Upstream

DVB/DAVIC up to 51 Mbps Downstream

up to 6.178 Mbps Upstream

ITU-T J.112 the same as MCNS/DOCSIS

Table 1.4: Transmission standards for cable modems.

and requires MPEG II framing.

1.2 Commercial wireline channels

A channel is a transmission path from the transmitter to receiver. The analog

channels corresponding to the three types of modems in Section 1.1 follow:

� Telephone lines

The Plain Old Telephone Service (POTS) line is needed for remote broad-

cast consoles, telephone hybrids, analog telephones, cordless telephones,

fax machines, and modems. The POTS line consists of two wires called tip

and ring. The bandwidth of a POTS line is approximately from 300 Hz to

3300 Hz. The signal-to-noise ratio over the passband is approximately 45

dB.

� Dedicated ADSL lines

ADSL service provides high-speed transmission over twisted-pair telephone

lines. Copper twisted-pair is capable of carrying higher frequency signals
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up to approximately 2 MHz for distance up to 10 kft. However, high-

frequency signals experience more attenuation with distance than do sig-

nals at voiceband frequencies. ADSL uses a guard frequency band to sep-

arate the voiceband POTS from ADSL frequencies. A set of eight test

ADSL lines is discussed in detail in [6].

� Cable lines

Cable TV networks operate via coaxial cable. Some cable TV systems are

hybrid �ber/coax (HFC) systems. Both coaxial cable and HFC system are

analog. Coaxial cables are RF transmission lines. The coaxial cables in

HFC systems can carry an extensive bandwidth up to 1 GHz. The char-

acteristic impedance of coaxial cables in HFC systems is 75 
. According

to the IEEE 802.14 standard, the maximum distance between the farthest

end-user and the �ber hub is 50 miles [8].

1.3 Channel equalization

Telephone lines, ADSL lines, and cable lines distort transmitted signals. The

transmitted signals are bandpass. The channel's frequency response C(f) can

be expressed as [9]

C(f) = A(f) ej�(f) (1.1)

where A(f) is the amplitude response and �(f) is the phase response. An ideal

channel that does not distort the transmitted signal is obtained when A(f) is a

constant and �(f) is a linear function of frequency, f .

When signals are transmitted through a non-ideal channel, the channel

may disperse the signal in such a way that a pulse interferes with adjacent
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−0.3−0.3
channel

transmit
1  −1  1 set threshold to 0

0.7

      receive
1  −1  −1

Figure 1.4: The communication channel distorts the transmitted signal by attenu-

ating, delaying, and dispersing each pulse that represents a symbol. The dispersion

causes intersymbol interference in the received signal.

pulses at the sample instant, causing intersymbol interference (ISI), as shown in

Figure 1.4. In Figure 1.4, the transmitted signal is the binary signal 1;�1; 1, and
each pulse is distorted by a channel with impulse response h = [1:0; 0:7;�0:6].
The channel contains no noise. The receiver recovers a sequence of 1;�1;�1
which is di�erent from the transmitted signal. At the receiver, we may employ a

linear �lter with adjustable coeÆcients to compensate for the channel distortion.

The �lter coeÆcients are adjusted on the basis of measurements of the channel

characteristics. These adjustable �lters are called channel equalizers. Figure 1.5

shows a basic model of a communication system that contains an equalizer to

compensate for ISI. Section 1.3.1 discusses equalizers for telephone lines that

are obtained by inverting the channel impulse response. Section 1.3.2 describes

how to 
atten the frequency response of a channel in DSL lines. Section 1.3.3

mentions equalizers for cable lines.

1.3.1 Telephone lines

The structure of a feedforward equalizer used in a telephone line transmission

system is shown in Figure 1.6. If the frequency response of an equalizer is E(f),
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then j E(f) j must compensate for the channel distortion. A �rst solution would

be to make the equalizer frequency response equal the inverse of the channel

impulse response, i.e.,

E(f)C(f) = 1; or E(f) =
1

C(f)
(1.2)

Equation (1.2) implies that the equalizer is the inverse channel �lter to the

channel response so that the linear channel distortion can be fully compensated.

This inverse channel �lter can completely eliminate ISI caused by the channel.

Since it forces the ISI to be zero at the sampling times, the equalizer based on

(1.2) is called the zero-forcing equalizer.

One disadvantage of the zero-forcing equalizer is that it neglects the pres-

ence of additive noise. As a result, the use of a zero-forcing equalizer may amplify

the noise signi�cantly. If C(f) in (1.2) is small in a frequency range, then the

channel equalizer, E(f) = 1=C(f), gives a large gain in the same frequency

range. Therefore, the noise in this frequency range is ampli�ed.

A second solution to compensate channel distortion is to use a minimum

mean square error (MMSE) equalizer. If the output from the equalizer is f(y(k))

as shown in Figure 1.6 and the desired response at the output of an equalizer

transmitter channel detector+

mk

s x

n

m̂k

k

kk
equalizer

sk
^

RECEIVER

ky

Figure 1.5: A simple communication system. A digital message mk is transmitted

through an analog channel. The received signal yk is corrupted by additive noise

represented by nk. The receiver equalizes the distortion in the channel and then

detects the symbols (sequence of bits) that were transmitted.
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Tapped Delay Line

Decision Function

y(k) y(k-1) y(k-M+1)

Detector
s(k-d)^f(  (k))y

y(k)

Equalizer

M

d : decision delay

: order of the equalizer

Figure 1.6: A feedforward equalizer. The detector is nonlinear.

is the transmitted symbol s(k) in Figure 1.5, then the kth sample of the error

signal between f(y(k)) and s(k) is

e(k) = f(y(k))� s(k) (1.3)

Then, the mean squared error (MSE) is de�ned as

MSE = E
n
e2(k)

o
(1.4)

where Ef�g is the expectation operator. We can obtain the minimum MSE solu-

tion by di�erentiating the MSE in (1.4) with respect to the equalizer coeÆcients,

setting the derivative to zero, and solving for the equalizer coeÆcients.

Both zero-forcing and MMSE equalizers are linear equalizers to combat

ISI. When a channel has a spectral null (i.e., C(f) = 0), the linear equalizers may

not compensate ISI suÆciently. An alternative is to use a nonlinear equalizer

such as a decision-feedback equalizer. Neural networks may also be used as the

decision function in Figure 1.6, as discussed in Section 2.3.

Both linear equalizers and neural network equalizers share one drawback.

With respect to the channel length, the computation time to adapt the equalizer
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coeÆcients increases dramatically as the length of a channel increases. Therefore,

shorter channels are desired. Channel shortening is discussed next.

1.3.2 Dedicated xDSL lines

In an ideal channel, the frequency response A(f) is constant. In general, the

frequency response of a channel over the entire bandwidth range is not constant.

Figure 1.7 shows the impulse response and frequency response of the carrier-

serving-area (CSA) digital subscriber loop 1 [6]. Its frequency response, as shown

in Figure 1.7(b), is not 
at. The CSA loop 1 impulse response contains 512 taps.

To invert this 512-tap channel, the channel equalizer mentioned in Section 1.3.1 is

an all-pole IIR �lter obtained from (1.2) with 511 poles which may not be stable

(the poles would be outside the unit circle) and might enhance the channel noise.

In general, an FIR �lter is used to approximate the IIR �lter. The FIR �lter

will have to be long enough, and small changes in IIR coeÆcients may require

large changes in FIR coeÆcients. To make the equalizer problem tractable for

a broadband channel, discrete multitone (DMT) modulation is proposed. DMT

modulation is the standard for data transmission in ADSL [6]. Using DMT

modulation, the channel is divided into a large number of parallel, independent,

and approximately 
at subchannels. The non-ideal channel causes ISI between

two adjacent subchannels.

One popular method for combating ISI in DMT modulation is to use

a guard sequence, called the cyclic pre�x (CP). The CP is prepended to each

symbol. In the ADSL standard [6], the CP is a copy of the last 32 samples of a

symbol (see Figure 1.8). The symbol length is 512 samples.



15

0 0.5 1 1.5 2 2.5

x 10
−4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

time (s)

am
pl

itu
de

(a) Impulse response of CSA loop 1

0 0.5 1 1.5 2 2.5

x 10
6

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

frequency (Hz)

fr
eq

ue
nc

y 
re

sp
on

se
 (

dB
)

(b) Frequency response of CSA loop 1
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1.3.3 Cable lines

High-speed data transmission through coaxial cable also su�ers from ISI intro-

duced by the cable. In the IEEE 802.14 standard for cable modems, quadrature

amplitude modulation (QAM) is used. An adaptive equalizer in a cable modem

for combating ISI consists of a feedforward equalizer combined with a decision

feedback equalizer. There are 16 complex taps | the feedforward equalizer and

decision feedback equalizer each have eight taps. There are no training sequences

required so that equalization for cable modems is blind [8],[10].

The IEEE 802.14 standard suggests single-carrier modulation since it is

market-ready and the technology is well understood and developed. Theoret-

ically, multicarrier modulation such as DMT has advantages in performance.

IEEE 802.14 oÆcially formed a research group to investigate multicarrier mod-

ulation for future application for cable modems. Therefore, DMT modulation

and equalization methods may be used in future cable modems [8].

1.4 Goal and organization of the dissertation

This dissertation focuses on new channel estimation and equalizer design meth-

ods. The goal of this dissertation is to investigate the applications of �lters and

parameter estimation in channel equalization in a digital communication system.

The contributions of the dissertation are the following:

� Wireline channel equalization can be considered to be a classi�cation prob-

lem. Previous uses of neural network classi�ers as equalizers are described.

I develop a new equalizer by cascading two neural networks in order to

decrease the computational cost and reduce symbol error rate vs. SNR.
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Since the number of symbols used to train neural networks is related to the

length of the channel impulse response and the number of neurons in the

input layer of the network, I develop methods to estimate channel impulse

response and shorten the channel to a desired length.

� When a channel is not known to the receiver, I develop a matrix pencil

method to estimate the channel by locating the poles of an IIR �lter model

of the channel.

� A channel shortening method is used to compensate for the intersymbol

interference incurred during high-speed data transmission by discrete mul-

titone modulation, e.g. in asymmetric digital subscriber lines. I propose

two new methods for channel shortening. Both can be implemented in real-

time software using �xed-point arithmetic and give comparable shortening

signal-to-noise ratio to the optimum method in [11].

The three contributions of the dissertation are discussed in the following

chapters:

1. Chapter 3 proposes a new neural network for channel equalization,

2. Chapter 4 modi�es matrix pencil methods to improve channel estimation,

and

3. Chapter 5 develops new time-domain equalizers for DMT systems based on

the modi�ed matrix pencil method and a divide-and-conquer algorithm.

Chapter 2 introduces channel estimation and equalization. Chapter 2 also ex-

plores applications of neural networks and matrix pencil methods to channel
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equalization in wireline channels. Finally, Chapter 2 describes time-domain

equalizers for ADSL channels.

Channel equalization can be considered as a classi�cation problem. Chap-

ter 3 analyzes the use of neural networks as channel equalizers. I propose to

cascade multilayer perceptron and radial basis function networks [12] to reduce

noise and classify transmitted data.

Chapter 4 improves the matrix pencil method for channel estimation [13].

The data matrix from the received signal has Hankel structure and rank de�-

ciency when noise is not present. When noise is present, the data matrix has

Hankel structure but loses rank de�ciency. Singular value decomposition (SVD)

is a tool to reduce rank but it destroys Hankel structure. I propose three novel

methods by applying a reduced rank Hankel approximation [14, 15].

Chapter 5 presents the applications of matrix pencil methods to design

channel equalizers. When the channel is long, the linear �lter needs more taps to

equalize the distortion whereas neural networks require more data to train the

weights. Linear �lter methods have diÆculty with more memory requirements

to save the taps, where training a neural network may not be realizable in a

real-time implementation. One practical approach is to shorten the extent of

the channel impulse response to a desired window length [16], which is widely

used in discrete multitone systems [17]. The shortening is e�ected by an FIR

�lter called a time-domain equalizer or channel shortening equalizer. I develop

closed-form solutions for sub-optimal TEQ design using a divide-and-conquer

method. The solutions have lower computational cost than previously proposed

methods with comparable performance. I model a channel as an IIR �lter and

use matrix pencil methods to �nd the poles so that the channel impulse response
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can be shortened.

Chapter 6 concludes this dissertation, highlights the contributions, and

points out future research directions.

1.5 Contributions

The material presented in this dissertation is discussed in the papers given below.

� The neural network equalizer presented in Chapter 3 is based on:

B. Lu and B. L. Evans, \Channel Equalization by Feedforward Neural

Networks", Proc. IEEE Int. Sym. on Circuits and Systems, May 31-Jun.

2, 1999, Orlando, FL, vol. 5, pp. 587-590.

� The modi�ed matrix pencil methods presented in Chapter 4 are from:

B. Lu, D. Wei, B. L. Evans, and A. C. Bovik, \Improved Matrix Pencil

Methods", Proc. IEEE Asilomar Conf. on Signals, Systems, and Comput-

ers, Nov. 1-4, 1998, Paci�c Grove, CA, vol. 2, pp. 1433-1437.

The idea of modi�ed matrix pencil method #2 comes from Prof. Dong

Wei [18].

� The divide-and-conquer time-domain equalizer presented in Chapter 5 ap-

pears as a conference paper and has also been submitted as a journal paper:

{ B. Lu, L. D. Clark, G. Arslan, and B. L. Evans, \Divide-and-Conquer

and Matrix Pencil Methods for Discrete Multitone Equalization,"

IEEE Transactions on Signal Processing, submitted.

{ B. Lu, L. Clark, G. Arslan, and B. L. Evans, \Fast Time-Domain
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Equalization for Discrete Multitone Modulation Systems", IEEE Dig-

ital Signal Processing Workshop, Oct. 15-18, 2000, Hunt, Texas.

The idea for the Divide-and-Conquer method comes from Dr. Lloyd Clark [19].

The closed-form solution for the Divide-and-Conquer cancellation with unit

tap constraint method is due to Mr. G�uner Arslan [20].

1.6 Abbreviations

This section lists the acronyms which appear in this dissertation.

ADSL : Asymmetric Digital Subscriber Line

ANN : Arti�cial Neural Network

ANSI : American National Standards Institute

ATM : Asynchronous Transfer Mode

CDSL : Consumer Digital Subscriber Loop

CRB : Cramer-Rao Bound

CSA : Carrier-Serving-Area

DAVIC : Digital Audio Council

DC : Divide-and-Conquer

DFT : Discrete Fourier Transform

DMT : Discrete Multitone

DOCSIS : Data Over Cable Service Interface Speci�cation

DSL : Digital Subscriber Loop

DVB : Digital Video Broadcast

EM : Expectation Maximization

FEQ : Frequency-domain Equalizer

FIR : Finite Impulse Response

HDSL : High-speed Digital Subscriber Loop

HFC : Hybrid Fiber/Coax

IEEE : Institute of Electrical and Electronic Engineers

IIR : In�nite Impulse Response

ISDL : ISDN Digital Subscriber Loop

ISDN : Integrated Services Digital Network

ISI : Intersymbol Interference

ITU : International Telecommunication Union
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LM : Levenberg-Marquardt

LMS : Least Mean Squares

LRHA : Low Rank Hankel Approximation

MCNS : Multimedia Cable Network System

MKT : Modi�ed Kumaresan-Tufts

MLP : Multilayer Perceptron

MMP : Modi�ed Matrix Pencil

MMSE : Minimum Mean Squared Error

MP : Matrix Pencil

MPEG : Moving Picture Experts Group

MSE : Mean Squared Error

PAM : Pulse Amplitude Modulation

PC : Personal Computer

POTS : Plain Old Telephone Service

PSTN : Public Switched Telephone Network

QAM : Quadrature Amplitude Modulation

RADSL : Rate Adaptive Digital Subscriber Loop

RAS : Remote Access Service

RBF : Radial Basis Function

RRHA : Reduced Rank Hankel Approximation

SDSL : Single line Digital Subscriber Loop

SER : Symbol Error Rate

SNR : Signal-to-Noise Ratio

SSNR : Shortening Signal-to-Noise Ratio

SVD : Singular Value Decomposition

Telco : Telephone company

TEQ : Time-domain Equalizer

TIR : Target Impulse Response

UNC : Unit Norm Constraint

UTC : Unit Tap Constraint

VDSL : Very high data rate Digital Subscriber Loop



Chapter 2

Channel Equalization

Equalization is the process of applying a �lter to a signal in order to remove or

compensate for the e�ects of linear distortion. This �lter can be de�ned in the

frequency domain by frequency response parameters. It can also be de�ned in

the time domain by its impulse response. In this chapter, I describe two types

of channel equalizers:

1. Equalizers that do not require channel estimation

A neural network can be employed as a feedforward equalizer. It has an

advantage over linear feedforward equalizers since the neural network is

nonlinear and has a generalization ability. It can learn the properties of an

equalizer from the received signal and training sequence without estimating

the channel impulse response.

2. Equalizers that require channel estimation

DMT modulation has been approved as the standard modulation method

for ADSL. At the receiver end in a DMT system, current technologies

require estimation of the channel impulse response. The design of a time-

domain equalizer can fully depend on the knowledge of the channel impulse

response.

22
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2.1 Introduction

Equalization is e�ective for compensating types of linear distortion including

� frequency distortions such as ripple, and

� nonlinear phase.

However, equalization is not e�ective on the following types of nonlinear distor-

tion:

� Noise: The two primary sources of noise are electromagnetic interference

and ambient noise. Electromagnetic interference is caused by a radio signal

or other magnetic �eld including itself onto a medium (twisted/nontwisted-

pair wire) or device (telephone or other electronics).

� Adjacent channel interference: Signals are assigned to di�erent fre-

quency bands. The adjacent channel interference is generated by trans-

mitters assigned to adjacent frequency bands.

� Spurious distortion: The following changes in a signal involve the addi-

tion of spurious tones at frequencies not present in the original signal:

{ Intermodulation: In \intermodulation" distortion, discordant tones

appear at the sums and di�erences of two original frequencies.

{ Harmonic distortion: In \harmonic" distortion, the spurious tones

are at integral multiples of the original frequency.

Equalizers can be divided mainly into two classes: feedforward equalizers (linear

�lter with adjustable parameters compensate for the channel distortion) and de-

cision feedback equalizers. In the later case, nonlinear equalizers employ previous
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decisions to eliminate the ISI caused by previously detected symbols on the cur-

rent symbol to be detected. Figure 1.6 shows a block diagram of a feedforward

equalizer which is a primary topic in this dissertation.

Equation (1.2) implies that if the channel impulse response were known,

then the design of an equalizer would be straightforward. Therefore, channel

estimation plays an important role in designing a channel equalizer. A channel

can be estimated either in the frequency domain or in the time domain. The

estimation can be performed by a direct estimation on the received signal or by

a training sequence. The former method is called blind estimation.

Training sequences are not only used in channel estimation, but also used

in equalizer training. Equalizer training adjusts the parameters of an equalizer

�lter and may involve either decision directed training or training sequences.

Decision-directed equalizer training does not require any knowledge of the trans-

mitted data a priori. The key disadvantages of decision directed training are slow

convergence and the inability to track rapidly changing channel characteristics.

The use of training sequences can overcome these drawbacks.

This chapter is organized as follows. Section 2.2 discusses methods for es-

timating the channel impulse response, including matrix pencil methods. Matrix

pencil methods form the basis of a new blind estimation method for time-domain

equalizer (TEQ) design in DMT systems that is presented in Chapter 5. Sec-

tion 2.3 discusses feedforward neural network equalizers that can combat some

types of nonlinear distortion. A neural network equalizer does not need to es-

timate the channel impulse response whereas a TEQ in DMT systems does.

DMT modulation is described in Section 2.4 and current TEQ design methods

are summarized in Section 2.5. A frequency domain equalizer is discussed in
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Section 2.6. Section 2.7 concludes this chapter.

2.2 Channel estimation

Channel estimation is important in a digital communication system, especially

when there is a little or no knowledge about the transmission channel. The

equalization problem will be solved more easily if the channel impulse response

is known to the equalizer. The channel estimation problem can be stated as

follows: given samples of the received signal, fyk; k = 1; 2; � � � ; Ng, determine the
channel impulse response h. If samples of the input signal fsk; k = 1; 2; � � � ; Ng
are not available, then it is called blind channel estimation or blind identi�cation.

2.2.1 Training sequences

In digital communication systems, the design of optimal receivers and fast startup

equalizers requires channel estimation. Therefore, a known training sequence is

transmitted to estimate the channel impulse response before data transmission.

Training sequences are periodic or aperiodic. In either case, the power spectrum

of the training sequence is approximately 
at over the transmission bandwidth.

The suggested training sequence for channel estimation in a DMT system is a

pseudo-random binary sequence with N samples. The training sequence is made

periodic by repeating N samples or adding a cyclic pre�x. Tellambura, Guo,

and Barton discuss aperiodic training sequences in [21].

The use of a training sequence reduces the transmission rate, especially

when the training sequence has to be retransmitted often, e.g. for the fast channel

variations that occur in mobile communications. Current research on training

sequences includes the design of training sequences that optimize an objective
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function for a channel estimator. A time-domain optimization method is intro-

duced in [22]. A disadvantage of the time-domain method is that an exhaustive

search for the optimal training sequence of length N requires 2N possible se-

quences. A frequency-domain method is proposed to reduce the computational

cost by introducing a gain loss factor in [23]. However, the frequency-domain

method cannot always �nd the optimal periodic training sequence in terms of

the mean-squared channel estimation error [23].

2.2.2 Channel estimation methods

The goal in channel estimation is to estimate an Lh-tap channel impulse response

h = [h(1); h(2); � � � ; h(Lh)]
T ;

where T is the transpose. The received signal y in vector form is of length N

and given by

y = Sh + n;

where S is a N � Lh matrix containing the transmitted symbols fsk; k =

0; 1; � � � ; N � 1g given by

S =

2
66664
s0 sN�1 � � � sN�Lh+1
s1 s0 � � � sN�Lh+2
...

...
. . .

...

sN�1 sN�2 � � � sN�Lh

3
77775 (2.1)

This matrix has Toeplitz symmetry. The vector n is a vector of samples of an

additive white Gaussian noise process with variance �2 and is independent of

the transmitted signal and the channel.

One time-domain method estimates the channel impulse response based

on a least-squares approach [22]. The resulting channel estimate is

bh =
�
STS

��1
STy:
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The mean-squared error (MSE) for the time-domain case is given by

MSEtime�domain = �2 Tr

��
STS

��1�
;

where Tr(�) denotes the trace of the matrix. The trace of a square matrix is the
sum of the entries down the leading diagonal [24] or the sum of the eigenvalues

of the matrix. In comparison, a frequency-domain method estimates the channel

impulse response as [25]

bhk = 1

N

N�1X
n=0

�
Yn

Sn

�
ej2�kn=N ; k = 0; 1; � � � ; Lh � 1;

where Yn and Sn are the N -point discrete Fourier transforms (DFT) of yk and

sk in Figure 1.5, respectively. The corresponding MSE is given by

MSEfrequency�domain = �2
Lh

N

N�1X
n=0

1

j Sn j2 :

In general, both periodic and aperiodic training sequences can be designed to

prevent Sn from being zero or near zero.

Since the least-squares time-domain method is sensitive to noise when

the SNR is low, alternative reduced rank channel estimation methods have been

proposed that use singular value decomposition (SVD) [26, 27]. The frequency-

domain channel estimation method is currently used in the DMT system to

estimate the channel impulse responses of the CSA DSL loops [6]. Since the cyclic

pre�x is used to combat ISI, Wang and Liu propose a time-domain joint channel

estimation and equalization algorithm by using the cyclic pre�x [28]. Their

method is suitable to track variations in a moderately time-varying channel.

2.2.3 Matrix pencil methods

The matrix pencil method may be used for channel estimation. The matrix

pencil method can estimate poles when a channel is modeled as having an in�-
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nite impulse response. The problem of estimating poles (or damping factors and

frequencies) from exponentially damped/undamped sinusoids has drawn great

attention for both practical and theoretical interests [13, 15, 29, 30, 31, 32]. Es-

timating signal parameters has many diverse applications, such as determination

of direction-of-arrival plane waves at a uniform linear array of sensors [33] and

high-resolution spectral estimation [34].

The characteristic impedance of a transmission line can be written as [35]

Z0 =

s
L

C

 
1� j

R

4�fL

!
;

where L is inductance, R is resistance, and C is capacitance. As the frequency

f increases, the characteristic impedance decreases in absolute value. Hence, a

transmission line has a lowpass response.

A wireline channel can be modeled as an in�nite impulse response (IIR)

�lter [36]. The transfer function of an IIR �lter is given by

H(z) =
B(z)

A(z)
=

B(z)
MY
m=1

�
1� epmz�1

� (2.2)

where

pm = �dm + j2�fm (2.3)

I assume that the IIR �lter model of a wireline channel does not have duplicate

poles. The all-pole portion of (2.2) is

hap(z) =
1

MY
m=1

�
1� epmz�1

� (2.4)

The all-pole portion can also be rewritten as

hap(z) =
MX
m=1

am

1� epmz�1
(2.5)
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In the time-domain, (2.5) gives

hap(n) =
MX
m=1

am epmn u(n) (2.6)

The problem of estimating signal parameters from a noisy observed data

sequence of K samples is considered as

rk = sk + nk; k = 0; 1; : : : ; K � 1: (2.7)

where the noise term nk is a complex white Gaussian random process, and the

noise-free signal sk is given by

sk =
MX
m=1

ame
pmk; where pm = �dm + j2�fm: (2.8)

for k = 0; 1; : : : ; K � 1, where M is the number of exponentially damped sinu-

soids, and the am, dm, and fm terms in (2.3) represent the complex amplitudes,

damping factors, and frequencies, respectively, which are the unknown signal

parameters to be estimated. The set of amplitude terms famg can be esti-

mated by solving a linear least-squares problem if all of the other parameters are

known [13]. A matrix pencil method can be used to estimate the set of damping

factors fdmg and frequencies ffmg (see Section 2.2.4). Section 2.2.5 discusses

methods to estimate the number of sinusoids M .

2.2.4 Hua and Sarkar's matrix pencil method

The matrix pencil method is derived from the property of the underlying signal

to estimate the damping factors fdm; m = 1; 2; � � � ;Mg and frequencies ffm; m =

1; 2; � � � ;Mg. Let A and B be two matrices. The set of all matrices of the form

A� �B, where � is an indeterminate and not a particular real value, is said to
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be a matrix pencil. From the received signal in (2.7), vector rl is de�ned as

rl =
h
r�l ; r

�

l+1; � � � ; r�K�L+l�1
i
; for l = 0; 1; � � � ; L (2.9)

where * denotes the complex conjugate. The master matrix is formed as

R = [r0; r1; � � � ; rL] =

2
66664

r0 r1 � � � rL
r1 r2 � � � rL+1
...

...
. . .

...

rK�L�1 rK�L � � � rK�1

3
77775
(K�L)�(L+1)

(2.10)

by making full use of the available data samples. L is the pencil parameter

which satis�es M � L � K � M . We partition R in (2.10) into the matrix

pencil R0 � �R1 where

R0 = [r0; r1; � � � ; rL�1](K�L)�L
R1 = [r1; r2; � � � ; rL](K�L)�L

(2.11)

Similarly, we can de�ne the signal matrices S, S0, and S1 from fskgK�1k=0 , where sk

is given in (2.8). All three matrices S, S0, and S1 have Hankel structure and low-

rank with rank M . Then, fexp (�pm)gMm=1 is the set of M positive eigenvalues,

�1 � �2 � � � ��M , of Sy0S1, where y denotes the pseudoinverse, and

pm = � ln(�m); m = 1; 2; � � � ;M: (2.12)

The eigenvalues f�i; i = 1; 2; � � � ;Mg are the values of � for which the columns

of the matrix pencil, S0 � �S1, become dependent.

In the presence of noise, the matrices R, R0, and R1 de�ned in (2.10)

and (2.11), respectively, are full rank but still have Hankel structure. Hua and

Sarkar [13, 37, 38, 39] perform an SVD and its rank M truncation of the M

largest singular values of the noisy data matrices R0 and R1 to reduce the
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Step 1 Form the master matrix R as in (2.10)

Step 2 Form matrices R0 and R1 as in (2.11)

Step 3 Compute eSy0 = LyfR0g from (2.14)

Step 4 eS1 = LfR1g from (2.13)

Step 5 Calculate the M non-zero eigenvalues of eSy0eS1
as fexp (dm � j2�fm)gMm=1

Figure 2.1: Implementation of original matrix pencil method.

e�ect of noise. For a given matrix X of rank L, I de�ne the rank M (M � L)

approximation operator L as

LfXg =
MX
m=1

�mumv
H
m (2.13)

where f�i; i = 1; 2; � � � ;Mg is the set of the M largest singular values of X, um

and vm are the corresponding left and right singular vectors, respectively, and

the superscript H is the matrix conjugate transpose. I also de�ne the rank M

(M � L) pseudoinverse operator Ly as

LyfXg =
MX
m=1

1

�m
umv

H
m (2.14)

The procedure for �nding fexp (dm � j2�fm)gMm=1 is given in Figure 2.1 [13].

2.2.5 Estimation of the number of poles

The matrix pencil method in Section 2.2.4 assumes that the number of sinusoids,

M , in (2.13) and (2.14) is known. However, the rank M of the signal matrices

is not known a priori. In the noise-free case, the three data matrices S, S0,

and S1 have low rank. Then, M is equal to the number of non-zero eigenvalues

of matrix S. When noise is present, the matrices R, R0, and R1 are full rank
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and the accuracy of estimating the number of poles decreases as nk in (2.7) gets

large.

In the presence of noise, all of the current methods used to estimate the

number of poles may be classi�ed into two categories. One is a class of the

subjective-based methods, and the other is a group of objective-based methods.

A subjective-based method involves the designer's decision, which is diÆcult

to automate. The representatives of subjective-based methods are Fuchs' cri-

terion based on perturbation analysis [40]; Bartlett's �2 approximations [41];

and Lawley's test on signi�cance of the latent roots [42]. The representatives

of subjective-based methods are listed in [43]. Although objective-based meth-

ods can be implemented in practice, most have high computational cost and

give good performance only at large SNR. The candidates of the objective-

based methods include the model selection methods proposed by Akaike [44],

Schwartz [45], and Rissanen [46] and the information theoretic criteria devel-

oped by Wax and Kailath [47] and Reddy and Biradar [48]. Sano and Tsuji [49]

develop an objective-based method from perturbation analysis. Their method

introduces a set of regularization parameters and estimates the number of poles

more accurate than the methods in [44] and [47].

A set of regularization parameters, f�ig, is added to (2.14) so that the

regularized SVD truncated pseudoinverse is described by

LfcXy

Rg =
rX

m=1

1

�m + �m
vmu

H
m (2.15)

where r is the rank of R0. If �i = 0 for i = 1; 2; � � � ;M , and �i ! 1 for

i =M +1; � � � ; r, then (2.15) is identical to (2.13). The MSE criterion is used to

determine the optimal values of f�ig. The number of �i's less than a threshold
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is the number of poles.

2.3 Feedforward neural network equalizers

A neural network is essentially an interconnected assembly of simple processing

elements, called units or nodes, whose functionality is loosely based on human

neurons. The processing ability (knowledge) of the network is stored in the

inter-unit connection strengths, called weights, which are obtained by a process

of adaptation to, or learning from, a set of training patterns. If learning is

accomplished by presenting a sequence of training patterns (inputs), each of

which is associated with a target (output), then the weights are adjusted by a

learning algorithm. This process is called supervised learning. If no target is

available, then the process is called unsupervised learning.

I describe the biological neuron and a mathematical model of a biolog-

ical neuron in Section 2.3.1. Sections 2.3.2 and 2.3.3 discuss two feedforward

neural networks | multilayer perceptron and radial basis function networks.

The learning algorithms for the two neural networks are also discussed. Sec-

tion 2.3.4 reviews the applications of neural networks as channel equalizers in

telecommunication system.

2.3.1 Model of a neuron

Figure 2.2(a) shows a biological neuron. The dendrites carry the signals from

other neurons. A chemical process occurs at the synaptic site to scale the signals.

Once the signals are greater than a threshold, the neuron �res and broadcasts

the output signal to other neurons. Figure 2.2(b) shows a mathematical model,

where x1; x2; : : : ; xN are the input signals and w1; w2; : : : ; wN are the scaling
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factors (weights) at the synaptic site. Arti�cial neural networks (ANNs), which

are mathematical models of human cognition or biological neural networks, are

based on the following assumptions [50]:

1. information processing occurs at many simple elements called neurons or

nodes;

2. signals are passed between neurons over connection links;

3. each connection link has an associated weight; and

4. each neuron applies an activation function to determine the output.

The arti�cial neuron in Figure 2.2(b) sums the weighted inputs, applies

an activation function f to the weighted sum, and passes the result to the other

neurons on output y:

y(x1; x2; � � � ; xN ) = f

 
NX
i=1

wixi

!
(2.16)

The activation function f in (2.16) is used to limit the amplitude of the output of

a neuron, e.g. to the interval [0; 1] or [�1; 1], which determines which activation

function is used in an application. The activation function is required to be

di�erentiable everywhere since the derivatives of the activation functions are

used during the training process. Possible activation functions are

� linear: flinear(v) = k v

� sigmoid: fsigmoid(v) =
1

1 + e�v

� hyperbolic tangent: ftanh(v) = tanh(v) =
1� e�v

1 + e�v
= 2 fsigmoid(v)� 1
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(a) Model of a biological neuron

x1

x2

xN

w1

w2

wN

Σ f
y. . .

. . .
(b) Mathematical model

Figure 2.2: Models of a biological neuron and arti�cial neurons.

A feedforward neural network consists of the nodes shown in Figure 2.2(b)

arranged in di�erent layers: input layer, hidden layer, and output layer (see

Figure 2.3). A feedforward neural network can be described as O � P1 � P2 �
� � � � Pk � Q where O is the number of neurons in the input layer, Pi is the

number of neurons in the ith hidden layer, and Q is the number of neurons in

the output layer.

The following two sections discuss two commonly-used feedforward neu-

ral networks | multilayer perceptron (MLP) networks and radial basis function

(RBF) networks. MLP and RBF networks are similar. It is common that both
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MLP networks and RBF networks employ supervised learning. On the out-

put layer of each neural network, a target vector is presented. Minimum mean

squared error and least mean-squares methods are used to minimize the di�er-

ence between the target vector and output vector. Then, a learning algorithm

adjusts weights between two adjacent layers. One major di�erence is the way in

which hidden units combine values from preceding layers in the network. MLPs

use inner products, as in (2.16), whereas RBFs use Euclidean distances. Another

di�erence is that an MLP network may have more than one hidden layer while

an RBF network has only one hidden layer.

2.3.2 Training of multilayer perceptron (MLP) networks

A multilayer perceptron (MLP) may have more than one hidden layer. The

neurons in the hidden layer commonly use either sigmoid or hyperbolic tangent

activation functions which introduce nonlinearity into the network. It is the

nonlinearity of the activation functions that makes multilayer networks able to

perform a variety of nonlinear mappings, e.g. in pattern recognition [51, 52]. The

activation function for the output layer may be linear, sigmoid, or hyperbolic

tangent, which are de�ned in Section 2.3.1.

Many training algorithms exist for MLPs such as back-propagation, second-

order optimization, and hybrid linear-nonlinear training methods. Although

batch back-propagation is widely used [12], it su�ers from slow convergence

and can be trapped in local minima. Modi�ed back-propagation algorithms

overcome both drawbacks [53]. The generalized back-propagation algorithm ac-

celerates convergence by magnifying the backward propagated error [54, 55].

The Levenberg-Marquardt algorithm also increases the convergence rate [12].



37

. .
 . 

. .
 . 

. .
 . 

Input Hidden Output
Layer Layer Layer

x

x

y

y

y

1

N

1

M

2

Figure 2.3: A feedforward neural network. Each circle represents a neuron which sums

the inputs and passes the sum through an activation function. Each arc represents

multiplication by a scalar weight.

Second-order optimization techniques, such as the conjugate gradient method,

scaled conjugate gradient method, and quasi-Newton method, can also increase

the convergence rate [12]. A hybrid linear-nonlinear training algorithm [53] is

able to escape from poor local minima. All algorithms initialize the weights

using random values which are commonly between �0:5 and 0:5, inclusive.

The activation function in real-valued neural networks is bounded and

di�erentiable everywhere. However, in the complex case, any analytic function

cannot be bounded unless it is constant [56]. Complex-valued backpropagation

algorithms were developed independently by several researchers [57, 58, 59]. For

an MLP, these algorithms su�er from slower convergence than in the real-valued

case and may produce unpredictable learning skill or improper feature extrac-

tion. An additional problem of complex-valued MLP networks is to choose an

activation function.
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2.3.3 Training of radial basis function (RBF) networks

Since an MLP may not converge to a global minimum, radial basis function

(RBF) networks o�er an alternative. RBF networks have only three layers: one

input, one hidden, and one output layers. The kth output is given by

yk(x) =
NhX
i=1

wk;i �i (x) (2.17)

where Nh is the number of neurons in the hidden layer, x = [x1; x2; � � � ; xNh
]T ,

and �i (x) is the radial basis function which is a radially symmetric scalar func-

tion with Nh centers. A commonly used radial basis function is a Gaussian

function

�i(x) = exp

 
�k x� ci k2

2�2i

!
(2.18)

where k � k is a vector norm (usually Euclidean), �i is the variance, and ci is the

center location. A radial basis function is local in character | its response to

the input x drops o� quickly for input values that are away from the center of

the activation function's receptive �eld, ci.

Training takes two steps [12]. In the �rst step, the variance terms �i's

and center locations ci's are calculated solely from input data. There are two

kinds of training methods to �nd the �i's and ci's [12]. One is unsupervised

training which does not require target data. Subsets of data points, orthogonal

least squares, clustering algorithms, and Gaussian mixture models belong to the

unsupervised training methods. I calculate the �i's and ci's by using expectation

maximization (EM) which uses Gaussian mixture models. On the other hand,

supervised training can �nd the parameters of the basis function as well as the

weights between the hidden layer and output layer. However, the computation
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of the basis function parameters by supervised training requires a nonlinear

optimization method which is computationally intensive [12].

In the second step, the weights between the hidden and output layers are

determined while the parameters for the basis functions are kept �xed. In this

case, (2.17) is the sum of weighted �i terms. The weights wk;i are calculated

by minimizing a suitable function between yk and target signal. I calculate

them by using least mean squares (LMS). This two-step training method is

referred as hybrid training. Hybrid training is much faster than typical nonlinear

optimization techniques used in MLP training since the computation reduces

to a linear or generalized linear model once the centers and widths are �xed.

The output weights can be learned eÆciently. Hybrid training, however, usually

requires more hidden units than supervised learning. The number of hidden units

needed by hybrid methods becomes a serious problem as the number of inputs

increases. The required number of hidden units tends to increase exponentially

with the number of inputs [12]. Therefore, the RBF networks are sensitive to

massive perturbations (e.g., very noisy environments) in the training data.

The complex RBF network is an extension of the real RBF network [60,

61]. Therefore, the training algorithms used in real RBF networks could be

employed in complex RBF networks. The inputs and outputs of complex RBF

networks are complex while each neuron in the hidden layer still keeps the real

radially symmetric function [61].

2.3.4 Neural networks as channel equalizers

Consider a sequence of binary numbers taken from the set f1;�1g that passes
through a two-tap channel. The output from the channel shows two clusters
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Figure 2.4: Pulse amplitude modulation signals, where n-PAM means that the

amplitude of the message signal is quantized to n levels (log2 n bits).
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around +1 and �1 when noise is free [62, 63, 64, 65, 66]. However, as the SNR

decreases, these two cluster may get closer to one large cluster. A channel equal-

izer classi�es the received signal into di�erent classes. Thus, channel equalization

can be considered as a classi�cation problem. This motivates the use of neural

networks in channel equalization.

Gibson, Siu, and Cowan �rst demonstrated that an MLP equalizer works

for 2-PAM [62, 66, 67], where PAM stands for Pulse Amplitude Modulation.

2-PAM means that the amplitude of the message signal is quantized to two

levels (one bit). Figure 2.4 shows examples of 2-PAM, 4-PAM, and 8-PAM sig-

nals. Peng, Nikias, and Proakis develop new activation functions for multilayer

perceptron equalizers for 4-PAM and 8-PAM constellation [68, 69, 70]. Their

simulations show that MLP equalizers outperform linear equalizers in terms of

symbol error rate (SER) vs. SNR. A symbol error occurs when the detector

chooses a data symbol which is di�erent from the actual transmitted symbol.

The symbol error rate (SER) is given by

SER =
total number of symbol errors

total number of transmitted symbols

Peng, Nikias, and Proakis use MLPs with two hidden layers. The hidden neurons

use nonlinear sigmoid activation function to create intricately curved partitions

of space. However, using more than one hidden layer may not guarantee a local-

minima-free network [71].

Chen, Gibson, Cowan, and Grant �rst showed that the RBF equalizer

outperforms the linear equalizer [72] in terms of symbol error rate. Mulgrew gave

a fundamental analysis on the application of RBF networks in equalization [64].

Placement of the centers of RBF equalizers determines their performance because
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the number of cluster centers equal the number of hidden units in RBF networks.

Mulgrew concludes that the use of RBF networks provides more controllable

training characteristics than MLP networks. However, the training period for

both neural networks is still too long for a practical real-time implementation.

In the case of QAM, complex neural networks are required. You and

Hong apply complex MLP networks to both training-based equalization [73] and

blind equalization [74]. They discuss important properties for complex activation

functions in the complex MLP and show that neural networks are most suitable

to compensate for nonlinear distortion. For 4-QAM, they use 15 input neurons,

9 neurons in the hidden layer, and 1 neuron in the output layer. The training of

this MLP network is performed o�-line. Chen, McLaughlin, and Mulgrew study

the complex-valued RBF network [75] and its application to equalizer design [76].

They show that the RBF equalizer is identical to the Bayesian solution to the

symbol-based equalizer. For their complex-valued neural network, they use a

real-valued activation function in their simulations.

Mulgrew [64] points out that the number of symbols required to train a

neural network equalizer is

number of symbols for training =MLh+Nin�1; (2.19)

where M stands for the number of constellations, Lh is the length of the channel

impulse response, and Nin is the number of neurons in the input layer. Although

it can help us decide the number of symbols to be used, it grows exponentially as

length of channel impulse response increases. In general, the length of channel

impulse response is an unknown parameter.
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2.4 Discrete multitone (DMT) modulation

Discrete Multitone (DMT) modulation [6] divides the usable bandwidth of a

channel into a number of independent subchannels over which data is modulated.

A common subchannel modulation method is quadrature amplitude modulation.

The American National Standards Institute (ANSI) has approved DMT as the

standard modulation method for ADSL. DMT is also being considered for newer

cable modem and digital broadcast radio systems [77].

DMT is a form of multicarrier modulation in which the original spectrum

of the input signal is spread over numerous bands, called subchannels. Each of

the subchannels is independently modulated to a carrier frequency. Figure 2.5

shows a multicarrier transmitter [78] and Figure 2.6 shows a block diagram of the

receiver. In a DMT system, the frequency response of the channel is partitioned

into equal bandwidth subchannels [79] as shown in Figure 2.7. The goal is to

keep the frequency response across each subchannel approximately constant in

order to eliminate the need for equalization. In practice, the subchannels are

not completely independent.

A number of time-domain samples are prepended to each DMT symbol.

This cyclic pre�x is added to help the receiver remove intersymbol interference

caused by the channel. In order for the receiver to remove ISI, the length

of the channel impulse response has to be less than or equal to (� + 1) samples

where � is the length of cyclic pre�x. Time-domain equalization is used in ADSL

receivers to shorten the channel impulse response length as discussed next.
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Figure 2.5: Multicarrier modulation transmitter.
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Figure 2.6: Multicarrier modulation receiver.

2.5 Time-domain equalization (TEQ) for DMT channels

A DMT symbol consists of N samples, and the cyclic pre�x that is prepended

to the symbol is a copy of the last � samples of the DMT symbol. The following

example motivates the need for channel shortening. Suppose that a DMT symbol

contains N = 4 samples. They are sk = [sk;0; sk;1; sk;2; sk;3]
T where sk is shown

in Figure 1.5. The channel impulse response h has an extent of two samples, i.e.

h = [h0; h1]. With the length of channel impulse response being Lh = � + 1 = 2
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transform (DFT), the frequency-domain transform of Ckh is �kH where �k

is a diagonal matrix with the DFT of the �rst column of Ck as its diagonal,

and H is the N -point DFT of h. The orthogonality of �k ensures that the

cyclic pre�x serves as a guard sequence to combat ISI between two consecutive

symbols. This example shows that Lh = � + 1 can guarantee that ISI can be

eliminated, which can be generalized as Lh � � + 1 where Lh is the length of

channel impulse response. In the ANSI ADSL standard, � is 32 [6]. Most of

the wireline telephone channels have impulse responses with signi�cant energy

beyond � + 1 = 33 samples at ADSL sampling rate of 2.208 MHz. Therefore, it

is desirable to shorten the channel impulse response to be within � + 1 samples

in length.

Since the � samples in the cyclic pre�x do not convey any new information

about the transmitted symbol, the eÆciency of a DMT transceiver is decreased

by a factor of N=(N+�). EÆciency increases with increasing N or decreasing �.

Increasing N increases memory and computational requirements in a transceiver,

and choosing � a priori is diÆcult because the channel length Lh is generally

not known. For a smaller value of � to be used, a time-domain equalizer (TEQ),

a.k.a. a channel shortening equalizer, is required to shorten the e�ective length

of a channel [17].

Section 2.5.1 presents the mean squared error (MSE) [80] objective func-

tion and TEQ design methods based on minimizing the MSE. Minimizing the

MSE is equivalent to maximizing the SNR at the TEQ output. Section 2.5.2 re-

views the shortening SNR (SSNR) objective function and methods to maximize

the SSNR. Section 2.5.3 highlights TEQ design methods for maximizing channel

capacity.
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2.5.1 Minimizing mean squared error (MSE) design

Chow and CioÆ [81] propose an FIR TEQ to shorten the channel impulse re-

sponse from Lh samples to (� + 1) samples, as shown in Figure 2.8. The kth

sample of the error signal is

e(k) = wTyk � bTxk�� (2.21)

where w is the column vector of Nw taps of the TEQ impulse response; yk =

[y(k); � � � ; y(k �Nw + 1)]T is a vector of Nw samples of the received signal; b is

the column vector of (� + 1) values of the target impulse response (TIR); and

xk�� = [x(k��); x(k���1); � � � ; x(k����)]T is a vector of (�+1) samples

of the input training sequence. In the ideal case, the convolution of the channel

and TEQ impulse responses yields

bideal =

2
64

0��1
b(�+1)�1

0(Lh+Nw�����2)�1

3
75 (2.22)

Thus, bideal contains (� + 1) consecutive samples of the TIR b with a delay of

� samples. The TIR extent should be less than or equal to (� + 1) samples. In

practice, the lower path in Figure 2.8 containing the delay � and TIR b is not

physically implemented. The values of � and the TEQ length Nw may be set a

priori and do not vary with the channel.

The mean squared error is de�ned as

MSE = E
n
e2(k)

o
(2.23)

where Ef�g is the expectation operator. Substituting e(k) in (2.21),

MSE = E

��
wTyk � bTxk��

�2�
(2.24)
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response
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Figure 2.8: Time-domain equalizer with vectors: x of input training sequence

data, n of additive noise samples, y of the the received signal, h of original

channel impulse response data, w of Nw TEQ taps, and b of the shortened

channel impulse response with � taps, and � as the system delay of the overall

response from both the channel and TEQ.

In order to minimize MSE in (2.24), the TEQ coeÆcient vector w and TIR

vector b must satisfy

bTRxk��yk = wTRykyk (2.25)

whereRxk��yk is the (�+1)�(�+1) cross-correlation matrix between the delayed
input sequence xk�� and the output sequence yk, and Rykyk is the Nw � Nw

output autocorrelation matrix. In this case,

MSE = bTRxk��ykb (2.26)

To avoid the trivial solution of w = 0Nw�1 and b = 0(�+1)�1 when minimizing

the MSE in (2.26), one may apply either

1. a unit tap constraint [17, 82], in which one of the taps in b is set to 1, or

2. a unit norm constraint [16, 80, 83, 84], in which either k b k or k w k is
normalized to 1, where k � k is the L2-norm.
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The unit norm constraint is usually preferred because the unit tap constraint

adds another search direction which increases the computational complexity [80]

and because designs produced by using a unit tap constraint have higher MSE

than those produced by using a unit norm constraint [80].

With a unit norm constraint placed on w, the design problem becomes

min
�;b;w

bTRxk��ykb; subject to k w k= 1 and bTRxk��yk = wTRykyk

where 1 � � � Lh +Nw � � � 2. For a �xed value of �, the unique Minimum

MSE (MMSE) solution follows the steps in Figure 2.9. As an alternative to di-

rect eigenvalue decomposition, Na�e and Gatherer [83] use an iterative modi�ed

power method to reduce the computational cost.

Melsa, Younce, and Rohrs [11] de�ne the e�ective channel impulse re-

sponse he�(k) as he�(k) = h(k) �w(k), which in vector form becomes

he� = [he�(1); he�(2); � � � ; he�(Lh +Nw � 1)] (2.27)

Here, he� in (2.27) is ideally equal to bideal in (2.22) in that the samples of he�

outside of a window of (� + 1) samples starting at sample (� + 1) are zero. I

rewrite the error signal as

~e(k) = he�(k)� bideal(k); k = 1; 2; : : : ; Lh +Nw � 1 (2.28)

Step 1 Compute b as the eigenvector corresponding

to the minimum eigenvalue of Rxk��yk in (2.26)

Step 2 Calculate the TEQ taps w from (2.25)

Step 3 Normalize w to satisfy the unit norm constraint

Figure 2.9: Implementation of the minimum mean squared error method.
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Minimizing ~e(k) in (2.28) is equivalent to minimizing e(k) in (2.21) if there is no

noise in the channel [85].

One can decouple the contribution of each component to the MSE as

MSE = MSEwin +MSEwall

where MSEwin is the mean squared error inside the window of (� + 1) samples

and MSEwall is that outside of the window. Although ISI is caused by the er-

ror outside of the window, the MMSE solution minimizes the error inside and

outside the window. When compared to the MMSE solution, it is possible that

there exists a solution with higher than or equal to MSEwin but with smaller

MSEwall, which would cause less ISI. We demonstrate this with the following ex-

ample. Figure 2.10 shows an example of the equalization performed by a two-tap

TEQ. In both cases, MSE = 0:001 and w satis�es the unit norm constraint. In

Figure 2.10(a), MSEwall = 6:67� 10�9 with w = [0:4189;�0:9080]T , whereas in
Figure 2.10(b), MSEwall = 6:83� 10�11 with w = [0:7226;�0:6913]T . Using the
SSNR given by (2.30) below as the �gure of merit, the MMSE method shown

in Figure 2.10(a) yields 13.27 dB SSNR, whereas the method shown in Fig-

ure 2.10(b) yields 29.90 dB SSNR. The second method minimizes only MSEwall.

This is the maximum SSNR method given in the next section.

2.5.2 Maximizing shortening signal-to-noise ratio (SSNR) design

This section discusses an approach to maximize the shortening signal-to-noise

ratio (SSNR) [11]. One of the advantages of the SSNR approach is that it does

not rely on a TIR b. If all of the samples of he� in (2.27) that are outside

the window of (� + 1) samples are negligible, then the impulse response of the
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(a) MSEwall = 6:67� 10�9,
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SSNR = 29:90 dB, and w = [0:7226;�0:6913]T

Figure 2.10: Comparison of e�ective channel he� and bideal between two cases

with the same MSE = 0:001. The channel is the dedicated data transmission

channel with Lh = 512 and � = 16.
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cascade of the channel and TEQ is e�ectively shortened. Splitting he� into two

parts, hwin and hwall, separates the samples inside and outside the window [11]:

hwin = [he�(� + 1); he�(� + 2); � � � ; he�(� + � + 1)]

(2.29)

hwall = [he�(1); � � � ; he�(�); he�(� + � + 2); � � � ; he�(Lh +Nw � 1)]

The samples in hwall include the samples before the window and the samples

after the window (a.k.a. the tail). The SSNR objective function [11] is

SSNR = 10 log10
Energy in hwin
Energy in hwall

(2.30)

If the energy in hwin is kept constant, then minimizing the energy in hwall is the

same as maximizing the SSNR in (2.30). We can write hwin and hwall in (2.30)

as the following matrix equations, respectively:

2
66664

he�(� + 1)

he�(� + 2)
...

he�(� + � + 1)

3
77775

| {z }
hwin

=

2
66664

h(� + 1) h(�) � � � h(��Nw + 2)

h(� + 2) h(� + 1) � � � h(��Nw + 3)
...

...
. . .

...

h(� + � + 1) h(� + �) � � � h(� + � �Nw + 2)

3
77775

| {z }
Hwin

2
66664

w(0)

w(1)
...

w(Nw � 1)

3
77775

| {z }
w

(2.31)
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2
66666666664

he�(1)
...

he�(�)

he�(� + � + 2)
...

he�(Lh +Nw � 1)

3
77777777775

| {z }
hwall

=

2
66666666664

h(1) 0 � � � 0
...

...
. . .

...

h(�) h(�� 1) � � � h(��Nw + 1)

h(� + � + 2) h(� + � + 1) � � � h(� + � �Nw + 3)
...

...
. . .

...

0 0 � � � h(Lh � 1)

3
77777777775

| {z }
Hwall

2
66664

w(0)

w(1)
...

w(Nw � 1)

3
77775

| {z }
w

(2.32)

The energy of hwin and hwall in (2.30) can be written as

hTwallhwall = wTHT
wallHwallw = wTAw

hTwinhwin = wTHT
winHwinw = wTBw (2.33)

where

ANw�Nw
= HT

wallHwall

BNw�Nw
= HT

winHwin (2.34)

The two optimal shortening methods in [11] �nd w to minimize wTAw

while satisfying wTBw = 1. The method assumes that B is positive de�nite

and factors B =
p
B
p
B
T
by Cholesky decomposition [11]. Then, the method

computes lmin is as the eigenvector associated with the smallest eigenvalue of

the matrix
�p

B
��1

A
�p

BT
��1

. Finally, wopt =

�p
B
T
��1

lmin. Table 2.1 sum-

marizes the method and its computational cost. The second more complicated
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Step Description � + �
1 Fix a �, (Lh � �)Nw (Lh � �)Nw 0

Compute A(Nw�Nw)

2 Compute B(Nw�Nw) �Nw+ �Nw+ 0

(Nw + 1)Nw=2 (Nw + 1)Nw=2

3 Take Cholesky N3
w N3

w 0

decomposition of B

4 Calculate
�p

B
��1

[86] (5N3
w +Nw)=3 (5N3

w +Nw)=3 0

5 Calculate 2N3
w 2N2

w(Nw � 1) 0

C =
�p

B
��1

A
�p

BT
��1

6 Use power method to �nd eigenvector l

corresponding to the minimum eigenvalue of C, �

6.1 Calculate C�1 [86] (5N3
w +Nw)=3 (5N3

w +Nw)=3 0

6.2 Initialize l(0)

6.3 z(k) = C�1l(k�1) N2
w (Nw � 1)Nw 0

6.4 l
(k)
opt = z(k)= k z(k) k Nw Nw � 1 Nw

6.5 �(k) =
h
l(k)
iT
C�1l(k) (Nw + 1)Nw N2

w � 1 0

6.6 if j�(k) � �(k�1)j > threshold, go to Step 6.3

7 wopt =
�p

BT
��1

l
(k)
opt N2

w (Nw � 1)Nw 0

Table 2.1: Implementation and computational cost of the maximum SSNR

method to �nd wopt for a �xed �, where �, +, and � are multiplication, addi-

tion, and division, respectively. The algorithm requires
�
7
6
+ Lh

�
Nw + 5

2
N2
w +

25
3
N3
w multiplications, 4N2

w + 2Nw fewer additions than multiplications, and N2
w

divisions, assuming that Nw iterations for the inverse power method are needed

for steps 6.3{6.6 to estimate the minimum eigenvalue of C (i.e., the maximum

eigenvalue of C�1) and its associated eigenvectors.
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method in [11] applies when B is singular. In order to avoid B from being

singular, Yin and Yue [87] suggest an objective function to maximize wTBw

while satisfying the constraint wTAw = 1. In this case, they assume that A is

positive de�nite since they perform a Cholesky decomposition on A. All three

methods [11, 87] require a Cholesky decomposition and an eigendecomposition

of an Nw �Nw matrix to �nd wopt. Although we can replace the eigenvalue de-

composition with a power method, Cholesky decomposition is computationally

intensive (see Table 2.1) and generally requires 
oating-point arithmetic.

2.5.3 Maximizing channel capacity

The ultimate goal of an optimum TEQ design is to maximize channel capacity.

MMSE and SSNR methods, however, do not necessarily maximize channel ca-

pacity. Al-Dhahir and CioÆ de�ne the achievable channel capacity in one DMT

symbol based on several assumptions [82, 88] as

bDMT = N log2

 
1 +

SNRgeom

�

!
bits=symbol (2.35)

where � is the SNR gap between the actual SNR and the Shannon channel

capacity due to the methods used for coding, modulation, etc., and SNRgeom

is the geometric SNR [82, 88]. They propose to maximize the geometric SNR to

maximize the channel capacity which requires the TIR b.

In order to optimize (2.35), Al-Dhahir and CioÆ propose a complicated

nonlinear optimization method [82, 88]. The method is sensitive to the initial

guess for b and is not guaranteed to converge to the global optimum solution.

Lashkarian and Kiaei [89] propose an iterative method that uses projection onto

convex sets and is not sensitive to the initial guess for b. Although their method
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has lower computational complexity than the method in [82, 88], their method

is too complex for a practical real-time implementation. Arslan, Evans, and

Kaiei [90] propose a method to maximize the channel capacity by developing a

new model of the signal, noise, and ISI paths in the systems. Their solution gen-

eralizes the maximum SSNR method [11] by distributing the ISI into frequency

bins with low SNRs.

2.6 Frequency-domain equalizer for DMT channels

For a DMT system, using a longer cyclic pre�x can help receiver reduce more ISI,

but at the price of reducing data throughput. To reduce the loss of throughput,

the symbol length can be increased, which increases the FFT length. The length

of the FFT, however, is limited by digital signal processing speed, cost, and

receiver phase noise. To compensate for the frequency selectivity of the channel,

a one-tap per frequency bin frequency-domain equalizer (FEQ) can be used to

compensate for the channel amplitude and phase o�sets [6]. One of the primary

advantages of using a TEQ and an FEQ is that the TEQ essentially eliminates

intercarrier interference in the frequency domain and the FEQ reduces to one

complex tap per carrier. For 256 carriers, only 256 complex multiplications are

required. The disadvantages of using the combination of TEQ and FEQ are [91]:

� The TEQ equalizes the entire channel and processes each subchannel with

the same set of coeÆcients.

� The resulting channel capacity is not a smooth function of the synchroniza-

tion delay. Therefore, an optimal synchronization delay cannot be selected

easily, and instead, must be found by an exhaustive search over a large
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range of delays.

� The obtained channel capacity may not be the highest achievable capacity

of the DMT system.

A new direction of research [91] is called per tone equalization. The real-

valued TEQ is replaced by a complex-valued FEQ for each carrier (tone) with

the same number of taps. This new FEQ can overcome the drawbacks listed

above. In this case, the FEQ becomes much more computationally complex

because it has to compensate for a lot of intercarrier interference. For the case

of 256 carriers, the general FEQ would consist of a 256 � 256 complex-valued

matrix that must be multiplied by the length-256 vector at the output of the

FFT.

2.7 Conclusion

In this chapter, I discuss channel estimation which aids the design of an equal-

izer to combat channel distortions. When channel estimation is not required,

the parameters of an equalizer can be trained from the training sequence and

the received signal. A neural network is a good candidate to learn the features

from the training sequence and received signal in order to generalize its detec-

tion ability to other transmitted data. Two commonly used feedforward neural

networks | multilayer perceptron network and radial basis function network

| are discussed with respect to their architectures, training algorithms, and

their application as channel equalizers. In theory, neural network equalizers can

learn the features of received signal and classify the data to di�erent clusters.

However, neural network equalizers are still a research topic.
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When channel estimation is necessary such as in DMT system, I intro-

duce the matrix pencil method which can estimate the poles of channel impulse

response modeled as an IIR �lter. When a channel is known to the receiver at

DMT system, I summarize current methods to design a TEQ for DMT channel.

The equalized channel impulse response ideally is zeros for all of the samples

except that (� + 1) consecutive are non-zero values, which motivates the new

proposed work in this dissertation.



Chapter 3

Neural Network Equalizers

A signal su�ers from nonlinear, linear, and additive distortion when transmitted

through a channel. Linear equalizers as shown in Figure 1.6 are commonly used

in receivers to compensate for linear distortion in a channel. As an alterna-

tive, nonlinear equalizers have the potential to compensate for all three sources

of channel distortion. Previous authors have shown that nonlinear feedforward

equalizers based on either multilayer perceptron (MLP) or radial basis function

(RBF) neural networks can outperform linear equalizers in terms of symbol error

rate vs. SNR. In this chapter, I compare the performance of MLP vs. RBF equal-

izers in terms of symbol error rate vs. SNR. I design a reduced complexity neural

network equalizer by cascading an MLP and a RBF network. In simulation, the

new MLP-RBF equalizer outperforms MLP equalizers and RBF equalizers.

3.1 Introduction

Among feedforward equalizers, RBF [72, 92] and MLP [62, 66, 67, 68] equal-

izers outperform linear equalizers in symbol error rate vs. SNR, as mentioned

in Section 2.3. RBF equalizers estimate the probability density function of the

incoming signal to approximate the optimal Bayesian equalizer [64]. MLP equal-

izers can approximate a Bayesian discriminant function. The size and structure

59
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of the MLP limit the approximation accuracy of the networks [93]. MLP and

RBF equalizers appear to be insensitive to the channel phase response, as demon-

strated in Section 3.3.

MLP training algorithms are either fast, but get trapped in local minima

(such as the Levenberg-Marquardt algorithm), or slow, but converge to a global

minimum (such as simulated annealing). Here, \slow" can be several orders of

magnitude slower than \fast". When using a \fast" algorithm, an MLP equalizer

is trained several times and the best network is chosen.

In RBF equalizers, the number of hidden neurons increases exponentially

with the length of the FIR model of the channel to provide the same SER [12].

To obtain a similar symbol error rate vs. SNR performance as MLP equalizers,

RBF equalizers must use an increasingly larger number of hidden nodes than

the MLP equalizer as SNR decreases. In order to reduce the number of neurons

in an RBF equalizer, a modi�ed k-mean algorithm [92] or a self-organizing map

[94] may be used in the �rst step of RBF training to compute �i's and ci's in

(2.18).

When the SNR is low, the transmitted data has been scattered by the

addition of strong noise. In an RBF equalizer, the data far away from each cluster

is considered irrelevant. MLP reduces irrelevant data because the hidden layer

performs a moving average by �rst calculating the weighted sum of the inputs.

The linear combinations of the inputs con�ne the network's attention to the

linear subspace spanned by the weight vectors. When the data is scattered due

to low SNR, the number of hidden units in MLP is not required to increase. In

RBF networks, the irrelevant data signi�cantly degrades performance because

activation functions have local receptive �elds that can be adapted to a local
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pattern in the data.

3.2 Hybrid MLP-RBF equalizer

To improve performance and reduce complexity of MLP and RBF equalizers, I

cascade an MLP network and RBF network to form an MLP-RBF equalizer. In

the MLP-RBF equalizer, I set the number of MLP input neurons, MLP output

neurons, and RBF input neurons equal to the number of taps Lh in the FIR

channel model. The inputs to the MLP-RBF equalizer are the current received

sample and the previous Lh � 1 samples. The MLP stage suppresses the irrel-

evant data (noise) and outputs cleaned values of the current received sample

and previous Lh � 1 samples. The RBF stage takes these MLP outputs, per-

forms a best �t, and outputs the symbol decision on its single output. Using the

training sequence, I �rst train the MLP network using the Levenberg-Marquardt

algorithm, then feed the trained MLP output into the RBF network, and �nally

train the RBF network using expectation maximization (EM) to compute the

�i's and ci's and least-mean squares (LMS) to train the weights (see Sections

2.3.2 and 2.3.3). The MLP-RBF equalizer requires far fewer neurons for the

same symbol error rate vs. SNR performance than either an MLP equalizer or

an RBF equalizer, as demonstrated next.

Because the probability that MLP networks fall into local minima during

training increases with the number of hidden layers [95], I use only one hidden

layer. For activation functions in the MLP equalizer, the hidden layer uses the

hyperbolic tangent function and the output layers use an identity function (linear

function with k = 1). The RBF equalizer uses a Gaussian radial basis function.

The neural network inputs are delayed versions of the received signal.
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3.3 Simulation results for 2-PAM

I compare symbol error rate vs. SNR of the MLP and RBF equalizers for the

following settings: 6 training algorithms for MLP, 2 channel responses, 3{15

input nodes for MLP and 3{8 inputs for RBF, and di�erent numbers of hidden

units. The channel responses

Hmin(z) = 0:6963 + 0:6964z�1 + 0:1741z�2

Hlinear(z) = 0:3482 + 0:8704z�1 + 0:3482z�2

are minimum and linear phase, respectively, and have the same magnitude re-

sponse. The transmitted 2-PAM signals are chosen from f�1; 1g with equal

probability. They are independent and identically distributed. The additive

distortion in the channel is modeled as white Gaussian noise. I vary the SNR

from 0 dB to 30 dB SNR in increments of 3 dB. The training sequence is 1000

symbols (one symbol/bit). From (2.19), the number of neurons Nin in the input

layer could be up to 8 because Lh = 3. After training, I test the equalizer using

2� 106 symbols.

A minimum of 3 inputs is used for the MLP and RBF equalizers because

each channel has 3 taps. The maximum number of inputs is chosen so that

training would complete in a reasonable amount of time and diminishing per-

formance returns are observed as the number of inputs increases. I use 1, 2, 4,

8, and 16 hidden units for MLP equalizers, and 10, 20, and 40 hidden units for

RBF equalizers.

Table 3.1 compares six training algorithms [12] for the MLP equalizer:

conjugate gradient, scaled conjugate gradient, quasi-Newton, Levenberg-Marquardt

(LM), hybrid linear-nonlinear, and batch backpropagation. The LM algorithm

gives the best symbol error rate vs. SNR performance yet requires the lowest
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computational complexity. Table 3.1 shows the results of using the EM/LMS

method [12] for the RBF equalizer. Throughout the rest of this chapter, I use

MLP-LM and RBF-EM/LMS equalizers.

Figure 3.1 compares the simulation performance of the nonlinear MLP

and RBF equalizers and the linear zero-forcing and minimum mean squared

error (MMSE) equalizers. In the simulation, the two linear equalizers know the

channel impulse response, whereas the nonlinear equalizers do not. The MLP

and RBF equalizers obtain almost the same performance as the MMSE equalizer

even though MLP and RBF equalizers have no knowledge of the channel impulse

response.

Figure 3.2 compares the simulation performance of MLP, RBF, and MLP-

RBF equalizers. For the MLP-RBF equalizer, I set the number of inputs to be

the length of the FIR channel model. I use an MLP with 3 inputs, 4 hidden units,

and 3 outputs, and an RBF network with 3 inputs, 4 hidden units, and 1 output.

The MLP-RBF equalizer outperforms both MLP and RBF equalizers. Since the

RBF equalizer in Figure 3.2 has the same structure as that in Figure 3.1(b), this

MLP-RBF equalizer also outperforms linear feedforward equalizers. In Matlab

5, the training time was 3.59 s for the MLP (3-4-1), 170.20 s for the RBF (3-

40-1) equalizer, and 14.95 s for the MLP (3-4-3){RBF (3-4-1) equalizer. The

simulations were run on a 167-MHz Ultra-2 workstation.

I compare the performance of two neural network equalizers (MLP and

RBF) and two \best-case" linear equalizers (zero-forcing and MMSE). The linear

equalizers have precise knowledge of the channel coeÆcients, which are unknown

to the neural network equalizers. The MMSE equalizer is the optimal linear

equalizer in the least squares sense. The order of symbol error rate vs. SNR per-
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Training Training Testing

Method CPU Time GFLOPS SER

Batch back- 2608.0 s 31.14 0.0084

propagation

Levenberg- 65.3 s 2.50 0.0083

Marquardt (LM)

Conjugate 2213.0 s 39.20 0.0114

Gradient

Scaled 1428.0 s 8.38 0.0120

Conjugate Grad.

Quasi-Newton 9770.0 s 27.20 0.0121

Hybrid linear/ More than n/a 0.0085

nonlinear a day

RBF-EM/LMS 21.1 s 0.16 0.0074

(5-20-1)

MLP (3-4-3): 24.4 s 0.47 0.0033

RBF (3-4-1)

Table 3.1: Training time and symbol error rate (SER) for MLP, RBF, and MLP-

RBF equalizers for the minimum phase channel Hmin(z) = 0:6963+0:6964z�1+

0:1741z�2. The �rst six methods are for an MLP (8-6-1) equalizer. Here, EM

stands for expectation-maximization and LMS stands for least mean squares

(LMS). 2-PAM modulation was used. Training consisted of 1000 symbols (one

symbol/bit) at an SNR = 15 dB.
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(a) Minimum phase channel

MLP-LM has 6 inputs, 8 hidden units, 1 output.

MLP-LM has 6 inputs, 16 hidden units, 1 output.
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(b) Linear phase channel

RBF-EM/LMS has 6 inputs, 20 hidden units, 1 output.

RBF-EM/LMS has 3 inputs, 40 hidden units, 1 output.

Figure 3.1: Performance analysis of four equalizers for 2-PAM modulation. Zero-

forcing and minimum mean square error (MMSE) equalizers know the channel

coeÆcients, whereas the neural network equalizers do not. The MMSE equalizer

is the optimal linear equalizer.
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Figure 3.2: Comparison of MLP, RBF, and MLP-RBF equalizers for the linear

phase channel Hlinear(z) = 0:3482 + 0:8704z�1 + 0:3482z�2. The MLP-RBF

equalizer outperforms MLP and RBF equalizers yet has lower complexity.

formance from best to worst is MLP, RBF, MMSE, and zero-forcing, according

to Figure 3.1. For some SNR values, the RBF equalizer outperforms the MLP

equalizer in SER in Figure 3.2. The MLP network has to be trained several

times, whereas the other equalizers are trained in one pass over the training

data.

3.4 Simulation results for 16-QAM

M -ary QAM is a very e�ective technique to achieve a high bit-rate transmis-

sion without increasing the bandwidth [96]. In this simulation experiment, I

compare symbol error rate vs. SNR of MLP, RBF, and MLP-RBF equalizers

for a telephone channel from Ptolemy (http://ptolemy.eecs.berkeley.edu/). The

linear distortion comes from a linear phase bandpass FIR �lter with the transfer
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function

H(z) = �0:04� 0:0016z�1 + 0:1785z�2 + 0:3767z�3+

0:3767z�4 + 0:1785z�5 � 0:0016z�6 � 0:04z�7:

The output of the FIR �lter, yin(n) is then nonlinearly distorted as follows

yout(n) = yin(n) + 0:1y2in(n) + 0:05y3in(n)

where yout(n) is the output from the nonlinear distortion. The real and imaginary

parts of transmitted 16-QAM signals are selected from f�3;�1; 1; 3g with equal
probability. They are also independent and identically distributed. The additive

noise in the channel is complex white Gaussian noise and varies from 0 to 30 dB

SNR with increments of 3 dB.

Since a complex MLP network cannot have complex-valued di�erentiable

activation functions and a complex RBF network uses a real-valued activation

function (see Sections 2.3.2, 2.3.3, and 2.3.4), I train the real and imaginary parts

of received signals separately so that the real-valued MLP and RBF network can

be used. As Mulgrew suggests [64], the number of symbols in (2.19) to train the

MLP and RBF networks should be 48 = 65536 symbols if the length of channel

impulse response is considered only, where \4" is the number of constellations

of the real and imaginary parts of signal and \8" is the number of taps in

the simulation channel. Table 3.1 shows that this is impractical for real-time

implementation. In this simulation, 1000 symbols were used for training and

2 � 106 symbols were used for testing. Based on the generalization property

of neural networks, I train MLP and RBF networks with the real part of the

received signals and assume that the neural networks can generalize the features

to the imaginary part. The network structures are (5-10-1) for MLP equalizers,



68

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

lo
g1

0(
M

S
E

)

MLP(5−10−1)            
RBF(5−40−1)            
MLP(5−10−5):RBF(5−10−1)

Figure 3.3: Comparison of MLP, RBF, and MLP-RBF equalizers for a simulated

telephone channel with linear and nonlinear distortions

(5-40-1) for RBF equalizers, and (5-10-5)-(5-10-1) for MLP-RBF equalizers. The

training algorithms are LM for the MLP networks and EM/LMS for the RBF

networks.

Figure 3.3 shows the simulation performance of MLP, RBF, and MLP-

RBF equalizers. The MLP-RBF equalizer outperforms both MLP and RBF

equalizers with respect to SER. It uses fewer weights than the RBF equalizer

and obtains lower SER than the MLP equalizer.

3.5 Conclusion

Since the problem of channel equalization can be considered as a classi�cation

problem, arti�cial neural networks can play an important role in telecommuni-

cation systems for designing a channel equalizer. The nonlinearity and gener-

alization property are promising features of neural network equalizers. I have
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designed a new reduced complexity neural network equalizer by cascading an

MLP and an RBF network. The simulation results from 2-PAM and 16-QAM

show that an MLP-RBF equalizer can outperform MLP equalizers and RBF

equalizers. In order to reduce the training time in the case of a complex signal,

I use only the real part of the received signal to train the neural network. In the

MLP-RBF equalizer, the MLP network suppresses noise and the RBF network

performs the equalization. The new MLP-RBF equalizer outperforms the MLP

and RBF equalizers in terms of symbol error rate vs. SNR.

The primary diÆculty of neural network equalizers is the amount of train-

ing data required. Mulgrew [64] shows that the number of symbols used in the

training is exponential in the length of the channel impulse response and the

number of neurons in the input layer of a neural network. The number of neu-

rons can be �xed while the number of taps in a channel still remains unknown.

Therefore, it is desired to estimate a channel impulse response. Since the number

of training symbols grows exponentially with the length of the channel impulse

response, it is necessary to develop methods to shorten a channel to a desired

length. These two topics will be covered in the next two chapters.



Chapter 4

A New Matrix Pencil Method for

Channel Estimation

The matrix pencil method estimates the damping factors and frequencies of

superimposed exponentially damped/undamped sinusoids, as discussed in Sec-

tion 2.2.4. When no noise is present, the matrices of the received data S, S0, and

S1 are rank-de�cient and have Hankel structure. When noise is present, the ma-

trices of the received data, R, R0, and R1, have full rank and Hankel structure.

Hua and Sarkar propose to use singular value decomposition (SVD) to reduce

the rank in order to mitigate noise e�ects [13]. The disadvantage of SVD is that

it destroys the Hankel structure of the data matrices. The contribution of this

chapter is to apply a reduced-rank Hankel approximation to the matrices R, R0,

and R1 in di�erent steps of the original matrix pencil method. This results in

three modi�ed matrix pencil methods to retain the rank-de�cient and Hankel

properties.

4.1 Introduction

For a data sequence consisting of superimposed damped/undamped sinusoids,

the matrix in the corresponding matrix prediction equation has the properties

of rank de�ciency and Hankel structure. The Kumaresan-Tufts (KT) method

70



71

[29] exploits the structure of backward linear prediction equations satis�ed by

the underlying signal to estimate the signal's parameters, and applies an SVD-

based reduced-rank approximation to mitigate noise e�ects. However, such an

approximation takes into account only the rank-de�cient property of the signal

matrix and does not preserve its Hankel structure. The resulting performance is

unsatisfactory at low SNRs.

The matrix pencil (MP) method by Hua and Sarkar [13] exploits the

structure of a matrix pencil of the underlying signal and makes use of reduced-

rank approximation based on singular value decomposition (SVD) to suppress

the noise. It ignores the Hankel structure of the matrix pencil and su�ers from

a degradation of estimation accuracy at low SNR. Ekstrom modi�es the matrix

pencil method by using \forward/backward averaging" [97]. Il'kiv [98] multiplies

the pencil of matrices by a weight matrix. Although both Ekstrom's modi�ed

matrix pencil and Il'kiv's weighted matrix pencil methods yield slightly better

parameter estimation than the original matrix pencil method, they both su�er

from the same problem as Hua and Sarkar's matrix pencil method.

Cadzow proposes a signal enhancement algorithm for estimating the sig-

nal parameters of undamped sinusoids [14, 99] that exploits both the rank-

de�cient and Toeplitz-Hankel properties of the signal matrix. Such an algorithm

is extended to an iterative reduced-rank Hankel approximation (RRHA) in [14, 15]

to approximately retain rank de�ciency and Hankel structure of the data matrix.

We apply the RRHA to Hua and Sarkar's method and develop three modi�ed

matrix pencil methods [100]. One of the improved methods in [100] is similar to

the new matrix pencil method proposed in [31, 32].

In this chapter, Section 4.1 summarizes the various matrix pencil methods
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derived from Hua and Sarkar's method [13]. Section 4.2 discusses the reduced-

rank Hankel approximation. Section 4.3 proposes three modi�ed matrix pencil

methods and compares their improvement of matrix pencil properties. Appli-

cations of the matrix pencil method to channel estimation are also described.

Simulation results in Section 4.4 show the estimation performance of the pro-

posed methods. Section 4.5 concludes this chapter.

4.2 Reduced-rank Hankel approximation

For a given P � Q matrix X, the Hankel approximation operator H is de�ned

as

Y = HfXg

in which the (p; q)-th element of Y is given by

yp;q =
1

j�p+qj
X

(p0;q0)2�p+q

xp0;q0 (4.1)

for p = 0; 1; : : : ; P � 1, and q = 0; 1; : : : ; Q � 1, where �t denotes the set of

indices corresponding to the tth anti-diagonal of a matrix; i.e.

�t = f(p0; q0) : 0 � p0 � P � 1; 0 � q0 � Q� 1; p0 + q0 = tg;

and j�tj denotes the cardinality of the set �t. So, the Hankel approximation

operator replaces each cross-diagonal with the average of the elements on the

cross-diagonal.

In general, the operator L in (2.13) does not preserve the Hankel property,

and the operatorH does not preserve the rank-de�cient property. Since there is a

one-to-one correspondence between a data sequence consisting of superimposed

damped sinusoids and a rank-de�cient Hankel matrix [15], it is desirable to
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maintain both the rank-de�cient and Hankel properties of the data matrix. Thus,

I de�ne J to be the reduced-rank Hankel approximation (RRHA) operator that

generates a matrix that has both the rank-de�cient and Hankel properties. Since

no analytic form for the operator J exists to date, an iterative algorithm is used

to approximate J [15]:

J fXg = (HL)1fXg

= lim
n!1

(HL)nfXg

= lim
n!1

(HL � � � (HL| {z }
n

(HLfXg)) � � �): (4.2)

Cadzow shows that such an iteration converges for the data matrix S associated

with the superimposed damped sinusoids buried in noise [99]. Theoretically,

the matrix J fRg possesses both the Hankel and rank-de�cient properties and

results in a better approximation of S than the reduced-rank but non-Hankel

matrix LfRg.

In reality only a �nite number of iterations can be implemented (thus,

a stopping criterion is needed in practice) so that the resulting matrix is either

roughly rank-de�cient or roughly Hankel. Usually, we choose to force the matrix

to be exactly rank-de�cient and approximately Hankel in order to make the

subsequent steps (e.g. �nding non-zero eigenvalues) easier.

4.3 Modi�ed matrix pencil methods

The MP method involves three matrices, S, S0, and S1, as de�ned in the same

way as in (2.10) and (2.11). It would be desirable to make use of rank-de�cient

and Hankel properties of all three matrices. Next, I develop three modi�ed MP

methods classi�ed by the properties they exploit.
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4.3.1 Method #1

A straightforward modi�cation of the original matrix pencil method is to replace

the reduced-rank approximation ofR0 andR1 by the RRHA of the two matrices

so that the Hankel structure of S0 and S1 is exploited, too. Figure 4.1 gives

the steps to implement this method. According to Theorem 1 in [15], we infer

that during each iteration of the RRHA, the preservation of the Hankel structure

leads to a better approximation of the true signal matrices S0 and S1; i.e., in

the lth iteration,

k(HL)lfRig � SikF � kL(HL)l�1fRig � SikF (4.3)

for i = 0; 1, where k � kF denotes the Frobenius norm

kXkF =

0
@P�1X

p=0

Q�1X
q=0

jxp;qj2
1
A
1=2

for a P �Q matrix X. Like the original matrix pencil method, a disadvantage

of the MMP1 method is that, since the two matrices R0 and R1 are processed

independently, the properties of S are ignored. Therefore, in general, eS0 and
eS1

in the MMP1 method do not correspond to any valid reduced-rank and Hankel

Step 1 Form the (K � L)� (L + 1) master matrix R as in (2.10)

Step 2 Form the (K � L)� L matrices R0 and R1 as in (2.11)

Step 3 Compute eS0 = J fR0g from (4.2)

Step 4 Compute eS1 = J fR1gfrom (4.2)

Step 5 Compute the M non-zero eigenvalues of ( eS0)
y eS1

as fexp (dm � j2�fm)gMm=1

Figure 4.1: Modi�ed Matrix Pencil Method 1 for estimating M poles, using K

samples for matrix pencil parameter L, where 1
3
K � L � 2

3
K and M � K � L.



75

approximation of S. This drawback can yield signi�cantly biased estimates when

the two signals corresponding to eS0 and eS1 are very di�erent from each other.

4.3.2 Method #2

To avoid the highly biased estimates caused by the independent processing of

R0 and R1 in method #1, I consider the rank-de�cient property and/or the

Hankel property possessed by S as well; i.e., I process the two matrices R0 and

R1 jointly [18]. The key idea is to modify the RRHA operator by performing the

Hankel operator on the two rank-reduced matrices simultaneously rather than

individually so that the corresponding master matrix will also possess the Hankel

structure. I extend the operatorH to a pair of matrices fY 0;Y 1g = HfX0;X1g.
The elements of Y 0 and Y 1 are

y0p;q =

X
(p0;q0)2�p+q

x0p0;q0 +
X

(p0;q0)2�p+q�1

x1p0;q0

j�p+qj+ j�p+q�1j

y1p;q =

X
(p0;q0)2�p+q+1

x0p0;q0 +
X

(p0;q0)2�p+q

x1p0;q0

j�p+q+1j+ j�p+qj
(4.4)

for p = 0; 1; : : : ; P � 1, and q = 0; 1; : : : ; Q � 1. Figure 4.2 summarizes the

resulting \MMP2" method. The proof of the convergence of such an iterative

algorithm remains open. However, it always approximately converges within a

few iterations in simulation over a wide range of SNRs. That is, each iteration

better approximates S0 and S1, as stated in the following theorem.

Theorem 1 In the lth iteration,

1X
i=0

k(HL)lfRig � Sik2F �
1X
i=0

kL(HL)l�1fRig � Sik2F (4.5)
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Step 1 Form the (K � L)� (L + 1) master matrix R as in (2.10)

Step 2 Form the (K � L)� L matrices R0 and R1 as in (2.11)

Step 3 Let eS0 = R0 and eS1 = R1

Step 4 Compute f bS0;
bS1g = Hf eS0;

eS1g from (4.4)

Step 5 Compute eSy0 = Lf bS0g from (2.14)

Step 6 Compute eS1 = Lf bS1g from (2.13)

Step 7 Go to Step 2 unless the stop criterion is satis�ed

Step 8 Compute the M non-zero eigenvalues of ( eS0)
y eS1

as fexp (dm � j2�fm)gMm=1

Figure 4.2: Modi�ed Matrix Pencil Method 2 for estimating M poles, using K

samples for matrix pencil parameter L, where 1
3
K � L � 2

3
K and M � K � L.

Proof: Let ~Si = L(HL)l�1fRig and bSi = (HL)lfRig, for i = 0; 1. We consider

the approximation of a pair of diagonals in S0 and S1 given by fs0p;q : (p; q) 2 �zg
and fs1p;q : (p; q) 2 �z�1g, respectively,

X
(p;q)2�z

js�z � es0p;qj2 + X
(p;q)2�z�1

js�z � es1p;qj2
=

X
(p;q)2�z

(js�z � bs0p;qj2 + jbs0p;q � es0p;qj2 � 2<f(s�z � bs0p;q)(bs0p;q � es0p;q)�g)
+

X
(p;q)2�z�1

(js�z � bs1p;qj2 + jbs1p;q � es1p;qj2 � 2<f(s�z � bs1p;q)(bs1p;q � es1p;q)�g)
=

X
(p;q)2�z

�
js�z � bs0p;qj2 + jbs0p;q � es0p;qj2�+ X

(p;q)2�z�1

�
js�z � bs1p;qj2 + jbs1p;q � es1p;qj2�

� X
(p;q)2�z

js�z � bs0p;qj2 + X
(p;q)2�z�1

js�z � bs1p;qj2:
Considering all of the corresponding pairs of diagonals in S0 and S1, we have

proven (4.5). Q.E.D.

Even though the improvement in the matrix approximation described

in (4.5) seems weaker than the one given in (4.3), one would expect that the

MMP2 method would yield more accurate estimates of signal parameters than
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the MMP1 method, especially at low SNR. The better performance results be-

cause the MMP2 method makes use of the relationship between S0 and S1.

4.3.3 Method #3

Another way to exploit the properties of the three matrices S, S0, and S1 is

to perform the RRHA on the master data matrix R directly. Since in theory

there exists a unique exponential data sequence corresponding to a rank-de�cient

Hankel matrix bS, the matrices bS0 and bS1 are both rank-de�cient and Hankel.

Therefore, in theory, the two properties are satis�ed by all three matrices. I

call this method the \MMP3" method, which may be viewed as applying a

preprocessing procedure to the original MP method. It can be implemented

according to Figure 4.3.

The MMP3 method achieves a better approximation of the true master

matrix S; i.e., in the lth iteration,

k(HL)lfRg � SkF � kL(HL)l�1fRg � SkF : (4.6)

Since in practice bS is only approximately Hankel, bS0 and
bS1 are neither exactly

rank-de�cient nor exactly Hankel. However, because of the reduced-rank opera-

tor embedded in the subsequent MP method, the rank-de�ciency of bS0 and bS1

can be eventually achieved. Razavilar, Li, and Liu [31] propose such a method.

However, their method requires the data matrices to be square in order to obtain

the best performance. This requirement is not necessary since Hua and Sarkar

point out that any values of K and L satisfying K=3 � L � 2K=3 are good

choices [13].
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Step 1 Form the (K � L)� (L + 1) master matrix R as in (2.10)

Step 2 Compute bS = J fRg from (4.4)

Step 3 Form bS0 and bS1 from bS from (2.11)

Step 4 Compute eSy0 = Lyf bS0g from (2.14)

Step 5 Compute eS1 = Lf bS1g from (2.13)

Step 6 Compute the M non-zero eigenvalues of ( eS0
)y eS1

as fexp (dm � j2�fm)gMm=1

Figure 4.3: Modi�ed Matrix Pencil Method 3 for estimating M poles, using K

samples for matrix pencil parameter L, where 1
3
K � L � 2

3
K and M � K � L.

4.3.4 Comparison

Table 4.1 provides a summary of the properties of the matrices S, S0, and S1,

which are exploited by the original and modi�ed MP methods. The symbol

\YES" (or \NO") indicates whether a certain property is exploited (or not ex-

ploited) by a particular method. The superscript \�" indicates that a property

is exactly satis�ed in theory and approximately satis�ed in practice.

Among the four methods in Table 4.1, only the MMP3 method can exploit

both the rank-de�cient and Hankel properties of all three matrices. All three

modi�ed MP methods make use of more properties of the three matrices than the

original MP method. Consequently, the modi�ed MP methods should achieve

better estimation performance than the original one. Since both the MMP2 and

MMP3 methods take into account the relationship between bS0 and bS1, they

should give more accurate estimates than either the original MP method or the

MMP1 method.
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Methods eS fS0
fS1

MP Rank-M NO YES YES

Hankel NO NO NO

MMP1 Rank-M NO YES YES

Hankel NO YES� YES�

MMP2 Rank-M NO YES YES

Hankel YES� YES� YES�

MMP3 Rank-M YES YES� YES�

Hankel YES� YES� YES�

Table 4.1: Comparison of the four methods in terms of the preservation of the

rank-de�cient and Hankel properties of the three data matrices involved in those

methods (the notation YES� indicates that a property is exactly satis�ed in

theory and approximately satis�ed in practice).

4.3.5 Matrix pencil for channel estimation

The received signal in (2.7) can be rewritten as

rk = hk + nk;

where hk is the impulse response of the rational transfer function given in (2.2),

which has poles at epm's where pm is given in (2.12). A communication channel

can be modeled as an IIR �lter as given in (2.2). All of the matrix pencil

related methods can be used to estimate the channel poles. For example, an

estimation method could be applied to the received signal assuming that the

power spectrum of the transmitted signal is 
at. Once the poles of a transfer

function have been determined, the zeros may be obtained by many methods

such as Shanks' method [101].
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4.4 Simulation results

I �rst compare how well the proposed modi�ed matrix pencil methods estimate

the parameters of frequencies and damping factors. I use the same example as

in [15] to compare the estimation performance of the modi�ed Kumaresan-Tufts

(MKT) method [15], the MP method, and the three modi�ed MP methods. I

choose M = 2 poles, K = 25 samples, L = 17, a1 = a2 = 1, d1 = 0:2, d2 = 0:1,

f1 = 0:42 rad/sample, and f2 = 0:52 rad/sample. Up to K � L = 8 pairs of

frequencies and damping factors could be estimated, but I only estimate M = 2

pairs. The SNR in dB is de�ned as

SNR = �10 log10(2�2n); (4.7)

where �2n is the variance of the zero-mean complex white Gaussian noise process

nk. I use mean squared error (MSE) to assess the estimation accuracy of the

parameters d1, d2, f1, and f2. From each parameter estimate, Figures 4.4 and 4.5

show the MSE vs. SNR plots of the �ve methods as well as the Cramer-Rao

Bound (CRB), which is the lower bound of the Cramer-Rao inequality [102].

Each data point is measured based on 500 independent runs of the random noise

process.

From Figures 4.4 and 4.5, all �ve methods yield about the same results at

high SNRs but quite di�erent results at low SNRs. The MMP1 method achieves

comparable performance in estimating the frequencies as the MP method, but

performs worse in estimating the damping factors. This may be caused by the

negligence of the rank-de�cient and Hankel properties possessed by the master

matrix. Both MMP2 and MMP3 methods performed signi�cantly better than

the MP method in estimating f2, d1, and d2, and MMP3 gives a better estimation
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for f1 than the MP method. This is consistent with our analysis. On the other

hand, both the MMP2 and MMP3 methods achieve performance comparable to

the MKT method in terms of the estimation accuracy of the damping factors,

and signi�cantly outperform the MKT method in the estimation accuracy of the

frequencies.

Second, I compare our proposed methods with MKT method to estimate

a channel impulse response modeled as an IIR �lter. The channel is the same as

in [36] which is

H(z) =
B(z)

A(z)
=

�1 + 0:5354z�1 + 0:5056z�2

1� 1:3501z�1 + 0:2757z�2 + 0:1275z�3
(4.8)

The three poles in (4.8) are at 0.8464, 0.7146, and 0.2108 while the two zeros

are at 1.0275 and �0:4921. The noise-corrupted impulse response is used to

estimate the poles by the proposed methods and MKT methods for comparison.

The zeros are estimated from Shanks' method [101] after the poles are obtained.

The MSE between the estimated poles and the original poles is the performance

measure for the simulation. SNR varies from 0 dB to 30 dB with an increment

of 3 dB. Each data point is calculated according to 500 independent runs of the

random noise process.

Figures 4.6, 4.7, and 4.8 show MSE vs. SNR plot for the MKT, MP, and

three modi�ed MP methods to estimate the pole locations. All of the modi�ed

MP methods and original MP method outperform the MKT method with respect

to MSE. The MMP3 method outperforms the original MP method.
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Figure 4.4: Performance comparison among the modi�ed matrix pencil methods

based on 500 trials in estimating damping factors: (a) d1 and (b) d2.
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Figure 4.5: Performance comparison among the modi�ed matrix pencil methods

based on 500 trials in estimating frequencies: (a) f1 and (b) f2.
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Figure 4.6: Performance comparison of pole 1 at 0.8464 by �ve parameter esti-

mation methods: modi�ed Kumaresan-Tufts (MKT), matrix pencil (MP), and

three modi�ed matrix pencil methods (MMP1 { MMP3).
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Figure 4.7: Performance comparison of pole 2 at 0.7146 by �ve parameter esti-

mation methods: modi�ed Kumaresan-Tufts (MKT), matrix pencil (MP), and

three modi�ed matrix pencil methods (MMP1 { MMP3).
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Figure 4.8: Performance comparison of pole 3 at 0.2108 by �ve parameter esti-

mation methods: modi�ed Kumaresan-Tufts (MKT), matrix pencil (MP), and

three modi�ed matrix pencil methods (MMP1 { MMP3).

4.5 Conclusion

This chapter develops and evaluates three modi�ed versions of the MP method.

The simulation results from estimating the frequencies and damping factors show

that MMP2 and MMP3 obtained a lower MSE than the original MP method,

MKT method, and MMP1 method. In addition, the modi�ed MP methods can

be easily extended to the forward-and-backward MP method [13] for estimating

parameters of undamped sinusoids. The e�ect of noise in the data matrices

can be attenuated by using a reduced-rank joint Toeplitz-Hankel approximation,

which was developed in [14] for improving the Tufts-Kumaresan method [103].

In addition, I use the MKT, MP, MMP1, MMP2, and MMP3 methods

to estimate the poles of an IIR channel from its impulse response. The MMP3

method again shows better performance in terms of MSE between the original
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poles and the estimated poles. The MMP3 method achieves signi�cantly better

performance than the original MP method, the MMP1 method, and the MMP2

method, and also outperforms the MKT method. The gap in performance in-

creases as SNR decreases.

Poles cause a long tail in a channel impulse response. More memory

and computational cost are needed to equalize a longer channel. If a �lter were

designed to have zeros at the pole locations of an IIR channel, then the convolu-

tion between the IIR channel and the �lter would produce a shortened impulse

response, which will be discussed in next chapter.



Chapter 5

Time-Domain Equalization for

Discrete Multitone Modulation

In a DMT wireline receiver, a TEQ (see Section 2.5) is used to reduce ISI by

decreasing the e�ective duration of the channel impulse response. This chapter

develops new blind and non-blind methods for designing �nite impulse response

TEQs. The methods attempt to maximize the SSNR in (2.30). For a known

channel, I develop two real-time sub-optimal divide-and-conquer (DC) methods

that divide the TEQ into a cascade of two-tap TEQs and design each two-tap

TEQ by a greedy approach. For an unknown channel, I model the channel as

an in�nite impulse response (IIR) �lter in which the poles account for the long

tail of the channel impulse response. Based on the IIR model, I develop two

MP methods (see Sections 2.2.3 and 4.3.3) that �rst estimate the poles by using

samples of the channel impulse response or received signal, and then use the

pole locations as the zero locations of a TEQ to shorten the channel impulse

response. I simulate the DC TEQ and MP TEQ designs for eight CSA DSL

channels and a dedicated data channel to measure the resulting SSNR. When

compared to previously reported TEQ design methods, the DC methods have

better SSNR performance vs. complexity tradeo� for known channels, and the

MP methods give higher SSNR for unknown channels.

87
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5.1 Introduction

Discrete multitone (DMT) modulation is widely used in high-speed data trans-

mission over a wireline channel and has been standardized for ADSL [6]. In

ADSL, a guard sequence known as the cyclic pre�x is prepended to each symbol

to help the receiver eliminate ISI and perform symbol recovery. A DMT symbol

consists of N samples, and the cyclic pre�x is a copy of the last � samples of the

N samples. The length of the channel impulse response has to be less than or

equal to (� + 1) samples in order to remove ISI completely.

When using a cyclic pre�x, the channel throughput of a DMT transceiver

is reduced by a factor of N=(N + �). The channel throughput increases with

increasing N or decreasing �. Increasing N increases memory and computational

requirements in a transceiver. Moreover, choosing � a priori is diÆcult because

the channel length is generally not known. When a �xed value of � is used, a

time-domain equalizer (TEQ) may be required to shorten the e�ective length of

the channel impulse response [17].

The ideal shortened channel impulse response would be zero-valued out-

side of a window of (� + 1) samples starting at sample (� + 1), which would

yield zero ISI. This ideal shortened channel impulse response would have in�nite

SSNR [11] as discussed in Section 2.5.2. SSNR is the ratio of the energy inside

the window of (� + 1) samples starting at sample (� + 1) to the energy out-

side of the same window of the shortened channel impulse response. The larger

the SSNR, the closer the shortened channel impulse response is to the ideal.

The SSNR is one objective function that could be optimized in TEQ design.

Section 2.5 summarizes TEQ design methods and the objective functions they

optimize.
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In this chapter, the primary contributions are two non-blind and two blind

FIR TEQ design methods to maximize the SSNR. Although the two non-blind

Divide-and-Conquer TEQ design methods are sub-optimal, they are well suited

for a real-time implementation on a digital signal processor. The Matrix Pencil

TEQ design methods are blind in that they do not need a training sequence or

knowledge of channel impulse response. The matrix pencil methods model the

channel as an in�nite impulse response (IIR) �lter, estimate the number and

locations of the poles, and cancel the poles with a TEQ which has zeros at the

pole locations.

In this chapter, Section 5.2 proposes a low-complexity heuristic to search

for the optimal delay � and derives two sub-optimal, low-complexity Divide-and-

Conquer methods to maximize the SSNR. The idea for the Divide-and-Conquer

method comes from Lloyd Clark [19]. In the Divide-and-Conquer cancellation

with unit tap constraint method, the closed-form solution for gi is due to G�uner

Arslan [20]. I compare the computational complexity of the maximum SSNR

method [11] and Divide-and-Conquer methods. Section 5.3 develops two blind

channel shortening methods that model the channel as an IIR �lter and apply

a Matrix Pencil method to estimate the poles of the channel. Section 5.4 simu-

lates the proposed Divide-and-Conquer and Matrix Pencil equalization methods

for nine di�erent wireline channels. Section 5.5 concludes the paper. When

compared to previously reported TEQ design methods,

� the Divide-and-Conquer methods have better performance vs. complexity

tradeo� when the channel is known, and

� the Matrix Pencil methods do not require the knowledge of training se-
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quence and give higher SSNR when the channel is unknown.

5.2 Divide-and-Conquer Method

In this section, I reduce the computational complexity when maximizing SSNR

given by (2.30). The maximum SSNR method [11] applies the O(N3
w + LhN

2
w)

algorithm given in Table 2.1 to compute the Nw TEQ taps for each candidate

value of the delay �, where 1 � � � Lh + Nw � � � 2. The best solution

corresponds to the delay and TEQ taps that yield the highest SSNR.

Section 5.2.1 proposes a heuristic search for the optimum delay � so

that the TEQ taps are only computed once. The search requires O(Lh) mul-

tiplications and additions for each value of � considered. Sections 5.2.2 and

5.2.3 propose two low-complexity sub-optimal Divide-and-Conquer TEQ (DC-

TEQ) design methods that compute the TEQ taps for a given �. The DC-TEQ

methods divide the Nw taps of the TEQ �lter into (Nw � 1) two-tap �lters and

iteratively design each two-tap �lter to maximize the SSNR or minimize the en-

ergy in hwall. After dividing the TEQ �lter into (Nw � 1) two-tap FIR �lters,

I add either unit tap constraint (UTC) or unit norm constraint (UNC) to each

two-tap �lter.

� Unit tap constraint

The �rst tap of each �lter is set to one to prevent the trivial solution. For

the ith two-tap �lter, the coeÆcients are

wi = [1; gi]
T (5.1)

� Unit norm constraint

Each two-tap �lter has the unit norm. For the ith two-tap �lter, the
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coeÆcients are

wi = [sin �i; cos �i]
T (5.2)

The heuristic search and the divide-and-conquer methods are well suited for

implementation under �xed-point arithmetic, whereas the full SSNR method

su�ers from severe scaling problems under �xed-point arithmetic.

5.2.1 Finding the delay �

The original maximum SSNR method varies the delay � to maximize

SSNR = J1 =
wTBw

wTAw
(5.3)

subject to the constraint wTBw = 1. Instead of performing the optimization for

each candidate value of �, I estimate the optimal delay � �rst and then solve

for the TEQ taps once. The following heuristic for �ratio estimates the optimal

delay:

�ratio = argmax
�

energy inside a window of the channel impulse response

energy outside a window of the channel impulse response

(5.4)

Here, the window is of length (� + 1) samples beginning at index (� + 1). The

calculation of (5.4) requires Lh multiplications, Lh�2 additions, and one division
per value of �. The multiplications and additions can be reused if additional �

values are considered. If � were enumerated from 0 to �, then the calculation of

(5.4) would require Lh multiplications, 2(� + 1) + Lh � 2 additions, and (� + 1)

divisions. The calculation of (5.4) does not depend on Nw.

For each value of � being considered, the full SSNR algorithm requires�
7
6
+ Lh

�
Nw + 5

2
N2
w + 25

3
N3
w multiplications, 4N2

w + 2Nw fewer additions than
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multiplications, and N2
w divisions, assuming that Nw iterations are used for the

inverse power method in steps 6.3{6.6 in Table 2.1 to estimate the eigenvector as-

sociated with the minimum eigenvalue of C. The heuristic always requires fewer

multiplications, additions, and divisions if more than one � value is considered

by the full SSNR algorithm. For example, with Nw = 10, Lh = 512, and � = 32,

the heuristic requires 512 multiplications to �nd � and 37,295 multiplications to

compute the TEQ taps for the estimated �. The full SSNR algorithm requires

33 � 37; 295 = 1; 230; 735 multiplications, when searching � 2 [0; �]. Yet, the

di�erence in SSNR between the heuristic search and the exhaustive search is less

than 1 dB.

5.2.2 Divide-and-Conquer TEQ by minimization

The divide-and-conquer method minimizes

J2 =
wTAw

wTBw
(5.5)

which is equivalent to maximizing J1 in (5.3). I call this method DC-TEQ-

Minimization. I derive the DC-TEQ-minimization with unit tap constraint (DC-

TEQ-minimization (UTC)) and DC-TEQ-minimization with unit norm con-

straint (DC-TEQ-minimization (UNC)).

In the case of DC-TEQ-minimization (UTC), I substitute (5.1) into (5.5).

For the ith two-tap �lter, the Ai and Bi matrices are 2 � 2, and the objective

function becomes

J2;i(UTC) =
wT

i Aiwi

wT
i Biwi

=

h
1 gi

i " a1;i a2;i
a2;i a3;i

# "
1

gi

#

h
1 gi

i " b1;i b2;i
b2;i b3;i

# "
1

gi

# =
a1;i + 2a2;igi + a3;ig

2
i

b1;i + 2b2;igi + b3;ig
2
i

(5.6)
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Appendix A proves that the denominator in (5.6) is not equal to zero for all

real values of gi. By di�erentiating J2;i in (5.6) with respect to gi, setting the

derivative to zero, and simplifying the results,

(a3;ib2;i � a2;ib3;i)g
2
i + (a3;ib1;i � a1;ib3;i)gi + (a2;ib1;i � a1;ib2;i) = 0 (5.7)

The solutions to the quadratic function of gi in (5.7) are

gi(1;2) =
�(a3;ib1;i � a1;ib3;i)

2(a3;ib2;i � a2;ib3;i)

�
q
(a3;ib1;i � a1;ib3;i)2 � 4(a3;ib2;i � a2;ib3;i)(a2;ib1;i � a1;ib2;i)

2(a3;ib2;i � a2;ib3;i)

(5.8)

Appendix B proves that gi(1) and gi(2) are real-valued. I choose the value of gi

from fgi(1); gi(2)2g in (5.8) that gives the lower (minimum) value of J2. Table 5.1
gives the DC-TEQ-minimization method.

In the case of DC-TEQ-minimization (UNC), I rewrite (5.2) as

wi = [sin �i; cos �i]
T = sin �i

"
1;
cos �i

sin �i

#T
= sin �i[1; �i]

T (5.9)

Then, I can substitute (5.9) into (5.5) to obtain

J2;i(UNC) =
wT

i Aiwi

wT
i Biwi

=

sin �i
h
1 �i

i " a1;i a2;i
a2;i a3;i

#
sin �i

"
1

�i

#

sin �i
h
1 �i

i " b1;i b2;i
b2;i b3;i

#
sin �i

"
1

�i

#

=

h
1 �i

i " a1;i a2;i
a2;i a3;i

# "
1

�i

#

h
1 �i

i " b1;i b2;i
b2;i b3;i

# "
1

�i

#

(5.10)

From (5.10), I can calculate �i in the same way as gi in (5.8). That is, the DC-

TEQ-minimization gives the same solution with unit tap constraint and unit

norm constraint.
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Step Description � + �
1 Initialize wTEQ = [1]

2 Initialize h0 = h

3 Fix �. For i = 1 : : :Nw � 1,

3.1 Compute Ai;(Nw�Nw), Nw = 2 3(Lhi � � � 1) 3(Lhi � � � 1) 0

3.2 Compute Bi;(Nw�Nw), Nw = 2 3(� + 1) 3(� + 1) 0

3.3 Calculate gi(1;2) from (5.8) 12 7 1

3.4 Calculate J2;i in (5.6) from gi(1) 6 4 1

3.5 Calculate J2;i in (5.6) from gi(2) 6 4 1

3.6 Choose a gi from gi(1) and gi(2) which gives the smaller J2;i.

3.7 If g > 10�5, calculate 2(i+ 2) 2(i + 1) 0

wTEQ = wTEQ �wi

3.8 Calculate hi = hi�1 �wi 2(Lh + i) 2(Lh + i� 1) 0

3.9 If gi < 10�5, stop.

Table 5.1: Implementation and computational cost of the Divide-and-Conquer

TEQ method to maximize the SSNR given by (5.3) for a �xed � where Lhi =

Lh + i � 1 � Lh + Nw � 1 and �, +, and � are multiplication, addition, and

division, respectively.
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5.2.3 Divide-and-Conquer TEQ to cancel the energy in hwall

The DC-TEQ-minimization method requires the calculation of Ai and Bi in

each iteration. In order to avoid calculating the matrices Ai and Bi, I apply

divide-and-conquer directly to the channel impulse response to cancel the en-

ergy in hwall. I call this method DC-TEQ-cancellation. For each iteration i

of the method, ~hwalli is computed similarly to hwall in (2.32). The equalized

channel impulse response at the output of the ith �lter is denoted as ~hi, which

is the convolution of ~hi�1 and wi where ~h0 is the channel impulse response

[h(1); h(2); : : : � � �h(Lh)].

In the case of DC-TEQ-minimization (UTC), the energy of ~hwalli at the

ith iteration is given by

~hwalli =

2
66666666666664

~hi�1(1) 0
~hi�1(2) ~hi�1(1)
...

...
~hi�1(�) ~hi�1(�� 1)
~hi�1(� + � + 2) ~hi�1(� + � + 1)
...

...
~hi�1(Lhi�1)

~hi�1(Lhi�1 � 1)

3
77777777777775

"
1

gi

#

=

2
66666666666664

~hi�1(1) +0
~hi�1(2) +~hi�1(1) gi
...

...
~hi�1(�) +~hi�1(�� 1) gi
~hi�1(� + � + 2) +~hi�1(� + � + 1) gi
...

...
~hi�1(Lhi�1) +~hi�1(Lhi�1 � 1) gi

3
77777777777775

(5.11)

Here, Lhi�1 is the length of ~hi�1 at the ith iteration. Then, the energy in ~hwall

can be expressed as

~hTwalli
~hwalli =

P
k2S

�
~hi�1(k) + gi ~hi�1(k � 1)

�2
(5.12)
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Step Description � + �
1 Initialize wTEQ = [1]

2 Initialize h0 = h

3 Fix �. For i = 1 : : :Nw � 1,

3.1 Calculate gi from (5.13) 2(Lhi � � � 1) 2(Lhi � � � 2) 1

3.2 If gi > 10�5, calculate 2(i+ 2) 2(i+ 1) 0

wTEQ = wTEQ �wi

3.3 Convolve ~hi�1 with

this two-tap, wi, to obtain ~hi 2(Lh + i) 2(Lh + i� 1) 0

Table 5.2: Implementation and computational cost in the Divide-and-Conquer-

TEQ-cancellation (UTC) for a �xed � where Lhi = Lh + i � 1 � Lh + Nw � 1

and �, +, and � are multiplication, addition, and division, respectively.

where S = f1; 2; : : : ;�;� + � + 2; : : : ; Lhi�1g. By di�erentiating (5.12) with

respect to gi, setting the derivative to zero and solving for gi yield the minimum

of the quadratic function (5.12).

In the case of DC-TEQ-cancellation with unit norm constraint (DC-TEQ-

cancellation (UNC)), the energy of ~hwalli at the ith iteration is given by

gi = �

X
k2S

~hi�1(k � 1) ~hi�1(k)

X
k2S

~h2i�1(k � 1)
(5.13)

This calculation requires one scalar division and two vector multiplications. Ta-

ble 5.2 gives one iteration of the DC-TEQ-cancellation (UTC) method.
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~hwalli =

2
66666666666664

~hi�1(1) 0
~hi�1(2) ~hi�1(1)
...

...
~hi�1(�) ~hi�1(�� 1)
~hi�1(� + � + 2) ~hi�1(� + � + 1)
...

...
~hi�1(Lhi�1)

~hi�1(Lhi�1 � 1)

3
77777777777775

"
sin �i
cos �i

#

=
P

k2S

�
~hi�1(k) sin �i + ~hi�1(k � 1) cos �i

�2

(5.14)

By di�erentiating (5.14) with respect to �i, setting the derivative to zero, and

solving for sin �i and cos �i, I �nd the minimum of (5.14) to be

sin �i = �
vuuut0:5

0
@1�

s
a2

a2 + 4b2

1
A (5.15)

and

cos �i = �
vuuut0:5

0
@1�

s
a2

a2 + 4b2

1
A (5.16)

where

a =
X
k2S

�
~h2i�1(k)� ~h2i�1(k � 1)

�

and

b =
X
k2S

~hi�1(k � 1)~hi�1(k)

Table 5.3 gives one iteration of the DC-TEQ-cancellation (UNC) method.

Unlike the maximum SSNR method in [11], both DC-TEQ-minimization

and DC-TEQ-cancellationmethods do not require Cholesky decomposition, eigen-

value decomposition, or matrix inversion. For a fair comparison, I replace the

eigenvalue decomposition in the maximum SSNR method by the iterative power

method [104] since only the minimum eigenvalue and its corresponding eigenvec-

tor are needed. For the power method, I use Nw iterations to �nd the minimum
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eigenvalue and its corresponding eigenvector. Table 5.4 compares the number

of multiplications, additions, and divisions and memory requirements for a �xed

value of � for the design of a 21-tap TEQ (Nw = 21) with N = 512, � = 32,

and Lh = 512 for the SSNR and the two Divide-and-Conquer methods. Both

proposed methods not only have reduced computational cost and memory re-

quirements compared to the maximum SSNR method but are also well suited

for real-time implementation on digital signal processors.

5.3 Blind Channel Shortening

The sub-optimummethods in Sections 5.2.2 and 5.2.3 require accurate knowledge

of the channel impulse response. In some applications, a reliable estimate of the

channel impulse response may be obtained in advance. For example, the ADSL

standard [6] provides a periodic training sequence with period equal to the length

of the DMT symbol. By averaging a large number of received data frames, noise

can be smoothed out. Then, an estimate of the discrete Fourier transform (DFT)

of the channel impulse response can be obtained by dividing the average by the

DFT of the training sequence. Without a reliable estimate of the channel impulse

response, the methods that require knowledge of the channel a priori may fail

to shorten the e�ective channel impulse response.

This section proposes a new blind TEQ design method for channel short-

ening. Section 5.3.1 models the channel as an IIR �lter. Section 5.3.2 develops

two Matrix Pencil (MP) methods (see Sections 2.2.4 and 4.3.3) to estimate the

number and values of the channel poles. The new methods can estimate the

TEQ coeÆcients.
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Step Description � + �
1 Initialize wTEQ = [1]

2 Initialize h0 = h

3 Fix �. For i = 1 : : : Nw � 1,

3.1 Calculate sin �i and cos �i 2(Lhi � � + 2) 2(Lhi � � + 1) 1

from (5.15) and (5.16)

3.2 If gi > 10�5, calculate 2(i+ 2) 2(i + 1) 0

wTEQ = wTEQ �wi

3.3 Convolve ~hi�1 with

this two-tap, wi, to obtain ~hi 2(Lh + i) 2(Lh + i� 1) 0

Table 5.3: Implementation and computational cost in the Divide-and-Conquer-

TEQ-cancellation (UNC) for a �xed � where Lhi = Lh + i � 1 � Lh +Nw � 1

and �, +, and � are multiplication, addition, and division, respectively.

Methods Multiplications Additions Divisions Memory

(words)

Maximum SSNR 120379 118552 441 1899

DC-TEQ-minimization 53240 52980 60 563

(UTC & UNC)

DC-TEQ-cancellation 42280 42160 20 555

(UNC)

DC-TEQ-cancellation 41000 40880 20 554

(UTC)

Table 5.4: Computational cost for maximum SSNR method and two

proposed methods: Divide-and-Conquer-TEQ-minimization and Divide-and-

Conquer-TEQ-cancellation with � = 32, Nw = 21, and Lh = 512 for a �xed

value of �.
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5.3.1 Models of discrete multitone wireline channels

Fig. 5.1 shows impulse responses of two wireline channels. Since the channel

impulse responses have long decaying tails, one may consider the DMT channels

as IIR �lters. Also, motivated by the MMSE TEQ in Section 2.5.1, I write the

transfer function of a wireline channel as

H(z) =
B(z)

W (z)
(5.17)

where W (z) is the TEQ transfer function and B(z) is the transfer function of

the cascade of the channel and the TEQ. The IIR �lter would have � zeros and

Nw�1 poles. Once the channel has been estimated, the channel may be modeled
as an ARMA(�;Nw � 1) process [105]. Al-Dhahir, Sayed, and CioÆ propose a

pole-zero model by using the generalized ARMA-Levinson algorithm and apply

it to the decision feedback equalizer [36].

Based on the ARMA channel model, the TEQ can be used to cancel the

channel poles, which shortens the channel response. The transfer function in

(5.17) can be rewritten as

H(z) =
B(z)

Nw�1Q
i=1

(1� Ciz�1)

(5.18)

which is the same as (2.2). Wang and Smith also propose to model an FIR

sequence as a truncated exponential sequence to reduce computational cost [106].

Without loss of generality, the ith pole Ci may be de�ned as a complex number.

This motivates the application of the matrix pencil method to design the TEQ

by estimating the locations of poles in (5.18). The poles cause the long tail of

wireline channel impulse responses. Therefore, channel shortening is equivalent

to �nding the pole locations and canceling them out while the number of zeros
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of B(z) in (5.18) is �xed to �. This model leads to our proposed Matrix Pencil

Method for TEQ design, since the Matrix Pencil method [37] is a robust way to

extract poles from the received data as described in Chapter 4.

5.3.2 Matrix pencil TEQ

Many methods estimate the poles in (5.18). The least squares Prony method [101]

can estimate sinusoids, which are the poles in the ARMA model in Section 5.3.1.

The Prony method is sensitive to noise and cannot successfully estimate closely

spaced poles [37]. The Matrix Pencil method proposed by Hua and Sarkar [13, 39]

overcomes both disadvantages. Lu, Wei, Evans, and Bovik apply the RRHA to

Hua and Sarkar's method in order to develop three modi�ed Matrix Pencil meth-

ods [100]. One of the improved methods, MMP3 in Section 4.3.3 and in [100],

which will be used in TEQ design, is similar to the new Matrix Pencil method

proposed in [31, 32].

The Matrix Pencil TEQ (MP-TEQ) can shorten the channel by estimat-

ing the location of poles of the channel model in (5.18) in two ways. First, the

poles can be located directly from the channel impulse response, i.e. rk = sk in

(2.7). Second, the poles are located from the received signal rk given little or no

knowledge of the channel. In this case, the received signal is

y(k) = x(k) � h(k) + n(k) = s(k) + n(k) (5.19)

By substituting (5.17) into (5.19) and taking the z-transform,

Y (z) = X(z)
B(z)

W (z)
+N(z) (5.20)

Based on (5.20), the received signal contains information about the channel poles.

So, the Matrix Pencil method may be used to �nd the poles without knowing
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Step Description

1 Set L = �. K 2 [3L=2; 3L].

2 Choose K. Use K = 25 for � = 16 and K = 50 for � = 32.

3 Let the (� + 1)st sample of the channel data be at index k = 0,

and form the master matrix Y in (2.10) from K received samples.

4 From Y, compute submatrices Y0 and Y1 given by (2.11).

5 Perform eigendecomposition of the L� L matrix Yy

0Y1.

6 Use the largest Nw eigenvalues to estimate pole locations by (2.12).

7 Set the TEQ zero locations equal to the estimated pole locations.

Table 5.5: The Matrix Pencil TEQ design method will estimate K � L poles

where K is the number of received samples to process and K=3 � L � 2K=3.

The dominant Nw poles become the Nw zeros of the TEQ (Nw � K � L).

the channel impulse response. The y(k) and x(k) � h(k) terms correspond to rk

and sk in (2.7), respectively. I form the matrices Y, Y0, and Y1 according to

(2.10) and (2.11).

The Matrix Pencil method assumes that the number of polesM in (2.13)

and (2.14) are known. For precise estimation of the channel, i.e. y(k) is equal to

s(k) in (5.19), M is the number of non-zero eigenvalues of matrix S. However, if

the estimation error nk is not negligible, then Y has full rank and the accuracy

of estimating the number of poles decreases as the variance of nk becomes large.

When equalizing ADSL channels, I �x the number of zeros in B(z) to be equal

to � so that the e�ective channel impulse response can be shortened to (� + 1)

taps after I estimate the locations of poles and cancel the poles. I use Matrix

Pencil method to estimate the poles for eight CSA loops. When the SSNR in

(2.30) changes only slightly after the Nw taps, the number of poles is set to be

Nw � 1. The MP-TEQ method is given in Table 5.5.
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5.4 Simulation Results

I am particularly interested in low-complexity TEQ design methods, especially

those can be implemented in real-time on a digital signal processor. All of the

methods in Section 2.5.3 to maximize the channel capacity have diÆculty in

meeting real-time constraints. Therefore, I do not include these methods in the

comparisons. The simulations compare the proposed TEQ design methods in

terms of SSNR as de�ned in (2.30) for the following cases:

� Known channels: it is possible that the channel impulse response is known

to the receiver so that the TEQ coeÆcients can be calculated directly from

the channel impulse response. In this case, the estimation error, nk, in

(5.19), is approximately zero. I compare the proposed methods of DC-

TEQ-minimization (UTC) and DC-TEQ-cancellation (UTC and UNC)

with the maximum SSNR method [11] since they all require the channel

impulse response a priori. MP-TEQ can be used for blind and non-blind

cases to cancel the tail by �nding the poles of the IIR model of a channel.

Therefore, I include the MP-TEQ in this comparison.

� Unknown channel: at the receiver, the training sequence and the received

sequence are available to the equalizer. I generate a pseudo-random train-

ing sequence. The TEQ coeÆcients are estimated from the received data.

The Matrix Pencil method can estimate the poles directly from the re-

ceived data since it does not need to calculate the cross-correlation matrix

between the training sequence and the received sequence. Therefore, the

Matrix Pencil method serves as a blind channel shorteningmethod for TEQ
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design. For unknown channels, I compare the MP-TEQ and modi�ed ma-

trix pencil TEQ (MMP3-TEQ) with the MMSE method [80, 83].

In the simulations, I use a dedicated data channel and the carrier-serving-area

(CSA) digital subscribing loop (DSL) 1 channel in Fig. 5.1. Table 5.6 lists the

simulation parameters.

5.4.1 Comparison of SSNR for known channels

Fig. 5.2 shows SSNR obtained from the original maximum SSNR method with

exhaustive search of delay [11] and the proposed sub-optimal maximum SSNR

method with heuristic seach of delay (see Section 5.2.1). Fig. 5.3 compares the

SSNR obtained by four of the proposed methods| DC-TEQ-minimization (unit

tap constraint), DC-TEQ-cancellation (unit tap and unit norm constraints), and

MP-TEQ| and the maximum SSNR [11] method. The MP-TEQ method mod-

els the channel as an IIR �lter in which the poles model the tail of channel

impulse response. Pole estimates are reliable when the Matrix Pencil parameter

L satis�es K=3 � L � 2K=3, where K is the number of samples used and K�L

is the maximum number of poles that can be estimated [13]. The samples used

may be either samples of the channel impulse response or received signal.

In Fig. 5.3(a), I choose � = 16 for the dedicated data channel and let

L = �. For L = 16, any value of K such that K 2 [24; 48] would make the

estimation of K � L poles reliable [13]. For K = 25, K � L = 9 poles may be

reliably estimated. Thus, the MP-TEQ would have up to 10 taps. In Fig. 5.3(b),

I use � = 32 from the ADSL standard [6] for the CSA DSL 1 channel and let

L = � as before. For L = 32, K 2 [48; 96] and I choose K = 50. For this case,

the MP-TEQ would have up to 18 taps. Yet, the maximum SSNR method can
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(b) CSA DSL 1 channel

Figure 5.1: Impulse response of two of the wireline channels used in the simula-

tions.
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Figure 5.2: Determination of � for the CSA DSL 1 channel with Lh = 512,
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Figure 5.3: Comparison of four di�erent TEQ design methods in terms of SSNR

for two known channels with 2{21 TEQ taps.
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only reach 15 taps since B becomes singular when Nw � �, as plotted in Fig. 5.3.

All the other methods have 2 to 21 taps for both channels in Fig. 5.3. The SSNR

for DC-TEQ saturates at four taps for the dedicated data channel and 10 taps

in the CSA DSL 1 channel.

For eight CSA loops, I use the Matrix Pencil method [13] to estimate the

poles, as shown in Table 5.7. The number of poles are computed according to

Section 5.3.2. From Table 5.7, a TEQ may require fewer than 14 taps for all

CSA loop channels.

5.4.2 Comparison of SSNR for unknown channels

I compare the MP-TEQ, MMP3-TEQ, and MMSE-TEQ design methods when

the channel impulse response is unknown. Fig. 5.4 shows that MP-TEQ and

MMP3-TEQ outperform MMSE-TEQ in terms of the SSNR. Both MP-TEQ

and MMP3-TEQ use the same L and � parameters as in the known channels

for the dedicated data channel and CSA DSL 1 channel in Section 5.4.1. K is

47 for the dedicated data channel and 65 for the CSA DSL 1 channel so that

the TEQ can have 30 taps to compare with MMSE-TEQ. Fig. 5.4 shows that

both MP-TEQ and MMP3-TEQ can give higher SSNR than MMSE-TEQ when

the TEQ coeÆcients are calculated from the received signal and/or training

sequence. Both MP-TEQ and MMP3-TEQ with two taps can reach similar

SSNR to MMSE-TEQ with 30 taps. This result is consistent with [100] in that

the modi�ed Matrix Pencil method provides better estimation than the original

Matrix Pencil approach.
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Figure 5.4: Comparison among matrix pencil methods and MMSE method in

terms of SSNR for unknown channels for 2{30 TEQ taps.
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5.5 Conclusion

In discrete multitone modulation, the TEQ shortens the e�ective impulse re-

sponse of the cascade of the channel and the TEQ. This chapter develops two

new non-blind and two new blind TEQ design methods. To maximize the SSNR

objective function, I develop two sub-optimum divide-and-conquer (DC) TEQ

design methods with unit tap constraint and unit energy constraint. Both meth-

ods have lower computational complexity than the maximum SSNR method, but

give comparable SSNR results.

I model the unknown channel as an IIR �lter in which the tail of the

channel response is modeled by the poles. Then, I derive two Matrix Pencil

TEQ design methods that estimate the poles from the received signal without a

priori knowledge of the channel impulse response. Finally, I use the poles of the

model as the zeros of the TEQ to cancel the energy of hwall.

I test the proposed methods on eight CSA DSL channels (as shown in Ta-

ble 5.7) and a dedicated data transmission channel. The sub-optimum solution

to SSNR, DC-TEQ-minimization, has the best tradeo� of computational com-

plexity vs. maximization of SSNR. For the unknown channel case, the proposed

Matrix Pencil methods give higher SSNR than the MMSE-TEQ with the unit

norm constraint. The Matrix Pencil methods do not have restrictions on matrix

singularity.
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Parameters Dedicated Data CSA DSL

Channel Channels 1{8

sampling rate 300 kHz 2.208 MHz

samples per symbol 512 512

power of additive white Gaussian noise �200 dBm/Hz �113 dBm/Hz
transmitter power 1 W 1 W

transmitter termination resistance 50 
 100 


fast Fourier transform size 512 512

cyclic pre�x 16 32

bit error rate 10�7 10�7

�eld margin 6 dB 6 dB

coding gain 0 dB 0 dB

number of runs 50 50

Table 5.6: Parameters for the nine digital subscriber line channels used in sim-

ulation.



112

CSA loops loop 1 loop 2 loop 3 loop 4

# of poles 7 10 8 7

1 0:57� j0:25 0:75� j0:26 0:94� j0:19 0:52� j0:81

complex 2 0:10� j0:61 �0:69� j0:37 �0:14� j0:29 0:77� j0:56

poles 3 n/a 0:13� j0:72 n/a 0:91� j0:29

pair 4 n/a 0:45� j0:54 n/a n/a

1 �0:89 �0:93 �0:95 0.62

real 2 0.89 0.92 0.93 n/a

poles 3 �0:87 n/a 0.88 n/a

4 n/a n/a 0.47 n/a

SSNR h 10:84 11:09 6:63 10:13

in dB he� 54:54 53:93 54:00 50:15

CSA loops loop 5 loop 6 loop 7 loop 8

# of poles 6 5 8 12

1 �0:07� j0:95 0:91� j0:35 0:32� j0:62 �0:87� j0:17

complex 2 0:90� j0:27 0:75� j0:62 0:64� j0:30 0:71� j0:20

poles 3 0:75� j0:51 n/a �0:60� j0:51 0:44� j0:37

pair 4 n/a n/a n/a �0:30� j0:45

5 n/a n/a n/a 0:09� j0:49

1 n/a 0.87 �0:94 0.91

real 2 n/a n/a 0.90 �0:89
poles 3 n/a n/a n/a n/a

4 n/a n/a n/a n/a

SSNR h 9:75 6:69 10:22 9:54

in dB he� 50:12 53:45 48:47 62:35

Table 5.7: Locations of poles in eight CSA channels estimated by the matrix

pencil method (see Sections 2.2.3 and 4.3.3) where h is the original channel

impulse response and he� is the e�ective equalizerd channel impulse response.
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Conclusion

Reliable data transmission through wireline channels with severe distortion can

be achieved in several ways. One way is to design an equalizer in the receiver to

compensate for channel distortion. Equalization methods are used to mitigate

the e�ects of intersymbol interference. This dissertation focuses on the design

of time-domain equalizers for both voice telephone and DSL wireline channels.

The contributions of the dissertation fall into two broad categories: channel

equalization with and without estimating the channel impulse response.

6.1 Equalization without estimating the channel

A transmission channel is generally not known to the receiver a priori. In the case

that an estimate of the channel is not available, the parameters of an equalizer

can be obtained either from the training sequence and received signal or from

the received signal only. This dissertation explores both methods by developing

neural network and matrix pencil equalizers.

Chapter 3 proposes a new neural network equalizer after the discussion

of feedforward neural network equalizers in Section 2.3. By considering channel

equalization as a classi�cation problem, neural networks are naturally applied to

learn the behavior of an equalizer in a communication system. Both MLP and

113
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RBF networks are employed as feedforward equalizers and have shown better

performance than linear equalizers, respectively. My �rst contribution in Chap-

ter 3 is to compare the performance in terms of symbol error rate between MLP

equalizers and RBF equalizers. From my simulation results, RBF equalizers

must use an increasingly larger number of hidden neurons than MLP equalizers

in order to obtain a similar symbol error rate as SNR decreases. This is be-

cause RBF networks are more sensitive to noise than MLP networks. However,

the training of MLP networks has the drawbacks of exhibiting slow convergence

and falling into local minima. In order to overcome the above drawbacks from

both MLP and RBF networks, I design a new nonlinear feedforward neural net-

work equalizer by cascading two di�erent neural networks. The �rst stage uses

a MLP network to suppress noise and the second stage uses an RBF network to

implement the decision logic. The neural network can learn the features from

the received data by using the training sequence to train the neural networks.

When using the neural network equalizers, it is not necessary to estimate the

channel �rst. However, the supervised training methods for feedforward neural

networks require the knowledge of both received signal and transmitted training

sequence. One key drawback of this approach is the excessive computation time

for training the equalizers.

Compared to the neural network equalizers, the matrix pencil method

can estimate the locations of poles in wireline channel when channel is modeled

as the in�nite impulse response. The location of poles can be estimated either

from the received signal or from the original channel impulse response. This

dissertation explores both of the cases with DSL channels. Chapter 4 builds

on equalizer training with the received signal only from Chapter 3 and becomes
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a prerequisite of Chapter 5 to design a blind channel shortening equalizer in

Section 5.3. I review the matrix pencil method proposed by Hua and Sarkar [13]

in Section 2.2.3. The formation of matrix pencil from a noise-free signal makes

both the master matrix in (2.10) and submatrices in (2.11) be rank de�cient but

have Hankel structure. When noise is present, rank de�ciency is no longer valid

but the matrices still have Hankel structure. Performing SVD truncation would

enforce rank de�ciency but destroy Hankel structure.

The contribution in Chapter 4 is to apply rank reduced Hankel approxi-

mation to the matrices after SVD truncation in order for the matrices to have

Hankel structure and approximate low rank. I �rst develop the new matrix

pencil methods to achieve a more accurate estimation on the frequencies and

damping factors. The new matrix pencil methods, MMP1, MMP2, and MMP3,

are forced by applying RRHA to the received data matrices at di�erent stages

of the original matrix pencil method. Then, I apply the matrix pencil methods

to design the time-domain equalizer for CSA DSL channels. The matrix pen-

cil method can estimate the poles of channel directly from the received signal

without the knowledge of the training sequence.

6.2 Equalization based on channel estimation

In an ADSL system, discrete multitone modulation is used as the line coding.

It is possible to estimate the channel impulse response of CSA DSL loops at the

receiver end. When the channel impulse response is known in the ADSL system,

TEQ methods can directly obtain the coeÆcients. Section 2.5 reviews previous

methods for designing TEQs. MMSE methods do not take the di�erences of

samples inside and outside the cyclic pre�x window into consideration, but they
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do not give satisfactory results in terms of SSNR in e�ective channel impulse

response. Maximum SSNR and maximum channel capacity methods are com-

putationally intensive. The maximum SSNR method is optimum in terms of

SSNR. However, it requires Cholesky decomposition and eigenvalue decomposi-

tion to �nd the optimum TEQ coeÆcients, which are not suitable for real-time

implementation on programmable digital signal processors. The complexity of

maximum channel capacity methods is worse than that for the maximum SSNR

method due to nonlinear optimization solver necessary to �nd the TEQ. My

contributions in Chapter 5 are as follows.

� I propose a heuristic method to estimate the optimal delay of the window.

The heuristic method estimates the optimal delay �rst and then applies

the TEQ design method. In general, TEQ design methods perform an

exhaustive search over the possible delays in the range from 1 to Lh +

Nw � � � 2 samples. For the eight CSA loops, the loss in SSNR for the

heuristic applied to the maximum SSNR method is less than 1 dB.

� I develop Divide-and-conquer methods that divide the TEQ �lter into

a cascade of two-tap �lter. For each two-tap �lter, the methods use a

greedy approach to �nd the second tap with the �rst tap constrained to

be one. Divide-and-conquer methods signi�cantly reduce the computation

cost and memory requirements. They are suitable for real-time implemen-

tation since they do not require the matrix decomposition methods of the

maximum SSNR method. All divide-and-conquer methods yield SSNR

that is comparable to maximum SSNR method.

{ I develop the divide-and-conquer minimization TEQ method to mini-
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mize the
1

SSNR
objective function. The closed-form solution for each

two-tap �lter is the same for unit tap and unit norm constraints.

{ I develop the divide-and-conquer cancellation method that directly

uses the channel impulse response to cancel the energy outside the

window. This method has lower computation cost than the divide-

and-conquer minimization method for either unit tap or unit norm

constraints.

� I use the matrix pencil method to estimate the poles of an IIR channel

model so that the zeros of a TEQ can be set to the locations of poles in

order to cancel the tail of the channel impulse response. However, the

matrix pencil method can be used not only in the case of a known channel,

but also in the case of an unknown channel. Matrix pencil methods can

estimate the number of poles directly from the received signal.

6.3 Future research

Although the work presented in this dissertation makes several contributions in

the area of channel equalizers in wireline communication systems, many chal-

lenges remain.

The simulation result shows that both MLP and RBF equalizers may not

be sensitive to channel phase response, which may be an interesting research

topic to explore neural network equalizers. However, the reduction of computa-

tional complexity is the most important for neural network equalizers to be used

in practice. Although neural networks can learn features of input data, training

in neural networks is a serious problem that prevents neural networks from hav-
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ing practical real-time implementations when on-line training is required, such

as in communication systems. Fast training algorithms for neural networks could

be developed. One possible solution is a deeper understanding of how the human

brain learns and generalizes.

Computational complexity is also an important issue for matrix pencil

methods. Matrix pencil methods have the advantage of estimating the poles

of a channel. However, the original matrix pencil method requires the imple-

mentation of singular value decomposition and eigenvalue decomposition, and

the modi�ed matrix pencil methods require an iterative process that applies the

reduced-rank Hankel approximation within the original matrix pencil method.

Parallel computation might be able to lower the computation cost of matrix

pencil methods. However, implementing the matrix pencil methods in real time

remains an open research topic.

Since the mid 1980s, multicarrier systems have provided data transmis-

sion over bandlimited channels. Their immunity to non
at frequency response

channels and the inherent parallelism in the transceiver designs make these sys-

tems a competitive and attractive candidate in high-speed data communication.

However, this research �eld is far from being mature since a new wireline and

wireless standard using multicarrier modulation has been approved every year

since 1997, and dozens of multicarrier standards are being debated.

I have not addressed the problem of maximizing channel capacity for

TEQ designs. Joint optimization methods to optimize a TEQ with other blocks

in multicarrier transceivers (e.g. the FEQ) could increase the data transmission

rate for the same SER. As I mention in Section 2.6, FEQ can o�er better channel

capacity over a TEQ [91]. Joint TEQ-FEQ FEQ design could be a direction of
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future research in multicarrier systems.

The TEQ design methods proposed in this dissertation are based on the

assumption that the variation of channel impulse response with time is too small

and can be neglected. When applying TEQ design techniques to time-varying

dynamic fading channels, one may encounter complicated problems in channel

estimation. Although matrix pencil methods can estimate the channel with-

out the knowledge of training sequences, the intensive computation cost makes

matrix pencil methods hard to track the variations in real time. It would be

desirable to modify current TEQ design methods for time-varying channels.
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Appendix A

Proof that J2;i in (5.6) is not ill-conditioned

I prove that the denominator of J2;i in (5.6) is not zero for all g so that J2;i is

not ill-conditioned. In this proof, I want to show

b1;i + 2b2;ig + b3;ig
2 6= 0; for 8g 2 <

so that J2;i in (5.6) is well-de�ned. I write Hi;win and Hi;wall according to (2.31)

and (2.32):

Hi;win =

2
66664

hi(� + 1) hi(�)

hi(� + 2) hi(� + 1)
...

...

hi(� + � + 1) hi(� + �)

3
77775
(v+1)�2

and

Hi;wall =

2
6666666666666664

hi(1) hi(0)

hi(2) hi(1)
...

...

hi(�) hi(�� 1)

hi(� + � + 2) hi(� + � + 1)
...

...

hi(Lhi) hi(Lhi � 1)

hi(Lhi + 1) hi(Lhi)

3
7777777777777775
(Lhi+1)�2

where Lhi is the channel impulse response at iteration i. Note that hi(0) =

hi(Lhi + 1) = 0. Then, I can write matrices Ai and Bi to be explicitly related

121



122

to hi(k); k = 1; 2; : : : ; (Lhi + 1):

Ai = HT
i;winHi;win =

"
a1;i a2;i
a2;i a3;i

#

=

2
66666664

�+�+1X
k=�+1

h2i (k)
�+�+1X
k=�+1

hi(k)hi(k � 1)

�+�+1X
k=�+1

hi(k)hi(k � 1)
�+�+1X
k=�+1

h2i (k � 1)

3
77777775

Bi = HT
i;wallHi;wall =

"
b1;i b2;i
b2;i b3;i

#

=

2
66664

X
k2S

h2i (k)
X
k2S

hi(k)hi(k � 1)

X
k2S

hi(k)hi(k � 1)
X
k2S

h2i (k � 1)

3
77775

where S = f1; 2; : : : ;�;�+ � + 2; : : : ; Lhi+1g. Thus,

a1;i =
�+�+1X
k=�+1

h2i (k)

a2;i =
�+�+1X
k=�+1

hi(k)hi(k � 1)

a3;i =
�+�+1X
k=�+1

h2i (k � 1) =
�+�X
k=�

h2i (k) =
�+�+1X
k=�+1

h2i (k)� h2i (� + � + 1) + h2i (�)

= a1;i � h2i (� + � + 1) + h2i (�);

or; a1;i = a3;i + h2i (� + � + 1)� h2i (�)

b1;i =
X
k2S

h2i (k)

b2;i =
X
k2S

hi(k)hi(k � 1)

b3;i =
X
k2S

h2i (k � 1) = b1;i + h2i (� + � + 1)� h2i (�)

There are two steps to prove that b1;i + 2b2;ig + b3;ig
2 6= 0; for 8g.

� Step 1: b1;i 6= 0
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As we can see from above,

b1;i =
X
k2S

h2i (k) � 0

The equality holds when hi(k) = 0; for 8k 2 S, which is the ideal case

that all the samples outside (� + 1) samples of e�ective channel impulse

response in ith iteration are zero. In general, hi(k) 6= 0; for 8k 2 S. Thus,

b1;i 6= 0 holds.

� Step 2: For b1;i > 0, if

(2b2;i)
2 � 4b1;ib3;i < 0

then, b1;i + 2b2;ig + b3;ig
2 6= 0; for 8g 2 <. Now, the task is to show that

b22;i � b1;ib3;i =

0
@X
k2S

hi(k)hi(k � 1)

1
A
2

�
0
@X
k2S

h2i (k)

1
A
0
@X
k2S

h2i (k) + h2i (� + � + 1)� h2i (�)

1
A

< 0

where

X
k2S

h2i (k) =
1

2
h2i (1) +

�
1

2
h2i (1) +

1

2
h2i (2)

�
+

�
1

2
h2i (2) +

1

2
h2i (3)

�

+ � � �+
�
1

2
h2i (�� 1) +

1

2
h2i (�)

�
+
1

2
h2i (�)

�1

2
h2i (� + � + 1) +

�
1

2
h2i (� + � + 1) +

1

2
h2i (� + � + 2)

�

+ � � �+
�
1

2
h2i (Lhi) +

1

2
h2i (Lhi + 1)

�
+
1

2
h2i (Lhi + 1)

because of the inequality a2 + b2 � 2ab

� 1

2
h2i (1) + hi(1)hi(2) + hi(2)hi(3) + � � �+ hi(Lhi � 1)hi(Lhi)
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+
1

2
h2i (�)�

1

2
h2i (� + � + 1) +

1

2
h2i (Lhi + 1)

\ =00 holds when any two consecutive samples are equal;

which is in general not true for channel impulse response:

=
X
k2S

hi(k)hi(k � 1) +
1

2
hi(1)

+
1

2
h2i (�)�

1

2
h2i (� + � + 1)
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Thus,

b22;i � b1;ib3;i

=

0
@X
k2S

hi(k)hi(k � 1)

1
A
2

�
0
@X
k2S

h2i (k)

1
A
2

�
0
@X
k2S

h2i (k)

1
A (h2i (� + � + 1)� h2i (�))

=

0
@X
k2S

hi(k)hi(k � 1) +
X
k2S

h2i (k)

1
A
0
@X
k2S

hi(k)hi(k � 1)�
X
k2S

h2i (k)

1
A

�
0
@X
k2S

h2i (k)

1
A (h2i (� + � + 1)� h2i (�))

< 2

0
@X
k2S

h2i (k)

1
A�1

2
h2i (� + � + 1)� 1

2
h2i (1)�

1

2
h2i (�)

�

�
0
@X
k2S

h2i (k)

1
A (h2i (� + � + 1)� h2i (�))

=

0
@X
k2S

h2i (k)

1
A�

(h2i (� + � + 1)� h2i (1)� h2i (�)� h2i (� + � + 1) + h2i (�))

= �h2i (1)
0
@X
k2S

h2i (k)

1
A

< 0
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Proof of unique solutions to (5.8)

We show that the solutions to (5.8) are unique in two steps:

� Step 1: a3;ib2;i � a2;ib3;i 6= 0, since minimizing J2 in (5.5) is equivalent to

maximizing J1 in (5.3), the only requirement for a3;ib2;i�a2;ib3;i is not equal
to zero.

a3;ib2;i � a2;ib3;i

=

2
4�+�+1X
k=�+1

h2i (k � 1)

3
5
2
4X
k2S

hi(k � 1)hi(k)

3
5

�
2
4�+�+1X
k=�+1

hi(k � 1)hi(k)

3
5
2
4X
k2S

h2i (k � 1)

3
5

=

2
4�+�+1X
k=�+1

h2i (k � 1)

3
5
2
4LhiX
k=1

hi(k � 1)hi(k)�
�+�+1X
k=�+1

hi(k � 1)hi(k)

3
5

�
2
4�+�+1X
k=�+1

hi(k � 1)hi(k)

3
5
2
4LhiX
k=1

h2i (k � 1)�
�+�+1X
k=�+1

h2i (k � 1)

3
5

=

2
4�+�+1X
k=�+1

h2i (k � 1)

3
5
2
4LhiX
k=1

hi(k � 1)hi(k)

3
5

�
2
4�+�+1X
k=�+1

hi(k � 1)hi(k)

3
5
2
4LhiX
k=1

h2i (k � 1)

3
5
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since

2
4LhiX
k=1

h2i (k � 1)

3
5 >

2
4LhiX
k=1

hi(k � 1)hi(k)

3
5

<

2
4�+�+1X
k=�+1

h2i (k � 1)

3
5
2
4LhiX
k=1

hi(k � 1)hi(k)

3
5

�
2
4�+�+1X
k=�+1

hi(k � 1)hi(k)

3
5
2
4LhiX
k=1

hi(k � 1)hi(k)

3
5

=

2
4LhiX
k=1

hi(k � 1)hi(k)

3
5
0
@
2
4�+�+1X
k=�+1

h2i (k � 1)

3
5�

2
4�+�+1X
k=�+1

hi(k � 1)hi(k)

3
5
1
A

6= 0

� Step 2: From (5.7), the solutions are unique if

(a3;ib1;i � a1;ib3;i)
2 � 4(a3;ib2;i � a2;ib3;i)(a2;ib1;i � a1;ib2;i) � 0

Since a1;i = a3;i + h2i (� + � + 1)� h2i (�) and b1;i = b3;i, we have

(a3;ib1;i � a1;ib3;i)
2 � 4(a3;ib2;i � a2;ib3;i)(a2;ib1;i � a1;ib2;i)

= b21;i(h
2
i (� + � + 1)� h2i (�))

2 � 4(a3;ib2;i � a2;ib1;i)

� [a2;ib1;i � a3;ib2;i � b2;i(h
2
i (� + � + 1)� h2i (�))]

= b21;i(h
2
i (� + � + 1)� h2i (�))

2

+4(a3;ib2;i � a2;ib1;i)
2 + 4b2;i(a3;ib2;i � a2;ib1;i)(h

2
i (� + � + 1)� h2i (�))

since b1;i � b2;i

� b22;i(h
2
i (� + � + 1)� h2i (�))

2

+4(a3;ib2;i � a2;ib1;i)
2 + 4b2;i(a3;ib2;i � a2;ib1;i)(h

2
i (� + � + 1)� h2i (�))

= [b2;i(h
2
i (� + � + 1)� h2i (�)) + 2(a3;ib2;i � a2;ib1;i)]

2 � 0
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