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There is a critical need to accurately measure land surface topography over
large areas around the world. Topographic data are required for a wide range of
civilian, government, and military applications, including assessing the threat and
impact of natural hazards such as flooding and planning military operations. Imag-
ing radars have been used extensively to map terrain. They can operate in the mi-
crowave portion of the electromagnetic spectrum, which enables them to image
during the day or night and under most weather conditions.

Interferometric synthetic aperture radar (INSAR) provides the best overall
capability for measuring topography over areas of 1 lamd larger. For many
application though, the resolution and accuracy of INSAR is insufficient. This is
especially true if the surface is covered with vegetation. INSAR observations do
not provide direct measurements of the true surface topography in vegetated areas,

but instead yield a height that depends on the sensor characteristics, the surface el-
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evation, and the vegetation. Laser altimeter (LIDAR) sensors can be used to obtain
topographic measurements with an order of magnitude better resolution and accu-
racy than INSAR, but are generally restricted to areas of less than 10d&oause

of limited coverage.

In this dissertation, | develop a data fusion framework for the statistically
optimal combining of complementary data sets. | apply the framework to fusing
INSAR and LIDAR data to produce improved estimates of topography. Neither
INSAR nor LIDAR data strictly represents bare surface heights in the presence of
vegetation, so prior to the data fusion, bare surface elevations and vegetation heights
are estimated from the data by modeling the interactions between the incident en-
ergy from the sensors and the vegetation.

The transformed data sets are then combined to exploit the coverage of IN-
SAR and resolution of LIDAR. The data fusion is performed using adaptive multi-
scale estimation to efficiently capture statistical correlation in the data across many
scales. | extend a recently developed multiscale estimation method to allow adap-
tive estimation of non-stationary spatial processes.

The contributions of this work include (1) combining physical modeling
with multiscale estimation to accommodate nonlinear measurement-state relation-
ships, (2) extending multiscale estimation techniques to adaptively estimate non-
stationary processes, and (3) improving estimates of ground elevations and vegeta-

tion heights for remote sensing applications.
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Chapter 1

Introduction

1.1 Remotely sensing topography

Many remote sensing applications require information that is difficult to obtain with
a single sensor. Individual sensors are constrained to operate in certain acquisition
geometries (altitude and viewing angle) and portions of the electromagnetic spec-
trum. This in turn limits the coverage and accuracy of the observations. Attempts
have been made to combirfagg data from different sensors, but existing methods
are often empirically based and ignore differences in the measurement types. Suc-
cessful data fusion becomes especially difficult when the sensors involved employ
dramatically different acquisition methods, wavelengths, and resolutions. Measur-
ing terrestrial topography is one of the many applications where this problem arises.
Large areas¥10 kn?) of the Earth’s surface can be easily imaged with air-
borne radar sensors. Radar sensors belong to the classivdé sensors because
they supply their own incident energy to illuminate the target. This capability per-
mits day or night operation. Also, radar can be used under most cloud cover and

weather conditions because there is relatively little atmospheric attenuation in the



microwave portion of the electromagnetic spectrum.

When multiple radar images are acquired by an interferometric synthetic
aperture radar (INSAR) sensor, topographic data can be obtained for the imaged
area. Vertical height accuracies of 2-5 m can be obtained in non-vegetated regions
with airborne INSAR data processed to 104m10 m terrain patches (pixels), as
indicated in Fig. 1.1. Many times, the actual accuracy is much lower due to process-
ing errors, atmospheric water vapor, and complex scattering from the surface and
vegetation. The presence of vegetation can lead to errors in the computed surface
topography because the incident microwave energy is scattered by the vegetation as
well as the surface (see Fig. 1.2).

The constituent parts of the vegetation above the surface scatter the incident
microwave energy. Those scattering contributions are coherently combined with
scattered energy from the ground, which results in an incorrect computed height
above the ground. The high variability of the vegetation also leads to reduced cor-
relation between the INSAR image pairs used for interferometric processing, which
results in greater measurement uncertainty. In forested areas, the magnitude of this
error can be tens of meters, which is significant for many applications, such as
hydrological modeling, particularly in low-relief terrain. A method is needed to
distinguish surface elevations and vegetation heights. One approach is to develop
a functional relationship relating the INSAR observations to terrain parameters us-
ing an electromagnetic scattering model [1]. Estimating the parameters from the
observations is then equivalent to inverting the model. Unfortunately, baseline con-
straints and the sensitivity to the input parameters often lead to unacceptably large
variances of the estimates. Treuhaft and Siqueira reported RMS values of about 8
m over forested terrain [1].

Laser altimeter (LIDAR) sensors can also be used to obtain topographic

measurements. LIDAR sensors are active sensors, but can only collect data when
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. imaging swath 12 km

>
- —»
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Vertical accuracy 2 m
10 m pixel spacing
NASA/JPL TOPSAR

Figure 1.1: Characteristic interferometric synthetic aperture radar (INSAR) proper-
ties

7/////////>/////A/////////////////

non-vegetat ed vegetat ed

Figure 1.2: The effect of vegetation on INSAR-derived topographic measurements.



I LIDAR (nominal)

imaging swath - 53Km - Downward-looking

— Scanning illumination

1 pm wavelength
Vertical accuracy 0.1 m
5 m pixel spacing
complementary sensor Optech, Inc.

Figure 1.3: Characteristic LIDAR properties

clouds are absent and weather conditions are good since they operate in the optical
portion of the spectrum. LIDAR sensors typically scan laser pulses through a small
angle about the nadir direction, as depicted in Fig. 1.3. This imaging geometry,
along with the small illumination footprints that are possible, allow LIDAR sen-
sors to acquire very high resolution topographic data. Standard deviations in the
measured heights af10 cm are not uncommon, but imaging swaths are generally
less than 1 km wide. Because of the small imaging swaths and sensitivity to cloud
cover, it is not practical to use LIDAR exclusively to map large areas.

Improvements in the processing and modeling of radar data have reached
a point of diminishing returns, and significant improvements in the measured to-
pography are now most likely to be made by combining radar data with data from
other sensors, such as LIDAR. In this dissertation, | present a novel framework for
fusing image data from disparate sensors. The framework accommodates nonlinear
relationships between the measurements and the estimated terrestrial parameters. It
also allows for data collected at different resolutions, omissions in data coverage,
and non-stationary terrain types.

The application of combining radar and laser topography measurements is
used to demonstrate the framework. Many hydrological applications require large

coverage areas and higher resolutions than INSAR can typically provide. These ap-
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Figure 1.4: Overview of the data fusion framework

plications include monitoring wetland dynamics, finite element modeling of water

catchments, and fault zones studies [2]. LIDAR data have sufficient resolution, but

insufficient coverage to address these applications. These applications, as well as

many others, motivate the fusion of INSAR and LIDAR data. Figure 1.4 depicts
the overall data fusion framework employed in this work. | show that it is possible
to improve the accuracy of the INSAR-derived estimates by combining LIDAR and
INSAR data.



1.2 Adaptive multiscale estimation

The INSAR and LIDAR data are combined using a multiscale Kalman estimation
approach, which provides the estimates and estimate errors at each pixel [3] [4]. |
combine that data fusion method with physical modeling so that measurements that
are not linearly related to the parameter estimates and have no closed-form inverse
can be properly combined. However, this method is only optimal if the imaged area
is wide sense stationary. In this context, stationarity implies a single terrain type
with a single type of land cover. For example, a grass-covered plain with no trees or
hills would yield wide sense stationary topographic measurements. If another type
of terrain is present in the imagery, for example forested or hilly areas, the statistical
moments of the topographic measurements will change, resulting non-stationary
data. Clearly, the assumption of stationarity is a limiting one. So the data fusion
method is extended to update the estimation algorithm when non-stationarities in
the image data are detected. This is done by incorporating adaptive estimation

techniques into the multiscale framework.

1.3 Abbreviations and terminology used

ACF: autocorrelation function

AMKS: adaptive multiscale Kalman smoothing
ALTM: airborne laser terrain mapping

CSR: center for space research

ERS: European remote sensing satellite
INSAR: interferometric synthetic aperture radar

JPL.: jet propulsion laboratory



LIDAR: laser radar or laser altimeter

LMMSE: linear minimum mean squared error

MAP: maximuma posterioriprobability

MKS: multiscale Kalman smoothing

ML: maximum likelihood

MMSE: minimum mean squared error

MSE: mean squared error

nadir: the direction directly below an observer

NASA: national aeronautics and space administration
NICC: normalized interferometric correlation coefficient
NLO: nonlinear optimization

RMS: root mean square

SAR: synthetic aperture radar

SQP: sequential quadratic programming

TOPSAR: topographic synthetic aperture radar

WSS: wide sense stationary

1.4 Thesis statement and organization

In this dissertation, | generalize a novel framework for combining data from mul-
tiple sensors and apply it to a particular problem in remote sensing involving the

estimation of topography. In particular, | will defend the following thesis statement.



Statistically optimal estimates of bare-surface topography and vegeta-
tion heights are obtained by combining interferometric radar and laser

altimeter measurements in an adaptive multiscale data-fusion frame-
work that uses physical modeling to admit nonlinear measurement-

state relationships.

The improved accuracy is locally sufficient for some applications, for which INSAR
alone is insufficient. The ability to merge different data types also provides the
capability to update data for a region without the potentially costly constraint of
having to use the same sensor that first acquired the data.

The contributions of this work include (1) combining physical modeling
with multiscale estimation to accommodate nonlinear measurement-state relation-
ships, (2) extending multiscale estimation techniques to adaptively estimate non-
stationary processes, and (3) improving estimates of ground elevations and vegeta-
tion heights for remote sensing applications.

Observations from different sensors must represent like quantities if they are
to be properly combined, but different sensors usually do not measure the same phe-
nomena. In this case, the observations must be transformed in some way during or
prior to the fusion process. Combining data with a Kalman filter permits the fusion
of quantities (state variables) that are not directly observed. If the observations are
linearly related to the state variables, then the transformation can take place during
the fusion process. If the observations are not linearly related to the state variables,
then approximate techniqgues may be used to linearize the problem. These tech-
niques require the observed process be primarily deterministic or slowly varying,
and are therefore not useful for fusing topographic data. As discussed in Chapter
2, INSAR does not actually measure the height of the ground when vegetation is

present. The same is true for LIDAR, although for different reasons. Therefore, to



apply Kalman based methods to the fusing of INSAR and LIDAR data, | transform
each data set into estimates of bare surface elevations and vegetation heights. Us-
ing these transformations prior to the fusion allows the application of Kalman based
fusion to stochastic problems with highly nonlinear measurement-state relations.

Multiscale Kalman smoothing (MKS) was developed in the early 1990s as
method for multiresolution analysis and data fusion. The standard MKS algorithm
allows the Kalman model parameters to vary in scale, but does not provide any
mechanism for them to vary in space. Thus, there was an implicit wide sense sta-
tionary (WSS) assumption in the spatial dimensions. In general, remote sensing
imagery will not be well approximated as a WSS process. An example would be an
INSAR scene with forest in one half of the image and grassland in the other half.
The first and second order statistical moments will be different in the two halves of
the image, with the forested area having a larger mean height value and greater spa-
tial variance. For the fused estimates to be strictly optimal, the process noise termin
the Kalman filter must reflect the differences in variability in the two halves of the
image. | generalize the linear state model so that | can employ an adaptive estima-
tion technique developed for 1-D temporal estimation in the multiscale framework.
The result is an adaptive MKS (AMKS) algorithm that adapts to non-stationarities
in images.

The primary motivation of this research is to produce improved estimates
of bare surface topography and vegetation heights for remote sensing applications.
Initial estimates of bare surface topography and vegetation heights are obtained
through modeling INSAR and LIDAR interactions with the terrain. Those estimates
are then combined in a multiscale data fusion approach. Unlike previous multiscale
data fusion methods, this estimator remains nearly optimal (in the mean squared
error sense) even when the imaged terrain contains different terrain types. The

mean sqared errors of the final estimates are generally smaller than those obtained
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by other methods. Yet, this method avoids making drastic assumptions about the
vegetation medium that other methods often make.

This dissertation is organized in the following manner. | characterize IN-
SAR and LIDAR data and methods for estimating bare-surface topography using
INSAR data in Chapter 2. In Chapter 3, | present an existing multiscale estimation
approach and some important properties of the Kalman filter. | am able to accom-
modate nonlinear measurements in the Kalman filter using results from Chapter 2.
| extend the multiscale estimation framework in Chapter 4 to implement spatially
adaptive multiscale estimation. In Chapter 5, | give results from the non-adaptive
and adaptive methods and demonstrate fusion of more than two data sets. The al-
gorithms are applied to three distinctly different terrain types to demonstrate the

flexibility of the framework. Finally, | present conclusions in Chapter 6.
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Chapter 2

Characterizing Topographic

Measurements

2.1 Introduction

Topography of land surfaces can be calculated using observations from INSAR and
LIDAR sensors. These nominal values can then be used, along with knowledge of
how the incident energy interacts with the vegetation, to estimate bare surface ele-
vations and vegetation heights independently from each sensor. The standard pro-
cedure for computing topography from INSAR data is presented in Section 2.2. In
Section 2.3, methods for estimating bare surface elevations and vegetation heights
from INSAR are discussed. LIDAR measurements are described in Section 2.4.
An empirical algorithm for obtaining bare surface elevations and vegetation heights

from LIDAR data is also discussed. Finally, conclusions are given in Section 2.5.
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2.2 The INSAR measurement

Substantial signal processing must be applied to raw SAR data to form images with
spatial fidelity. The sequence of operations is collectively referred ®Ad&s pro-
cessingand is not addressed in this dissertation. Many references treat the subject
in detail, including [5] [6] [7]. Discussion of SAR data in this dissertation as-
sumes that the complex-valued images, denoted dyave already been generated

through SAR processing.

2.2.1 Obtaining height estimates

Interferometric processing requires two SAR observations. The two observations
are either acquired by a single-antenna sensor passing over the target area twice
in a technigue known agpeat-passNSAR, or by a dual-antenna sensor passing
over once in a technique known siangle-passNSAR. Repeat-pass INSAR suffers

from an effect known as temporal decorrelation. This phenomenon is caused by the
scattering elements in the imaged area, such as tree branches, changing position or
orientation on the scale of the SAR wavelength during the intervening time between
acquisitions. Single-pass INSAR does not suffer from temporal decorrelation, but is
usually constrained to small antenna separation distances (baselines). The difficulty
in implementing baselines longer than a few meters on an aircraft owe to the INSAR
requirement that the baseline remain very stable during acquisition.

The majority of INSAR data used in this dissertation are single-pass INSAR
data acquired at C-band%£5.6 cm) by the NASA/JPL topographic SAR (TOP-
SAR) sensor. Repeat-pass INSAR data from the European Remote Sensing Satellite
(ERS-1) are also used. The source of INSAR data is indicated in each application.

Fig. 2.1 shows the INSAR imaging geometry. Single-pass INSAR sensors

acquire two complex-valued SAR imag€s andCs as the sensor passes over the
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target. An interferometric phase differengas determined from the two images

C7 andC5, and is used to compute topographic heights. The relative phase is equal
to the phase difference betweéh and C;. The absolute phasek, and ¥, of

C, andC,, respectively, are not known, gomust be computed from the complex

cross-correlation of; andCs.

Cl = Aleq’l
02 = Age\PQ
010; = Ale‘l’lAge*%

40105 == \Ifl - \112 = QS mod 27 (21)

The ZC,C; phase image is modulbr, and is called the wrapped phase im-
age or the interferogram. The mod@o image undergoes 2-D phase unwrapping,
and a constant phase offset is added to obtain the absolute pihraage [8]. Path
length is related to the unwrapped phase through the propagation speed of light
and the wavelength. Equation (2.2) descrieas a function of the path length

difference from the SAR antennas to each resolution cell on the ground [9] [10].

2
s

o=

(ps1 — ps2) (2.2)

Here, )\ is the wavelengthj equals 1 or 2 depending on the SAR transceive mode,
andps; andps, denote path lengths from the antennas to the ground, as indicated
in Fig. 2.1.

In practice, the phase is computed using INSAR system parameters as shown
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in (2.3) because they are more precisely known than the path lepgthsdpg,:

¢~ _T%b sin (fs — «) (2.3)
Here,b is the electrical baseline lengify is the incidence angle, andis the base-
line angle from horizontal. The electrical, or effective, baseline length equals
times the physical baseline length. The expression in (2.3) is a first-order approx-
imation for ¢, which is commonly used for clarity. Terms involving the square of
the baseline have been neglected because pg, pso.
Using (2.3) to computég, one can then solve for the topographic height

and horizontal locatiopg of each pixel using (2.4).

zs = hg— psicosly

Ys = psisinfls (2.4)

Here,hs is the INSAR altitude, angg, is the path length from the reference an-
tenna to the resolution cell. Equations (2.2)-(2.4) assume that the SAR illumination
is perpendicular to its velocity vector. The INSAR data used in this dissertation
were previously processed to yield images. The raw TOPSAR data were pro-
cessed at the Jet Propulsion Laboratory (JPL) and the ERS complex images were
processed at the Center for Space Research (CSR).
In addition to the correlation phase of the image pai¢s C; used for com-

puting zs, the correlation coefficient
_ | <CLC5 > |

V< ICL? >/ < |2 >

vy (2.5)

is used to compute the uncertainty in the calculated valug; ¢10]. Here,< >
denotes an ensemble average. Values olose to unity represent small standard

deviations of the measured phase, which correspond to low uncertairgy in

14



Single-pass
INSAR system

Ps1 Ps2>>b

(Ps1-Ps) =
b sin(65- a)

hs

< Ys >

b = baseline hs = altitude

a= bageline angle 6= incidence angle

Zg = height Psy Psp = path lengths to
Ys = horizontal distance antennas 1 and 2

Figure 2.1: INSAR imaging geometry.
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Both systematic and random sources of decorrelation exist. Most potential
sources for systematic decorrelation occur during acquisition or INSAR process-
ing. These include registration errors, uncompensated motion of the SAR platform
during acquisition, and multipath at the SAR receiving antenna. These sources are
best dealt with during INSAR processing and are not addressed in this dissertation.
Modeling the sources of random errors leads to a calculation for the uncertainty in

zs in the following section.

2.2.2 Random error sources

The most commonly modeled sources of decorrelation due to random errors are
temporal, spatial, and thermal [11]. As stated earlier, temporal decorrelation is
due to random changes in position or orientation of scattering elements between
acquisitions. It does not affect single-pass INSAR data. Spatial decorrelation is
inherent to the INSAR measurement because each antenna views the target from a
slightly different angle, resulting in slightly displaced impulse response functions
from the target. Spatial decorrelation is computed as a function of baseline length
and incidence angle and does not account for different types of scattering at the
target. Thermal decorrelation arises from the thermal noise in the SAR instrument.
These sources are assumed to be independent, thus their total contrilytida

the product of their individual contributions.

The phase standard deviatiop, sometimes called the phase error, will de-
pend orp;.,; and the number of independent phase measurements. When the com-
plex images are formedl, is usually too large for successful registration and un-
wrapping. The most common procedure to reduce the phase error, at the expense
of spatial resolution, is to average adjacent pixels in the original complex image [5]

[9]. This procedure is known as coherent multilook processing, or simply coherent
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multilooking. The original complex image is referred to as a single-look complex
(SLC) image, and the averaged image is referred to as the multilook image. The
phase error is reduced 3§, increases, wher#,,;. is number of resolution cells
averaged together.

The phase error was computed as a functiop,9f;, and N, in [9] via
Monte Carlo simulations. The reduction is nonlinear but monotoni¥jp, with
most of the reduction realized by, = 4 [12]. Thus, forN,,.. > 4, the Cramer-
Rao bound is typically used to estimatgfrom they images using [10]

1 1—1~2

V2Nigo Y

We can then compute height uncertainty from phase uncertainty, using an

(2.6)

O¢:

expression derived in [12], which is obtained by differentiating (2.4) with respect

to ¢, retaining all higher order terms, and assuming zero ground slope:

~ Apsi sin fg
oh = Torh cos(a — fg)

0¢ (27)

This equation serves as a lower bound on the height standard deviation due to phase
noise. In the treatment of Kalman filtering in Chapter 3, the measurement error
variance of the INSAR heights; is taken to be the square of.

Becauser;, only accounts for temporal, spatial, and thermal height errors,
any vegetation that is present introduces additional height errors on the order of the
vegetation height. This phenomenon occurs because the received signal contains
scattering contributions from the vegetation above the ground as well as from the
ground itself. The computed elevationwill generally be greater than the elevation
of the bare ground, and less than the elevation of the vegetation cangpigee
Fig. 2.2). However, the correlationusually decreases, relative to the backscattered
power, over diffuse targets, such as vegetation. This effect is known as speckle

decorrelation. Thus, the actual height error is dependent on the vegetation height,
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o D s A A

non-vegetated vegetated

Figure 2.2: The effect of vegetation on the INSAR measuremepis the true
ground heightzg is the nominal INSAR-derived surface height, ands the true
vegetation height. Neglecting noisg, will approximately equak, where there is
no obscuring vegetation. Where vegetation is presgmill be betweerx, andz,.

density, and structure. This source of phase error is ignored in standard INSAR
processing.

A single INSAR observation is not sufficient to resolve this ambiguity in
zg due to vegetation. An additional observation is needed to sepgrated z, .
The TOPSAR sensor is capable of transmitting and receiving with each of its two
C-band antennas and sequencing the transmit and receive events to obtain two dif-
ferent INSAR acquisitions. The procedure yields different relative path lengths
corresponding to two different electrical baselines, as shown in Fig. 2.3. The result
is two different complex image pairs,C, andC5;C,. The cross-transceive mode
yields image paiC;C, andé = 1 in (2.2). The co-transceive mode yields image
pair C3C, andé = 2 in (2.2).

The two effective baselines are quite similar2.5 m and,=5.0 m. Thus,
the two INSAR images will be highly correlated globally. However, the slight dif-
ference in viewing angle yields small, random differences in the coherent scattering
contributions in each resolution cell in the SAR image. Corresponding pixels in the
two INSAR scenes will have similar values, but random differences will remain,

which allows the images to be used as independent observations [1]. This method
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b1=25m

b2=5.0m

1 1
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c, 2 / .
Cy
cross-tranceive co-tranceive

Figure 2.3: INSAR acquisition with dual-baseline system. Different complex image
pairs (C1C, or C3C,) are formed depending on the transmit/receive sequences used.
The procedure yields two independent INSAR acquisitions.

of data collection is referred to akial baselinébecause two INSAR images are

acquired in a single-pass.

2.3 Estimating surface and vegetation heights with

INSAR

A scattering model that relates INSAR measurements to the true surface and vegeta-
tion heights is now presented. It is shown that the minimal set of terrain parameters
that must be estimated requires at least two INSAR observations. Two nominal
INSAR acquisitions would work in principle, but the temporal decorrelation would
limit their use. The dual-baseline acquisition described in Section 2.2 is used be-
cause it provides two INSAR observations without temporal decorrelation. The

scattering model is inverted numerically to obtain estimateg ahdAz, (=z,-z,).
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2.3.1 Empirical approaches

Recent attempts to account for the effects of vegetation based on regression and em-
pirical modeling have achieved limited success when applied to repeat-pass INSAR
data [13] [14]. In [13], interferometric phase, correlation, and single-polarization
backscatter data were classified into general land cover types using INSAR data
from the first European Remote Sensing (ERS-1) satellite. The results were affected
by temporal decorrelation caused by the changes in the scene between acquisitions.
Accurate determination of the vegetation heights suffered because temporal decor-
relation can mimic low correlation due to scattering from vegetation. Also, empir-
ical methods are necessarily particular to the data used to develop the relationship
between the measurements and the estimated parameters. For example, the work
in [14] assumed that the density of the vegetation cover was known and constant.
This is an unrealistic assumption, and can be avoided if a formal scattering model
is used, rather than empirical relationships, to relate the INSAR observations to key
terrain parameters.

Another approach that has been investigated for improved INSAR height
determination is the use of multiple frequencies [15]. In principle, this approach
could be applied to the problem of estimating bare-surface and vegetation heights
because as the wavelength of the SAR increases, it will penetrate deeper into the
vegetation layer. This occurs because electromagnetic waves do not scatter sig-
nificantly when they encounter objects that are much smaller than the wavelength.
Thus short wavelengths, e.g. X-band< 2 cm) will scatter strongly off of the tops
of the vegetation canopy, while longer wavelengths, e.g. P-bard66 cm) will
penetrate into the canopy. The potential exists to image an area with both high and
low frequencies and subtract the computed heights from each to arrive at a vegeta-

tion height. The height of the bare surface would be the height computed from the
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low-frequency SAR. However, this technique alone is not sufficient to address the
problem because, as seen in (2.7) the height error is directly proportional to wave-
length. The resulting order of magnitude increase,ifrom X-band to P-band will

lead to errors on the same scale as the vegetation signal that is being estimated.

2.3.2 Scattering model approach

Backscattered SAR signals from vegetated terrain have been successfully simu-
lated using a variety of scattering models. Coherent wave models, which compute
the approximate scattered electric field from layers of discrete, randomly oriented
scatterers over a ground surface, have been particularly successful [16] [17] [18]
[19]. These models solve for a real-valued measure of the scattered power, but they
are coherent because the phase is retained internally for the calculation of coher-
ent interactions among the scattered waves. These models are used to calculate the
normalized SAR backscattering cross-section, or backscattering coeftiéidot
different polarizations. Other approaches, based on radiative transfer theory, have
also been used to simulate the SAR response to vegetation covered terrain [20], but
they do not account for coherent surface-vegetation interactions [21]. The approach
used in this dissertation is based on a coherent wave model.

These nonlinear models typically require detailed knowledge of the statisti-
cal and electrical properties of the scatterers to compute relatively few output pa-
rameters, such as the strength of the scattered field at the principal linear polariza-
tions. For example, a scattering model that solves for componentsfadm the
dominant scattering mechanisms of the ground and vegetation requires information
on the size, amount, orientation, and dielectric constant of the constituent vege-
tation elements and roughness and dielectric constant of the ground. In a typical

implementation, at least nine input parameters must be specified. In addition to the
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large number of inputs that must be specified, the solutions are not unique. Dif-
ferent combinations of inputs can lead to very similar SAR responses. Attempts to
invert this type of model directly will therefore be ill posed.

In addition, we need a model that is formulated to calculate INSAR obser-
vations rather than SAR observations. In an effort to separate bare-surface and
vegetation heights from the height of the phase scattering center, [22] investigated
what phenomena would affect the INSAR data and contain useful information for
separating bare-surface and vegetation heights. It was found that INSAR observa-
tions are sensitive to vertical distributions of scatterers above the surface, especially
to the depth and density of the layer of scatterers. Vegetation can be represented by
such a layer of scatterers, just as in the coherent SAR models.

Fig. 2.4 shows the effect of vertically distributed scatterers (vegetation) on
the INSAR observations. As the height of the scattering layer increases, (a) the dif-
ferential path length\ p increases, (b) the magnitude of the cross-correlatio6’; |
decreases relative to the backscattered power at each adtetihandC,C’, and
(c) the backscattered power increases. Thus, it is possible to relate INSAR data
to the height of the vegetation layer, which leads to estimating the height of the
vegetation over the bare surface.

A coherent wave model was re-parameterized in [1] to reduce the number of
inputs to three key terrain parameters: ground elevatjofm), vegetation height
Az, (m), and extinction coefficient of the vegetatiorfNp/m), which is related to
density. The modeM relates the terrain parametetrs, Az,, 7} to the normalized
interferometric cross correlatio({ C'C").

The scattering model, which is derived in [1], is

NICC ~ M(z)=

27 A, exp(jo) Az _ ( 27¢ )
€ —— ] d¢ (2.8)
(i) i 000 (o

22



pWy)

pPWy)

Figure 2.4: Effects of vertically distributed scattering elements (representing veg-
etation) on the INSAR measurement. As the height of the scattering elements in-
creases, (a) the differential path length increases, (b) the magnitude of the cross-
correlationC;C; decreases relative to the backscattered paweéy andC,C;, and

(c) the backscattered power increases.
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whereq, is the derivative of interferometric phase with respect to the vertical di-
rection,( is a generalized height variable for integration, ahdis a normalized
correlation amplitude factor that represents the contribution to the magnitude of
NICC (decorrelation effect) from the surface. It accounts for the effects of spatial
decorrelation inherent in all INSAR measurements. The phase contribution from
the groundy is related toz, through (2.3) and (2.4).

Equation 2.8 derives from considering a collection of surface and volume
scatterers in a single SAR resolution cell. The scattered field from a single scatterer,
multiplied by the probability of a scatterer at that location, is integrated over the
volume of the vegetation layer yielding an expected value of the scattered field due
to a single scatterer in the layer. The sum of all such integrals over patrticles in
the volume yields the total volume scattering contribution. A similar procedure
is followed for the integral over the surface patch in the resolution cell to yield
the surface scattering contribution. In the derivation in [1], the summations are
replaced by aggregate terms such as the density of scatterers in the layer times the
contribution of a single scatter. The probability density functions are written in
terms of SAR parameters including range (perpendicular to flight direction) and
azimuth (parallel to the flight direction) resolution functions. Using the coherent
wave approach of [19], the general expressions for the scattered field received at
each antenna are replaced by scattering amplitude functions and phasor notation.
The resulting expressions far, and C, are multiplied together, after taking the
complex conjugate af’,, and normalized to arrive at (2.8).

From (2.8), the integral over vegetation height has a simple analytical so-
lution [ e’“du = e°*/(3, but is left in integral form to emphasize the contribution
of the vegetation to the phase. The factor that multiplies the integral consists of
an amplitude and phase term. The amplitude describes the power of the scattered

wave as a function of free-space distance from the antennas to the resolution cell,
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the distance traveled within the vegetation mediam,/ cos(fs), and the effec-

tive density of the vegetation medium The phase termxp(j¢) describes the
absolute phase associated with the distance from antenna 1 to the intersection of
the resolution cell and the ground plane. The integral over the vegetation describes
the propagation in the vegetation effective medium, with terms for the phase delay
due to the path length in the medium and attenuation due to the permittivity (via
extinction coefficient) of the effective medium.

By rewriting the model after evaluating the integral and rearranging terms,

(2.9)

27 Azy
ecostQS _ 1

ja, Azy %%?Eﬂ

ja, cosfs + 21
We can now look at the limiting case of no vegetation. Taking the limit of (2.15) as
Az, — 0 directly yields an indeterminai®/0 form. However, since all functions
of Az, are continuous and differentiable, Lagital’s Rule can be used to determine
the limit. Taking the partial derivatives with respectAa, of the numerator and
denominator:

. T j z _2r_ A v
2r (jous + o2 )el o Famis)2s
ja, cosfg + 21

A,el? [ (2.10)

2
( 27 )e(—coszs)Az“
cosfg

By L'HOpital's Rule, the limit of (2.10) aaz, — 0 equals the limit ofV/CC"

lim NICC = A,e’? (2.11)

Azy—0

The result is a normalized equivalent to the standard INSAR result, which disre-
gards vegetation effects. Hergjs the phase/C,C; after phase unwrapping and
absolute referencing4, = -, normalized by the zero-baseline correlation coeffi-
cient. In Fig. 2.5 NICC'is plotted as a function ok z, for a set ofr values while
holding z, constant to examine its behavior as vegetation height increasesC

is slowly varying and monotonic over the range of physically reasonable values of
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Figure 2.5: Sensitivity oV /CC to Az, andr.
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Az, andr. As the extinction coefficient increases, the vegetation appears more
opaque to the INSAR. This is the reasa®W ICC rises faster as a function @z,

for larger values of-. The trends in Fig. 2.5 agree with the expected behavior of
NICC shown in Fig. 2.4.

Before INSAR data from the two TOPSAR baselines are used in Section 2.3.3
to estimate terrain parameters, it is important to demonstrate the sensitivity of
NICC to the differences in TOPSAR baselings= 2.5 m andh, = 5.0 m. Fig-
ure 2.6 shows how /C'C varies for baselines between 1 and 5 meters. The mag-
nitude of N/C'C ranges between about 0.98 and 0.92. This is comparable to the
range in|NICC| values as a function ahz, in Fig. 2.5. The phase aVICC
varies as the ratio of baseline length to wavelength. With b < 5 and\=0.056
m, ZNICC will range through several cycles pf radians. Thus, the unwrapped
/ZNICC data will be quite sensitive to changes in baseline length on the order of
1 m or larger. It is apparent that even for the relatively small baseline differences
available on a single pass of the TOPSAR sen&di¢’C' data acquired at the two
baselines will comprise two independent measurements of the terrain.

M is shown to be approximately equal to the CC' because it assumes
zero ground slopes, a homogeneous vegetation layer (per resolution cell), and uni-
formly distributed orientations of the scattering elements. Non-zero ground slopes
and preferential orientations of the vegetation are considered in [1], but they re-
quire the addition of fully polarimetric SAR data, which are not generally available

coincident with TOPSAR data.

2.3.3 Inverting the scattering model

The NICC'is computed from two complex SAR images for each baseline. Thus,

dual-baseline INSAR provides two complex-valued (four real-valued) observations,
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which are sufficient to solve for the three real-valued terrain parameters at each
pixel numerically. The modeM for a single baseline relates the terrain parameters
x to the NICC, where M: R3 — R*. The observations for both baselines are

represented by the vectdr

INICC |y
Zg
LNICCy
d= x=| Az, (2.12)
INICC |
-
LNICChyy

The elements of the vectdvl represent the magnitude and phase components of

M(z) for each baseline.

[ M)
M= | M@ (2.13)
IM(2)]be
i AM(CB)M ]
d=M (2.14)

The |[NICC| data for each baseline are obtained from correlation magni-
tude data supplied by the TOPSAR processor and then normalized by zero-baseline
magnitudes to correct for the decorrelation effect of large incidence angles [1]. The
|NICC]| for zero baseline is nomially equal to unity. A zero-baseliNdCC|
that is less than unity signifies an uncompensated source of decorrelation. Thus,
normalizing by the zero-baselin& 7C'C| removes the effects of uncompensated
sources of decorrelation. The€VIC'C data are computed by scaling thedata for
the two non-zero baselines by the derivative of interferometric phase with respect
to the vertical. All INSAR data are ground range projected [5] before computing
NICC images.
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Figure 2.7: The modeled vegetation medium, which consists of a layer of randomly
distributed scattering particles. Heredenotes the direction of the incident wave
from the INSAR, ang, denotes the path length in the vegetation medium.

Even after parameterizing the coherent scattering model to obtain (2.8), there
is no closed-form inverse. Therefore a numerical inversion approach is required.
The numerical inversion in [1] is reformulated as a constrained nonlinear optimiza-
tion problem to solve for, and Az,. The objective function is the square of the

Ly-norm between the actual observations and the modeled observations, given by
min ||[M —d||5  subjecttar € X C R3 {0<0s < g}. (2.15)

The objective function and inequality constraints in (2.15) are real-valued and twice
differentiable on the feasible region denoted by thel§eto the optimization is im-
plemented as a sequential quadratic programming problem (SQP) [23]. The search
space is smooth because the scattering model is highly simplified. However, this
technique could be used to provide good starting guesses when inverting more so-
phisticated scattering models that yield less well-characterized search spaces. The
value ofoy, is scaled by the ratio Varf)/Var(zs) and Var(Az,)/Var(zs) to obtain

the uncertainty associated with the transformed INSAR datadAz,.
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2.3.4 Computational complexity

The nonlinear constrained optimization is performed for each pixel. Over the range
of physically reasonable values of the vegetation extinction coeffici¢dd], the
objective function is a weak function of, which leads to very low-gradient re-
gions in the search space. As a result, on the order of 100 SQP iterations can be
required to converge to a solution for some pixels. This nonlinear optimization is
the most computationally expensive step in the data fusion framework. Because
the physical modeling is implemented before the actual data fusion however, other
methods of obtaining initial estimates of the terrain parameters from the INSAR
data could be used. As mentioned in Section 2.3.1, other methods exist that de-
termine bare-surface elevations indirectly, thus avoiding complex scattering models
and inverse problems that require nonlinear optimization techniques. The scattering
model approach was used in this work because it is theoretically based, but it is not

fundamental to the overall data fusion framework.

2.4 LIDAR measurements

The LIDAR data used in this work were acquired by an Optech airborne laser terrain
mapping (ALTM) sensor, operating at a near-infrared wavelengtfi@47 nm).

The LIDAR is a nadir-looking sensor that scans a narrow swath about the airplane’s
ground track. The footprint size, spacing, and swath width can be adjusted by
varying the airplane’s altitude and the laser’s repetition rate. The data used here
came from two different acquisitions. Each acquisition had a footprint size of 15
cm, spacing of 1-2 m, and swath width of 600 m. The time-tagged laser pulses were
gridded into regular image lattices of LIDAR heights The LIDAR data acquired

over the Texas coastal site were gridded to postings of 10 h® m with about
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15 pulse returns per pixel. The LIDAR data over Austin, Texas were acquired at
a higher sampling rate and gridded to 1xmL m with 20 pulse returns per pixel.
Because multiple pulses correspond to each pixel in the LIDAR images, standard
deviationss;, were calculated at each pixel.

LIDAR heights were compared to kinematic global positioning system (GPS)
data collected along roads in the study area. The GPS data were acquired by a Trim-
ble 4000SSi system, which has an accuracy of approximai@l¥0 m. The LIDAR
data agree with the GPS bare surface heights to witlirl5 m. In situ measure-
ments of tree heights confirmed that the LIDAR heights are generally within
m of the vegetation heights. Essentially, LIDAR measures vegetation heights ev-
erywhere and measures surface elevations where vegetation is negligible. For this
work, it is assumed the LIDAR measuregsdirectly because the short wavelengths
of the optical portion of the spectrum do not penetrate the foliage. Because of the
small footprint, however, some penetration is possible among multiple pulses, and
pulses may even reach the ground through gaps in the canopy (see Fig. 2.8). Hence,
some processing is required to compuyjat every pixel in the LIDAR data.

An empirical method for removing vegetation heights in LIDAR data from
[25] was used to transform LIDAR data over the study areas into estimatgs of
andAz, (= z,-z,). An empirical approach was used because no widely applicable
LIDAR scattering models for vegetation exist. Slatton, Crawford, and Evans [26]
found oy, to be an effective indicator of vegetation in LIDAR data. The approach
taken in [25] is to threshold;, to isolate pixels that contain negligible vegetation.
Heights are computed for the thresholded pixels using interpolation. The risk of
interpolating across significant topographic features is small except in the uncom-
mon case of very dense vegetation covering a surface with high topographic relief.
Estimates ok, andAz, are obtained from LIDAR processed at CSR, and used as

inputs to the data fusion algorithm. Equation (2.16) summarizes this process math-

32



Figure 2.8: Effect of vegetation on the LIDAR measuremepis the true ground
height, z;, is the nominal LIDAR-derived surface height, andis the true vege-
tation height. Neglecting noise;, will approximately equat, where there is no
obscuring vegetation. Where vegetation is presgnyill approximately equat,.

ematically, whereV is the set of all pixels in the LIDAR image artd,, n,) denote

pixel coordinates. The measurement uncertainty in the LIDAR data is taken to be

aL(nl,ng).

2y =2 V(ni,ng) €N
zr, V(n1,n2) € Nl|og(ny,n2) < threshold (2.16)

linear interpolation, otherwise

All operations on the LIDAR data are non-iterative. The most computation-
ally demanding step is the gridding of the raw, irregularly-spaced LIDAR points
into a uniformly-spaced LIDAR image, requiri@(N') operations wheré' is the
total number of raw LIDAR points. Under nominal acquisition conditions, most
LIDAR data gridded to 5 m resolution will map approximately 100 raw points to a
single image pixel. The reduction of data by this factor reduces the number of all

subsequent operations on the LIDAR imagery by the same factor.
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2.5 Conclusions

| describe fundamental INSAR measurements and geometry and present an elec-
tromagnetic scattering model that relates a critical set of terrain parameters to the
INSAR observations. | give the dependence of the scattering model on the terrain
parameters and a method of numerically inverting the model to obtain estimates of
the terrain parameters. | describe LIDAR measurements and an empirical method

for estimating terrain parameters from the LIDAR data.
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Chapter 3

Data Fusion Via Multiscale

Estimation

3.1 Introduction

Chapter 2 discusses methods for transforming INSAR and LIDAR data into esti-
mates ofz, andAz,. After that transformation, the corresponding quantities can be
fused. This chapter presents a multiscale estimation approach to data fusion that is
based on the Kalman filter. The basic multiscale Kalman smoothing (MKS) algo-
rithm was developed in [3]. Its application has been limited to problems in which
the observations were linearly related to the state variables or cases where a nonlin-
ear relation had a closed-form inverse. In the present application, no closed-form
inverse between the original observations and state variables exists. Combining the
physical modeling of Chapter 2 with the MKS algorithm represents an extension
of the existing approach because it expands the domain of problems that can be
addressed with the MKS method. In Section 3.2 background material is presented

on the development of the MKS algorithm. In Section 3.3 fundamental aspects of
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Kalman filtering are discussed. The MKS algorithm is described in Section 3.4, and
aspects of the data fusion problem are discussed in Section 3.5. Finally, Section 3.6

gives conclusions.

3.2 Background

The Kalman filter represents one type of estimator. There are several other estima-
tion methods, including maximum likelihood (ML), maximum a posteriori (MAP),
and minimum mean squared error (MMSE) [27]. ML and MAP estimators both re-
quire the computation of conditional probability distribution functions (pdfs). Both
ML and MAP seek the most likely value of the random process given a measure-
ment. So both estimators find the best estimate with respect twuthent obser-
vation. The MMSE estimator produces an estimate that is globally optimal as it
seeks to minimize the variance of the ensemble of observations. For a given obser-
vation, the ML or MAP estimates may have a smaller squared error than the MMSE
estimate, but over many observations, the MMSE will have the smallest MSE.

The linear MMSE (LMMSE) estimate trades off between global optimality
and computational complexity. Unlike the other methods given above, LMMSE
does not require calculation of conditional densities. Instead, it relies on second-
order moments of the process and observations. Thus the LMMSE can be imple-
mented as set of linear equations that can be solved with non-iterative techniques.
If the process or the observations are not normally distributed, i.e. they are not
completely described by their first two moments (mean and variance), the LMMSE
will represent a suboptimal estimator. However, even when this is the case, the
performance is often close to optimal.

Normality of the data is assumed throughout this dissertation. Terrain re-

flectivity is typically assumed to be a white, Gaussian process [28]. The resulting
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interferometric phase is distributed approximately Gaussian. Similarly, the topog-
raphy observed by the LIDAR is assumed Gaussian, and the resulting estimates
of ground and vegetation heights are approximately Gaussian. Techniques exist for
transforming non-normally distributed data so that they are nearly normal [29]. The
choice of transformation is largely data dependent though and would necessitate ad-
ditional processing steps.

Multiscale, or hierarchical, signal modeling has received much attention
over the last ten years [4] [30] [31] [32] [33]. The work has been motivated pri-
marily by the need to develop stochastic models that capture the true multiscale
character of many natural processes and a need to combine signals and process
measurements of differing resolutions (data fusion). Approaches to hierarchical
data modeling have included methods based on fine-to-coarse transformations of
spatial models and methods that directly model processes on multiscale data struc-
tures, such as dyadic trees or quadtrees [33]. In this dissertation, | use the latter
approach with quadtrees to combine INSAR and LIDAR data of disparate resolu-
tions.

Some multiresolution approaches to data fusion have been reported, but they
either assume a linear relationship between the measurements and the state vari-
ables or linearize the process equations [3] [30]. A physical model was used in [4]
for the solution of a multiscale estimation problem, but only to determine measure-
ment variances in the stochastic data model. The data were still considered direct
measurements of the state variables. Schneider, Fieguth, Karl, and Willsky recently
solved a nonlinear problem (image segmentation) with the linear multiscale Kalman
filter approach [32]. In that work, however, a closed-form relationship exists be-
tween the state variables and observations. Thus, it is possible to estimate the state
using linear estimation by defining a pseudo-observation that is a linear function

of one of the state variables. Microwave scattering interactions with vegetation are
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Figure 3.1: The quadtree data structure, whergenotes scale. The support of the
tree at the finest scale 8’ x 2, wherem € {0,... , M}.

extremely complex. Even though | employ the simplest scattering model that still
retains the essential physical relationships between surface and vegetation heights
and the INSAR observations, no closed-form inverse relation exists. Therefore,
decoupling the nonlinearities from the multiscale linear estimation is required.

Fig. 3.1 shows a multiscale pyramid, or quadtree, which is used in the data
fusion. Wavelet decompositions have also been applied to multiresolution analysis,
but they do not readily accommodate irregularly spaced data or indirect measure-
ments of the process being estimated [30]. In this work, the more general problem
of combining sparse and dissimilar data types at multiple scales must be solved. For
this, a state-space approach is natural, which leads to a Kalman filter formulation.
In order to understand the multiscale Kalman filter, some background on Kalman

filter theory is needed.
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Figure 3.2: Block diagram of a Kalman filter, wherev N (0,1), Qu = w, Ru =
V.

3.3 The Kalman Filter

The Kalman filter can be presented as a recursive filter or as a linear estimator.
The former approach leads to formulations of a frequency response and transfer
function. The latter leads to a set of simultaneous linear equations. The linear
estimator is the most natural representation because the input, output, and state
variables are explicit. Fig. 3.2 depicts the basic operations of the Kalman filter.
Wiener and Kalman filters are both LMMSE estimators. However, the Kalman
filter is particularly suited to situations where the process to be estimated is not
observed directly. This allows uncertainty in the knowledge process and the mea-
surements to be treated explicitly. The Kalman filter balances the variance of the
process with the variance of the observations in a linear combination to arrive at an

estimate. As a result, it handles sparse or missing data in a natural manner.

3.3.1 Linear state model

The set of linear equations that comprise the Kalman filter include a state relation

L1 = <I>k:ck + Wy (31)

39



where

x, = (n x 1) state vector at step
®,. = (n x n) state transition matrix
wy, = (n x 1) process noise

and a measurement relation
Y, = Hyxp + vy (3.2)

where
y, = (m x 1) measurement vector at step
H, = (m x n) state-measurement relation

v = (m x 1) measurement noise

3.3.2 Kalman filter algorithm

The recursive algorithm that produces the Kalman filter estimates is given in Fig. 3.3.
In Fig. 3.3, the process noige is assumed to be white (uncorrelated for nonzero

lag) with covariance):

Bt ={ ' =F (3.3)

0,i %k

The measurement noigeis assumed to be white (uncorrelated for nonzero lag)

with covarianceR:

Rei—k
Elvyv]] = * (3.4)
0,i #k

The process and measurement noise are not cross-correlated.

Elwivl]| =0 Vi k (3.5)
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. Enter the initial priors
ii’l|0, P1|0

. Calculate the Kalman gain
K= Py H,(H,P_ H|, + R;,)™"

. Enter the observations
Ty = Bpp—1 + Ky — HpZrp—1)
P,=(I—-K;H})Ppj_

. Project ahead
Thp1pp = Pripr
P = &, Pr®; +Q,

. Return to step 2 using the projected estimates as the
priors.

Figure 3.3: The recursive Kalman filter algorithm.

41



The conditions onw andwv given by (3.3)—(3.5) are necessary conditions for
the Kalman filter to be the optimal LMMSE estimator. It is also necessaryd@#hat
Q, H, and R be known. In practice, these parameters will not be known exactly,
but they are often known approximately. The performance of the filter when these
parameters are not perfectly known or the noise terms are not exactly white is often

quite good, although not strictly optimal.

3.3.3 Kalman smoothing estimates

The Kalman filter has been widely used to estimate the values of a set of state
variables given a model for the evolution of the state variables and their relationship
to the observations. The filter minimizes the trace of the error covariance matrix
P, which is equivalent to minimizing the mean squared error (MMSE) between the
stater and the estimat#, for each sample of the independent variable [34]. In most
applications, the independent variable is either a temporal or spatial coordinate. For

the k' sample, wherd is the expectation operator, the error covariance matrix is
P(k|k) = P, = Eleyel] = E[(zy — &) (z) — &1)7] (3.6)

The k™" estimateg,, is conditioned on the observation at sampl@f present) and
the previous estimate of the statg_;. The Kalman formulation naturally accom-
modates missing data because previous estimated state values are used in conjunc-
tion with observations to determine the current state. The observations and the state
model are weighted according to their variances.

Kalman smoothing is accomplished if a return sweep through the data is
performed. Smoothing utilizes observations subsequent to the current sample to

improve the estimated state, in the sense of reduced variance [34]. The error covari-
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ance of the smoothed estimates is

PS(k|IN) = P(klk) + J(k)[P*(k + 1|N) — P(k + 1]k)]J" (k)
J(k) = Pk|k)®T(k+1,k)P ' (k+ 1]k) (3.7)

where N is the total number of samples to estimate= N — 1,N — 2,...,0,

and® is the state transition matrix. The formulation in (3.7) is sometimes referred
to as Rauch-Tung-Striebel smoothing or fixed-interval smoothing. More recently,
Kalman smoothing has been adapted for multiscale data representations [3] [30]
[4]. The derivation of multiscale Kalman smoothing (MKS) is a generalization of
classical Kalman smoothing, with the addition of a merge step to accommodate the
change in support of the data at each scale. Because of the underlying Kalman
formulation, this method can accommodate irregularly spaced and sparse observa-
tions. In addition to the estimates, it provides the corresponding uncertainty (error
variance) for every estimate, which is essential for quantitative analysis. Unlike the
Wiener filter, which also provides MMSE estimates, the Kalman formulation ex-
plicitly separates the measurement and state relations, which makes it better suited
to data fusion [34].

3.4 Multiresolution Kalman smoothing

To present the multiresolution version of the Kalman filter, it is helpful to amend
notation slightly. In discussions of 1-D processes, the arguimentised to denote

the recursion index of the filter. Multiscale processes are modeled on tree data
structures, and will denote the nodes of the tree and repldcas the index of
recursion. For a 2-D process, multiresolution Kalman smoothing begins with a
fine-to-coarse sweep up the quadtree that is analogous to Kalman filtering with an

added merge step. This s followed by a coarse-to-fine sweep down the quadtree that
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corresponds to Kalman smoothing. Using the scalar form for clarity, the coarse-to-

fine linear dynamic model is given as

z(s) = ®(s)x(Bs)+T(s)w(s) VseS,s#1
y(s) = H(s)z(s)+v(s) Vs e TCS (3.8)

wherex is the state variable, ang represents the observations. The stochastic
forcing functionw is a Gaussian white noise process with identity variance, and
the measurement erreris a Gaussian white noise process with scale dependent
varianceR(s). S represents the set of all nodes on the quadtree,7adénotes
those nodes at which an observation is availabls the node index on the tree, and

s = 1 denotes the root nodé? is a backshift operator in scale, such tiiatis one
scale coarser than @ is the coarse-to-fine state transition operdias the coarse-
to-fine stochastic detail scaling functiaH,is the measurement-state model, dhd
represents the measurement variance of the observations. A complete description of
the MKS algorithm can be found in [3] [4]. This algorithm is noniterative and has
constant computational complexity per pixel Wit{S,,) operations, wherg,, is

the number of nodes at the finest scale= ).

A significant limitation of this basic Kalman approach is the requirement
that observations be linearly related to the state processes. This is often not the
case, and is certainly not valid when INSAR and LIDAR measurements are used
to estimate ground elevations and vegetation heights limbarized Kalman filter
does accommodate nonlinearities in the measurement-state relation, but does so by
estimating small deviations about nominal state values. This approach can be ade-
guate for slowly-varying processes with dynamics that are well enough understood
to specify a meaningful deterministic nominal state. However, topography and veg-
etation heights can change abruptly and in general must be modeled statistically.

The extended Kalman filteallows the linearization to take place about the esti-
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mated process instead of a fixed deterministic process, but as a result, estimates can
diverge. To avoid these problems, we estimate the state variables from the data by
modeling the scattering interactions. In the case of INSAR, we invert a microwave
scattering model, and for LIDAR, an empirical model is employed. Modeling pro-
vides greater insight into the nature of the state processes and accommodates the
nonlinear measurement-state relations.

Fig. 3.4 depicts the overall framework. It shows the physical modeling of
the INSAR and LIDAR data as separate from the data fusion, which occurs in the
multiscale estimation step. The data fusion method is general, with the primary
requirement being that the observations are linearly related to the state variables.
If new data types or new applications are to be investigated, then one need only
replace the details of the physical modeling with some other operation that maps
the data to some linear function of the state variables to be estimated.

In the multiscale case, any filtering operation will need to incorporate data
at various scales and return a final result at the finest scale to be useful. Thus the
Kalman filtering must necessarily be followed by Kalman smoothing to return to
the finest scale. The total algorithm will be referred to as the multiscale Kalman
smoothing (MKS) algorithm. The MKS algorithm was first presented in [3], and
was applied to remotely sensed oceanographic data in [4]. We present a summary
of the algorithm here. Fig. 3.5 shows a simple multiscale data structure to present
the notation. The bold notation is dropped in the multiscale expressions for clarity,
but it is understood that the quantities that were matrices and vectors in the 1-D case
remain so in the multiscale case.

The process noise variance must be allowed to vary with scale in order to
describe self-similar stochastic processes, such as topography. We asgyme
N(0,1), thusE[w(s)w™ (t)] = Ids,. SoT'? represents the variance of the stochastic

detail that is incorporated as the resolution increases. The initial priors are specified
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Bs= Bt=s”"t

sa, s, ta, ta,

Figure 3.5: Simplified multiscale data structure (dyadic tree) used to present nota-
tion. B represents a backshift operator in scale\ ¢ represents a parent node to
nodess andt. « represents a forward shift operator in scale.

for the process model that evolves downward (3.8). Assuming a zero-mean process

[4], the priors for the state mean and covariance are

Tip = Elz(1)]=0
Py = Elz(1)2" (1)] = P,(1) (3.9)

wheres = 1 represents the root node, aRgs) denotes the covariance of the state

at nodes. These priors are used with the recursion in (3.8) to generate a realization
of a multiscale stochastic process. The resulting estimates of the state and state
covariance at the leaf nodes are then used as the initial priors in the upward Kalman
filter. In general, little is known about the process to be estimated?; 60 is
chosen to be some large number, such@s Thea priori process model is now

completely specified. The corresponding upward model can be specified, which the
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Kalman filter will track:

x(Bs) = F(s)u(s) +w(s)
y(s) = H(s)z(s)+v(s) (3.10)
F(s) = Py(Bs)®"(s)P'(s) (3.11)
Efw(s)w"(s)] = Py(Bs)[I —®"(s)P, " (s)®(s)P,(Bs)]
= Q(s) (3.12)

Here,(Q is the process noise covariance in the upward model. It is the multiscale
analog toQ) in the temporal Kalman filter in Section 3.3 is the fine-to-coarse
state transition operator. The MKS algorithm now proceeds with initialization, the

upward sweep, and finally the downward sweep, as described in Section 3.4.1.

3.4.1 MKS algorithm

Initialization

At the leaf nodes, enter the prior values

z(s|s+) = 0 (3.13)
P(s|st+) = P (3.14)

Upward sweep
The upward sweep is equivalent to a Kalman filter operating in scale with an ad-
ditional merge step that reduces the support of the estimates at each scale. Having

defined the initial priors at the leaf nodes, the algorithm proceeds from the base of
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the quadtree up to the root node

i(sls) = @(s|s+)+ K(s)[y(s) — H(s)i(s]s)] (3.15)
P(s|s) = [I—K(s)H(s)]P(s|s+) (3.16)
K(s) = P(s|sH)H (s)V(s) (3.17)
V(s) = H(s)P(s|s+)H"(s) + R(s) (3.18)

The project-ahead step is applied at all scales above the base=Ffr, 2, 3,4},

we have

(slsay) = F(say)z(say|say) (3.19)
P(s|sa;) = F(sa;)P(say|sa;)FT (sa;) + Q(sa;) (3.20)

The four project-ahead estimates from eack 2 group of nodes at the previous

scale must be merged into a single value at the current scale

i(s|s+) = P(s|s+) Z P71 (s|say) i (s|say) (3.21)

q -1

P(s|s+) = [(1-q)P,}(s)+ Y P '(s|sev) (3.22)

=1

For the quadtree;, = 4.

Downward sweep
The upward estimate at the root node is used as the initial condit{on = z(0|0)
to start the downward sweep, where the supersgnipters to a smoothed quantity.

The downward sweep then proceeds down the tree

°(s) = z(s|s) + J(s)[2°(Bs) — &(Bs|s)] (3.23)
Pi(s) = P(s|s)+J(s)[P*(Bs) — P(Bs|s)]J" (s) (3.24)
J(s) = P(s|s)F"(s)P~(Bs|s) (3.25)
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3.4.2 Stochastic model identification

Before (3.8) can be applied to data, a general form for the stochastic model of
the state must be chosen that approximates the scale-to-scale evolution of the state
process. Once a general form is selected, specific values for the model parameters
must be computed. In this dissertation, a fractional Brownian motion model is
assumed, and the power spectrum of the stochastic model is matched to that of the
data.

Many natural processes, such as topography, can exhibit approximately self-

similar statistics across resolution scales. Statistical self similarity implies
2(€s) 2 €x(s) ,0<p<1l ,£€>0 (3.26)

wherep is the Hurst exponent, and denotes equality in distribution [35]. This
characteristic can be closely approximated wihf* stochastic models, where

1 determines the rate of change of the process variability with spatial scale [36].
These models are closely related to fractional Brownian motion, which is charac-
terized by zero initial state and Gaussian statistics [4] [34]. For scalar processes,
the coarse-to-fine process noise is given by a white, Gaussian random variable with
zero mean and variand®, wherel' may be a function of scale. In the fractional
Brownian motion model, the coarse-to-fine state transition is udity)( = 1),

which indicates that the unforced state is perfectly correlated through scale. All of

the variation is provided by the stochastic detail function
[ =Ty 20-wm/2 (3.27)

wherem is the scale['? is the variance at the root node, apdyoverns the rate
at which the variance changes with scale. With> 1, the variance decreases

monotonically with increasing resolution.
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Because d/f* process implies a power spectrum that is proportional to
1/|f|*, pandly can be chosen so that the power spectrum of the multiscale data
model matches the sample power spectrum of the observations. The power spec-
trum of the INSAR data is computed at the finest scale at which INSAR data are
available. The power spectrum of a realization of the stochastic data model in (3.8)
is computed at the same scale using empirically selected valyeswod ', that
produce a close match.

Power spectra of discrete image data can only represent signal energy over
a finite range of spatial frequencies, so a 2-D Hamming window is applied to the
data prior to computing the power spectra to reduce aliasing. Integrability of the
power spectrum is maintained at high frequencies because of the boymtuerto
discrete image data. Physical processes, such as topography, diverge frofi the
model at very low frequencies, which leads to finite values for the power spectrum
nearf = 0.

Because the INSAR and LIDAR data are transformed into estimates of the
state variables by the physical modelirfd,is simply a selection matrix. It is a
binary indicator function for the presence of an observation at a particular scale and
pixel location.

The measurement error variangeis determined from sensor parameters
and from the data. In the case of INSAR data, the Cramer-Rao bound for the phase
noise is used to determine a spatially-varyR(@). For the LIDAR data, a spatially-
varying R(s) is determined from the variability of individual LIDAR pulse returns.

These error sources were discussed in Chapter 2.

R Vs €T CT
R(s)={ VAR 5= (3.28)
Rirpar VseTr CT

Here, 7 s is the set of nodes where SAR data are available,ands the set of
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nodes where LIDAR data are available.

The state variable(s) is z, when estimating surface elevations ad,
when estimating vegetation heights. The methods used to obtain initial estimates of
zg andAz, from the INSAR and LIDAR observations were described in Chapter 2.

All of the parameters in (3.8) are thus determined.

3.4.3 Computational complexity

This algorithm is non-iterative and the number of operations grows linearly with
the number of leaf nodes. To see this, $&t be the number of leaf nodes. There
areL%SMJ nodes on the tree. Thus, the total number of nodes is lineay;irSince

all operations are local (nearest neighbor children and one parent), the complexity

per node is constant. So total complexity is lineaf ja.

3.5 Data fusion with the Kalman filter

The INSAR data is the primary measurement because of its wide coverage area.
We wish to combine LIDAR data with the INSAR data to improve the estimates.
In the MKS algorithm, data from different sensors are incorporated in the Kalman
observation variablg. At the finest scaley will represent LIDAR data, while at a
coarser scale, it will represent INSAR data. When combining data from different
sensors, we need to know whether or not adding new data will always help; i.e.,
whether or not it will always reduce the MSE, so that we avoid deteriorating the
estimate quality by fusing data. Section 3.5.1 addresses this issue. It is also of
interest to know how the estimate error will propagate where no observations are
available. This is a common situation at the finest scale, where the data are often

sparse, or there is incomplete coverage. Section 3.5.2 describes the behavior of the
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estimate error when observations are absent.

3.5.1 Impact of additional data types

| determine the impact of adding another data type (LIDAR) in terms of the estimate
uncertainty. Ground truth measurements conducted at the test sites demonstrated
that the LIDAR data are closer to the actual surface and vegetation heights than
the INSAR data once all relativéé"-order (offsets) and*‘-order (tilts) biases be-
tween the INSAR and LIDAR have been removed. LIDAR data also exhibit smaller
measurement error variance than the INSAR dataRe< Rs.

The Kalman gain determines how the observations are weighted relative to

the state model in determining the estimate.
Ky =Py H (HyPy H + Ry)™" (3.29)

Consider two limiting cases, where the measurement is peRget 0, and where

the measurement is completely untrustworthy, or there is no measur&pento.

forR,=0: Kjy= Py H} (HyPy Hj +0)"' =1 (3.30)

Py, = (I —1H})Py;_, =0

fO?“Rk =00 . Kk = Pk\k—IHZ(HkPkUc—ng + OO)_1 =0 (331)

Pk:(I—OHk)Pk‘k_1:Pk>0

SmallerR reduces the estimate uncertaiiy, thus adding the LIDAR will always

improve the final estimate at samgle
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3.5.2 Error propagation

In Section 3.5.1 it was proven that under the stated conditions adding LIDAR data
at samplée: will improve the estimate at sampte Now we wish to determine what
effects the presence of measurement might have on neighboring estimates where
data is no longer available. Specifically, we wish to know how the estimate un-
certainty deteriorates as the Kalman filter moves across samples where data are
missing due to sparse coverage or data drop outs. The 1-D Kalman filter is exam-
ined here because it results in a simple closed-form solution. We will show that
the error uncertainty remains bounded. Bounded estimate uncertainty was proven
for the multiscale case in [37], but in that case, no explicit relation to the Kalman
model parameters was obtained.

Let us denote the recursion steps by the sequénee {0,1,...,[,] +
1,...}, wherel is the last step at which an observation is available. For any step
k > [, estimates are determined solely from the state model, the posterior esti-
mate&, and estimate error covarianéeat k£ = [. As described in Section 3.5.1,
R, = 0 — K, = 0 at nodes: > [. The estimate error variand®, varies withk

as:

Py, = (I-K . H,)P, (3.32)

P, = P

L1 =2 P® +Q,

Py = P ,=®.P.®,,+Q,

Py = &,[®P® +QJ®, +Q., (3.33)

Here, P, is used as compact notation fét,,_,. Letd be the number of steps

beyond step, and assumé is constant. The®,, , becomes

Pl+d _ @dPl(@T)d + @d—lQl(@T)dfl 4.+ (}lQl+d71(¢T)l
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The functional form is made apparent by considering the scalar case:
d
Py =3P+ ®VQu; VEk>1 (3.34)
i=1
whered = k — 1. P, varies exponentially witld, thus it varies exponentially with

k once no more observations are present. It is now showrmihamains bounded

ask increases.

Theorem 1. In the absence of measurements, the Kalman filter error varidfce

remains bounded ais — oo.

Proof: 1. Without loss of generality, we can assume the following conditions on

the Kalman filter hold:

0<d<1
0< P <o

0<@Q < (3.35)

P, and @) are variances, so they are finite and positive. Naturally occurring and

stable stochastic processes satisfy < 1. From (3.34),
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k—1
P = (1)2(k—1)pl+2@2(i71)Qk7i (3.36)
i=1

Let (3.37)
ar = VP (3.38)
by = sz P20-Q, (3.39)
Then - (3.40)
Py = ap+b (3.41)

a, = (I)Q(k:fl)Pl

P
: _ : 2k—2 _ 11 4. 2k
fpoe = Al e =g
limap = —L(0)=0 (3.42)
e = @)= -
k—1
by = Z P20-VQ, (3.43)
i=1
The dependence 6}. on £ is made clearer if) is assumed to be constant.
k—1
be=QY &Y (3.44)

=1
Substitute) = i — 1. We obtain a geometric series @t. For |®| < 1, the series

converges to a finite limit.

k-1
. A 2j Q
Jim b= Qlim 3, 8% = = (3:45)
So, forP;, we have
lim P, = lim q; + lim b, (3.46)
k— o0 k— o0 k—o0
lim P, = _Q (3.47)
k— 00 1 — P2
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Estimate error uncertainty sqr&QP

observations no observations

0 100 200 300 400 500 600

Figure 3.6:\/ P, for a simulated 1-D random process. No observations are present
afterk = [ = 300. /P, converges to,/()/(1 — ®2), which is equal to 7.1421 in
this example.

Py, converges to a finite limit as — oo and thus remains bounded.
QED m

The estimate uncertainty P, is plotted in Fig. 3.6 to show how it converges to its
upper bound. In this examplg) = 2, & = 0.9802, and+/ P, converges to a value
of 7.1421.

3.6 Conclusions

This chapter presents the basic MKS algorithm. It also presents classical 1-D
Kalman filter theory to illustrate Kalman filtering and smoothing algorithms and
the assumptions on correlations that are required for optimal filter performance.
These assumptions play an important role in the adaptive estimation case, as will
be seen in the following chapter. Finally, | provide a criterion for deciding whether

a new data source is worth incorporating and prove that the estimate error remains
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bounded in the absence of data.
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Chapter 4

Adaptive Multiscale Estimation

4.1 Introduction

The MKS algorithm and some important properties of Kalman filtering of multiple
data sets were presented in Chapter 3. In this chapter, the algorithm is generalized
to allow locally adaptive updating of the Kalman model parameters. By employing

a multidimensional process model, the Kalman filter can operate in space as well
as scale, as shown in Fig. 4.1. The filter detects suboptimal performance in the
Kalman filter that arises from incorrect initial parameter values or non-stationarities
in the data. Detection occurs when the filter operates in the spatial dimension. That
information is propagated as the filter operates in scale resulting in a mechanism to
determine spatially-varying process noise.

The impact of modeling errors is discussed in Section 4.2. In Section 4.3
common approaches to adaptive estimation are described, and in Section 4.4 the
particular adaptive method used in this dissertation is presented. The incorporation
of the adaptive estimation into the multidimensional algorithm is discussed in Sec-

tion 4.5. The result is an adaptive MKS (AMKS) algorithm. Finally, in Section 4.6
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Input Data

A

filter in scale filter in space

Dense INSAR data
(low resolution)

Sparse LIDAR data
(high resolution)

Figure 4.1: The quadtree data structure, as seen in Fig. 3.1, with observations shown
at difference scales. The AMKS algorithm operates in scale just as the MKS algo-
rithm does, but it has the capability to operate in the spatial dimensions to detect
modeling errors and non-stationarities.

conclusions are presented. Throughout this chapter, the bold notation for vectors
and matrices is dropped for clearer exposition. All vector quantities introduced in

Chapter 3 remain vector quantities unless stated otherwise.

4.2 Effects of modeling errors

If any of the Kalman model parametebs(), H, or R is incorrect, or if either noise
processy or v is not white, the Kalman estimates will be suboptimal. Consider a 1-
D signal that is piecewise wide sense stationary (WSS) in two regions, as shown in

Fig. 4.2. The true values @) and R are different in the two regions, and there is a
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step change between the regions. Thus, the signal changes both its first and second
order statistical moments at the point of discontinuity. A non-adaptive Kalman filter

is applied to the data that uses the correct model values in region 1 and continues
using the same values in region 2, yielding estimafgs A second filter also tracks

the process, but it uses the correct model values in both regions, yielding estimates
Z. The second filter represents a perfectly adaptive filter.

The effects of non-adaptive estimation are manifested in region 2 (Fig. 4.3).
Both z andz,, estimates are optimal in region 1, but onlys optimal in region 2.

In the detailed view, it can be seen thatracks the true process more closely than
Tnq, €Specially just after the discontinuity. In spite of an apparently large change in
the process from region 1 to region 2, it can be seen that both estimates track the
process reasonably well.

One of the strengths of the Kalman filter is its ability to provide reason-
able estimates in spite of some modeling errors. This is possible because of the
(yr — Hpri1x) term that appears in the filter algorithm. This term represents
the difference between the current observation and the projected estimate, in other
words the projection error. It allows the filter to track large-magnitude changes in
the state process, and plays an important role in the adaptive algorithm used in this
dissertation.

In Fig. 4.4, it is seen that the calculated estimate uncertaifiyis smaller
for the non-adaptive filter. However, ttieie error, represented by the difference
between the simulated state process and the estimates, is smaller for the adaptive
filter. The non-adaptive filter had a MSE @280 in this simulation, and the adap-
tive filter had a MSE 010.266, corresponding to a 5% improvement. Using the
non-adaptive filter is detrimental in two ways. The estimates are less accurate in the
mean square sense, and the calculated estimate uncertainty is incorrect, which may

lead to erroneous interpretation of the results.
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True signal and its observation
T T T T T T
— x: true state by e i o y
— - z: observation I F! S R by
— — process change at 300 W L[

0 100 200 300 400 500 600
sample index

Figure 4.2: Simulated 1-D random process that is piecewise WSSwith 4(),
andR2 - 3R1

For the simulation in Fig. 4.2), = 4@, andR, = 3R;. In Fig. 4.5, a much
larger change in the noise variances in region 2 is simulated, whete 2000,
andR, = 10R;. The step change is omitted to obtain clearer plots of the signals.
The non-adaptive filter had a MSE ®£.59 in this simulation, and the adaptive filter
had a MSE ofi 3.50, corresponding to a 45% improvement.

An important lesson learned from this 1-D simulation is that even a perfectly
adaptive Kalman filter may only slightly improve the estimates obtained from a
standard Kalman filter. The magnitude of that improvement, and its importance to
the application, will depend on the variability of state process and the magnitude of
the modeling errors. An adaptive capability may be warranted, even if it provides
a relatively small improvement in the mean squared error, if it provides greater

understanding of the process under study.
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Figure 4.3: Adaptive: and non-adaptive,,, estimates of the process in Fig. 4.2.
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Figure 4.4: Estimate uncertainty and actual squared error for the adaptive and non-
adaptive estimates in Fig. 4.3.
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True signal and its observation
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Figure 4.5: Simulated 1-D random process with large changes in the noise vari-
ances(), = 200, andR, = 10R;.

4.3 Adaptive estimation approaches

Several approaches to adaptive estimation have been reported in the literature [38].
The most common are Bayesian methods [39], maximum likelihood methods [40],
correlation methods [41], covariance matching methods [42], and multi-model meth-
ods [43]. Leta denote the set of unknown Kalman filter parametfersH, Q, R}.
Let Y* denote the set of observatiof, . .. , yk}.

Bayesian estimation seeks to computeaaposteriori probability density

p(aY*) and then forms the estimate as the conditional expectation
A

where, A represents the region of support of the density function [44]. Wien
represents a large space (continuous) or set (discrete), the computational complexity

of the integration can be prohibitive. Also, the conditional probabijlity|Y*) is
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determined from Bayes Rule as

p(Y*a)p(e)
p(Y¥)

which is sensitive to the accurate determination of the prior probabilities This

plalY®) = (4.2)

requires substantial priori knowledge that is not generally available.
Maximum likelihood methods seek the maximum of a likelihood function

L(z, o) representing the joint density function of the proces§45].

Iterative nonlinear optimization techniques are often required to locate the max-
imum. Slow rates of convergence, discontinuities in the search space, and local
maxima can lead to difficulties in the implementation of maximum likelihood meth-
ods [38].

In correlation methods, the autocorrelation of the observations or of the pre-
diction errors in the Kalman filter is calculated. The prediction errors in the Kalman

filter are also known as the innovations. They are given by

Ve = Yp — HiZpi1k (4.4)

The system parameters are related to the observed correlations to solve for unknown
parameters. Correlation methods assume that the random processes are ergodic SoO
that the sample variance can be used to estimate the autocorrelations. It is usually
preferred to use the innovations rather than the observations because they com-
prise a statistically independent sequence under optimal filter operation. This is the
innovation—correlation method, and it is discussed further in Section 4.4. The se-
guencey, is tested to determine whether it is actually white by calculating the auto-
correlation function. A non-white sequence implies that the model parameters may

be incorrect or the noise may be correlated. Non-iterative algorithms are available
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to updateX’, R, and@ when this occurs [41]. Figure 4.6 shows the autocorrelation
function (ACF) ofy, for the adaptive and non-adaptive filters in Fig. 4.3.

The ACF of an ideal white noise process is characterized by a large value
at zero lag and much smaller magnitude values for all other lags, which indicates
no significant correlation among the elements of the signal. The ACFs in Fig. 4.6
both appear consistent with a white noise process, but the ACF of the non-adaptive
filter is shown to be non-white using a 95% confidence interval test. Thus, it is
possible to discern the presence of errorg)imnd R by calculating ACkv(k)).

The confidence interval test is discussed further in Section 4.4. The ACFs for the
simulation in Fig. 4.5 are shown in Fig. 4.7. In this case, the ACF of the non-
adaptive filter is clearly non-white, and is shown to be non-white by the confidence
interval test. The ACF of the adaptive filter is considered to be approximately white
since fewer than 5% of the ACF samples exceed the confidence test limit.

The covariance matching method tries to make the covariance of the inno-
vation sequence equal to its theoretical value. However, this method may fail to
converge wher) is not known.

Multi-model methods have become the most common adaptive estimation
approach in recent years. They are appealing because they consist of a set of
Kalman filters, thus they are non-iterative. In cases where the process dynamics
are well known, and the parameters can take on only a small set of values, this
approach may be the best. This approach is often used to estimate trajectories of
orbiting satellites that obey well-known dynamical equations of motion in a small
number of different circumstances. However, the dynamics of geological, erosional,
and biological processes that generate topography and vegetation do not reduce to
simple analytical governing equations. Thus, no deterministic models exist that de-
scribe surface and vegetation heights under general circumstances. Therefore, the

multi-model approach is not appropriate for the estimation of topographic data in
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Figure 4.6: Autocorrelation of the innovations for the
estimates of the process in Fig. 4.2.
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Figure 4.7: Autocorrelation of the innovations for the adaptive and non-adaptive
estimates of the process in Fig. 4.5.
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general.

4.4 |Innovation—correlation method

The innovation—correlation method is theoretically based, and is computationally
attractive because it is noniterative. It is also well suited to stochastic problems
in which the precise dynamics of the process are not known. The measurement
residuals (innovations) comprise a zero-mean, white, Gaussian sequence when the
model parameters are correct. Therefore, testing the innovation sequence for non-
white behavior by computing the autocorrelation function indicates whether the
model contains errors or not.

Mehra showed that the process noise variance in a Kalman filter could be
correctly estimated using the autocorrelation function (ACF) of the innovation se-
guence to obtain the optimal filter [38] for the stationary case. Recently, this method
has been extended to examine the innovation sequence locally, and thus update the
estimate of the process noise locally for non-stationary processes [46]. In this dis-
sertation, the method of [46] is implemented within a multiresolution framework.

The innovation sequence is a function of the process noise vaiiamnekich
is estimated from the local autocorrelation function. This method produces asymp-
totically normal, unbiased, and consistent estimat&g.ofhe method of [46] uses
a batch of recently computed estimates to update the process noise variance. The
innovations are the prediction error, and thus represent the “innovative” information

provided to the estimate via the observations:
Uk = Yp — HpZpp 1 = Hpep + vg (4.5)

Here,e, = x, — 2451 iS the error between the true state and the project-ateead (

priori) estimate. Mehra [41] showed that when the model parameters are correct
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and the noise processes are white, the innovations comprise a Gaussian white noise

sequence.

Theorem 2. The innovationg,, comprise a white noise sequence when the filter is

operating optimally.
Proof: 2. By (3.3)—(3.5),
E[l/kVJT] = FE[(Heg +vi)(He; + vj)") (4.6)
Sincevy, is uncorrelated withe; andv; for k # ;.
— E[Hep(He; + v;)7] (4.7)
Recally, — Hypp—1 = Hper, + v
= E[Hey(y; + Hijj)"] (4.8)
For k # j, e;, is uncorrelated withy;. Also,z;; , depends only op;, wherel < j.
Elvw]]=0, fork>j (4.9)
Similarly, E[v,v]] = 0, for k < j. Thus,
Elv]=0, Vk#j. (4.10)
Q.ED g

Sincee,, andv,, are assumed to be distributed Gaussiarns also distributed Gaus-
sian since it is a linear combination @f andv,.
If model errors exist, however, the assumptions about uncorrelated processes

will be violated, thusE[ykz/f] # 0 in general. It is therefore possible to detect
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the presence of model errors by determining,ifforms a white sequence. If the

innovations are not white, the sequent@F'(vy,) is used to updat®:

ACF(v) = Elww_;] = HEleye, _;JH" + HEleyvf_j] fork #j  (4.11)
Elere; ;] can be related t@), which leads to an algorithm for updatirig. For
k#j

Blerei_;] = [®(I — K H(K))]" Py (4.12)

Elepvi_j] = —[®( — K H (k)" '®K R (4.13)
P, = ® — K, H(k))P,,(I - H"(k)K")®" +

K, R(k)KLOT +Q (4.14)

where the subscripts refers to steady state. Fbr= 7,
Elvgvy_;] = H(k) Py H" (k) + R(k) (4.15)
The covariance matrix for the innovatioh$vv; ;] is denoted by’ (k)

H(k)[®(T — K\ H (k)
C(k) = B(P HT (k) — K,,Co) fork #£0 (4.16)
H (k)P HT (k) + R(k) fork=0
wherefk denotes the lag of the autocorrelation function. For scalar, zero-mean pro-

cesses('(k) is the autocorrelation function.

4.4.1 Test for optimality

The whiteness of (k) is determined from the estimates@fk), given byC (k):

N,—1
A 1

C(k) = N v (i —k) k=0,1,..., N (4.17)

j=k
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The data are processed in batchesVpftrailing samples. For a particular batch,
Niqg Samples ofi’(k) are calculatedX,,, < Ny). The ACF of the innovations is
calculated and the 95% confidence interval test for a Gaussian random variable is

used to test for whiteness [46]:
fOI’ 095% = 1.960’6, P{—ng,% S C S 095%} =0.95 (418)

whereo. is the standard deviation 6f(k). If more than 5% of the ACF samples,
not including the zero lag sample, fall outside the rafg€ss%, Cos%), thenv(k)

is considered non-white.

4.4.2 Estimation of model parameters

Onceé(k) is computed in (4.17), estimates Bf,H” are obtained for each us-
ing (4.16). The resultingv,,, recursive equations can be organized into a matrix

calculation:

H(k)®

H(kf)qﬂ [P HT]

C, + H(k)DK,,C,

Co+ H(k)®K,,C, + H(k)®2K,,C,
y (k) 1 (k) 0 _0 (4.19)

| Oy + H(R)PK Oy + - + H(k)ONies K G

Using the approach of [38], the following expression is used to solvé)fofhe

argument is dropped because the estimate is made for each batshsdmples.
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Forj=1,..., Ny,

N HEQ@")H" = HP,(")H" — HY P, HT

1=0
j—1
~> H®B(®")H" (4.20)
=0
where
B = ®(K,,CoKT. — Py HTKT — K, HPyy)®" (4.21)

o ——

P, H" is obtained by solving (4.19). Sindg, = PZL

" (P HT)" = HP,,. Equa-
tions (4.20) and (4.21) yield a set of linear equations that can be used to solve for
each element in th€@ matrix. For the scalar casé), is substituted for) in subse-
guent Kalman filter calculations:
. HPL®TH — HOI P H — Y0~ &' BH?
Zf:_(} d2i—3j [2

The innovation—correlation method was presented by [41] [38] with the as-

(4.22)

sumption that the process noise is WSS over the region of support of the data. It was
subsequently extended by [46] to accommodate process noise that is only piecewise
WSS. The primary extension was to implement the algorithm over a finite number
of estimates (batches) rather than over the entire set of estimates KThtisand
@ can be locally updated. This extension to piecewise WSS processes is impor-
tant for processing remote sensing images since images of terrain are not WSS in
general. For example, the first and second moments of ground elevations and veg-
etation heights are different in a flat prairie and a hilly forest. An image containing
both types of terrain therefore contains non-stationary data.

In this dissertation, | implement the method of [46] in a multiscale frame-
work so that the MKS model parameters presented in Chapter 3 are not constrained

to be uniform at a given scale. Since the multiscale pyramid depth only grows as

74



log, of the image width, it is impractical to upda€g in scale directly using this
method. For example, B)24 x 1024 image corresponds to pyramid depth of 10.
Instead, at a given scale in the pyramid where complete (dense) INSAR observa-
tions reside, Kalman filters are applied in the spatial dimensions to u@datally.

That information is then used to updagein the multiscale filter. This method is

non-iterative.

4.5 Multidimensional state model

Combining the multiscale Kalman filter in Chapter 3 and the adaptive estimation
of @) in Section 4.4 can be viewed in a general multidimensional state-space frame-
work. A linear multidimensional state model, known as the Fornasini-Marchesini
Form Il (FM-II) state model, was developed in [47]. This representation can admit
process dynamics in multiple dimensions. The original model considers bases of
uniform support, such as image row and column. However, it can be extended to
admit a dimension of non-uniform support, such as scale, if a merge step is incorpo-
rated, as in the MKS algorithm. In this way, a process modet ey can be written

that accounts for process dynamics in scale and spatial dimensions. The node index
s is written in terms of these dimensions= {m, i, j}, wherem represents scale
(level of the quadtree) an(d, j) are the image pixel coordinates. The fine-to-coarse

state model is given by

1 1
1
x(m,i,j) = @(m|m+1)ZZZx(m+1,2i—l,2j—k) (4.23)
= 0
1 1

4

1
SN wlm+1,2i-1,2j - k)
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where{(m+1,2i —1,2j), (m+1,2i,2j), (m+1,2i— 1,25 — 1), (m+1, 2i, 2j —
1), (m,i—1,75), (m,i, j—1)} is the set of nodes from which the priors in the upward
filter are derived.

Formulating the adaptive estimation algorithm under this generalized pro-
cess model can lead to difficulties in determining regions of support for the au-
tocorrelation function. In this dissertation, the Kalman filtering is restricted to a
sequence of 1-D filter operations, and all process dynamics are assumed separable.
This simplification is used to make the integration of the spatially-adaptive estima-
tion into the MKS framework tractable, but it is not a fundamental limitation of the
FM-II model.

Fig. 4.8 graphically depicts how the information from the set of priors is
provided to the current estimate in the spatial filter. The filter starts at the base
of the quadtreert = M) using the standard multiscale procedure presented in
Chapter 3. Upon reaching a level that contains dense observaticasi/ — 1 in
this example), two 1-D Kalman filters operate along the rows and columns of the
image. The priori estimates of the spatial filters incorporateahg@iori multiscale
estimates atn = M — 1. The fine-to-coarse process noise varia¢é/ — 1,1, j)
is updated by the row-wise filter if non-white innovations are detecte¢/ —

1,i,7) may again be updated as the column-wise filter operates on the columns.
TheQ(M —1,1, j) arrays from the row and column filtering operations are averaged
together to obtain a final estimate of the spatially var)aj@{ —1,4,7).

The process noise is updated by each spatial filter in blocks, gdixels,
where the value odV, is chosen to balance the coarseness of the adaptive updating
and variance of thelC'F' estimates. TakingV as the total number of pixels in a
row or column of the imagey, satisfiesV, < N/2 so at least one complete batch
of updated parameters may be incorporated into the final estimates in each row and

column. Yet, ifN, is chosen too small, the estimates of th€ F'(v) over N, pixels
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(m+1, 2,,,,2j-1)

Figure 4.8: Graphical depiction of how information from the scale-wise filter is
provided to the spatial filter. The current estimate is represented by the shaded
pixel.
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are unreliable because the variance of the samplé’ is inversely proportional to
Ny. In this work, N, = N/4

The spatial portion of the Kalman filter is applied only at levels in the
guadtree where dense observations are present so that the innovation sequences
have uniform support. Thé?(M — 1,14, 7) values from the spatially-adaptive fil-
tering are used in the scale-wise component of the filter at the next coarser level
(m = M — 2) and propagated up to the root node. The filter proceeds with the
standard multiscale algorithm up the remainder of the quadtree and back down the

guadtree.

4.5.1 Computational complexity

This approach to the adaptive estimation of the process noise is non-iterative. A set
of Ny, simultaneous linear equations is solved for each batc,afamples. For
example, withV as the number of samples in each row of an im&ges updated

up to N/N, — 1 times per row, assuming the innovations are nonwhite throughout
the image. For images betweé?’ x 128 and512 x 512, the AMKS algorithm

required roughly 15% more computation time than the standard MKS algorithm.

45.2 Simulations

Images of natural terrain are very complicated and only approximately satisfy as-
sumptions of statistical behavior, such as white process noise and measurement
noise. Simulation results are presented here to investigate the adaptive multiscale
Kalman smoother characteristics. Two different simulations are considered. The
first simulates two different processes in a single image, thus no single value for
@ can be correct for the entire image. One process is slowly varying and the other

is rapidly varying to simulate an image of two different terrain types. The second
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simulation consists of a single stochastic process, but the initial estimate for the
process noise is chosen too low. In both cases, the adaptive algorithm is able to
detect and react to resulting errors in the Kalman model.

Figure 4.9 depicts the finest scale realization of a composite multiscale stochas-
tic process. A rapidly varying process with rectangular support (region 2) is embed-
ded in a slowly varying process (region 1). Region 1 represents minimal topography
or vegetation, e.g. grassland, and region 2 represents significant topography or tall
vegetation, e.g. forest. Each process was generated with a multiscale linear process
model (3.8), assuming fractional Brownian motion dynamics (3.27). For process
1, Ty = 2andp = 3. For process 2’y = 4 andu = 1. Thus, process 2 has
four times the variance at the root node, and its power decreases more slowly with
spatial frequency.

Figure 4.10 shows observations of the true process taken at two different
scales. These simulated observations are representative of INSAR acquired at a
coarse resolution and LIDAR acquired at the finest resolution. The finest scale
(m = M) observations cover only a diagonal swath through the process, running
from the lower left corner to the upper right corner. This swath is used to simulate
incomplete coverage often associated with LIDAR coverage in an INSAR scene.

Each “sensor” actually observes a different process, one atiscalé\/ and
the other at scales = M — 1. Each sensor has its own associated signal-dependent
measurement noise. The coarse observations have a larger measurement error vari-
ance because that is typical for INSAR and LIDAR systems. The measurement er-
ror of both sensors increases where the variance of the observed process increases.
This is also representative of actual INSAR and LIDAR observations.

Results from the basic MKS algorithm are shown in Fig. 4.11, and results
from the AMKS algorithm are shown in Fig. 4.12. There is little apparent difference

in the fused estimate images, but Fig. 4.13 indicates that the fine-to-coarse process
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Figure 4.9: A composite multiscale process generated to simulateuthprocess

at the finest scale in the multiscale pyramid. A rapidly varying process (region 2) is
embedded in a slowly-varying process (region 1).
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Figure 4.10: Simulated observations and measurement uncertainties. The region

of support for the fine-scale data is a diagonal swath extending from the lower left
corner to the upper right corner of that image.
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Table 4.1: Mean squared error of the coarse observations in Fig. 4.10 relative to the
true process valueg¢] evaluated atn = M.

height estimates

H={0or1} | 18.5nt
o={1} 22.3n?
o={0} 15.4 nt

noise variance was locally updated by the AMKS algorithm. Thenage one

level above the dense observatiofs {n this example) indicates that the algorithm
revised upward after passing over region 2. This is the expected result because
the true process noise in region 2 is greater than the initial valdg uded at the

finer scales. The improvement in the estimated process noise variance is confirmed
by examining the mean differences between the tpuand the updated) and

between the tru€) and the@ used in the MKS algorithm. For this simulation,

Qtrue — Qamrs 1S 53% smaller tha),,,.. — Quks-

Mean squared error results are given for “raw” coarse observations (Ta-
ble 4.1), MKS fused estimates (Table 4.2), and the AMKS fused estimates (Ta-
ble 4.3). In Table 4.1, error is defined using the coarse observations because obser-
vations at the finest scale often have incomplete coverage. The coarse observations
are upsampled by a factor of 2 so they can be differenced with the true process at
the finest scale. A dramatic decrease in MSE occurs when the MKS algorithm is
applied. This is expected since even a suboptimal Kalman filter can produce esti-
mates with much smaller error variance than the original observations, as shown in
Figs. 4.2 and 4.3. The MSE obtained with the AMKS algorithm is smaller than the
MKS result, albeit only by a small amount. This is consistent with the perfectly
adaptive estimation simulated in Fig. 4.3, where a small err@J led to a modest

improvement of 5% in the MSE of the adaptive filter.
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Figure 4.11: Fused estimates and estimate uncertainty from the MKS algorithm
operating on the process shown in Fig. 4.9.

Table 4.2: Mean squared error of the MKS estimates relative to the true process
values.H evaluated atn = M.

bare surface elevation

H={0or1} | 9.16nt
H={1} 2.12 ¢
H={0} 14.7 nt
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Figure 4.12: Fused estimates and estimate uncertainty from the AMKS algorithm
operating on the process shown in Fig. 4.9.

Table 4.3: Mean squared error of the AMKS estimates relative to the true process
values.H evaluated atn = M.

bare surface elevation
H={0or1} | 9.13nt
H={1} 212
H={0} 14.7 nt
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Figure 4.13: Fine-to-coarse process noise variaidges, i, j) from the AMKS
algorithm. The initial value fo) atm = 9 is uniform and approximately 1.0. At

m = 7, the spatially estimate@ is incorporated back into the multiscale filt&).
is revised upward as the spatial filters pass over region 2.
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The impact of adaptively filtering the observations depends on both the data
and the size of the set of sampl®&s used to test for whiteness in the innovations.
The impact generally increases when there are large errors in the épitinlarge
discontinuities in the process. In the current example, the simulated processes were
made to have similar magnitudes and variability to imaged vegetation heights in
meters. As a result, the difference in the tjevalues in region 1 and region 2
was relatively small. The impact also tends to increase when the windowsize
decreases.

A simpler example is constructed to further study the behavior of the AMKS
algorithm. A 2-D simulation of a WSS process is shown in Fig. 4.14. Here, the vari-
ability is made larger than would be encountered in a typical INSAR image so that
large errors in the initial) can be tested. There is no explicit non-stationarity in
this process, but thE, and . are intentionally chosen to yield an underestimated
fine-to-coarse process noise varianteThe MKS algorithm is applied to the sim-
ulated data using the underestimated valuesforThe AMKS algorithm is then
applied to the data. It starts off with the sameas the MKS model. Upon reaching
the scale where the dense observations are preseat {/ — 1), the spatial filters
are applied to the image. Fig. 4.15 showstharrays at each stage in the upward
Kalman filter. The values of) significantly increase as the spatial filters operate
along the rows and columns. The general trend istfdio increase towards the
lower right corner of the images.

In Fig. 4.16, the estimates and estimate uncertainty from the AMKS algo-
rithm are shown. The estimate image is similar to that obtained in the MKS result,
but the estimate uncertainty image clearly shows the effects of the upgafEide
uncertainty is larger in the lower right corner of the image. This can be explained
from the Kalman filter equations in Fig. 3.3. Whéhis revised upward, the error

covariance will also be revised upward, which in turn will increase the uncertainty
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Figure 4.14: A WSS multiscale process generated to simulateuberocess at
the finest scale in the multiscale pyramid. The initiain the MKS and AMKS
filters is intentionally chosen to correspond to a smoother process.
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Figure 4.15: Fine-to-coarse process noise variaidges, i, j) from the AMKS

algorithm.
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Table 4.4: Mean squared error of the coarse observations, the MKS estimates, and
the AMKS estimates relative to the true process valiéigs: {0orl} and evaluated
atm = M.

bare surface elevation
prior to data fusion 1894.n%
after MKS 419.7 nt
after AMKS 406.5 nt

of the Kalman smoothed estimates in (3.7).

Transects of the AMKS estimates, coarse observations, and true state pro-
cess are shown in Fig. 4.17. In the region where fine-resolution data are available,
the AMKS estimates correspond relatively well to the true process. Where only
coarse data are available, the AMKS estimates tend to over smooth. This is ex-
pected since the initia) was chosen too small, which causes the Kalman filter to
smooth the observations too much. In the MKS algorithm, there is no mechanism
to correct for this. However, in the AMKS results, the updadgdpproaches the
true( for large values of column number and row number in Fig. 4.16. The AMKS
algorithm thus reduces the over smoothing in the right side of the plot.

Table 4.4 lists the global MSE results before data fusion, after MKS, and
after AMKS. The AMKS algorithm achieved a reduction in MSE of approximately
3% over that of the MKS algorithm. In addition to the reduction in MSE, The
difference between the average value of the uesed to generate the process and
the updated) computed in the AMKS algorithm was 12% less than that of(phe
used in the MKS algorithm.
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Figure 4.16: Fused estimates and estimate uncertainty from the AMKS algorithm
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Transects at row=128
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Figure 4.17: Transects from row 128 in the AMKS estimates. The vertical lines
delineate the region of support of fine-resolution data in the central portion of the
plot.
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4.6 Conclusions

In this chapter, a new linear process model was presented that allows the formu-
lation of a separable Kalman filter that operates in scale and spatial dimensions.
Using a separable formulation allowed the straight forward incorporation of exist-
ing adaptive estimation techniques. This is an important feature because it will
also facilitate the incorporation of any of the other adaptive estimation techniques
mentioned in Section 4.3.

The resulting adaptive MKS (AMKS) algorithm represents an improvement
over the MKS algorithm because it provides a mechanism to detect and adapt to
spatial variations in the process noise variance. The AMKS algorithm will generally
have a greater impact on the final valuego&nd the estimates when the errors in
the initial value of() or any local differences in the variance of the true process
(non-stationarities) are large. As was seen in the 1-D simulations in Section 4.2,
even a perfectly adaptive filter will have minimal impact if the initial errorg)in
are less than an order of magnitude.

When the full multiscale multidimensional case is considered along with
fusion of multiple data sets, analytically deriving the mutual effects of the relative
values of) and R on the adaptive estimation is difficult. But the general trend holds
that if errors inQ@ are large, the AMKS algorithm can impact the final estimates
significantly. In addition to the effects of adaptive estimation on the final estimates,
the AMKS algorithm is a useful tool for providing insight into the local variability
of the process being estimated. Thus, it can be used to discover where errors in the
MKS model might be present. The standard MKS algorithm and the new AMKS

algorithm are applied to several sets of remote sensing data in the following chapter.
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Chapter 5

Fusing INSAR and LIDAR Data

5.1 Introduction

Herein, the estimation framework is applied to remotely sensed data over coastal
and riparian environments in Texas and a semi-arid environment in Australia. The
physical modeling of INSAR and LIDAR discussed in Chapter 2 was performed
on all of the Texas data to account for the vegetation effects. The MKS algorithm
from Chapter 3 is applied to results from the physical modeling in Section 5.2 over
a Texas coastal site. Estimates from fused INSAR and LIDAR are examined. The
smoothing effect of the MKS algorithm on a single data type is also examined.
In Section 5.3, results from the AMKS algorithm in Chapter 4 are compared with
results from the MKS algorithm. The two algorithms are applied to a riparian en-
vironment in Texas. A third environment, a semi-arid region in Australia, is ex-
amined in Section 5.4 to further demonstrate the applicability of the framework to
various environments. While LIDAR data were not available over the Australian
site, coarse-resolution space-borne INSAR data were available, along with two sets

of airborne INSAR data. The three different INSAR data sets, acquired at differ-
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ent resolutions and times, are fused to obtain improved topography estimates. The

results are evaluated in Section 5.5.

5.2 Physical modeling and MKS

Some of the issues associated with analyzing real data sets should be mentioned be-
fore considering results. Several steps must be taken to prepare the data, which have
already undergone nominal processing into distributed data products, for analysis.
The first step is to ground-range project the INSAR data so that it is free of the gross
spatial distortion that accompanies imaging radar observations. The airborne IN-
SAR data from the two baselines are not calibrated relative to each other, so relative
biases must be removed in the correlation and height data. Also, a small number
of large-magnitude outliers that are common in INSAR data must be removed. The
LIDAR data are gridded from an irregularly-spaced sequence of time-tagged values
into a uniform image lattice. Data sets acquired in vegetated areas must undergo
the transformation inta, and Az, values. Measurement uncertainty images are
generated for each topographic image. Finally, all images must be co-registered so

that common features in the images will have corresponding pixel coordinates.

5.2.1 Data description: Texas coastal environment

The Texas coastal test sites are located on Bolivar Peninsula, Texas, where there
is overlapping INSAR and LIDAR coverage, and ground truth data have been ac-
quired. The peninsula contains tree stands, grasslands, and bare fields, making it
a good location to assess vegetation removal methods. The NASA/JPL TOPSAR
sensor imaged the test site in a single pass. The imaging swath was 12 km in width

and roughly 50 km in length. A portion of a corresponding polarimetric SAR scene
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is shown in Fig. 5.1. Figure 5.2 shows some of the trees in the test site.

Data from approximately 10 overlapping flight lines from the ALTM sensor
had to be combined to cover the region shown in Fig. 5.1. The 18-look TOPSAR
data have a posting of 10 m 10 m after ground range projection. The LIDAR data
were originally gridded to 10 nx 10 m (higher resolution LIDAR products were
not available for this area). Dense LIDAR coverage over large areas is not typical,
so some of the LIDAR data were withheld from the data fusion to produce a more
realistic acquisition scenario, as shown in Fig. 5.3. The INSAR data were averaged
to a posting of 20 mx 20 m to obtain a representative data set of sparse LIDAR
coverage at the highest resolution and dense INSAR coverage at the next coarser
resolution. Less than one quarter of the available LIDAR data were used in the
data fusion. In the particular example, two adjacent rows are retained from every
nine rows of the original LIDAR data, and the remaining seven rows are omitted.
This sampling pattern represents a scaled version of the narrow and widely-spaced
swaths that may be acquired by a spaceborne LIDAR system, such as the NASA
Geoscience Laser Altimeter System.

Two sets of data are investigated, the EIm Grove and Melody Lane locations
in Fig. 5.1. The sites are located at different incidence angles, which allows the
evaluation of the estimation results with respect to location in the INSAR imagery.
As noted in Subsection 2.2.2, the measurement uncertajindf the INSAR data
is a function of incidence angle, and is generally larger in the far range. The EIm
Grove site contains a large stand of trees, but its location in the far range of the
INSAR data results in noisy estimates. Results for the EIm Grove site are presented
in Subsection 5.2.2, and results for the Melody Lane site are contained in Subsec-
tion 5.2.3. Results based on only the INSAR data are presented in Subsection 5.2.4
to demonstrate that the smoothing effects of the MKS algorithm can improve the

estimates even when no LIDAR data are available.
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illumination
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Figure 5.1: Polarimetric SAR image (L-band) of the test sites located on Bolivar,
Texas. The boxes indicate portions of the image used in this analysis. The top
subset is the Melody Lane site and the bottom subset is the EIm Grove site.
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Figure 5.2: Photograph of trees at the Melody Lane site on Bolivar, Texas. The
trees generally ranged between 6 m and 10 m in height.

pixel contains dataH = 1) LIDAR flight lines
pixel does not contain dathl € 0)

INSAR image

LIDAR image

m m . m+l  m+1l .
support: 2 x 2 pixels support: 2 x2 pixels

Figure 5.3: Image lattices indicating the characteristic support of the data in the
sparse acquisition scenario.
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5.2.2 Site 1 results

Estimates of the state variables, determined by inverting the INSAR scattering
model and transforming the LIDAR data, serve as the observations in the MKS
algorithm. Fig. 5.4 shows the input data for the MKS algorithm. The upper left im-
age shows the estimated ground surface obtained from the INSAR inversion. Each
pixel represents a 20 m 20 m area on the ground. The estimates exhibit a roughly
uniform variability across the image, but adjacent pixels can differ by as much as
8 m, which is more than the actual topography. Thus, the INSAR inversion results
comprise a noisy set of observations.

The estimated vegetation heights obtained from the INSAR inversion are
shown in the lower left image. The bright oval feature is the grove of trees. The
surrounding grassy area is 5 to 10 m lower. The right column shows the correspond-
ing topography and vegetation heights derived from the LIDAR data. Each pixel
in the LIDAR images covers a 10 m 10 m area on the ground. Several horizon-
tal swaths of LIDAR data are withheld to mimic a sparse coverage, as indicated in
Fig. 5.3. These pixels are shown with a thatched pattern in Fig. 5.4. The thin strips
of LIDAR data appear homogeneous over larger areas because of the low noise
floor of the LIDAR data. Comparison of the INSAR derived estimates:faand
Az, with the LIDAR derived estimates in Fig. 5.4 indicates no significant bias in
the INSAR inversion. The INSAR estimates are noisier than the LIDAR estimates,
but they exhibit similar local average values.

The multiscale smoothing improves the estimates (in the MSE sense) of the
ground surface and vegetation heights. Fig. 5.5 shows the estimates in the left
column and estimate uncertainties in the right column, computed as the square root
of the smoothed estimate variances. These are the estimate variances calculated in

the Kalman filter. A horizontal banding is apparent in the uncertainty images that
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Figure 5.4: Transformed INSAR data (left column) and LIDAR data (right column)
that serve as inputs to the multiscale estimation. Thatched areas indicate where
LIDAR data were omitted.
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corresponds to the locations where LIDAR data were omitted. This pattern occurs
because the estimate uncertainty is greatest where the LIDAR data are absent, which
is due to the smaller measurement error of the LIDAR data relative to the INSAR
data.

The uncertainty is also large where there is significant vegetation because
the measurement errors of both INSAR and LIDAR increase over highly variable
targets. The uncertainty is greater for estimates of vegetation height than ground el-
evation because there is generally greater variability in the actual vegetation heights.
This is reflected in the stochastic detail scaling functiol8y matching the power
spectra of the stochastic model and the data, as discussed in Section 3.4.2, values
of 'y=0.9 andu=1.5 were obtained for the bare surface estimates, while values of
I'y=3.0 andu=2.0 were obtained for the vegetation height estimates.

Fig. 5.6 shows the MKS results with the original INSAR and LIDAR data for
a single row in the EIm Grove output images. The transects in Fig. 5.6 correspond
to row 38 in the estimate images in Fig. 5.5. This is one of the rows that con-
tains LIDAR data. A similar plot is shown in next section for a row where LIDAR
were omitted. In Fig. 5.5, the MKS estimates of vegetation height do not track the
LIDAR data as closely as initially expected. The reason for this is a relatively large
measurement uncertainty for the LIDAR data. The uncertainty for the LIDAR was
calculated as the standard deviation of heights in each grid cell (pixel). All values
in the grid cell were weighted equally. Thus, LIDAR returns near the edge of the
cell affected the calculated measurement error as much as returns near the center. If
the returns were weighted inversely to their distance from the cell center, a smaller
uncertainty would generally result, and the MKS estimates would track the LIDAR
more closely.

In general, the expected trends are confirmed in Fig. 5.6. The LIDAR closely

approximates the tops of the vegetation, while the INSAR penetrates into the vege-
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Figure 5.5: MKS estimates of ground elevations and vegetation heights (left col-
umn) and the corresponding estimate uncertainties (right column).

101



MKS estimates and original data from row=38
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Figure 5.6: Comparison of data fusion results and original data for EIm Grove site.
Data extracted from row 38 in Fig. 5.5.

tation. The lower resolution INSAR data fails to capture rapid changes in the veg-
etation heights that are apparent in the LIDAR. The MKS ground surface estimates
z, are within one meter of the lowest points in the LIDAR (ground shots), whereas
the vegetation height estimatag, approximate the LIDAR heights. Thez, val-
ues track rapid changes in the vegetation better than the INSAR, and in some cases
capture the full vegetation height. With MSE values of less than 1 mfand
less than 5 m for\z,, reliable estimates of the ground surface and the vegetation
heights are obtained that retain much of the vertical and horizontal resolution of the
LIDAR.

Local biases and large variances in the INSAR data can result in some neg-
ative Az, values in the final MKS estimates. Th&V/C'C phase values from the
two TOPSAR baselines are not jointly calibrated, so4heata must be corrected

for vertical offset and range tilt prior to any processing. This is accomplished using
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known elevations in the near and far range of the INSAR imagery. Range tilt (in
the direction of illumination) is a common artifact in INSAR data resulting from
absolute phase ambiguity [10]. The range tilt correction removes only global bias
between the transformed INSAR and LIDAR heights, however. Small (generally
<2 m) local biases due to data processing artifacts, such as incorrect motion com-
pensation, may remain. In addition, surface scattering and non-zero ground slopes
and SAR squint angles are not modeled. The simplified modeling can lead to large
variances in the transformed INSAR data, which may cause some of the MKS esti-
mates of vegetation height to be negative. Pixels Wit < 0 are assigned a value

of zero in the final MKS estimates to maintain physically reasonable results.

The full (dense) LIDAR data are used for evaluating the results. Because
the LIDAR data closely approximate ground truth, we define the estimate error to
be the difference between the estimates and the corresponding transformed LIDAR
observations. To see the effects of the MKS, we compute the error between the
LIDAR and transformed INSAR estimates, as well as between the LIDAR and MKS
estimates. The Kalman filter provides optimal estimates in the MSE sense. From
the error definition, the mean squared error (MSE) can be computed for the whole
image, where LIDAR was retained, and where it was omitted. Table 5.1 gives the
MSE results obtained without any multiscale estimation. These results are obtained
using just the transformed INSAR and LIDAR data. Table 5.2 shows the estimates
and estimate errors after running the MKS algorithm. After the MKS data fusion,
the percent reduction in global MSE is 90% for the bare surface elevations and 87%

for vegetation heights.

103



Table 5.1: Mean squared error of the transformed INSAR data for the EIm Grove
test site.H evaluated atn = M.

bare surface elevation vegetation height
H={0or1} | 556nt | H={0or 1} | 22.7 n¥
H={1} 5.76 nt | H={1} 23.8n?
H={0} 5.49nt | H={0} 22.4 n¥

Table 5.2: Mean squared error after MKS for the EIm Grove test &itevaluated
atm = M.

bare surface elevatior vegetation height

H={0or1} | 0.566n% | H={O0or 1} | 3.00 nt
H={1} 0.064 % | H={1} 0.482
H={0} 0.734n% | H={0} 3.84nt

5.2.3 Site 2 results

The key differences between the Melody Lane and Elm Grove sites are that the
EIm Grove site has a larger expanse of trees and is located farther out in range in
the SAR image, which implies larger,. This results in larger MSE values for

the ElIm Grove site. The MSE improvement from multiscale estimation is more
pronounced in the EIm Grove site because the larger height uncertainties require
more smoothing. Also, incorporating LIDAR information in the MKS has a larger
impact when there is more tall vegetation.

Fig. 5.6 shows data from a row where the LIDAR data were retained. Analo-
gous data from a row where the LIDAR data were withheld are shown in Fig. 5.7 for
the Melody Lane site. LIDAR data are shown for comparison purposes, but were
not used in the estimation of these pixels. Eyeand Az, estimates still approx-
imately correspond to the LIDAR data because information from nearby LIDAR

affects the estimates through the merging of pixels in the Kalman filtering step. Ta-
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Figure 5.7: Comparison of data fusion results and original data for Melody Lane
site. Data extracted from row 40 in Melody Lane output.

ble 5.3 gives the MSE results obtained without any multiscale estimation. Table 5.4
shows the estimates and estimate errors after running the MKS algorithm. After the
MKS data fusion, the percent reduction in global MSE is 88% for the bare surface

elevations and 66% for vegetation heights.

Table 5.3: Mean squared error for the transformed INSAR data for the Melody Lane
test site.H evaluated atn = M.

bare surface elevation vegetation height

H={0orl} | 1.37nt | H={0or1} | 4.79 nt
H={1} 1.20nt | H={1} 4.93 7
H={0} 1.43nt | H={0} 4.75
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Table 5.4: Mean squared error after MKS for the Melody Lane testKivaluated
atm = M.

bare surface elevatior vegetation height

H={0or1} | 0.167n% | H={Oor 1} | 1.61 n¥
o={1} 0.040 Mt | H={1} 0.997 nt
H={0} 0.210 Mt | H={0} 1.81 nt

Table 5.5: Mean squared error after MKS for the Melody Lane test site using only
INSAR data.H evaluated atn = M.

bare surface elevatioh vegetation height
H={1} | 0.262 n{ H={1} | 2.73 n?

5.2.4 INSAR only case

The utility of the multiscale estimation was also investigated as an optimal smoother
for a single data type. Table 5.5 shows the global estimated errors from the MKS
algorithm when no LIDAR data are used for the Melody Lane site. The global MSE
using LIDAR (Table 5.4) is 57% and 70% less than for the INSAR-only case for
bare surface and vegetation, respectively. Notice, however, that the INSAR-only
case is itself better than simply inverting the INSAR scattering model (Table 5.3)
by 85% and 43% for bare surface and vegetation, respectively. We conclude that
combining physical modeling with multiscale Kalman smoothing is useful even
when operating on a single data type. This result is not an arbitrary smoothing of
the INSAR data. Recall that the Kalman-based smoothing is affected by sensor

characteristics, such as the measurement error.
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5.3 Physical modeling and AMKS

In this section, INSAR and LIDAR data are transformed through the physical mod-
eling and fused, as in Section 5.2. The standard and adaptive MKS algorithms are
both applied to the data, and the results are compared. Standard multiscale estima-
tion may be sufficient for small areas where the terrain and land cover are fairly
simple, but adaptive estimation has the potential to handle larger areas with more

spatial complexity.

5.3.1 Data description: Texas riparian environment

Figure 5.8 shows a polarimetric SAR image (C-band) of the central portion of
Austin, Texas. The image was acquired by the NASA/JPL TOPSAR system, with a
resolution of 10 m. The Riverside Park area is used as a test site. The Riverside Park
site contains flat grassy areas and natural tree-covered areas as well. It is one of the
largest contiguous areas in the city that is virtually free of buildings. Some of the
grassy areas contain tall light poles and small buildings associated with recreational
baseball fields, but areas that were free of obstructions were available. Figure 5.9

shows a photograph of the Riverside Park test site.

5.3.2 MKS results

The MKS algorithm was applied to the fusion of INSAR and LIDAR imagery ac-
quired over the Riverside test site. In this case, the available LIDAR data were
gridded to a very high spatial resolution of 1.25 m. The INSAR imagery has a pixel
spacing of 10 m after ground range projecting, placing it three levels above the base
of the quadtree data structure. As with the Texas coastal data, the INSAR data are
from the NASA/JPL TOPSAR sensor, and the LIDAR data are from the Optech
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6 km

Figure 5.8: Polarimetric SAR image (C-band) of Austin, Texas. A box indicates
the location of the Riverside Park test site.
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Figure 5.9: Photograph of trees in Riverside Park in Austin, Texas. The trees gen-
erally ranged from 7 m to 15 m.
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ALTM sensor. The LIDAR selection is different for this site than for the Bolivar
sites. A single diagonal swath running from the lower left to the upper right of the
imaged area represents a contiguous LIDAR acquisition over a region of interest,
instead of the sparse grid pattern used for the Bolivar test sites.

Following the steps applied to the Bolivar test site, the INSAR scattering
model is inverted to provide estimates of ground elevatigrasd vegetation heights
Az,. These quantities are also derived from the LIDAR data using the empirical
modeling. These data then serve as the inputs to the MKS algorithm.

The estimation ok, are shown Fig. 5.10. In the image of INSAR ground
elevations, the, estimates from the INSAR inversion are shown. The values range
from roughly -2 m to 2 m. The area is quite flat, but a slight raised area is evident
in upper right portion of the image. The LIDAR ground elevation image shows a
swath of LIDAR data. The LIDAR image has very little visible noise. A slight
raised area is again visible in the upper right portion of the image. This raised area
in the INSAR estimates also corresponds to the location of trees and reveals a small
bias in the INSAR inversion. However, it also corresponds to a change in surface
heights, as indicated in the LIDAR image. This small local bias is most likely due
to the non-zero surface slopes in this portion of the image. The scattering model
used in this work does not account for non-zero surface slopes.

The fused estimates af, reflect the high resolution of the LIDAR in the
diagonal swath. Outside that swath, estimates are coarse, but smoother than the
INSAR derived elevations. The estimate uncertainty varies with the signal, but the
dominant effect in this case is the relative measurement error of the sensors. Thus
the uncertainty image is dominated by the swath of small values corresponding to
the LIDAR data. This effect is compounded by the fact that the INSAR data is
located three levels above the LIDAR data in the quadtree. Table 5.6 provides MSE

results using the original data. As in Section 5.2, the coarse data is used because it
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will generally have complete and dense coverage over the region of interest.

Results for the estimation akz, are shown Fig. 5.11. In the image of
INSAR derived vegetation heights, the heights range from 0 m to about 7 m. The
bright area in the upper right portion of the image is a tree-covered area. An area
of smaller trees is present along the left side of the image. The remaining portions
of the image are grassy areas. The LIDAR derived vegetation heights reveal the
same pattern in detail. Notice that the highest values in the LIDAR image are
about 9 m, indicating that the INSAR generally underestimates the tree heights due
to penetration into the canopy. The fused estimate& ff preserve the detail of
the LIDAR data. The estimated tree heights just outside the swath of LIDAR are
generally between the LIDAR and INSAR derived tree heights.

The effect of the LIDAR data on the final estimates decreases with distance
from the LIDAR data. The rate at which it decreases depends on the spatial ar-
rangement of the LIDAR data, the relative resolutions of the LIDAR and INSAR
data, and the relative measurement uncertainties of the data. However, as shown in
Section 3.5.2 for the 1-D case, the estimate uncertainty will remain bounded. As
in Fig. 5.10, the estimate uncertainty is dominated by the sensor measurement er-
rors, which cause it to appear as a diagonal swath with only slight target-dependent
variations visible.

Table 5.7 provides the MSE results for MKS filtered data. notice that the
MSE is smaller than that of the inversion results, even where LIDAR data are absent
(H=0). This happens for two reasons. There is some sharpening of the INSAR
estimates close to the pixels containing LIDAR data. This is a result of the merging
of estimates in the upward sweep of the MKS algorithm. However, the primary
reason that the MSE improves fai=0 after applying MKS is the smoothing of the
noisy INSAR estimates by the Kalman filter.

The MSE results fot, and Az, for H=0 in Table 5.7 are larger than those
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Table 5.6: Mean squared error of the transformed INSAR data for the Riverside
Park test siteH evaluated atn = M.

bare surface elevation  vegetation height

H={0or1} | 1.29nf || H={0or 1} | 9.33nt
H={1} 1.42nt | H={1} 8.03 nt
H={0} 1.19nt | H={0} 10.4 nt

Table 5.7: Mean squared error after MKS for the Riverside test Hitevaluated at
m = M.

bare surface elevation vegetation height
H={0or1} | 0.217nt | H={Oor1} | 5.56 nt
H={1} 1.00e° m? | H={1} 5.78e% m?
H={0} 0.388 nt H={0} 9.94 n¥

in Table 5.4 even though the vegetation heights are roughly the same in the two

data sets. This is partly due to the different extents of vegetation in the two scenes.

The primary cause, however, is that the INSAR data reside at one scale above the
LIDAR in the Bolivar data {n = M — 1) and at three scales above the LIDAR in

the Riverside datanf = M — 3). The INSAR data are projected down three scales

in the Riverside data, compared to only one scale in the Bolivar data. More process

noise is therefore injected into the INSAR estimates in the Riverside data because

process noise is added to the estimates each time they are projected down a level in

the quadtree.

5.3.3 AMKS Results

The AMKS algorithm was also applied to the Riverside test site. AMKS results
for the estimation of bare-surface elevatiofysare shown Fig. 5.12. This figure

appears very similar to the MKS result in Fig. 5.10. Looking at the INSAR derived
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Figure 5.10: MKS output for Riverside site,. The region of support for the
LIDAR data is a diagonal swath running from the lower left corner to the upper

right corner of the LIDAR image.
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Figure 5.11: MKS output for Riverside sit&yz,. The region of support for the
LIDAR data is a diagonal swath running from the lower left corner to the upper

right corner of the LIDAR image.
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estimates ot,, they exhibit greater variability in the upper left half of the image
and decreased variability in the lower right half of the image.

The locally updated estimates of process noise varighateach scale are
shown in Fig. 5.13. Initially, th&) arrays are spatially uniform at the base of the
guadtreei, = 9), just as in the MKS case. In fact, the initial value €@1is exactly
the same as it was in the MKS case. At the scale where INSAR observations are
present, values af) are updated for groups a¥, pixels in the rows and columns
following the any detection of non-white innovations. Tharrays remain uniform
until the scale above the INSAR observations £ 5). At that level, information
from the spatial filter is made available to the scale-wise filter.

In Fig. 5.13 it is apparent that whefgwas updated, it was generally revised
downward from its MKS value. This indicates that the MKS estimaté&Xeovas too
large.(Q is not updated in the firsY, rows and columns because of the latencypf
pixels in the adaptive estimation algorithm. Thus, the upper left block,qdixels
atm = 5 remains unchanged, wheig = 4. Notice that in the lower right half of
the image ain = 5 the locations of the downward revisions@hcorrespond to the
area of decreased variability (lower right half) in the INSAR image in Fig. 5.12.

Results for the estimation of vegetation heights, are shown Fig. 5.14.

This figure appears very similar to the MKS resultin Fig. 5.11. The INSAR derived
estimates of\ z, exhibit areas of trees (bright areas) in the upper right portion and
along the left side of the image. In between these trees is a grassy area with lower
spatial variability.

The locally updated estimates of process noise variance at each scale are
shown in Fig. 5.15. Again, we see th@tis locally revised downward starting at
scalem = 5, indicating that the MKS) was too large. The region whetg is
revised downward corresponds to the band of short grass adjacent to the band of

trees visible in Fig. 5.14.
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Table 5.8: Mean squared error after AMKS for the Riverside test itevaluated
atm = M.

bare surface elevation vegetation height
H={0or1} | 0.216nt | H={0or1} | 5.55nt
H={1} 1.00e° m? | H={1} 5.78e3 m?
H={0} 0.386 nt H={0} 9.92 nt

Table 5.8 provides the MSE results for AMKS filtered data. We see that
AMKS does improve MSE, but only slightly. A 0.5% reduction in global MSE
for z, and a 0.2% reduction in global MSE fdxz,. This small reduction in MSE
for relatively small model errors is consistent with the simulation results from Sec-
tion 4.5.2. A contributing factor is the fact the spatial filter must operate on a dense
data set to obtain meaningful ACF estimates used to test for optimality. Since
the dense data are usually only present at coarse resolutions, the spatial filter is
forced to operate on low-resolution data. Thus, model errors that are detectable in
the high-resolution data, may not be detected in the coarse data. The magnitudes
of non-stationarities may also be reduced as the resolution decreases, leading to
smaller changes in the updated process noise variance. This is particularly true in
the Riverside Park data, where the scale of the INSAR data- (M — 3) is eight
times coarser than the LIDAR data at the base={ M).

As was stated for the 2-D simulation results in Chapter 4, reduction of MSE
is not the sole motivation for implementing an adaptive data fusion algorithm. For
example, by studying the updatédimages at each scale, it is possible to discern
how the target variability changes with location. In both Fig. 5.13 and Fig. 5.15,
@ was revised lower where there ground was smoothest and the vegetation was
shortest. This provides insight into the nature of the terrain and vegetation, which

can be used to guide subsequent algorithm development and interpretation.
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Figure 5.12: AMKS output for Riverside site,.
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Figure 5.13: Fine-to-coarse process noise varia@¢es i, j) at the Riverside from

the AMKS algorithm,z,. @ is revised downward in lower right half of th@5
image, corresponding to smoother terrain in that portion of the INSAR image in
Fig. 5.12.
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Figure 5.14: AMKS output for Riverside sitéz,.
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Figure 5.15: Fine-to-coarse process noise variag¢es i, j) at the Riverside from
the AMKS algorithm,Az,. @ is revised downward along a band running from the
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area in that portion of the INSAR image in Fig. 5.14.

120



5.4 Fusing three data sets with MKS

Finally, we investigate the fusion of three data types to show that the method is not
restricted to fusing only two data sets. In this case, coarse-resolution spaceborne
INSAR data from the ERS satellites are combined with higher resolution TOPSAR
acquisitions. The ERS data consist of one INSAR image pair, thus only one base-
line. Therefore, it is not possible to transform the ERS data into estimatgs of
and Az, using the approach described in Chapter 2. So all three INSAR data sets
represent the nominal INSAR heights. Given thatzs data are used in this case,

a test site over a semi-arid region with minimal vegetation cover was chosen. Be-
cause there is little vegetation, we can assume: z,. Figure 5.16 shows a SAR
backscattered power image of the area, acquired by the ERS-1 satellite at C-band.
The MKS algorithm is applied in the boxed region in the upper left portion of the
image. Thatis an interesting portion of the image because there is a rapid change in
topography from a plateau down to the Missionary Plain. River gorges associated

with the Finke River and small tributaries are present there.

5.4.1 Data description: Australian semi-arid environment

The Finke River gorge is located in central Australia. This ancient river system
flows between the MacDonnell and James mountain ranges, crossing a sandstone
plain. The area is not heavily vegetated except some isolate areas near river gorges.
Fig. 5.17 shows the coverage of the TOPSAR in relation to the coverage of the ERS
data. A TOPSAR line acquired in 1996 covers the same area as a line acquired
in 2000, but they were acquired from opposite directions. Because of the steep
topography in the area, there are areas on the back sides of hills where shadowing
prevents SAR acquisition. Shadowing is a common phenomenon in SAR images.
Fig. 5.18 shows detailed views of the 1996 and 2000 TOPSAR acquisitions. Notice
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Figure 5.16: ERS-1 topographic image of the Finke River Gorge in Australia. The
MKS algorithm is applied in the boxed region in the upper left portion of the image.
The imaged area is approximately 50 kb0 km.
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TOPSAR
2000

Figure 5.17: Relative coverage of the ERS and TOPSAR acquisitions.

that the shadow regions are manifested as data dropouts and appear in different
locations in the two images due to differences in the look directions. The data

fusion fills in these data dropouts during the coarse-to-fine Kalman smoothing step.

A pair of SAR images was acquired by the ERS-1 and ERS-2 satellites while
operating in the one-day tandem phase of their missions over the test site in 1996.
The data were processed to a spatial resolution of 20 m. Within the nearly square
areaimaged by the ERS satellites, the TOPSAR sensor acquired long swaths of data
in 1996 and in 2000. The 1996 acquisition was processed to a resolution of 10 m,

using a relatively high number of multilooks to reduce noise. The 2000 acquisition
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Finke River 1996 Y

Finke River 2000

Figure 5.18: Detailed views of the TOPSAR acquisitions of the Finke River. The
arrows indicate the SAR look direction. Topography induced shadowing leads to
data drop outs, which occur in different locations in the two images because of the
different look directions. The displayed area is approximately 10<kh® km.
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imaged the area from the opposite side and was processed to a resolution of 5 m,

using fewer multilooks.

5.4.2 Results

The MKS estimates from the three fused INSAR images are shown in Fig. 5.19.
Portions of the two TOPSAR images were omitted to simulate the limited coverage
of airborne INSAR relative to the full ERS scene. In Fig. 5.19, the 10 m TOPSAR
data are restricted to a horizontal swath that includes the gorge. The 5 m TOPSAR
data are restricted to a smaller swath covering the central part of the gorge. ERS
data cover the entire image.

The image of estimate uncertainty shows that the coarsest data yield the
highest uncertainty. The 10 m TOPSAR data yields intermediate values of uncer-
tainty, and the 5 m TOPSAR yields the lowest uncertainty. It is interesting to note
that these patterns in the estimate uncertainty derive from both the actual INSAR
height errors;, and the resolutions of the different data sets. Recall from (2.7) that
oy, IS a characteristic of the processed INSAR data. The 10 m TOPSAR data have
the smallest;,, but they yield higher estimate uncertainty values than the 5 m TOP-
SAR data since they reside at a coarser scale in the quadtree. The smaliéne
10 m TOPSAR data is due to the large number of multilooks used in the processing
of the data. Eighteen looks were used in the 10 m data versus only nine in the 5 m
data.

In Fig. 5.20, a transect through the fused estimates clearly shows how the
estimatez® tracks the best data available, where best refers to minimum variance.
Where only ERS data are present, the estimates track them, but deviations are ap-
parent because of the relatively high measurement error of the ERS data. Where the

5 m TOPSAR data are available, the estimates track the observations very closely.
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Fig. 5.21 shows a perspective view of the fused estimates in Fig. 5.19. The higher
resolution of the 5 m TOPSAR data is apparent in the central gorge, relative to the
terrain on either side of the gorge.

Examination of Fig. 5.20 reveals that the filter smoothes the ERS data no-
ticeably where only ERS data are available. When the Kalman model parameters
are correct, this smoothing represents the minimum variance estimate of the signal
in the presence of the measurement naise

Tests were performed on the Finke River data set where the value of the
process noise varian@@ used in the Kalman filter was too small, approximately
correct, and too large() was determined by comparing the power spectra of the
data model and the observations.

When(@ used in the filter is too small, the filter over smoothes, resulting in
a loss of information about the true signal value. Wligis too large, the filter
erroneously considers the data to be more reliable. In such a case, the final esti-
mates will track the coarse data very closely in areas where only coarse data are
available. However, that does not represent greater retention of information about
the true signal Rather, it represents greater retention of the observed signal and
fails to account for the full uncertainty in those observations. In the case of IN-
SAR observations, that uncertainty is calculated from M&C'C'| data, and it can
be significantly greater than the apparent spatial variability ofAN/ C'C data
indicates.

In the optimal case, it is possible for regions of the fused estimate image
where only coarse data are available to appear blocky. This Kalman filter estimate
represents the best estimate of the true signal relative to a global MSE criterion and
the available stochastic data model. The final estimates could display a different
characteristic behavior if additional information is made available to refine the data

model. For example, if a surface is known to be very smooth, e.g. large-scale

126



TOPSAR 1996 elevations (m) TOPSAR 2000 elevations (m)

40
20 50
40
_ ~ 100
EE 60 b
= 80 =50
100 200
120 250
20 40 60 &80 100 120 50 100 150 200 250
n (10 m) n (5 m)
Fused ground elevation estimates (m) Ground elevation estimate uncertainty (m)
F T L
50 [ : 20
'@100
il
=50
200} ‘
250 SL. L N
50 100 150 200 250 50 100 150 200 250
n (5 m) n (5 m)

1

Figure 5.19: MKS output for Finke site,. 20 m ERS data cover the entire imaged
area. 10 m TOPSAR data (upper left image) cover most of the imaged area, in-
cluding the gorge. 5 m TOPSAR data (upper right image) cover only a thin swath,

including part of the gorge.
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Figure 5.20: Transects for the Finke sitg, The transects come from column 128
of the fused estimate image in Fig. 5.19.
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Figure 5.21: Perspective view of the fused estimates in Fig. 5.19. Valuges h28
correspond to the transects in Fig. 5.20.
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ice sheets, the state vector in the Kalman filter could be augmented to estimate
gradients between neighboring pixels. In such a case, the blocky appearance of the
fused estimates could be reduced in a manner that was consistent with the physical

process being observed.

5.5 Conclusions

In this chapter, three distinctly different cases were analyzed. First, physical mod-
eling was combined with the standard MKS algorithm to allow the highly nonlinear
problem of bare-surface and vegetation height estimation to be treated with the
Kalman-based data fusion technique. Second, adaptive and nonadaptive fusion re-
sults were presented and compared. It was shown that the adaptive estimation leads
to slightly smaller global error than the non-adaptive estimation. It is worth not-
ing that resolution of the data used to update the process noise variance will effect
the degree to which the final estimates can be improved. The impact of the adap-
tive estimation would probably be greater if complete coverage was available at the
finest scale. It was also demonstrated that the data fusion could be applied to more
then two types of topographic data sets, thus expanding the class of topographic
applications that can be addressed.

The data sets examined in this dissertation represent the typical availability
of data in remote sensing of topography. A high-resolution data set is available,
but is sparse or incomplete, and a coarse data set is available that is complete. It
is also typical that the high-resolution data has a smaller measurement uncertainty.
In this arrangement, the final fused estimates can resemble the high-resolution data
simply having been spliced into the coarse data. The possibility of splicing the data
sets might be regarded as simple alternative the Kalman-based fusion. However,

splicing will not result in optimal estimates in general.
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The Kalman-based fusion represents a significantimprovement over a brute-
force fusion method of simply splicing two data sets together. In particular, the
splicing operation can be viewed as a special case of the Kalman-based fusion
where measurement uncertainties near zero are used. A more realistic approach
is to assign physically meaningful finite measurement errors to each sensor. This
incorporates more information into the fusion process. In cases, where a data set
is noisy or corrupted in some way, splicing it into the estimates is a poor approach
and will yield suboptimal estimates. In addition, filtering upward on the quadtree
involves merging of information. This makes it possible to sharpen the INSAR data
in the vicinity of the LIDAR data. Finally, the Kalman-based approach provides
extensive information about stochastic process in scale and space that may be used

to guide subsequent acquisitions of data.
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Chapter 6

Conclusions

| have shown that combining physical modeling with multiscale estimation can sig-
nificantly improve estimates of bare surface topography and vegetation heights ob-
tained from INSAR. The estimates can be further improved if LIDAR is combined
with the INSAR data. Multiscale estimation is a natural approach for fusing data
with different resolutions. By including physical modeling and target-dependent
measurement variances, the approach is made general for proper fusion of dissimi-
lar data types.

The multiscale method was also extended to allow spatially adaptive esti-
mation. The adaptive algorithm yields better error characteristics than the non-
adaptive multiscale filter and accommodates non-stationarities in the image data.
Statistically optimal estimates of the state variables, in the mean squared sense,
are obtained, conditioned on the physical modeling and observations. | applied the
estimation framework to remotely sensed data over coastal and riparian environ-
ments in Texas and a semi-arid environment in Australia to demonstrate its ability

to accommodate several different remote sensing scenarios.
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6.1 Summary

Key contributions of this work include (1) combining physical modeling with mul-
tiscale estimation to accommodate nonlinear measurement-state relationships, (2)
extending adaptive estimation theory to spatially-varying multiscale processes, and
(3) improving estimates of ground elevations and vegetation heights for remote
sensing applications. The approach used in this work of combining physical mod-
eling with multiscale estimation to solve for physical parameters is not limited to
any particular data type or model. Different scattering models or data types can be
investigated and compared.

Many applications have been addressed wéta fusion but care is not al-
ways taken to combine the data in an appropriate manner. Sensors that operate at
different resolutions, wavelengths, and use different acquisition geometries will not
strictly measure the same process, even when the sensors are intended to measure
the same phenomena. This is the case with INSAR and LIDAR sensors. Transform-
ing the observations into a set of common parameters before combining them is an
essential step. In this dissertation, | transformed both INSAR and LIDAR accord-
ing to physically-based models prior to the data fusion. This allows the application
of Kalman-based fusion to data with nonlinear measurement-state relations and no
closed-form inverse.

The original MKS algorithm can be adaptive scaleif the coarse-to-fine
process noise variand&(m) varies withm. This occurs when the data exhibit a
1/f* power spectrum and the data model is matched to that spectrum. However,
no mechanism for making the algorithm adaptive in spatial dimensions has been re-
ported. Such a mechanism was presented in this dissertation. The spatially adaptive
algorithm remains optimal even when the observed process is non-stationary.

This research was motivated in large part by the topographic measurement
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application. The goal was to develop a theoretically-based optimal method that pro-
duced globally better topographic estimates than those obtained without it. | have
shown that in the INSAR smoothing case (one data type) the estimates are better
than the original INSAR measurements. In the non-adaptive data fusion cases, the
estimates are consistently better than those obtained by the coarse sensor alone and
had greater coverage than the fine sensor. The adaptive AMKS algorithm provided
improved estimates relative to the MKS algorithm. The degree of improvement
was data dependent and was diminished because the adaptive filter was confined
to coarse levels in the quadtree. However, it was also shown to be a useful tool to
locate errors in the MKS model parameters and relate them to different terrain or

land cover types.

6.2 Future work

Recommendations for future work include (1) making the spatial filter a 2-D re-
duced update Kalman filter rather than two separable 1-D filters, (2) investigating
non-iterative methods to convert INSAR intpandAz, to avoid the need for two
observations (dual-baseline or two passes) and to reduce computational complexity,
and (3) applying multi-model (filter bank) approaches to the non-stationary problem
instead of updating the parameters of a single model.

The AMKS algorithm developed in this dissertation assumed that the mul-
tidimensional Kalman filter could be considered separable. This made the incor-
poration of adaptive estimation techniques straight forward, but it ignores spatial
correlation among neighboring pixels in front of and beside the current estimate.
Since natural images often exhibit significant correlation in all directions, employ-
ing a Kalman filter with a 2-D region of support for the spatial filter would treat the

spatial correlation more generally. Such filters do exist, and are generally termed
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reduced update Kalman filtefd8]. They are still causal filters, but the region of
support can extend over portions of adjacent rows and columns to incorporate 2-D
correlations. Implementing the adaptive estimation would be more involved if this
type of spatial filter was used, but is mathematically tractable. The first step would
be to derive a generalized version of the innovation—correlation approach that used
a 2-D sequence of innovations.

The most computationally demanding step in the fusion process is the trans-
forming of INSAR data into bare-surface and vegetation heights. The method used
in this dissertation was to numerically invert an INSAR scattering model. Nonlin-
ear constrained optimization technigues were required to accomplish the inversion,
leading to a iterative solution at each pixel. As pointed out in Chapter 2, other
methods exist for estimating surface and vegetation heights from INSAR data that
do not require iterative methods. These methods are not based of formal scattering
theory and are only approximate, but they should be investigated for their potential
to reduce the overall computational burden. Specifically, the method of [14] could
be extended to different terrain types.

Finally, other methods for adapting the Kalman model parameters should
be investigated. The innovation—correlation method was used in this dissertation
because it is theoretically based and has only moderate computational complexity.
The other approaches listed in Chapter 4 should be investigated also. In particular,
the multiple model approach should be investigated. The primary disadvantage
of this method is that it assumes that the observed process will follow one of a
small set of known and constant dynamic states, or possibly a combination of such
dynamic states. Each state is represented by a set of Kalman model parameters,
comprised of a bank of filters. If a non-stationarity is detected in the process, a
new model can be substituted for the old one. In general, highly random processes

like topography, will not be well characterized by a small set of discrete dynamical

135



states. However, if reasonably good approximations to archetype terrains, such as
forest and grassland, are determined, the multiple model approach could lead to an
efficient adaptive estimation algorithm because there would no longer be a need to
solve a large set of linear equations to update the model. Auxiliary data from optical

sensors could be used to delineate changes in terrain or land cover, and aid in the

determination of spatially varyin@ values.

136



[1]

[2]

[3]

[4]

Bibliography

R. N. Treuhaft and P. R. Siqueira, “Vertical structure of vegetated land surfaces
from interferometric and polarimetric radaRadio Sciencevol. 35, pp. 141—
177, Jan. 2000.

H. A. Zebker, T. G. Farr, R. P. Salazar, and T. H. Dixon, “Mapping the world’s
topography using radar interferometry: The TOPSAT missiéngc. IEEE
vol. 82, pp. 1774-1786, Dec. 1994.

K. C. Chou, A. S. Willsky, and A. Benveniste, “Multiscale recursive estima-
tion, data fusion, and regularizatiohZEE Trans. Automatic ContrpVol. 39,
pp. 464—-478, Mar. 1994.

P. W. Fieguth, W. C. Karl, A. S. Willsky, and C. Wunsch, “Multiresolution
optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite
altimetry,” IEEE Trans. Geosci. Remote Sensimgl. 33, pp. 280-292, Mar.
1995.

[5] J. Curlander and R. McDonoug8ynthetic Aperture Radar: Systems and Sig-

[6]

nal ProcessingNew York, NY: Wiley, 1991.

F. T. Ulaby, R. K. Moore, and A. K. FungJicrowave Remote Sensing: Active
and Passivevol. 2. Norwood, MA: Artech House, 1986.

137



[7] J. P. Fitch,Synthetic Aperture RadaNew York, NY: Springer-Verlag, 1988.

[8] R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferom-
etry: Two-dimensional phase unwrappingadio Sciencevol. 23, pp. 713—
720, July 1988.

[9] F. Liand R. M. Goldstein, “Studies of multi-baseline spaceborne interferomet-
ric synthetic aperture radardEEE Trans. Geosci. Remote Sensingl. 28,
pp. 88-97, Jan. 1990.

[10] S. N. Madsen, J. M. Martin, and H. A. Zebker, “Analysis and evaluation of the
NASA/JPL TOPSAR across-track interferometric SAR systdEEEE Trans.
Geosci. Remote Sensjngl. 33, pp. 383-391, Mar. 1995.

[11] H. A. Zebker and J. Villasenor, “Decorrelation in interferometric radar
echoes,"IEEE Trans. Geosci. Remote Sensiagl. 30, pp. 950-959, Sept.
1992.

[12] E. Rodriguez and J. M. Martin, “Theory and design of interferometric syn-
thetic aperture radarslEE Proc.-F, vol. 139, pp. 147-159, Apr. 1992.

[13] U. Wegmuller and C. Werner, “Retrieval of vegetation parameters with SAR
interferometry,"IEEE Trans. Geosci. Remote Sensiva. 35, pp. 18-24, Jan.
1997.

[14] J. O. Hagberg, L. M. Ulander, and J. Askne, “Repeat-pass SAR interferometry
over forested terrainJEEE Trans. Geosci. Remote Sensiva). 33, pp. 331-
340, Mar. 1995.

[15] R. Lanari, G. Fornaro, D. Riccio, M. Migliaccio, K. P. Papathanassiou,
J. R. Moreira, M. Schabisch, L. Dutra, G. Puglisi, G. Franceschetti, and

138



[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Coltelli, “Generation of digital elevation models by using SIR-C/X-SAR
multifrequency two-pass interferometry: The Etna Case StuB{£E Trans.
Geosci. Remote Sensjngl. 34, pp. 1097-1114, Sept. 1996.

K. C. Slatton, M. M. Crawford, J. Gibeaut, and R. Gutierrez, “Modeling SAR
backscattering response to coastal inundatiorProt. IEEE Int. Geosci. Re-

mote Sensing Sympol. 5, (Hamburg, Germany), pp. 2446—2448, July 1999.

S. S. Saatchi, D. M. L. Vine, and R. H. Lang, “Microwave backscattering and
emission model for grass canopief#2EE Trans. Geosci. Remote Sensing
vol. 32, pp. 177-186, Jan. 1994.

R. H. Lang and J. S. Sidhu, “Electromagnetic backscattering from a layer
of vegetation: A discrete approacHEEE Trans. Geosci. Remote Sensing
vol. GE-21, pp. 62-71, Jan. 1983.

R. H. Lang, “Electromagnetic backscattering from a sparse distribution of

lossy dielectric scattererdRadio Sciencevol. 16, pp. 15-30, Jan. 1981.

L. Tsang, M. C. Kubacsi, and J. A. Kong, “Radiative transfer theory for ac-
tive remote sensing of a layer of small ellipsoidal scatter&adio Science

vol. 16, pp. 321-329, May 1981.

S. S. Saatchi and K. C. McDonald, “Coherent effects in microwave backscat-
tering models for forest canopieslEEE Trans. Geosci. Remote Sensing
vol. 35, pp. 1032-1044, July 1997.

R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. van Zyl, “Vegetation
characteristics and underlying topography from interferometric raRawlio
Sciencevol. 31, pp. 1449-1485, Nov. 1996.

139



[23] M. S. Bazaraa, H. D. Sherali, and C. M. Shet§onlinear Programming:
Theory and AlgorithmsNew York, NY: Wiley, 2nd ed., 1993.

[24] K. Sarabandi and Y. Lin, “Simulation of interferometric SAR response for
characterizing the scattering phase center statistics of forest candpieg,”
Trans. Geosci. Remote Sensiugl. 38, pp. 115-125, Jan. 2000.

[25] A. Neuenschwander, M. Crawford, C. Weed, and R. Gutierrez, “Extraction
of digital elevation models for airborne laser terrain mapping dataProt.
IEEE Int. Geosci. Remote Sensing Sympl. 5, (Honolulu, HI), pp. 2305—
2307, July 2000.

[26] K. C. Slatton, M. M. Crawford, and B. L. Evans, “Combining interferometric
radar and laser altimeter data to improve estimates of topographiyfoin
IEEE Int. Geosci. Remote Sensing Sympl. 3, (Honolulu, HI), pp. 960-
962, July 2000.

[27] E. W. Kamen and J. K. Suntroduction to Optimal Estimatian_London, UK:
Springer-Verlag, 1999.

[28] D. Just and R. Bamler, “Phase statistics of interferograms with applications
to synthetic aperture radaXpplied Opticsvol. 33, no. 20, pp. 4361-4368,
1994,

[29] R. A. Johnson and D. W. WicherApplied Multivariate Statistical Analysis
Upper Saddle River, NJ: Prentice Hall, 4th ed., 1998.

[30] M. Daniel and A. Willsky, “A multiresolution methodology for signal-level
fusion and data assimilation with applications to remote sendirg¢. IEEE
vol. 85, pp. 164-180, Jan. 1997.

140



[31] J.L. Starck, F. Murtagh, and A. Bijaodmage Processing and Data Analysis:
the Multiscale ApproachCambridge, UK: Cambridge University Press, 1998.

[32] M. K. Schneider, P. W. Fieguth, W. C. Karl, and A. S. Willsky, “Multiscale
methods for the segmentation and reconstruction of signals and imHgfes,”
Trans. Image Progyvol. 9, pp. 456-468, Mar. 2000.

[33] J. Laferte, P. Perez, and F. Heitz, “Discrete Markov image modeling and in-
ference on the quadtre@EEE Trans. Image Progvol. 9, no. 3, pp. 390-404,
2000.

[34] R. Brown and P. Hwandntroduction to Random Signals and Applied Kalman
Filtering. New York, NY: Wiley, 3rd ed., 1997.

[35] M. Daniel and A. Willsky, “The modeling and estimation of statistically self-
similar processes in a multiresolution frameworlEEE Trans. Information

Theory vol. 45, pp. 955-970, Apr. 1999.

[36] D. Evans, T. Farr, and J. van Zyl, “Estimates of surface roughness derived from
synthetic aperture radar (SAR) daté#¥EE Trans. Geosci. Remote Sensing
vol. 30, no. 2, pp. 382—-389, 1992.

[37] K. C. Chou,A Stochastic Modeling Approach to Multiscale Signal Process-
ing. Cambridge, Massachusetts: Ph.D. Dissertation, Massachusetts Institute

of Technology, 1991.

[38] R. K. Mehra, “Approaches to adaptive filteringiZEE Trans. Automatic Con-
trol, pp. 693—-698, Oct. 1972.

[39] D. T. Magill, “Optimal adaptive estimation of sampled stochastic processes,”
IEEE Trans. Automatic ContrpVol. AC-10, pp. 434-439, Oct. 1965.

141



[40] R. L. Kashyap, “Maximum likelihood identification of stochastic linear sys-
tems,”IEEE Trans. Automatic ContrpVol. AC-15, pp. 25-34, Feb. 1970.

[41] R. K. Mehra, “On the identification of variances and adaptive Kalman filter-
ing,” IEEE Trans. Automatic Contrplol. AC-15, pp. 175-184, Apr. 1970.

[42] J. C. Shellenbarger, “Estimation of covariance parameters for an adaptive
Kalman filter,” Proc. National Electronics Confvol. 22, pp. 698-702, 1966.

[43] P. D. Hanlon and P. S. Maybeck, “Multiple-model adaptive estimation using
a residual correlation Kalman filter bankEEE Trans. Aerospace and Elec-

tronic Systemsvol. 36, pp. 393—-406, Apr. 2000.

[44] R. O. Duda and P. E. HarRBattern Classification and Scene Analysidew
York, NY: Wiley, 1973.

[45] G. Casella and R. L. Berge§tatistical Inference Belmont, CA: Duxbury
Press, 1990.

[46] G. Noriega and S. Pasupathy, “Adaptive estimation of noise covariance ma-
trices in real-time preprocessing of geophysical datalFE Trans. Geosci.
Remote Sensingol. 35, pp. 1146-1159, Sep. 1997.

[47] E. Fornasini and G. Marchesini, “Doubly-indexed dynamical systems: State-
space models and structural propertidddthematical Systems Theowpl. 9,
pp. 59-72, 1978.

[48] J. W. Woods and C. W. Radewan, “Kalman filtering in two dimensidE£E
Trans. Information Theoryol. IT-23, pp. 473-482, July 1977.

142



Vita

Clint Slatton was born in Huntsville, Alabama in 1970. From there his family
moved to El Paso, Texas, where he remained through high school.

He came to the University of Texas at Austin in the fall of 1988. He grad-
uated third in his class with B.S. in aerospace engineering in 1993. He went on to
obtain a M.S. in aerospace engineering in 1997. During this time he received a sum-
mer scholarship from the California Institute of Technology and interned several
times with the American Airlines Turbine Engine Facility and the Jet Propulsion
Laboratory.

In 1997, he made a decision to move into the field of electrical engineering.
He obtained a M.S. in electrical engineering in 1997. During his time in electrical
engineering, he received several full-support and supplemental fellowships from
The University of Texas at Austin, The Texas Space Grant Consortium, and The
National Aeronautics and Space Administration. He is very grateful to those insti-
tutions for their support.

He received his Ph.D.E.E degree in the area of Telecommunications and In-
formation Systems Engineering from The Department of Electrical and Computer
Engineering at the University of Texas at Austin, Austin, Texas. His current re-
search interests include multiresolution data fusion, digital signal processing for

synthetic aperture radar, and inverse problems in radar scattering.

143



Permanent Address: 3109 Jazz Street
Round Rock, Texas, 78664

This dissertation was typeset witHEX 2-1 by the author.

LATEX 2¢ is an extension ofIeX. IATEX is a collection of macros forgX. TeX is a trademark
of the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

144



