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During the last decade, the explosively developing wavelet theory has proven

to be a powerful mathematical tool for signal analysis and synthesis and has

found a wide range of successful applications in the area of digital signal pro-

cessing (DSP). Compared to their counterparts in the Fourier realm, wavelet

techniques permit signi�cantly more exibility in system design for many ap-

plications such as multirate �ltering, sampling and interpolation, signal mod-

eling and approximation, noise reduction, signal enhancement, feature extrac-

tion, and image data compression. Most classical wavelet systems have been

constructed from a primarily mathematical point of view, and they are fun-

damentally suitable for representing continuous-domain functions rather than

discrete-domain data. From a discrete-time or DSP perspective, we develop

new wavelet systems.

This dissertation focuses on the theory, design, and applications of

several novel classes of one-dimensional and multi-dimensional Coiet-type
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wavelet systems. In particular, we propose a novel generalized Coifman cri-

terion for designing high-performance wavelet systems, which emphasizes the

vanishing moments of both wavelets and scaling functions. The resulting new

wavelet systems are appropriate for representing discrete-domain data and

enjoy a number of interesting and useful properties such as

� sparse representations for smooth signals,

� interpolating scaling functions,

� linear phase �lterbanks, and

� dyadic fractional �lter coe�cients,

which are promising in solving a large variety of DSP problems. We show that

some of the new wavelet systems achieve superior performance (e.g., better

rate-distortion performance, better perceptual quality, and lower computa-

tional complexity) over the state-of-the-art ones in the �eld of image coding.
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Chapter 1

Introduction

1.1 Background

A wavelet is a localized function that can be used to capture informative,

e�cient, and useful descriptions of a signal. If the signal is represented as

a function of time, then wavelets provide e�cient localization in both time

and either frequency or scale. Despite its short history, wavelet theory has

proven to be a powerful mathematical tool for analysis and synthesis of signals

and has found successful applications in a remarkable diversity of disciplines

such as physics, geophysics, numerical analysis, signal processing, biomedical

engineering, statistics, and computer graphics. In particular, the abundance

of intriguing and useful features enjoyed by the wavelet representations has

led to their applications to a wide range of digital signal processing (DSP)

problems.

Compared to Fourier techniques, wavelet techniques permit much more

exibility in choosing appropriate representations for particular applications.

In wavelet-based DSP applications, the choice of a wavelet system1 is of great

1The concept \wavelet system" will be de�ned later. Here we use the term to stand for

a set of wavelet-related elements, which are necessary for a wavelet-based representation.

1
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importance in the performance of the application. Therefore, the problem of

designing wavelet systems has been the core issue in wavelet theory. Most

existing wavelet systems have been designed from a primarily mathematical

point of view. Many of the previous design criteria are not appropriate for

DSP applications. Therefore, when those wavelet systems are applied to DSP

problems, their mathematical properties are often irrelevant to performance in

the application. Unfortunately, those wavelet systems are often blindly chosen

by DSP engineers.

In this dissertation, we attempt to select appropriate existing criteria

and propose new criteria for designing wavelet systems that are well-suited for

DSP applications. As a consequence, we

� apply these criteria (old and new) to design novel wavelet systems;

� study their mathematical properties;

� provide theoretical analyses to support our design criteria; and

� conduct simulations to evaluate their potential in DSP applications.

1.2 Notation and Basic Assumptions

Before we continue the discussion of the work, we �rst introduce the notation

and basic assumptions used in the dissertation.

� The symbols R, Z, and N denote the sets of real numbers, integers, and

natural numbers, respectively.
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� For any t 2 R, the oor operation btc = maxfnjn � t; n 2 Zg, the

ceiling operation dte = minfnjn � t; n 2 Zg, and the rounding operation

[t] = argminn2Zjn� tj.

� All integrals and summations without explicit limits indicate that the

actual limits are �1 and +1. Similarly, fh[n]gn � fh[n]gn2Z.

� Lowercase and uppercase boldfaced symbols denote vectors and matrices,

respectively.

� The symbols AT and A�1 denote the transpose and inverse of matrix

A, respectively.

� The constant vectors 0 = [0 0]T and � = [� �]T .

� For the two-dimensional (2-D) vectors t = [t1 t2]
T , n = [n1 n2]

T , and

l = [l1 l2]
T , we de�ne the following multi-index notation:

Z
dt �

Z Z
dt1dt2;

X
n

�
X
n1

X
n2

; (1.1)

tn � tn11 t
n2
2 ;

 
l

n

!
�

 
l1

n1

! 
l2

n2

!
: (1.2)

� The symbol �[n] denotes the Kronecker delta sequence: �[n] = 1 if n = 0

and �[n] = 0 otherwise. The symbol �[n] denotes the 2-D Kronecker

delta sequence: �[n] = 1 if n = 0 and �[n] = 0 otherwise.

� The Fourier transforms of a function � : R ! R and a sequence h are

denoted by

b�(!) = Z
�(t)e�j!t dt (1.3)
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and

H(!) =
X
n

h[n]e�j!n (1.4)

respectively.

� The Fourier transforms of a 2-D function � : R2 ! R and a 2-D sequence

h are denoted by

b�(!) = Z
�(t)e�j!

T
t dt (1.5)

and

H(!) =
X
n

h[n]e�j!
T
n (1.6)

respectively.

� Every time-domain function f studied in the dissertation is assumed to

be square integrable; i.e.,

Z
jf(t)j2dt <1: (1.7)

The norm of a function f over the interval [a; b] is de�ned as

kfk[a;b] =

 Z b

a
jf(t)j2dt

! 1

2

(1.8)

and the norm of a sequence h is de�ned as

khk =

 X
n

jh[n]j2
! 1

2

: (1.9)

� We de�ne the following shorthand notation for the dyadic scaling and

translates of a function �:

�i;n(t) = 2i=2�(2it� n) (1.10)

where i 2 Z and n 2 Z.
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� The lth-order, t0-centered moment of a function � is de�ned as

M�(t0; l] =
Z
(t� t0)

l�(t) dt (1.11)

where t0 2 R and l 2 N.

� Since all the �lters discussed in the dissertation are real-valued discrete-

time �lters, we shall simply use the term \�lter" instead of \discrete-time

�lter" and only consider their frequency responses over the interval [0; �].

� Since all the �lterbanks discussed in the dissertation are multirate �lter-

banks [44], we shall simply use the term \�lterbank" instead of \multirate

�lterbank".

1.3 Fundamentals of Wavelet Theory

In this section, we briey review those fundamentals of wavelet theory, on

which the work in the dissertation is based. More detailed discussions may be

found in many textbooks on wavelets, e.g., [6], [13], [36], [46]. While many vari-

ations of wavelet systems exist, we focus on two-channel, compactly supported,

and real-valued wavelet systems. These systems are the most fundamental and

widely used wavelet systems in DSP applications such as data compression

[30], noise reduction [16], signal enhancement [50], and singularity detection

[24].

1.3.1 Wavelet Series

We de�ne a wavelet series expansion to approximate a function f :

f(t) �
X
n

si0 [n]�i0;n(t) +
i1X
i=i0

X
n

wi[n] i;n(t) (1.12)
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where fsi0[n]gn are the scaling coe�cients at scale 2i0,

si0 [n] =
Z
f(t) e�i0;n(t) dt (1.13)

and fwi[n]gn are the wavelet coe�cients at scale 2i,

wi[n] =
Z
f(t) e i;n(t) dt: (1.14)

There are four functions in the above linear expansion: the analysis scaling

function e�, the synthesis scaling function �, the analysis wavelet e , and the

synthesis wavelet  . The scaling functions e� and � are of lowpass nature,

and the scaling coe�cients fsi0 [n]gn capture the coarse information of f . The

wavelets e and  are of bandpass nature, and the wavelet coe�cients fwi[n]gi;n

weight the detail features of f . Since multiple scales are used in (1.12), the

wavelet series is a multiscale or multiresolution representation.

1.3.2 The Mallat Algorithm

The de�nitions of the scaling coe�cients in (1.13) and the wavelet coe�cients

in (1.14) are not appealing from a computational perspective. Since the ana-

lytic forms of the functions being studied are not available in many practical

problems, it is di�cult, if not impossible, to use (1.13) and (1.14) to compute

the expansion coe�cients. Even if we have the analytic forms, the complex-

ity of numerically computing the expansion coe�cients is impractically high.

Hence, in order to make the wavelet series useful in practice, we need fast

algorithms to compute the expansion coe�cients fsi0 [n]gn and fwi[n]gi;n e�-

ciently. The Mallat algorithm is one such algorithm. If the scaling functions
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satisfy the so-called dilation equations

�(t) =
X
n

2h[n]�(2t� n) (1.15)

e�(t) =X
n

2eh[n] e�(2t� n) (1.16)

and the wavelets satisfy the so-called wavelet equations

 (t) =
X
n

2g[n]�(2t� n) (1.17)

e (t) =X
n

2eg[n] e�(2t� n) (1.18)

with some sequences (or �lters) h, eh, g, and eg, then
� the scaling coe�cients and the wavelet coe�cients at scale 2i can be com-

puted from the scaling coe�cients at the �ner scale 2i+1 via a discrete-

time �ltering followed by a two-fold downsampling [26]:

si[m] =
X
n

eh[n� 2m]si+1[n] and wi[m] =
X
n

eg[n� 2m]si+1[n]

(1.19)

� the scaling coe�cients at the scale 2i+1 can be synthesized from the

scaling coe�cients and wavelet coe�cients at the coarser scale 2i via a

two-fold upsampling [26] followed by a discrete-time �ltering:

si+1[n] = 2
X
m

(h[n� 2m]si[m] + g[n� 2m]wi[m]): (1.20)

Both the analysis and synthesis can be performed recursively, which yields a

pyramid-structured set of expansion coe�cients. For instance, we start with

fsi1+1[n]gn and perform the decomposition (i1 + 1� i0) times:

si1+1[n] �! si1 [n] �! si1�1[n] �! : : : �! si0 [n]

& & & &

wi1[n] wi1�1[n] : : : wi0[n]

(1.21)
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and we can recover fsi1+1[n]gn by performing the reconstruction (i1 + 1� i0)

times:

si0 [n] �! si0+1[n] �! : : : �! si1 [n] �! si1+1[n]

% % % %

wi0 [n] wi0+1[n] : : : wi1 [n]

(1.22)

Such a pyramid �ltering algorithm is called Mallat algorithm, which provides

an e�cient discrete-time approach to compute the wavelet series expansion in

(1.12), provided that fsi1+1[n]gn, the scaling coe�cients at the �nest scale, are

available. However, the Mallat algorithm does not provide a way to compute

fsi1+1[n]gn. When applied to discrete-time signals, Mallat algorithm is also

called the discrete wavelet transform (DWT).

1.3.3 Perfect Reconstruction Filterbank

From a multirate system theory point of view, the Mallat algorithm can be

implemented with a two-channel iterative �lterbank, whose analysis and syn-

thesis parts are depicted in Figures 1.1 and 1.2, respectively. The symbols

# 2 and " 2 denote two-fold downsampling and upsampling, respectively. In

the Mallat algorithm, if we require that the si+1[n] in (1.20) be identical to

the si+1[n] in (1.19) following the analysis and synthesis stages, then the four

�lters h, eh, g, and eg must satisfy the conjugate quadrature �lter condition

g[n] = (�1)neh[�n] and eg[n] = (�1)nh[�n] (1.23)

and the perfect reconstruction condition

X
n

h[n] eh[n� 2m] =
1

2
�[m] 8m 2 Z (1.24)

or equivalently, in the frequency domain,

H(!)fH(�!) +H(! + �)fH(�! + �) = 1: (1.25)
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si[n]

-

-

eh[�n]

eg[�n]

-

-

#2

#2
wi�1[n]

si�1[n]

-

-

eh[�n]

eg[�n]

-

-

#2

#2
wi�2[n]

si�2[n]
� � �

Figure 1.1: Block diagram of the analysis part of a two-channel iterative �l-
terbank

� � �
si�2[n]

-

wi�2[n]
-

"2

"2

-

-

2h[n]

2g[n]

L?
6

wi�1[n]
-

si�1[n]
- "2

"2

-

-

2h[n]

2g[n]

L?
6

si[n]

Figure 1.2: Block diagram of the synthesis part of a two-channel iterative
�lterbank

We call the set f�; e�;  ; e ; h; eh; g; egg a wavelet system. Such a system

is biorthogonal in the sense that for any k 2 Z and n 2 Z,

Z
�(t� k) e�(t� n) dt =

Z
 (t� k) e (t� n) dt = �[k � n] (1.26)Z e�(t� k) (t� n) dt =

Z
�(t� k) e (t� n) dt = 0: (1.27)

If the analysis elements are identical to their synthesis counterparts, i.e.,

e� = �; e =  ; eh = h; eg = g (1.28)

then the wavelet system becomes orthogonal in the sense that, for any integers
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k and n,

Z
�(t� k)�(t� n) dt =

Z
 (t� k) (t� n) dt = �[k � n] (1.29)

Z
�(t� k) (t� n) dt = 0 (1.30)

and the associated DWT is an orthogonal transform. The perfect reconstruc-

tion condition becomes

X
n

h[n] h[n� 2m] =
1

2
�[m] 8m 2 Z (1.31)

or equivalently, in the frequency domain,

H(!)H(�!) +H(! + �)H(�! + �) = 1: (1.32)

Orthogonal wavelet systems are special cases of biorthogonal wavelet systems,

and the design of the former is more restrictive than that of the latter.

The following describes a generic procedure for designing a biorthogonal

wavelet system:

Step 1: translate a set of desired properties of the wavelet system into an

equivalent set of properties of h and eh;
Step 2: design h and eh satisfying (1.24) and other desired properties of the

�lters h and eh;
Step 3: derive g and eg using (1.23);

Step 4: derive � and e� using (1.15) and (1.16);

Step 5: derive  and e using (1.17) and (1.18).
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Apparently, the core of the procedure is a �lter design problem, in which we

attempt to design a pair of lowpass �lters h and eh. If the wavelet system is

required to be orthogonal, we only need to design a single �lter.

The functions �, e�,  , and e are compactly supported if and only if

the �lters h, eh, g, and eg are �nite impulse response (FIR) [36]. Therefore, all

the �lters discussed in the dissertation are FIR, which permits us to ignore

causality when we design �lters.

In audio, image, and many other DSP applications, one of the highly

desirable �lter characteristics is linear phase, which corresponds to symmetry

of the associated wavelet system [36]. There are two types of symmetry which

can be possessed by wavelet systems: whole-point symmetry (WPS) and half-

point symmetry (HPS). Table 1.1 summarizes the two types of symmetry for

wavelet systems. For a WPS (HPS) wavelet system, all four �lters have odd

(even) lengths [36]. Unfortunately, there does not exist any non-trivial WPS

or HPS two-channel orthogonal wavelet system [13]; i.e., for any non-trivial

two-channel wavelet system, symmetry and orthogonality cannot be achieved

simultaneously.

1.4 Vanishing Moment Property

While the design of a wavelet system may be converted to a �lter design

problem, the design criteria for wavelet systems are fundamentally di�erent

from those encountered in traditional �lter design. Next, we shall discuss two

key properties of wavelet systems, which are at the heart of wavelet theory.
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Table 1.1: Two types of symmetry for wavelet systems

whole-point symmetry half-point symmetry

eh[n] = eh[�n] eh[n] = eh[1� n]

eg[n] = eg[�n] eg[n] = �eg[1� n]

h[n] = h[�n] h[n] = h[1� n]

g[n] = g[�n] g[n] = �g[1� n]

e�(t) = e�(�t) e�(t) = e�(1� t)

e (t) = e (�t) e (t) = � e (1� t)

�(t) = �(�t) �(t) = �(1� t)

 (t) =  (�t)  (t) = � (1� t)

1.4.1 Vanishing Wavelet Moments

One of the most important properties of wavelet systems is that the �rst L

moments of the analysis wavelet e vanish; i.e.,

Me (0; l] = 0 for l = 0; 1; : : : ; L� 1 (1.33)

where we have used the notation given in (1.11). The consequences of this

property are that

� all polynomials of degree up to (L � 1) can be expressed as a linear

combination of f�(t� n)gn [36];

� a su�ciently smooth function f can be approximated with error O(2�i0L)

by a linear combination of f�i0;ngn [43]:

kf � Pi0fk = Cproj � 2
�i0L � kf (L)k+O(2�i0(L+1)) (1.34)
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where

(Pi0f)(t) =
X
n

si0 [n]�i0;n(t) (1.35)

and

Cproj =
1

L!

0
@X
m6=0

��� b�(L)(2m�)���2
1
A

1=2

; (1.36)

� the wavelet coe�cients of a smooth function f decay rapidly [36]:

jwi[n]j � C � 2�iL; (1.37)

� (1.33) is a necessary condition (but not su�cient) for the wavelet e to

be di�erentiable L times [13].

The property of vanishing wavelet moments makes the wavelet series of a

smooth function f in (1.12) a sparse representation of f ; i.e., only a small

portion of the expansion coe�cients are needed to approximate f accurately.

In fact, this is the fundamental reason for the success of wavelet representa-

tions in certain applications where data is selectively discarded, such as data

compression and noise reduction.

Because of the importance of vanishing wavelet moments, most families

of wavelet system are indexed by the degree of vanishing wavelet moments. For

instance, a biorthogonal wavelet system of order (L; eL) has L and eL vanishing

moments for the synthesis and analysis wavelets, respectively.

1.4.2 Vanishing Scaling Function Moments

A lesser known property of wavelet systems is that the �rst moment of the

analysis scaling function e� is one for normalization and its next L�1 moments
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vanish; i.e.,

Me�(0; l] = �[l] for l = 0; 1; : : : ; L� 1: (1.38)

The consequences of this property are that

� the scaling coe�cients fsi1+1[n]gn in (1.21) can be accurately approxi-

mated by the uniform samples of the function f [4]:

si1+1[n] = f(2�(i1+1)n) +O(2�(i1+1)L); (1.39)

� the property makes e� exactly or nearly symmetric [13].

The property implies that one can apply the Mallat algorithm directly on the

uniform function samples to generate a nearly valid wavelet representation.

This property was �rst proposed by the numerical analysis commu-

nity for wavelet-based numerical methods. However, we show that it is also

extremely important for wavelet-based DSP applications. In typical DSP ap-

plications, only uniform function samples rather than analytic functions are

available. It is generally invalid to treat function samples as the expansion

coe�cients of a wavelet series [36, pp. 232{233]. The samples must be pre-

processed before they can be treated as approximated expansion coe�cients

[1], [38], [58]. However, due to the approximation in (1.39), preprocessing is

not necessary, and the combination of Mallat algorithm and the property of

vanishing scaling function moments yields a valid, purely discrete-domain, and

fast algorithm for computing scaling coe�cients and wavelet coe�cients.
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1.5 Previous Work

In her celebrated paper [12], Daubechies proposed the following design cri-

terion for orthogonal wavelet systems: given a degree of freedom, maximize

the degree L in (1.33). This Daubechies criterion only emphasizes vanish-

ing wavelet moments. The primary motivation of the criterion was to obtain

smooth wavelets with a su�ciently large L. Such a criterion was used in the

design of several wavelet systems, including orthogonal Daubechies wavelet

systems [12], biorthogonal spline wavelet systems [11], [45], and biorthogonal

quincunx spline wavelet systems [10], [20].

Motivated by wavelet-based numerical analysis, Coifman chose a di�er-

ent criterion: given a degree of freedom, maximize the degree L in both (1.33)

and (1.38) [4]. This Coifman criterion emphasizes the vanishing moments

of both the wavelet and scaling function. Daubechies used such a criterion

to construct orthogonal Coiet systems of even orders [14]. Tian and Wells

constructed odd-ordered ones [41].

1.6 Contributions and Organization of the Dissertation

The following summarizes the contributions of the dissertation, supplies re-

lated publications by the author, in which partial results of the dissertation

were presented, and describes the organization of the rest of the dissertation.

� We extend the Coifman criterion to a more general form by replacing the

zero-centered vanishing scaling function moments by nonzero-centered

ones. Our new criterion is, given a degree of freedom, to maximize L
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such that

Me (0; l] = 0 for l = 0; 1; : : : ; L� 1 (1.40)

Me�(t0; l] = �[l] for l = 0; 1; : : : ; L� 1 (1.41)

which we refer to as generalized Coifman criterion. Such an extension

allows a more general and exible sampling approximation with an ar-

bitrary sampling o�set t0. Also, the parameter t0 provides one extra

degree of freedom in designing wavelet systems.

� In Chapter 2, we present a theory of the wavelet systems satisfying the

generalized Coifman criterion. We generally refer to such systems as

Coiet-type wavelet systems.

� In Chapter 3, we apply the generalized Coifman criterion to extend the

existing class of original orthogonal Coiet systems to the novel class

of generalized orthogonal Coiet systems, and design a subclass having

optimal phase responses, which are signi�cantly better than those of the

original orthogonal Coiet systems. We prove that generalized Coiet

systems are an excellent choice for the sampling and approximation of

smooth functions, and can be shown to perform better than the original

Coiet systems by choosing t0 appropriately [51], [52], [54].

� In Chapter 4, we design the novel class of biorthogonal Coiet systems,

study their properties, and propose three promising �lterbanks in the

family having both excellent rate-distortion performance and extremely

low computational complexity for wavelet transform-based image data

compression [57]. We also conduct systematic comparisons between
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biorthogonal Coiet systems and orthogonal Daubechies wavelet systems

[48], [49].

� In Chapter 5, we apply the generalized Coifman criterion to design the

novel class of generalized biorthogonal Coiet systems, study their prop-

erties, and discover one promising �lterbank in the family to be the best

�lterbank to date in the rate-distortion sense for image data compression

[56].

� In Chapter 6, we extend the class of one-dimensional biorthogonal Coiet

systems in Chapter 4 to the quincunx sampling pattern, and evaluate the

properties of the resulting two-dimensional nonseparable Coiet systems

[53]. We �nd that a novel biorthogonal quincunx Coiet system sig-

ni�cantly outperforms the state-of-the-art quincunx wavelet system for

image data compression.

� In Chapter 7, we raise an open problem regarding the existence of mul-

tidimensional generalized biorthogonal Coiet systems. We prove that

such systems, if they exist, cannot be derived via the two types of ex-

tended McClellan transformations [55].

� In Chapter 8, we conclude the dissertation.

Table 1.2 lists a number of important wavelet systems, including several

existing ones and the new ones proposed and developed in the dissertation.
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Table 1.2: Important wavelet systems

Criterion 1-D Orthogonal 1-D Biorthogonal 2-D Biorthogonal

Daubechies Orthogonal Biorthogonal Biorthogonal

Criterion Daubechies Spline Wavelets Quincunx

Wavelets (Cohen, Daubechies, Spline Wavelets

(Daubechies '88) & Feauveau '92; (Kova�cevi�c &

Vetterli & Herley '92) Vetterli '92;

Cohen &

Daubechies '93)

Coifman Orthogonal Biorthogonal Biorthogonal

Criterion Coiets Coiets Quincunx

(Daubechies '93) (Sweldens '96; Coiets

Wei, Tian, Wells, Jr., (Wei, Evans, &

& Burrus '98) Bovik '97)

Generalized Generalized Generalized Preliminary

Coifman Orthogonal Biorthogonal Result

Criterion Coiets Coiets (Wei, Evans, &

(Wei & Bovik '98) (Wei, Pai, & Bovik '98) Bovik '97)



Chapter 2

Theory of Coiet-Type Wavelets

In this chapter, we present a fundamental theory of Coiet-type wavelets.

Except for Theorem 1, which we include for completeness, all of the results

in this chapter are new. The theory serves as a mathematical foundation on

which the results in the following chapters are based. In particular, the theory

provides the analytic framework for designing Coiet-type wavelet systems,

studying their mathematical properties, evaluating their potential in various

applications, and comparing them with other existing wavelet systems.

2.1 Equivalent Descriptions of Vanishing Wavelet Mo-

ments

The following theorem states a set of equivalent descriptions of vanishing

wavelet moments.

Theorem 1 For a wavelet system f�; e�;  ; e ; h; eh; g; egg, the following three

equations are equivalent:

Me (0; l] = 0 for l = 0; 1; : : : ; L� 1 (2.1)

X
n

(�1)nnlh[n] = 0 for l = 0; 1; : : : ; L� 1 (2.2)

H(l)(�) = 0 for l = 0; 1; : : : ; L� 1; (2.3)

19
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and similar equivalence holds between  and eh.

One importance of Theorem 1 is that it translates the vanishing moment

property of a wavelet into an equivalent property of the corresponding lowpass

�lter (in either the time domain or the frequency domain). The latter can

be directly used in the �lter design procedure for the wavelet system. The

theorem is one of the most fundamental results in wavelet theory. Its proof

can be found in many textbooks on wavelets, e.g., [6], [13], [36], [46].

2.2 Equivalent Descriptions of Vanishing Scaling Func-

tion Moments

The following theorem states a set of equivalent descriptions of vanishing scal-

ing function moments.

Theorem 2 For a wavelet system f�; e�;  ; e ; h; eh; g; egg, the following six equa-
tions are equivalent:

M�(t0; l] = �[l] for l = 0; 1; : : : ; L� 1 (2.4)

M�(0; l] = tl0 for l = 0; 1; : : : ; L� 1 (2.5)

b�(l)(0) = (�jt0)
l for l = 0; 1; : : : ; L� 1 (2.6)

X
n

(n� t0)
lh[n] = �[l] for l = 0; 1; : : : ; L� 1 (2.7)

X
n

nlh[n] = tl0 for l = 0; 1; : : : ; L� 1 (2.8)

H(l)(0) = (�jt0)
l for l = 0; 1; : : : ; L� 1; (2.9)

and similar equivalence holds between e� and eh.
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Proof: Due to the similarity between f�; hg and f e�; ehg, we only need

to prove the �rst equivalence. It is trivial to check that (2.4) and (2.5) are

equivalent and (2.7) and (2.8) are equivalent.

Using the dilation equation (1.15), we infer that

M�(t0; l] =
Z
(t� t0)

l

"X
n

2h[n]�(2t� n)

#
dt (2.10)

= 2�l
X
n

h[n]
Z
(s+ n� 2t0)

l�(s) ds (2.11)

= 2�l
X
n

h[n]
Z lX

p=0

 
l

p

!
(s� t0)

p(n� t0)
l�p�(s) ds (2.12)

for l = 0; 1; : : : ; L� 1. If h satis�es (2.7), then for l = 0; 1; : : : ; L� 1,

M�(t0; l] = 2�l
Z lX

p=0

 
l

p

!
(s� t0)

p�[l � p]�(s) ds (2.13)

= 2�l
Z
(s� t0)

l�(s) ds (2.14)

which implies (2.4).

On the other hand, if � satis�es (2.4), then

M�(t0; l] = 2�l
X
n

h[n]
lX

p=0

 
l

p

!
(n� t0)

l�p�[p] (2.15)

= 2�l
X
n

(n� t0)
lh[n] (2.16)

= �[l] (2.17)

for l = 0; 1; : : : ; L� 1, which implies (2.8). Hence, (2.4) and (2.8) are equiva-

lent.

According to the di�erentiation in frequency property of the continuous-

time Fourier transform and the discrete-time Fourier transform [26, pp. 58],

it is trivial to show that (2.5) is equivalent to (2.6) and (2.8) is equivalent to

(2.9).
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One importance of Theorem 2 is that it translates the vanishing moment

property of a scaling function into an equivalent property of the corresponding

lowpass �lter (in either the time domain or the frequency domain). The latter

can be directly used in the �lter design procedure of wavelet system design.

2.3 Vanishing Scaling Function Moments in a Biorthog-

onal Wavelet System

The next theorem describes a relationship between the vanishing moments of

the two scaling functions in a biorthogonal wavelet system.

Theorem 3 For a biorthogonal wavelet system f�;  ; e�; e g, if either e or  

possesses a degree L of vanishing moments, then the following two equations

are equivalent:

Me�(t0; l] = �[l] for l = 0; 1; : : : ; �L� 1 (2.18)

M�(t0; l] = �[l] for l = 0; 1; : : : ; �L� 1 (2.19)

for any �L such that �L � L.

Proof: Due to the symmetry between e and  , without loss of gener-

ality, we assume that e satis�es (2.1). According to Theorem 1, H(!) satis�es

(2.3). Assume that e� satis�es (2.18). Therefore, according to Theorem 2, it

follows that

fH(l)(0) = (�jt0)
l for l = 0; 1; : : : ; �L� 1: (2.20)

We shall show by means of induction that � satis�es (2.19), or equivalently,

H(l)(0) = (�jt0)
l for l = 0; 1; : : : ; �L� 1: (2.21)
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Checking the base case is trivial: H(0) = 1 due to (1.25) and (2.20). Assume

that for some integer l such that 0 � l � �L� 1, h satis�es that

H(p)(0) = (�jt0)
p for p = 0; 1; : : : ; l � 1: (2.22)

We di�erentiate (1.25) l times with respect to !:

lX
p=0

 
l

p

!
(�1)l�p

h
H(p)(!)fH(l�p)(�!) +H(p)(! + �)fH(l�p)(�! + �)

i
= 0:

(2.23)

Evaluating (2.23) at ! = 0 and applying (2.3), (2.20), and (2.22), we conclude

that

H(l)(0) + (�jt0)
l
l�1X
p=0

 
l

p

!
(�1)l�p = 0 (2.24)

which implies that

H(l)(0) = (�jt0)
l (2.25)

and completes the induction. Similarly, it can be shown that if � satis�es

(2.19), then e� satis�es (2.18). Thus, we have completed the proof.

Theorem 3 states that for a biorthogonal wavelet system, if one of the

two wavelets possesses a su�cient number of vanishing moments, then the two

scaling functions must have the same degree of vanishing moments. We will

see later that this fact helps us manipulate the degrees of freedom in designing

Coiet-type biorthogonal wavelet systems.

2.4 Sampling Approximation Power

We now study the sampling approximation of smooth functions via compactly

supported wavelet systems satisfying the generalized Coifman criterion.
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2.4.1 Asymptotic L2-Error of Sampling Approximation

A key problem in wavelet-based multiresolution approximation theory is to

measure the decay of the approximation error as the resolution increases, given

some a priori knowledge on the smoothness of the function being approximated

[9], [19], [22], [35], [39], [40], [43]. We �rst establish three lemmas that are

necessary to our primary result given by Theorem 4.

For a wavelet system satisfying the generalized Coifman criterion given

in (1.40) and (1.41), we de�ne a function �l as

�l(t) =
X
n

(t� n� t0)
l�(t� n) (2.26)

for l 2 Z and l � 0. It is obvious that �l is a periodic function with unit period.

In addition, if the scaling function � is compactly supported, �l is bounded

and well-de�ned.

Lemma 1 If a wavelet system satis�es the generalized Coifman criterion given

in (1.40) and (1.41), then for any t 2 R and l = 0; 1; : : : ; L� 1,

�l(t) = �[l]: (2.27)

Proof: Since e has L vanishing moments, � satis�es [38]

X
n

(t� n)l�(t� n) =M�(0; l] for l = 0; 1; : : : ; L� 1: (2.28)

Using (2.28) and Theorem 2, we infer that for l = 0; 1; : : : ; L� 1,

�l(t) =
X
k

lX
p=0

 
l

p

!
(t� n)p(�t0)

l�p�(t� n) (2.29)

=
lX

p=0

 
l

p

!
(�t0)

l�pt
p
0 (2.30)

= �[l]: (2.31)
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which gives the desired result.

Since the scaling function � is compactly supported, only a �nite num-

ber of terms in �l(t) for a given t contribute to the constant value of the

summation. Consequently, we arrive at the following lemma, which can be

shown easily using Lemma 1.

Lemma 2 If a wavelet system satis�es the generalized Coifman criterion given

in (1.40) and (1.41), then for any K1 2 Z and K2 2 Z such that K1 < K2,

and any t 2 R such that K1 + B � 1 � t � K2 + A + 1, where [A;B] is the

smallest interval that contains the support of � with A 2 Z and B 2 Z,

K2X
n=K1

(t� n� t0)
l�(t� n) = �[l] (2.32)

for l = 0; 1; : : : ; L� 1:

The generalized Coifman criterion generalizes a signi�cant advantage

of the original Coifman criterion: the projection coe�cients of a su�ciently

smooth function f on the subspace spanned by the basis f�i;ngn can be ap-

proximated accurately by the uniform samples of f (up to a scaling constant)

ff(2�i(n + t0))gn. Such an extension also allows a more general and exible

sampling approach, called shifted sampling, in which uniform samples with a

sampling period 2�i, ff(2�i(n+ t0))gn, are used for some t0 2 R. This can be

useful when samples at the dyadic points f2�ingn are not available.

For a given smooth function f , we intend to recover f over a given

interval [a; b], a 2 Z, b 2 Z, a � b, using its uniform samples ff(2�i(n+ t0))gn.

We de�ne a subset of integers

K = fn : n 2 Z; 2ia� B + 1 � n � 2ib� A� 1g (2.33)
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and a function e�l with l 2 Z and l � 0,

e�l(t) = X
n2K

(t� n� t0)
l�(t� n): (2.34)

According to Lemma 2, we conclude that, for any t 2 [2ia; 2ib] and l =

0; 1; : : : ; L� 1,

e�l(t) = �[l]: (2.35)

We de�ne a sequence of functions ffi : [a; b]! R; i 2 Zg,

fi(t) = 2�
i

2

X
n2K

f(2�i(n+ t0))�i;n(t) (2.36)

which can be viewed as successive approximations of f over the interval [a; b]

with the scaled and translated versions of the scaling function � being used

as the interpolants. The following lemma gives the convergence rate of the

pointwise approximation error.

Lemma 3 If f (L+1) exists and is bounded, then the approximation error at

any t 2 [a; b] has the asymptotic form

fi(t)� f(t) =
f (L)(t) e�L(2it)
(�1)L2iLL!

+O(2�i(L+1)): (2.37)

Proof: Perform a Taylor expansion of f(s) around t and evaluate it at

s = 2�i(n+ t0),

f

�
n+ t0

2i

�
=

LX
l=0

f (l)(t)

2ill!
(�1)l(2it� n� t0)

l +
f (L+1)(�n)

2i(L+1)(L + 1)!
(n + t0 � 2it)L+1

(2.38)
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with some �n 2 (t; 2�i(n + t0)). Inserting (2.38) into (2.36) and using (2.35),

we infer that

fi(t) = f(t) +
X
n2K

 
f (L)(t)

2iLL!
(n + t0 � 2it)L +

f (L+1)(�n)

2i(L+1)(L+ 1)!
(n+ t0 � 2it)L+1

!

��(2it� n) (2.39)

= f(t) +
f (L)(t) e�L(2it)
(�1)L2iLL!

+
X
n2K

f (L+1)(�n)

2i(L+1)(L+ 1)!
(n + t0 � 2it)L+1

��(2it� n): (2.40)

Therefore, �����fi(t)� f(t)�
f (L)(t) e�L(2it)
(�1)L2iLL!

����� � C � 2�i(L+1) (2.41)

where

C =
kf (L+1)k1

(L + 1)!
sup
t2[a;b]

 X
n2K

���(n+ t0 � 2it)L+1�(2it� n)
���
!

(2.42)

which gives the desired result.

Based on Lemma 3, in the next theorem we develop the convergence

rate for the L2-error of the approximation.

Theorem 4 If f (L+1) exists and is bounded, then the L2-norm of the recon-

struction error over [a; b] has the asymptotic form

kf � fik[a;b] = Cappr � 2
�iL

� kf (L)k[a;b] +O(2�i(L+1)) (2.43)

where the constant Cappr is given as

Cappr = (L!)�1 � k�Lk[0;1]: (2.44)
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Proof: For i su�ciently large, the O(2�i(L+1)) error term in (2.37)

becomes negligible, and we can use the pointwise estimate in Lemma 3 to

obtain the asymptotic form of the L2-error,

lim
i!+1

 
kf � fik[a;b]

2�iL

!2

=
1

(L!)2
lim
i!+1

Z b

a

���f (L)(t) e�L(2it)���2 dt (2.45)

=
1

(L!)2
lim
i!+1

2ibX
m=2ia+1

Z m

2i

m�1

2i

����f (L)
�
m

2i

�
�L(2

it)
����
2

dt (2.46)

=
1

(L!)2
lim
i!+1

 Z 2�i

0

����L(2it)���2 dt
!

�

0
@ 2ibX
m=2ia+1

����f (L)
�
m

2i

�����
2
1
A (2.47)

=
1

(L!)2
� k�Lk

2
[0;1] �

f (L)2
[a;b]

(2.48)

where we have used (2.35) and the periodicity of �L. Thus, we have proved

(2.43).

Theorem 4 provides a localized measure for the asymptotic L2-error,

which depends on the scaling function �, the scale 2i, the wavelet system

order L, and the local smoothness of the function.

2.4.2 Computation of Asymptotic Constant

In order to compare the asymptotic performance of various Coiet-type wavelet

systems in sampling approximation, it is necessary to study the dependence of

the asymptotic constant Cappr on a particular wavelet system. Since the scaling

function � is often not explicitly available, we need to develop a method to

compute Cappr based on the �lter coe�cients fh[n]gn, which are known after

the wavelet system is constructed. We �rst develop the following theorem.
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Theorem 5 The asymptotic constant Cappr can be expressed as

C2
appr = C2

proj + C2
samp (2.49)

where Cproj is given in (1.36) and

Csamp = (L!)�1(M�(0; L]� tL0 ): (2.50)

Proof: Since �L is a periodic function with a unit period, it follows

from Parseval's theorem that

Z 1

0
�2L(t) dt =

X
m

jDmj
2 (2.51)

where the Fourier series coe�cients are given as

Dm =
Z 1

0

X
n

(t� n� t0)
L�(t� n) e�j2�mtdt (2.52)

=
X
n

Z 1�n

�n
(s� t0)

L�(s) e�j2�msds (2.53)

=
Z LX

l=0

 
L

l

!
sl(�t0)

L�l�(s) e�j2�msds (2.54)

=
LX
l=0

 
L

l

!
(�t0)

L�ljl b�(l)(2m�): (2.55)

Hence, according to (2.6) in Theorem 2, we have

D0 = jL b�(L)(0) + L�1X
l=0

 
L

l

!
(�t0)

L�ljl b�(l)(0) (2.56)

= M�(0; L]� tL0 : (2.57)

The dilation equation (1.15) is equivalent to

b�(!) = H(!=2) b�(!=2): (2.58)



30

Applying the chain rule, we di�erentiate both sides of (2.58) l times

b�(l)(!) = lX
p=0

 
l

p

!
1

2l
H(p)(!=2) b�(l�p)(!=2): (2.59)

Now we evaluate b�(l)(2m�), for l = 0; 1; : : : ; L � 1. If m is odd, then from

Theorem 1 we conclude that b�(l)(2m�) = 0. If m is even, then

b�(l)(2m�) = 1

2l

lX
p=0

 
l

p

!
(�jt0)

p b�(l�p)(m�): (2.60)

Recursively applying (2.60), we �nally conclude that b�(l)(2m�) = 0, if m is

even but not zero. Therefore, Dm = jL b�(L)(2m�), if m 6= 0. We thus obtain

(2.49).

In fact, the above theorem not only indicates a way to compute the

asymptotic constant Cappr, but also possesses an interesting interpretation.

The squared L2-error for Coiet-type wavelets-based sampling approximation

can be represented as

kf � fik
2 = kf � Pifk

2 + kPif � fik
2: (2.61)

Since we have known that kf � fik
2 and kf � Pifk

2 have the same conver-

gence rate 2�2iL, kPif � fik
2 has the same convergence rate, too. Thus, it is

interesting to compare the associated asymptotic constants of the latter two.

According to (1.34) and (1.36), the asymptotic constant for kf �Pifk
2, which

is the L2-error due to projection, is apparently Cproj. Therefore, Csamp is the

asymptotic constant for kPif � fik
2, which is the error due to the approxima-

tion of the projection coe�cients by the function samples.

A method to compute Cproj was proposed in [43]. Thus, we only need

to compute Csamp, or equivalently to compute M�(0; L], based on the given
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�lter coe�cients. From (2.59), it follows that

b�(L)(0) = H(L)(0)

2L � 1
: (2.62)

Since

H(L)(0) = (�j)L
X
n

nLh[n]; (2.63)

it follows that

M�(0; L] = jL b�(L)(0) =
P
n n

Lh[n]

2L � 1
: (2.64)

2.5 Summary

By presenting a theory of Coiet-type wavelets, we have built a mathematical

foundation for the rest of the dissertation. Every Coiet-type wavelet sys-

tem possesses unique mathematical properties. All of these new results have

signi�cantly enriched wavelet theory.



Chapter 3

Generalized Orthogonal Coiets

Orthogonal Coiet systems have been popular in numerical analysis due to

their sampling approximation property [4], [14] and in digital signal processing

due to their associated near-linear phase �lterbanks [13]. In this chapter, we

generalize the original orthogonal Coiet systems by using the generalized

Coifman criterion. With the resulting extra degree of freedom, we achieve

improved properties over the original systems.

3.1 De�nition

De�nition 1 An orthogonal wavelet system is a generalized orthogonal

Coiet (GOC) system of order L if it satis�es the generalized Coifman crite-

rion given in (1.40) and (1.41).

3.2 Design

According to Theorem 1 and Theorem 2, (1.40) is equivalent to

X
n

(�1)nnlh[n] = 0 for l = 0; 1; : : : ; L� 1 (3.1)

32
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and (1.41) is equivalent to

X
n

nlh[n] = tl0 for l = 0; 1; : : : ; L� 1: (3.2)

In addition to the above equations, h needs to satisfy the perfect reconstruc-

tion condition given in (1.31). For a given t0, the �lter coe�cients fh[n]gn can

be obtained by solving the equations given in (1.31), (3.1), and (3.2) simulta-

neously.

3.2.1 Filter Length versus System Order

Let N be the length of the �lter h in a GOC system of order L for some t0. We

require h to have the minimal length among all �lters satisfying (1.31), (3.1),

and (3.2). The perfect reconstruction condition (1.31) gives N
2
equations. The

vanishing moment conditions (3.1) and (3.2) provide a total of 2L equations,

which are, however, redundant according to the following theorem.

Theorem 6 If a �lter h satis�es

X
n

(�1)nnlh[n] = 0 for l = 0; 1; : : : ; 2p� 1 (3.3)

and X
n

nlh[n] = tl0 for l = 0; 1; : : : ; 2p� 1; (3.4)

then h satis�es X
n

n2ph[n] = t
2p
0 : (3.5)

Proof: De�ne

F (!) = H(!)H(�!): (3.6)
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Then (1.32) becomes

F (!) + F (! + �) = 1: (3.7)

From Theorem 2, it follows that

F (2p)(0) =
2pX
l=0

 
2p

l

!
(�1)2p�lH(l)(0)H(2p�l)(0) (3.8)

= (�jt0)
2p

2p�1X
l=1

 
2p

l

!
(�1)l + 2H(2p)(0) (3.9)

= �2(�jt0)
2p + 2H(2p)(0): (3.10)

Taking the 2pth derivative of both sides of (3.7) and evaluating it at ! = 0

using Theorem 1, we have

F (2p)(0) = 0 (3.11)

or

H(2p)(0) = (�jt0)
2p (3.12)

which implies (3.5).

The theorem indicates that the equations in (3.2) with even-order van-

ishing moments can be derived from (1.31), (3.1), and the conditions in (3.2)

with lower odd-order vanishing moments. Thus, (3.1) and (3.2) yield 3L�1
2

independent equations if L is odd and 3L
2
equations if L is even. Hence, the

minimal N is given by

N = 2
�
3L

2

�
=

(
3L� 1 if L is odd
3L if L is even:

(3.13)

Such a phenomenon of extra vanishing scaling function moments was

also observed by Burrus and Odegard [6], [7] for the original Coiet systems.



35

3.2.2 Newton's Method-Based Construction

Similar to [14] and [41], we apply Newton's method [27, pp. 181-188] to solve

the multivariate nonlinear equations iteratively. We note that h[n] satis�es

(1.31), (3.1), and (3.2) if and only if h0[n] satis�es

X
n

h0[n] h0[n� 2m] =
1

2
�[m] 8m 2 Z (3.14)

X
n

(�1)nnlh0[n] = 0 for l = 0; 1; : : : ; L� 1 (3.15)

X
n

nlh0[n] = (t0 + k)l for l = 0; 1; : : : ; L� 1 (3.16)

where h0[n] = h[n�k] for some k 2 Z. This fact implies that any solution h to

(1.31), (3.1), and (3.2), with some support interval and sampling o�set t0, cor-

responds to another solution with a �xed support interval and an appropriate

sampling o�set. Therefore, the support interval of h can be arbitrarily chosen

without loss of generality. Thus, we choose the same support interval as that

of the original orthogonal Coiets for the convenience of comparison [14]; i.e.,

the impulse response h starts with h[�L] and ends with h[N � L� 1]. De�ne

an N � 1 vector

h = [h[�L] h[�L + 1] : : : h[N � L� 1]]T (3.17)
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and a vector-valued function f : RN ! R
N ,

f(h) =

2
66666666666666666666666666666664

P
n h

2[n]� 1P
n h[n]h[n + 2]

...P
n h[n]h(n +N � 2)P
n nh[n]� t0P
n n

3h[n]� t30
...P

n n
bN=3c�1h[n]� t

bN=3c�1
0P

n(�1)
nh[n]P

n(�1)
nnh[n]
...P

n(�1)
nnL�1h[n]

3
77777777777777777777777777777775

(3.18)

where all the summations are from n = �L to n = N � L� 1. Therefore,

f(h) = 0N (3.19)

gives a set of N independent equations in (1.24), (4.11), and (4.14), where

0N denotes the zero vector of length N . The approximated solution to (3.19)

in the kth iteration is denoted by hk. With an initial guess of h0, Newton's

iteration is then

hk+1 = hk � (f 0(hk))
�1
f(hk) (3.20)

where f 0 denotes the Gateaux-derivative of f [27]. The initial choice of h0

is not arbitrary because some choices may cause the iteration to diverge. In

our design, we choose the �lter in the original orthogonal Coiet system of the

same order as the starting solution. The iteration stops when the di�erence

between hk+1 and hk is small enough (e.g., its norm is smaller than a given
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threshold). In our experiments, we found that with such an initialization

scheme the Newton iteration always converges.

From the above discussion, we notice that the extension from zero-

centered vanishing scaling function moments to nonzero-centered ones does

not increase the computational complexity of wavelet design.

3.3 Near-Linear Phase Filterbanks

The lowpass �lters of the original orthogonal Coiet systems are close to whole-

point symmetric [13]. We now study the phase response of the lowpass �lter

h in GOC systems.

Theorem 7 If j!j is su�ciently small, then the phase response of the lowpass

�lter in the GOC system of order L has the asymptotic form

\H(!) = �t0! + C � !L
0

+O(!L
0+2) (3.21)

where L0 = 2bL=2c+ 1 and the constant C is given by

C =

P
n(n� t0)

L0h[n]

(�1)(L0+1)=2L0!
; (3.22)

in addition, h possesses asymptotically linear phase; i.e., for each ! 2 [0; �),

lim
L!1

\H(!) = �t0!: (3.23)

Proof: Since

H(!)ej!t0 =
X
n

h[n]e�j!(n�t0); (3.24)
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we infer that

tan (\H(!) + t0!) = �

X
n

h[n] sin(!(n� t0))X
n

h[n] cos(!(n� t0))
: (3.25)

Taking the Taylor expansions of sin(!(n�t0)) and cos(!(n�t0)) around ! = 0,

and applying (2.7), we have

X
n

h[n] sin(!(n� t0))

=
X
n

h[n]

0
@bL=2cX

l=0

(!(n� t0))
2l+1

(�1)l(2l + 1)!
+

cos(�1(n� t0))(!(n� t0))
L0+2

(�1)bL=2c+1 (L0 + 2)!

1
A (3.26)

=
X
n

h[n](!(n� t0))
L0

(�1)bL=2cL0!
+
X
n

h[n] cos(�1(n� t0))(!(n� t0))
L0+2

(�1)bL=2c+1 (L0 + 2)!
(3.27)

and

X
n

h[n] cos(!(n� t0))

=
X
n

h[n]

0
@dL=2e�1X

l=0

(!(n� t0))
2l

(�1)l(2l)!
+

cos(�2(n� t0))(!(n� t0))
2dL=2e

(�1)dL=2e (2dL=2e)!

1
A (3.28)

= 1 +
X
n

h[n] cos(�2(n� t0))(!(n� t0))
2dL=2e

(�1)dL=2e (2dL=2e)!
(3.29)

where 0 < �1 < ! and 0 < �2 < !. Therefore,�����
X
n

h[n] sin(!(n� t0))�
X
n

h[n](!(n� t0))
L0

(�1)bL=2cL0!

����� �
P
n jh[n](n� t0)

L0+2j

(L0 + 2)!
�j!jL

0+2

(3.30)

i.e.,

X
n

h[n] sin(!(n� t0)) =
X
n

h[n](!(n� t0))
L0

(�1)bL=2cL0!
+O(!L

0+2): (3.31)

Then,

tan (\H(!) + t0!) =

P
n(n� t0)

L0h[n]

(�1)bL=2c+1L0!
� !L

0

+O(!L
0+2): (3.32)
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Again, considering that for jxj < 1,

arctan x =
1X
m=0

(�1)mx2m+1

2m+ 1
(3.33)

we obtain

\H(!) + t0! =

P
n(n� t0)

L0h[n]

(�1)bL=2c+1L0!
� !L

0

+O(!L
0+2) (3.34)

which gives the desired result. Since

lim
L!1

C = 0; (3.35)

the asymptotic form (3.23) follows immediately.

Theorem 7 states that the phase response of the lowpass �lter h in a

GOC system is close to linear phase at low frequencies. While Theorem 7 is

true for all real t0, only integers and half-integers are of interest for �lters.

An advantage of introducing a half-integer t0 is that �lters close to half-point

symmetric can be constructed, which are impossible for the original orthogonal

Coiet systems.

3.4 Optimal Design for Minimum Phase Distortion

From Theorem 7 we know that the �lter h has near-zero phase distortion, i.e.,

deviation from linear phase, at low frequencies. However, the phase distortion

at the other frequencies can be much larger. The resulting phase response may

not be satisfactory in applications that require uniformly insigni�cant phase

distortion over a broad frequency band.

From the proof of Theorem 7, we �nd that the phase response at low

frequencies is primarily characterized by the �rst several moments of the scal-

ing function, and hence by the parameter t0. Thus, we attempt to use that
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parameter to obtain smaller phase distortion. Although for non-integer t0 or

non-half-integer t0, the property of near-zero phase distortion around DC will

be lost, the gain lies in the fact that phase distortion can be largely reduced

over a broad frequency band.

Since in a typical DWT-based DSP application, the input signal is

convolved with a �lterbank, the phase response of the output signal is the

sum of the phase responses of the input signal and the �lterbank. Therefore,

the phase distortion of the output signal, which is additive and caused by

the non-linearity of the phase response of the �lterbank, can be viewed as

the di�erence between the desired linear phase response for the �lterbank

and its actual phase response. In DWT-based analysis-processing-synthesis

applications, after reconstruction, the aliasing part of the frequency response

H(!), for ! 2 (�=2; �], is cancelled or at least largely attenuated. Thus, the

phase distortion in the passband is crucial.

We are interested in both the optimal near-WPS �lters and the optimal

near-HPS �lters; i.e., we attempt to �nd

t�0;w = argmin
t0
Dw(t0) = argmin

t0

 
max
!2[0;�

2
)
j\H(!)� (�[t0]!)j

!
(3.36)

and

t�0;h = argmin
t0
Dh(t0) = argmin

t0

 
max
!2[0;�

2
)

����\H(!)�
�
1

2
�

�
t0 +

1

2

��
!

����
!

(3.37)

where the subscripts \w" and \h" indicate \WPS" and \HPS", respectively.

Although the objective functions in the optimization problem are func-

tions of t0, they do not have explicit forms. Thus, we have to resort to a
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brute-force search of the one-dimensional parameter space. For a given h, we

apply a fast Fourier transform (FFT) to obtain dense samples of its phase

response \H(!).

We list the resulting maximum phase distortion over the passband [0; �
2
)

in Table 3.1. The table shows that the optimal near-WPS GOC �lters have

consistently smaller maximum phase distortion over [0; �
2
) than their coun-

terpart original orthogonal Coiets. Since the lowpass �lters of even-ordered

original orthogonal Coiets are closer to linear phase than the odd-ordered

counterparts, the improvement is more signi�cant in the odd-ordered GOC

systems. The odd-ordered optimal near-HPS lowpass �lters have the smallest

phase distortion among this entire class of new �lters. Both the even-ordered,

nearly HPS, and the odd-ordered, nearly WPS �lters possess relatively large

phase distortion. Figure 3.1 illustrates the comparisons between the phase

distortions of the lowpass �lters for the original orthogonal Coiets and those

for the optimal GOC systems when L = 2 and L = 3.

In Figure 3.2, we plot the original orthogonal Coiet and the optimal

GOC of order 3 as well as their scaling functions. The optimal GOC appears

more symmetric than the original orthogonal Coiet. Table 3.1 shows that

the optimal parameter t�0;w is close to the origin and t�0;h is close to -0.5. As

L increases with the same parity, t�0;w and t�0;h approach zero and -0.5, respec-

tively, the phase distortion of the original orthogonal Coiets decreases, and

the improvement of using t�0;w over using zero reduces, which can be explained

by the fact that the original orthogonal Coiet �lters h have asymptotically

zero phase distortion.
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In [11], it was pointed out that the lowpass �lters of the even-ordered

original orthogonal Coiets are very close to the Laplacian pyramid �lters [8],

which are associated with some symmetric biorthogonal wavelet bases and are

widely used in applications of image processing and computer vision. Since

the optimal near-WPS �lters of the even-ordered GOC systems are close to

those of the even-ordered original orthogonal Coiets, they are also close to the

Laplacian pyramid �lters. The optimal near-HPS �lters of the GOC systems

with odd orders are close to the Haar �lter except for their \oscillating tails"

(small �lter coe�cients other than the biggest two). On the other hand, they

are surprisingly similar to the �lters of some biorthogonal spline wavelets,1

referred to as
1; eN eh in Table 6.1 in [11]. In fact, they may be regarded as the

�lters of the biorthogonal Coiets with the same orders (see the next chapter

or [57]). Like the Laplacian pyramid �lters, these biorthogonal wavelets are

popular in image processing applications. In Figure 3.3, we plot the order-3

biorthogonal spline wavelet dual to the Haar wavelet and the order-3 GOC

having the minimal phase distortion, as well as their scaling functions. The

two scaling functions are indeed surprisingly similar to each other; so are the

two wavelets.

Additional design criteria are possible. The work in [32] is related to

but di�erent from ours. Besides imposing a number of moment constraints

as in our work, the authors used the extra degree of freedom due to t0 to

maximize the atness of group delay at DC and solved the resulting nonlinear

polynomial equations using Gr�obner bases.

1In fact, they are the dual wavelets with respect to the Haar wavelet.
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Table 3.1: Minimum phase distortion

L D(0) t�0;w Dw(t
�
0;w) t�0;h Dh(t

�
0;h)

2 :019922� -.0540 :006542� -.7342 :035134�
3 :075167� .0874 :009084� -.4586 :004589�
4 :017518� -.0323 :008156� -.6702 :036083�
5 :041155� .0595 :008959� -.4720 :006360�
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Figure 3.1: Comparisons between the phase distortion of lowpass �lters asso-
ciated with the original Coiet systems (dash-dotted line) and the optimized
ones (solid line): (a) L = 2 and (b) L = 3.
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Figure 3.2: Comparison between the original Coiet and the optimal general-
ized Coiet of order 3: (a) �3;0(t); (b) �3;�t�w(t); (c)  3;0(t); and (d)  3;�t�w

(t).
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Figure 3.3: Comparison between the order-3 biorthogonal spline wavelet dual
to the Haar wavelet and the order-3 generalized Coiet having minimal phase
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~�(t); (b) �3;�t�
h
(t); (c) 1;3
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3.5 Application to Sampling Approximation

In the previous chapter, we have addressed the sampling approximation of

smooth functions via Coiet-type wavelet systems. Based on those results, we

now study the performance of GOC systems in sampling approximation. In

Figure 3.4, we plot the squared asymptotic constants C2
samp and C2

appr versus

sampling o�set t0 for the GOC systems of orders 2, 4, and 6. From the �gure,

we observe the following facts.

� The constants Csamp and Cappr both decrease as the order of GOC system

increases.

� The constant Csamp is much smaller than Cappr for all the three or-

ders. According to Theorem 5, this implies that the L2-error due to

the approximation of the projection coe�cients by the function sam-

ples is asymptotically negligible compared to that due to the projection,

because the two types of errors have the same convergence rate.

� The constant Csamp is negligibly small if the sampling o�set t0 is in a

neighborhood of the origin, regardless of the order of the GOC system.

The length of such a neighborhood increases as the order increases.

� There is a unique minimum value of Cappr for t0 2 [�0:5; 0:5] and for

every order. However, the minimum value of Cappr does not occur at

t0 = 0 for any of the three orders, which implies that for a given order,

a unique member in the GOC family other than the original orthogonal

Coiet is asymptotically optimal in terms of L2-error.
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3.6 Summary

We have presented a new, general class of orthogonal Coiet systems. The

new wavelet systems can

� result in smaller phase distortion in associated �lterbanks;

� permit the design of nearly half-point symmetric �lterbanks; and

� achieve a better sampling approximation property.

They can be useful in a broad range of DSP applications where the original

orthogonal Coiet systems are successful. Since the new wavelet systems pro-

vide a better tradeo� between the two desirable but conicting properties of

compactly-supported, real-valued wavelets, i.e., orthogonality versus symme-

try, than the original orthogonal Coiet systems, and possess better sampling

approximation power, we expect that they will achieve improved performance

over their original counterparts.
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Figure 3.4: Asymptotic constants for sampling approximation error: (a) C2
samp

for �2; (b) C
2
appr for �2; (c) C

2
samp for �4; (d) C

2
appr for �4; (e) C

2
samp for �6; and

(f) C2
appr for �6.



Chapter 4

Biorthogonal Coiets

Historically, the Coifman criterion was �rst used to design orthogonal wavelet

systems [14]. In this chapter, we extend it to design of a novel class of biorthog-

onal wavelet systems, which we refer to as biorthogonal Coiet systems. We

study the properties possessed by these new wavelet systems and evaluate

their performance in image data compression, which has been one of the most

successful applications of biorthogonal wavelet systems.

4.1 De�nition

De�nition 2 A biorthogonal wavelet system is a biorthogonal Coiet sys-

tem of order (L; eL ) if

Me�(0; l] = �[l] for l = 0; 1; : : : ; L� 1 (4.1)

Me (0; l] = 0 for l = 0; 1; : : : ; L� 1 (4.2)

M (0; l] = 0 for l = 0; 1; : : : ; eL� 1: (4.3)

According to Theorem 3, it follows that

M�(0; l] = �[l] for l = 0; 1; : : : ; L� 1: (4.4)

49
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4.2 Design

According to Theorem 1 and Theorem 2, (4.2) is equivalent to

X
n

(�1)nnlh[n] = 0 for l = 0; 1; : : : ; L� 1 (4.5)

(4.3) is equivalent to

X
n

(�1)nnleh[n] = 0 for l = 0; 1; : : : ; eL� 1 (4.6)

and (4.4) is equivalent to

X
n

nlh[n] = �[l] for l = 0; 1; : : : ; L� 1: (4.7)

In addition to the above equations, h and eh need to satisfy the perfect recon-

struction condition given in (1.24).

4.2.1 Constructing Synthesis Filters

We �rst use (4.5) and (4.7) to design h. Combining (4.5) and (4.7), we conclude

that

X
m

(2m)l h[2m] =
X
m

(2m+ 1)l h[2m+ 1] =
1

2
�[m] for l = 0; 1; : : : ; L� 1:

(4.8)

We require h to have the shortest length among all of the �lters satisfying

(4.8). Since there are 2L independent conditions on h in (4.8), we de�ne that

the extent of h to be [1�L; L]. Note that these linear conditions on the �lter

coe�cients naturally divide into two parts: conditions on the even-indexed

coe�cients and conditions on the odd-indexed coe�cients. The �rst set of



51

conditions can be expressed as2
66664

1 1 � � � 1
2� L 4� L � � � L
...

...
...

...
(2� L)L�1 (4� L)L�1 � � � LL�1

3
77775

2
66664
h[2� L]
h[4� L]

...
h[L]

3
77775 =

2
66664

1
2

0
...
0

3
77775

if L is even; (4.9)2
66664

1 1 � � � 1
1� L 3� L � � � L� 1
...

...
...

...
(1� L)L�1 (3� L)L�1 � � � (L� 1)L�1

3
77775

2
66664
h[1� L]
h[3� L]

...
h[L� 1]

3
77775 =

2
66664

1
2

0
...
0

3
77775

if L is odd. (4.10)

It is easy to see that the solution is exactly that

h[2m] =
1

2
�[m]: (4.11)

The second part can be written as2
66664

1 1 � � � 1
1� L 3� L � � � L� 1
...

...
...

...
(1� L)L�1 (3� L)L�1 � � � (L� 1)L�1

3
77775

2
66664
h[1� L]
h[3� L]

...
h[L� 1]

3
77775 =

2
66664

1
2

0
...
0

3
77775

if L is even; (4.12)2
66664

1 1 � � � 1
2� L 4� L � � � L
...

...
...

...
(2� L)L�1 (4� L)L�1 � � � LL�1

3
77775

2
66664
h[2� L]
h[4� L]

...
h[L]

3
77775 =

2
66664

1
2

0
...
0

3
77775

if L is odd. (4.13)

Since the coe�cient matrix of these simultaneous linear equations is a non-

singular Vandermonde matrix, there exists a unique solution. The closed-form

expressions for the odd-indexed non-zero coe�cients are given by

� if L = 1, then h[2m + 1] = �[m]=2, which gives the Haar �lter [6], [36];
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� if L = 2K, K 2 Z, then for �K � m � K � 1,

h[2m + 1] =
(�1)m

2m+ 1

 
2K � 2

K � 1

! 
2K � 1

K +m

!
2K � 1

24K�2
; (4.14)

� if L = 2K + 1, K 2 Z, then for �K � m � K,

h[2m + 1] =
(�1)m

2m+ 1

 
2K � 1

K � 1

! 
2K

K +m

!
2K + 1

24K
: (4.15)

From (4.11), it is easy to see that the actual length of h is 2L� 1 for L > 1.

In particular, the indices are from 1� L to L� 1 if L is even and from 2� L

to L if L is odd.

Filters satisfying (4.11) are commonly called interpolating �lters or �a

trous �lters, which are used in the �a trous algorithm to compute quickly the

samples of a continuous wavelet transform [29], [33]. If L = 2K for K =

1; 2; : : :, then h coincides with the Lagrange halfband lowpass �lter of order K

[2]. Its frequency response is given by

H2K(!) = QK

�
sin2

�
!

2

��
(4.16)

where the subscript 2K denotes the order of the biorthogonal Coiet system

and

QK(y) = (1� y)K
K�1X
k=0

 
K � 1 + k

k

!
yk: (4.17)

If L = 2K�1 for K = 1; 2; : : :, then using (4.11), (4.14), and (4.15), we derive

that

H2K�1(!) = H2K(!) + j
H

(1)
2K(!)

2K � 1
: (4.18)
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4.2.2 Constructing Analysis Filters

Now we use (1.24) and (4.6) to design eh. Assume that the lengths of the �lters

h and eh are N and fN , respectively. Hence, N = 2L� 1 and we have a total of

fN degrees of freedom to design eh. For a given h, (1.24) provides (fN+N�2)=2

linear conditions on eh. According to Theorem 3, since the conditions in (4.4)

are satis�ed, the conditions given in (4.1) are automatically satis�ed by eh.
Hence, there are (fN �N + 2)=2 degrees of freedom remaining. We use all the

remaining degrees of freedom to maximize the number of vanishing moments

of  , or equivalently, to maximize eL in (4.6); i.e., we set eL = (fN �N + 2)=2.

Thus, we infer that fN = 2L + 2eL� 3. Assume that the extent of eh is [�L �

eL+ 2; L+ eL� 2]. We attempt to solve (1.24) and (4.6), which give a total of

fN simultaneous linear equations, to determine the coe�cients of eh.
Using (4.11), we can rewrite the L + eL � 1 equations in (1.24), which

all contain some explicit terms of even-indexed coe�cients, as, for m = (�L�

eL + 2)=2, (�L� eL+ 4)=2, : : :, (L + eL� 2)=2,

eh[2m] = �[m]� 2
X
k

eh[2k + 1]h[2k + 1� 2m] (4.19)

which implies that the L+ eL�1 even-indexed coe�cients of eh can be uniquely

determined by the odd-indexed coe�cients of h and eh with the above L+ eL�1

equations. Hence, we intend to determine the odd-indexed coe�cients �rst.

For any �lter h and l 2 Z, we de�ne the notation

Sh[l] =
X
m

(2m+ 1)l h[2m + 1]: (4.20)

We use (4.19) to rewrite the left-hand side of (4.6) as

X
n

(�1)nnleh[n] = X
m

(2m)leh[2m]� Seh[l] (4.21)
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=
X
m

(2m)l
 
�[m]� 2

X
k

eh[2k + 1]h[2k + 1� 2m]

!

�Seh[l] (4.22)

= �[l]� 2
X
m

X
k

[(2k + 1)� (2k + 1� 2m)]l

�h[2k + 1� 2m]eh[2k + 1]� Seh[l] (4.23)

= �[l]� 2
X
m

X
k

lX
p=0

 
l

p

!
(�1)l�p(2k + 1� 2m)l�p

�(2k + 1)ph[2k + 1� 2m]eh[2k + 1]� Seh[l] (4.24)

= �[l]� 2Seh[l]� 2
l�1X
p=0

 
l

p

!
(�1)l�pSh[l � p]Seh[p] (4.25)

for l = 0; 1; : : : ; eL�1. Therefore, if L � 2, then we can determine the L+ eL�2

odd-indexed coe�cients by solving a total of L + eL � 2 simultaneous linear

equations, i.e., L � 2 equations without explicit terms of those even-indexed

coe�cients from (1.24) and eL equations from (4.6) using the above rewritten

forms. Next, we discuss how to solve these linear equations for two cases eL � L

and eL > L.

The case eL � L: Due to (4.8), (4.6) becomes

Seh[l] = 1

2
�[l] (4.26)

for l = 0; 1; : : : ; eL�1. We express these equations and those from (1.24) using

a matrix format, Ah = b, or

2
64
A11 A12 A13

A21 A22 A23

A31 A32 A33

3
75
2
666664

eh[�L� eL + 3]eh[�L� eL + 5]
...eh[L + eL� 3]

3
777775 =

2
64
b1
b2
b3

3
75 (4.27)

where A11 and A33 are a (dL=2e � 1)� (dL=2e� 1) lower-triangle matrix and
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a (bL=2c � 1)� (bL=2c � 1) upper-triangle matrix, respectively,

A11 =

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

2
66664
h[L� 1] 0 0 � � � 0
h[L� 3] h[L� 1] 0 � � � 0

...
...

h[3] h[5] h[7] � � � h[L� 1]

3
77775 if L is even

2
66664

h[L] 0 0 � � � 0
h[L� 2] h[L] 0 � � � 0

...
...

h[3] h[5] h[7] � � � h[L]

3
77775 if L is odd;

(4.28)

A33 =

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

2
66664
h[1� L] h[3� L] � � � h[�5] h[�3]

0 h[1� L] � � � h[�7] h[�5]
...

...
0 0 � � � 0 h[1� L]

3
77775 if L is even

2
66664
h[2� L] h[4� L] � � � h[�5] h[�3]

0 h[2� L] � � � h[�7] h[�5]
...

...
0 0 � � � 0 h[2� L]

3
77775 if L is odd;

(4.29)

the matrix A22 is an eL� eL Vandermonde matrix,

A22 =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

2
666664

1 1 � � � 1

1� eL 3� eL � � � eL� 1
...

...
...

(1� eL)eL�1 (3� eL)eL�1 � � � (eL� 1)eL�1

3
777775 if L is even

2
666664

1 1 � � � 1

2� eL 4� eL � � � eL
...

...
...

(2� eL)eL�1 (4� eL)eL�1 � � � eLeL�1

3
777775 if L is odd;

(4.30)

the matricesA12, A13, A31, and A32 are zero matrices of proper sizes; the vec-

tors b1 and b3 are zero vectors of lengths dL=2e�1 and bL=2c�1, respectively;
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b2 is a vector of length eL and is given by b2 = [1
2
0 0 : : : 0]T .

Since the determinant of A is the product of the determinants of A11,

A22, and A33, which are all non-singular matrices, the matrix A is also non-

singular. Thus, there always exists a unique solution h = A�1b. We give the

formulae for all of the non-zero odd-indexed coe�cients of eh in three cases:

� if eL = 1, then eh[2m+ 1] = �[m]=2;

� if eL = 2fK, fK = 1; 2; : : :, then for �fK � m � fK � 1,

eh[2m+ 1] =
(�1)m

2m+ 1

 
2fK � 2fK � 1

! 
2fK � 1fK +m

!
2fK � 1

24eK�2
; (4.31)

� if eL = 2fK + 1, fK = 1; 2; : : :, then for �fK � m � fK,

eh[2m + 1] =
(�1)m

2m+ 1

 
2fK � 1fK � 1

! 
2fKfK +m

!
2fK + 1

24eK : (4.32)

We observe that, because the matrix A22 only depends on eL, the odd-indexed
coe�cients of eh

N; eN only depend on eL, too. Furthermore, by comparing (4.14)

and (4.15) with (4.31) and (4.32), we conclude that if eL � L, then

eh
L;eL[2m+ 1] = heL[2m + 1] 8m: (4.33)

Since we have known that for any eL the coe�cients of heL are all dyadic frac-

tions, from (4.33) and (4.19) we conclude that the coe�cients of eh
L;eL are all

dyadic fractions as well.

The case eL > L: The structure of those simultaneous linear equations

is more involved for this case. We use an indirect approach to solve those

equations. In fact, (4.25) provides a way to calculate Seh[l] recursively:
Seh[l] = �

1

2

l�1X
p=0

 
l

p

!
(�1)l�pSh[l � p]Seh[p] for l = 1; 2; : : : ; eL� 1 (4.34)
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where Seh[0] = 1=2. Now we write

X
m

(2m+ 1)leh[2m+ 1] = Seh[l] (4.35)

for l = 0; 1; : : : ; eL� 1, and those from (1.24) using the matrix format Ah = eb,
where the vector eb is given by

eb = �ebT1 ebT2 ebT3
�T

=
�ebT1 Seh[0] Seh[1] : : : Seh[eL� 1] ebT3

�T
; (4.36)

eb1 and eb3 are zero vectors of lengths dL=2e � 1 and bL=2c � 1, respectively,

and, A and h are the same as those given for the case eL � L. Therefore, there

always exists a unique solution h = A�1eb for this case, although its closed

form may be quite complicated.

The actual length of eh is 2(L + eL) � 3 for L > 1. In particular, the

indices are from �L� eL+ 2 to L+ eL� 2.

If L � eL, then
fH
L;eL(!) = X

m

eh
L;eL[2m + 1]e�j(2m+1)! +

X
m

eh
L;eL[2m]e�j2m! (4.37)

=
X
m

heL[2m+ 1]e�j(2m+1)!

+
X
m

 
�[m]� 2

X
k

heL[2k + 1]hL[2k + 1� 2m]

!
e�j2m! (4.38)

= HeL(!)� 1

2
+ 1� 2

X
k

heL[2k + 1]e�j(2k+1)!

�

 X
m

hL[2k + 1� 2m]ej(2k+1�2m)!

!
(4.39)

= HeL(!) + 1

2
� 2

X
k

heL[2k + 1]e�j(2k+1)!
�
HL(�!)�

1

2

�
(4.40)

= HeL(!) + 1

2
� 2

�
HeL(!)� 1

2

��
HL(�!)�

1

2

�
(4.41)
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i.e.,

fH
L;eL(!) = 2HeL(!) +HL(�!)� 2HeL(!)HL(�!): (4.42)

For some biorthogonal Coiet systems, we list the coe�cients of h and

eh in Table 4.1.

4.3 Properties

We shall show that biorthogonal Coiet systems enjoy several interesting and

desirable properties: symmetry, interpolating scaling functions, and dyadic

rational �lter coe�cients.

4.3.1 Symmetry

From (4.11), (4.14), and (4.15), h is whole-point symmetric about the origin,

i.e.,

h[n] = h[�n] (4.43)

if and only if L is even. A question naturally arises: can one construct some

new h by increasing the length of h to obtain more degrees of freedom so that

the resulting h is: (a) half-point symmetric; or (b) whole-point symmetric for

odd L?

The answer to the �rst part lies in (4.8). If h[n] = h[2n0 + 1 � n] for

some n0 2 Z, and L > 1, then according to (4.8),

X
m

(2m + 1)h[2m+ 1] =
X
m

(2m)h[2n0 � 2m] +
X
m

h[2m + 1] (4.44)

= (2n0 + 1)=2 (4.45)
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Table 4.1: Filter coe�cients of the �lterbanks in some biorthogonal Coiet
systems (for some long �lters we list about half the coe�cients and the other
can be deduced by symmetry)

L
P
n h[n]z

�n eL P
n
eh[n]z�n

1 2�1(1 + z
�1) 1 2�1(1 + z

�1)

3 2�4(�z2 + z + 8 + 8z�1 + z
�2

� z
�3)

2 2�2(z + 2 + z
�1) 2 2�3(�z2 + 2z + 6 + 2z�1 � z

�2)

4 2�7(3z4 � 6z3 � 16z2 + 38z + 90

+38z�1 � 16z�2 � 6z�3 + 3z�4)

3 2�4(3z + 8 + 6z�1 � z
�3) 1 2�4(z2 + 10 + 8z�1 � 3z�2)

3 2�7(3z4 � 12z2 + 24z + 82

+48z�1 � 12z�2 � 8z�3 + 3z�4)

4 2�5(�z3 + 9z + 16 2 2�6(z4 � 8z2 + 16z + 46

+9z�1 � z
�3) +16z�1 � 8z�2 + z

�4)

4 2�9(�z6 + 18z4 � 16z3 � 63z2

+144z + 348 + 144z�1 + � � �)

6 2�14(9z8 � 140z6 + 144z5

+756z4 � 944z3 � 1908z2

+4896z + 10758 + 4896z�1 + � � �)

5 2�8(�5z3 + 60z + 128 1 2�8(�3z4 + 20z2 + 166

+90z�1 � 20z�3 + 3z�5) +128z�1 � 60z�2 + 5z�4)

3 2�11(�9z6 + 42z4 � 147z2

+384z + 1308 + 768z�1 � 255z�2

�128z�3 + 90z�4 � 5z�6)

5 2�15(15z8 � 280z6 + 1380z4

�640z3 � 3240z2 + 7680z + 20634

+11520z�1 � 3240z�2 � 2560z�3

+1380z�4 + 384z�5 � 280z�6 + 15z�8)

6 2�9(3z5 � 25z3 + 150z 2 2�10(�3z6 + 22z4 � 125z2

+256 + 150z�1 + � � � +256z + 724 + 256z�1 + � � �)

4 2�13(3z8 � 52z6 + 348z4

�256z3 � 972z2 + 2304z

+5442 + 2304z�1 + � � �)

6 2�17(�9z10 + 150z8 � 1525z6

+768z5 + 6600z4 � 6400z3 � 14850z2

+38400z + 84804 + 38400z�1 + � � �)
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which cannot be zero and conicts with (4.8). Therefore, h cannot be half-

point symmetric if L > 1.

We now answer the second part. If h[n] = h[2n0 � n] for some n0 2 Z,

and the order L is odd, then using (4.5) and (4.7) we deduce that

X
n

(�1)nnLh[n] =
X
n

(�1)nnLh[2n0 � n] (4.46)

=
X
m

(�1)m(2n0 �m)Lh[m] (4.47)

=
X
m

LX
l=0

 
L

l

!
(�1)m+L�l(2n0)

lmL�lh[m] (4.48)

= �
X
m

(�1)mmLh[m] (4.49)

which implies
P
n(�1)

nnLh[n] = 0, and

X
n

nLh[n] =
X
n

nLh[2n0 � n] (4.50)

=
X
m

(2n0 �m)Lh[m] (4.51)

=
X
m

LX
l=0

 
L

l

!
(�1)L�l(2n0)

lmL�lh[m] (4.52)

= �
X
m

mLh[m] (4.53)

which implies
P
n(�1)

nnLh[n] = 0. This conicts with the assumption that

the degree of wavelet and scaling function vanishing moments is L. Therefore,

if L is odd, then h cannot be whole-point symmetric.

If h[n] = h[�n] and eh[n] satis�es (1.24) and (4.6), eh[�n] also satis�es

(1.24) and (4.6). Since eh[n] is the unique solution, eh must satisfy

eh[n] = eh[�n] (4.54)

if L is even.
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4.3.2 Interpolating Scaling Functions

A scaling function � is interpolating or cardinal if

�(n) = �[n] 8n 2 Z: (4.55)

Interpolating functions are desirable in sampling and interpolation. If we use

the uniform samples of a function f and an interpolating function � to recon-

struct f as

ef(t) =X
n

f(2�in)�(2it� n) (4.56)

for any i 2 Z, then

ef(2�in) = f(2�in) 8n 2 Z (4.57)

i.e., we obtain an exact reconstruction at those sampling points. For example,

the scaling function of the Shannon wavelet system [36], which is given by

�(t) =
sin(�t)

�t
; (4.58)

satis�es (4.55) and is therefore interpolating.

Based on Theorem 10 in [37], it is straightforward to verify that the

synthesis scaling functions in biorthogonal Coiet systems are interpolating.

However, there are two key di�erences between the two types of interpolating

scaling functions:

� The integer-shifted versions of Shannon scaling function are orthogonal

and those of a biorthogonal Coiet scaling function are not.

� A biorthogonal Coiet scaling function is compactly supported and the

Shannon scaling function is not. This is a highly desirable property of a
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biorthogonal Coiet scaling function because no truncation is necessary

when it is used in practice.

4.3.3 Dyadic Rational Filter Coe�cients

Since [sin(!=2)]2 = (2� ej! � e�j!)=4, we conclude from (4.16)that the �lter

coe�cients of h2K are all dyadic fractions of the form 2a(2b + 1), a 2 Z and

b 2 Z. From (4.11) and (4.14), we know that the coe�cients of the polynomial

H
(1)
2K(!)=(2K � 1) in ej! are dyadic fractions. Therefore, according to (4.18),

the coe�cients of h2K�1 are dyadic fractions, too. Thus, the synthesis lowpass

�lter hL has dyadic fractional coe�cients for each L.

Since heL has dyadic fractional coe�cients, so does eh
L;eL due to (4.33) and

(4.19), if L � eL. In the case L < eL, since no closed-form formula of eh
L;eL[n]

is available, it is not clear whether eh
L;eL has dyadic fractional coe�cients.

However, we have designed many examples for this case and found that every

resulting eh
L;eL has dyadic fractional coe�cients. Thus, we conjecture that for

any integers L and eL, the �lter coe�cients of hL and eh
L;eL are all dyadic

fractions.

Dyadic rational �lter coe�cients are extremely appealing in the hard-

ware implementation of the discrete wavelet transform (DWT). For instance,

if the signals x and y are the input and output of the �lter h4, respectively,

whose coe�cients are dyadic fractions, then we infer that

y[n] =
X
m

h4[m]x[n�m] (4.59)

= �
1

32
x[n+ 3] +

9

32
x[n + 1] +

1

2
x[n] +

9

32
x[n� 1]�

1

32
x[n� 3] (4.60)
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=
1

2
x[n] +

1

4
(x[n + 1] + x[n� 1])

+
1

32
(x[n + 1] + x[n� 1]� x[n + 3]� x[n� 3]): (4.61)

If fx[n]g are integer-valued, the only integer additions and binary shifts are

required. If fx[n]g are real and �xed-point, then only �xed-point additions

and binary shifts are needed. In both cases, multiplications, which are more

computationally expensive and power-consuming operations, can be entirely

avoided. Therefore, �lterbanks having dyadic rational �lter coe�cients per-

mit a multiplication-free DWT, which possesses a dramatically lower compu-

tational complexity than a standard implementation of the DWT.

4.4 Asymptotic Convergence of Filters

Based on (4.16), (4.18), and (4.42), we establish the following theorem on the

asymptotic behavior of the �lterbanks in biorthogonal Coiet systems.

Theorem 8 The frequency responses of the �lters in biorthogonal Coiet sys-

tems converge pointwise to ideal halfband lowpass frequency responses as the

orders of the biorthogonal Coiet systems tend to in�nity:

lim
L!1

HL(!) =

8>><
>>:

1 if 0 � ! < �=2

1=2 if ! = �=2

0 if �=2 < ! � �

(4.62)

lim
L;eL!1

fH
L;eL(!) =

(
1 if 0 � ! � �=2

0 if �=2 < ! � �
(4.63)

if L is even, the convergence of HL(!) is monotonic in the sense that

HL(!) � HL+2(!) if 0 � ! < �=2 (4.64)

HL(!) � HL+2(!) if �=2 < ! � �; (4.65)
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the convergence of HL(!) does not exhibit any Gibbs-like phenomenon and the

convergence of fH
L;eL(!) exhibits a one-sided Gibbs-like phenomenon.

The theorem states that biorthogonal Coiet systems are �nite-order

(or compactly supported) realizable approximations of the ideal sinc wavelet

system [36], which is orthogonal, not compactly supported, and not realizable

in practice. Figure 4.1 illustrates some examples of the convergence.

We note that Figure 4.1(c) shows a one-sided Gibbs-like phenomenon.

There are some signi�cant di�erences between the one-sided Gibbs-like phe-

nomenon and a typical Gibbs phenomenon:

� the overshoot occurs only in passband of the former and occurs in both

passband and stopband in the latter;

� there is no oscillation in the former, but oscillation always occurs in the

latter and becomes faster during the converging process;

� the maximum amount of overshoot in the former is exactly 12.5% and

larger than that in the latter, which is approximately 9%; and

� the two limiting frequency responses have di�erent values at ! = �=2.

Because both the magnitude responses of the �lters associated with

orthogonal Daubechies wavelets [21] and those of the synthesis �lters associ-

ated with biorthogonal Coiet systems monotonically converge to the ideal

halfband lowpass frequency response without Gibbs-like phenomenon, it may

be interesting to compare the behavior of their convergence. In particular,
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Figure 4.1: Magnitude responses of the �lters in biorthogonal Coiet systems
(in the order of dotted line, dashdotted line, and dashed line, with solid lines
represent the limiting responses): (a) h2, h4, h6; (b) h3, h5, h7; (c) ~h2;2, ~h4;4,
~h6;6; (d) ~h3;3, ~h5;5, ~h7;7.
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we are interested in the following question: for a given order L, which is the

better approximation of the ideal HBLP frequency response: jHDaub
L (!)j or

jHCoif
L (!)j? The theorem below answers the question.

Theorem 9 For any integer L such that L > 1, the frequency responses of

the �lter associated with an Lth-order orthogonal Daubechies wavelet and the

synthesis �lter in an Lth-order biorthogonal Coiet system satisfy

jHDaub
L (!)j � jHCoif

L (!)j (4.66)

where equality holds if and only if ! = 0 or ! = �.

The complete proof can be found in [49]. The theorem implies that for

a given order N , jHDaub
L (!)j approximates the ideal HBLP frequency response

better than jHCoif
L (!)j in the passband and worse than it in the stopband.

However, HCoif
L (!) possesses zero phase if L is even and asymptotically zero

phase if L is odd, but HDaub
L (!) always has nonlinear phase for any L such

that L > 1. Figure 4.2 illustrates two examples of this comparison.

4.5 Application to Image Data Compression

We shall show that the symmetric �lterbanks in biorthogonal Coiet systems

are well-suited to image transform coding. The biorthogonal Coiet systems

of orders 1 and 2 are the same as the biorthogonal spline wavelet systems

of the same orders [11], in which there are a few short �lterbanks that have

been shown to have good compression capability [47]. We propose that three

�lterbanks in the family of biorthogonal Coiet systems have remarkable com-

pression potential. They are the 9/7-tapped, 13/7-tapped, and 13/11-tapped
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Figure 4.2: Comparison between the magnitude responses of the �lters associ-
ated with orthogonal Daubechies wavelets and those of the synthesis �lters in
biorthogonal Coiet systems (in the order of dashdotted line and dashed line,
with solid lines represent the limiting responses): (a) L = 4 and (b) L = 5.

�lterbanks, corresponding to the biorthogonal Coiet systems of orders (4,2),

(4,4), and (6,2), respectively. We refer to them as WTWB-9/7, WTWB-13/7,

and WTWB-13/11, respectively, for they were �rst studied by Wei, Tian,

Wells, and Burrus in [57]. We compare them with the 9/7-tapped �lterbank

designed by Cohen, Daubechies, and Feauveau [11], which we call CDF-9/7.

CDF-9/7 has been the most widely used �lterbank in the wavelet transform

coding literature and was the only approved �lterbank in the FBI's �ngerprint

image compression standard [5]. In [47], Villasenor, Belzer, and Liao tested

the compression performance of over 4300 candidate �lterbanks and showed

that CDF-9/7 was one of the best �lterbanks for image data compression. One
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major disadvantage of CDF-9/7 lies in the fact that, because its �lter coe�-

cients are irrational, it does not permit multiplication-free DWT. Therefore,

the computational complexity of its associated DWT is much higher than that

of WTWB-9/7, WTWB-13/7, and WTWB-13/11.

We choose four 8-bit grayscale test images: \Lena" of size 512� 512,

\Boats" of size 576� 720, \Fingerprint-1" of size 768� 768, and \Fingerprint-

2" of size 480 � 384. We apply the Set Partitioning in Hierarchical Trees

(SPIHT) algorithm by Said and Pearlman [30] to evaluate the rate-distortion

performance of the four �lterbanks. The SPIHT algorithm has been regarded

by the image coding community as one of the state-of-the-art wavelet transform

coding algorithms for image data compression. We choose bit rate in bits per

pixel (bpp) and peak signal-to-noise ratio (PSNR), which is the most popular

metric for objective image quality, to measure rate and distortion, respectively.

For an 8-bit grayscale image x[m;n] and its compressed version y[m;n], m =

0; 1; : : : ;M � 1 and n = 0; 1; : : : ; N � 1, the PSNR in dB is de�ned as

PSNR = 10 log10

0
BBBBB@

2552

1

MN

M�1X
m=0

N�1X
n=0

(x[m;n]� y[m;n])2

1
CCCCCA : (4.67)

In Figure 4.3, we plot the PSNR performance for the four �lterbanks.

The �gure indicates that, for the four test images, the four �lterbanks achieved

comparable rate-distortion performance. Figure 4.4 depicts the \Lena" images

coded at 0.1 bpp by the four �lterbanks. The �gure shows that the four coded

\Lena" images have comparable perceptual quality.
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4.6 Summary

Some of the wavelet systems reported by other researchers are related to our

work. The synthesis lowpass �lters of even-ordered biorthogonal Coiet sys-

tems have already been known in di�erent forms in the literature [2], [15], [28],

[31], [33], [36]. After �nishing this work the author realized that, in [37], even-

ordered biorthogonal Coiet systems were constructed via a lifting scheme.

Nevertheless, the novelty of our work lies in the following aspects:

� the construction scheme used in this work is quite di�erent from those

used in the previous published work such as [37];

� the odd-ordered biorthogonal Coiet systems can be constructed with

our scheme, which form a new wavelet family to the best of our knowl-

edge;

� the explicit formulae for the analysis lowpass �lters for the case L � eL
are novel; and

� the systematic analysis of the compression potential of three biorthogo-

nal Coiet systems shows that they are promising in transform coding

applications.

We have presented the design of a novel class of biorthogonal wavelet

systems, which possess several remarkable properties. In particular, three

�lterbanks in this family have been shown to have a competitive rate-distortion

performance to CDF-9/7 in DWT-based image data compression and enjoy

much lower computational complexity. Furthermore, the multiplication-free
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implementation of the DWT using biorthogonal Coiet systems are promising

for the e�cient realization of real-time image and video codecs. Therefore,

we feel that these biorthogonal Coiet systems are serious candidates for the

choice of wavelet systems in future image/video transform coding standards.



71

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
30

31

32

33

34

35

36

37

38

bit rate (bpp)

p
e

a
k
 s

ig
n

a
l−

to
−

n
o

is
e

 r
a

ti
o

 (
d

B
)

(a)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
27

28

29

30

31

32

33

34

35

36

37

bit rate (bpp)

p
e

a
k
 s

ig
n

a
l−

to
−

n
o

is
e

 r
a

ti
o

 (
d

B
)

(b)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
28

29

30

31

32

33

34

35

36

37

bit rate (bpp)

p
e

a
k
 s

ig
n

a
l−

to
−

n
o

is
e

 r
a

ti
o

 (
d

B
)

(c)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
29.5

30

30.5

31

31.5

32

32.5

33

33.5

34

bit rate (bpp)

p
e

a
k
 s

ig
n

a
l−

to
−

n
o

is
e

 r
a

ti
o

 (
d

B
)

(d)

Figure 4.3: PSNR performance of four �lterbanks (solid line: CDF-9/7; dash-
dotted line: WTWB-9/7; dashed line: WTWB-13/11; dotted line: WTWB-
13/11). (a) \Lena"; (b) \Boats"; (c) \Fingerprint-1"; and (d) \Fingerprint-2".
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(a) (b)

(c) (d)

Figure 4.4: The \Lena" images compressed at 0.1 bpp using the four �lter-
banks: (a) CDF-9/7; (b) WTWB-13/7; (c) WTWB-9/7; and (d) WTWB-
13/11.



Chapter 5

Generalized Biorthogonal Coiets

In signal processing applications, half-point symmetric (HPS) �lters are about

as popular as whole-point symmetric (WPS) �lters. In the last chapter, we

have shown that biorthogonal Coiet (BC) systems have a limitation: their

�lterbanks cannot be HPS due to the Coifman criterion. In this chapter, we

use the generalized Coifman criterion and exploit its extra degree of freedom

to overcome such a limitation. In particular, we choose 1
2
-centered vanishing

moment conditions on the scaling function to design HPS �lterbanks and anti-

symmetric wavelets. We evaluate the performance of the resulting �lterbanks

in image data compression.

5.1 De�nition

De�nition 3 A biorthogonal wavelet system is a generalized biorthogonal

Coiet (GBC) system of order (L; eL ) if

Me�(1=2; l] = �[l] for l = 0; 1; : : : ; L� 1 (5.1)

Me (0; l] = 0 for l = 0; 1; : : : ; L� 1 (5.2)

M (0; l] = 0 for l = 0; 1; : : : ; eL� 1: (5.3)

73
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The de�nition is very similar to that of BC systems except for the 1
2
-

centered vanishing moment conditions on the scaling function e�. However, it
is such a subtle di�erence that leads to an entirely new family of biorthogonal

wavelet systems.

According to Theorem 3, it follows that

M�(1=2; l] = �[l] for l = 0; 1; : : : ; L� 1: (5.4)

5.2 Design

According to Theorem 1 and Theorem 2, (5.2) is equivalent to

X
n

(�1)nnlh[n] = 0 for l = 0; 1; : : : ; L� 1; (5.5)

(5.3) is equivalent to

X
n

(�1)nnleh[n] = 0 for l = 0; 1; : : : ; eL� 1; (5.6)

and (5.4) is equivalent to

X
n

nlh[n] = 2�l for l = 0; 1; : : : ; L� 1: (5.7)

In addition to the above equations, h and eh need to satisfy the perfect recon-

struction condition given in (1.24).

5.2.1 Constructing Synthesis Filters

We �rst use (5.5) and (5.7) to design h. Combining (5.5) and (5.7), we conclude

that

X
m

(2m)l h[2m] =
X
m

(2m+ 1)l h[2m + 1] = 2�l�1 for l = 0; 1; : : : ; L� 1:

(5.8)
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We require h to have the shortest length among all �lters satisfying (5.8).

Since there are 2L independent conditions on h in (5.8), we de�ne the extent

of h to be [1�L; L]. Note that these linear conditions on the �lter coe�cients

naturally divide into two parts: conditions on the even-indexed coe�cients and

conditions on the odd-indexed coe�cients. The �rst part can be expressed as

2
66664

1 1 � � � 1
2� L 4� L � � � L
...

...
...

...
(2� L)L�1 (4� L)L�1 � � � LL�1

3
77775

2
66664
h[2� L]
h[4� L]

...
h[L]

3
77775 =

2
66664
2�1

2�2

...
2�L

3
77775

if L is even; (5.9)2
66664

1 1 � � � 1
1� L 3� L � � � L� 1
...

...
...

...
(1� L)L�1 (3� L)L�1 � � � (L� 1)L�1

3
77775

2
66664
h[1� L]
h[3� L]

...
h[L� 1]

3
77775 =

2
66664
2�1

2�2

...
2�L

3
77775

if L is odd. (5.10)

The second part can be written as

2
66664

1 1 � � � 1
1� L 3� L � � � L� 1
...

...
...

...
(1� L)L�1 (3� L)L�1 � � � (L� 1)L�1

3
77775

2
66664
h[1� L]
h[3� L]

...
h[L� 1]

3
77775 =

2
66664
2�1

2�2

...
2�L

3
77775

if L is even; (5.11)2
66664

1 1 � � � 1
2� L 4� L � � � L
...

...
...

...
(2� L)L�1 (4� L)L�1 � � � LL�1

3
77775

2
66664
h[2� L]
h[4� L]

...
h[L]

3
77775 =

2
66664
2�1

2�2

...
2�L

3
77775

if L is odd. (5.12)

Note that the di�erence between the above equations and (4.9) and (4.10) is

their right-hand sides. For both parts, since the coe�cient matrices of these

simultaneous linear equations are non-singular Vandermonde matrices, there
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exist unique solutions fh[2m]gm and fh[2m + 1]gm. Hence, the minimum-

length solution h[n] is unique.

5.2.2 Constructing Analysis Filters

Now we use (5.6) and (1.24) to design eh. Assume that the lengths of the �lters

h and eh are N and fN , respectively. Hence, N = 2L and we have a total of fN
degrees of freedom to design eh. For a given h, (1.24) provides (fN +N � 2)=2

linear conditions on eh. According to Theorem 3, since the conditions in (5.4)

are satis�ed, the conditions given in (5.1) are automatically satis�ed by eh.
Hence, there are (fN �N + 2)=2 degrees of freedom remaining. We use all the

remaining degrees of freedom to maximize the number of vanishing moments

of  , or equivalently, to maximize eL in (5.6); i.e., we set eL = (fN �N + 2)=2.

Thus, we infer that fN = 2(L+ eL�1). Assume that eh starts with eh[�L� eL+2]

and ends with eh[L + eL � 1]. We solve (1.24) and (5.6), which give a total of

fN simultaneous linear equations, to determine the coe�cients of eh.
Unlike the BC systems, it is quite di�cult to prove the existence and

uniqueness of the solution to the above set of linear equations. However, in

our numerical design, we have discovered that for any L and eL with the same

parity, there exists a unique solution for eh.
In Table 5.1, we list the �lter lengths of generalized orthogonal Coiet

(GOC) systems, BC systems, and GBC systems. We notice that the length of

the lowpass �lter in the Lth-order GOC system is about 50% longer and 25%

shorter than those of the synthesis and analysis lowpass �lters in the BC and

GBC systems of order (L; L), respectively.
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Table 5.1: Filter lengths of three Coiet-type wavelet systems

GOC BC GBC

N N fN N fN
2
�
3L

2

�
2L� 1 2(L+ eL)� 3 2L 2(L+ eL� 1)

5.3 Properties

We now derive some interesting and desirable properties possessed by GBC

systems: symmetry and extra vanishing moments.

5.3.1 Symmetry

If h[n] is the minimum-length solution to (5.5) and (5.7), then

X
n

(�1)nnlh[1� n] =
X
m

(�1)1�m(1�m)lh[m] (5.13)

=
X
m

(�1)1+m
lX

p=0

 
l

p

!
(�m)l�ph[m] (5.14)

=
lX

p=0

 
l

p

!
(�1)l�p+1

 X
m

(�1)mml�ph[m]

!
(5.15)

= 0 (5.16)

and

X
n

nlh[1� n] =
X
m

(1�m)lh[m] (5.17)

=
X
m

lX
p=0

 
l

p

!
(�m)l�ph[m] (5.18)

=
lX

p=0

 
l

p

!
(�1)l�p

 X
m

ml�ph[m]

!
(5.19)

=
lX

p=0

 
l

p

!
(�1)l�p2p�l (5.20)
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= 2�l (5.21)

i.e., h[1� n] is a minimum-length solution, too. Since h[n] is unique, h must

satisfy

h[1� n] = h[n]: (5.22)

It can be shown in a similar way that

eh[1� n] = eh[n] (5.23)

assuming the existence and uniqueness of eh. Therefore, the �lters in GBC

systems are half-point symmetric.

5.3.2 Extra Vanishing Moments

We have shown that our de�nition of GBC systems automatically leads to the

half-point symmetry of their �lterbanks. We shall see that, more interestingly,

such a symmetry in turn provides a bonus of extra vanishing moments to GBC

systems.

Based on the above de�nition and the symmetry of h, we infer that

X
n

(�1)nnLh[n] =
X
n

(�1)nnLh[1� n] (5.24)

=
X
m

(�1)1�m(1�m)Lh[m] (5.25)

=
X
m

(�1)1+m
LX
l=0

 
L

l

!
(�m)L�lh[m] (5.26)

=
LX
l=0

 
L

l

!
(�1)L�l+1

 X
m

(�1)mmL�lh[m]

!
(5.27)

= (�1)L+1
X
m

(�1)mmLh[m] (5.28)
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and

X
n

nLh[n] =
X
n

nLh[1� n] (5.29)

=
X
m

(1�m)Lh[m] (5.30)

=
X
m

LX
l=0

 
L

l

!
(�m)L�lh[m] (5.31)

=
LX
l=0

 
L

l

!
(�1)L�l

 X
m

mL�lh[m]

!
(5.32)

= (�1)L
X
m

mLh[m] +
LX
l=1

 
L

l

!�
�
1

2

�L�l
(5.33)

= (�1)L
X
m

mLh[m] +
�
1

2

�L
�

�
�
1

2

�L
: (5.34)

Similarly, due to the symmetry of eh, we deduce that
X
n

nLeh[n] = (�1)L
X
n

nLeh[n] + �
1

2

�L
�

�
�
1

2

�L
: (5.35)

Therefore, if L is even, then

X
n

(�1)nnLh[n] = 0 (5.36)

and if L is odd, then

X
n

nLh[n] =
X
n

nLeh[n] = 2�L: (5.37)

That is, the half-point symmetry of h and eh yields an extra degree of vanishing
moment for either e or � and e�. This fact implies that after design, the actual

degrees of vanishing moment for  and e must be odd and those for � and e�
must be even. In this sense, even though we applied the generalized Coifman

criterion in our design, the resulting GBC systems do not possess exactly the

same degree of vanishing moments for a pair of scaling function and wavelet.
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Table 5.2: Actual numbers of vanishing moments for generalized biorthogonal
Coiet systems

L Le Le� L�

2 3 2 2
3 3 4 4
4 5 4 4
5 5 6 6

We list some examples in Table 5.2, where the symbols Le , Le�, and L� denote
the actual degrees of vanishing moment for e , e�, and �, respectively.

Since the �lterbanks in BC systems cannot be HPS, BC systems do not

possess this type of extra degree of vanishing moment.

5.3.3 Other Properties

Unlike BC systems, the synthesis scaling function � in GBC systems is not

interpolating. In general, the �lter coe�cients of the �lterbanks in GBC sys-

tems are not dyadic rationals. The asymptotic convergence property of the

�lterbanks in GBC systems is not clear, since no closed-form formulae for ei-

ther their impulse responses or their frequency responses are available. While

GBC systems lose some of the nice properties possessed by BC systems, we

shall see what GBC systems gain over BC systems is a signi�cantly improved

performance of image data compression.
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5.4 Application to Image Data Compression

We conducted a comparative study of applying the �lterbanks having short

lengths in GBC systems to image data compression. We concluded that

the 22/14-tapped �lterbank corresponding to the GBC system of order (7,5)

achieved the best rate-distortion performance in terms of bit rate versus PSNR.

This �lterbank is denoted by WPB-22/14, for it was �rst designed and studied

by Wei, Pai, and Bovik [56]. We list its �lter coe�cients in Table 5.3.

Table 5.3: Filter coe�cients of WPB-22/14

n h[n] eh[n]
0 1 0.45822144 0.51620125
-1 2 0.11455536 0.05573021
-2 3 -0.06873322 -0.10097515
-3 4 -0.01963806 0.01279669
-4 5 0.01527405 0.02604553
-5 6 0.00208282 -0.00659508
-6 7 -0.00176239 -0.00465364
-7 8 0.00085361
-8 9 0.00068975
-9 10 -0.00005047
-10 11 -0.00004270

We compare our WPB-22/14 �lterbank with three other state-of-the-

art �lterbanks in terms of compression performance. They are CDF-9/7 which

we have introduced in the last chapter, the 6/10-tapped �lterbank studied by

Villasenor, Belzer, and Liao [47] (referred to as VBL-6/10), and the 10/18-

tapped �lterbank studied by Tsai, Villasenor, and Chen [42] (referred to as

TVC-10/18). VBL-6/10 and TVC-10/18 are the even-length �lterbanks hav-

ing the best coding performance reported in the literature. All the three
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existing �lterbanks can be constructed from factoring the polynomial Q(�)

given in (4.17), and they possess the maximum degrees of vanishing wavelet

moments. Table 5.4 lists the numbers of vanishing wavelet moments of the

four biorthogonal wavelet systems and shows that all the four systems have

reasonable degrees of vanishing wavelet moments.

Table 5.4: Numbers of vanishing wavelet moments of four biorthogonal wavelet
systems

CDF-9/7 VBL-6/10 TVC-10/18 WPB-22/14e 4 3 5 5
 4 5 9 7

WPB-22/14 has a long analysis lowpass �lter (LPF), and relatively

short analysis highpass and synthesis lowpass �lters. This is a highly desirable

property for �lterbanks used in image coding. In general, natural images are

composed of both large homogeneous regions and edges having small spatial

supports, which correspond to low-frequency and high-frequency components,

respectively. At the analysis stage of a subband decomposition, a long LPF

and a short highpass �lter (HPF) match the two types of components the

most appropriately. At the synthesis stage, since most image energy is packed

into low-frequency subbands and the human visual system is essentially a

lowpass system, the synthesis LPF is much more important than the synthesis

HPF in terms of the quality of reconstructed images. Since a short LPF

accumulates fewer quantization errors than a long one, the former results in

less ringing artifacts, which are the most signi�cant perceptual distortion in

wavelet transform-coded images.
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The images used in our simulations are \Lena", \Barbara", and \Gold-

hill", which are all 512 � 512 8-bit grayscale images. We apply a wavelet

transform coding algorithm similar to the SPIHT algorithm [30].

We list the PSNR (de�ned in (4.67)) versus bit rate results in Table 5.5

and highlight the best result for each case. From the table, we conclude that

� WPB-22/14 consistently outperforms CDF-9/7 and VBL-6/10. The

largest improvements are above 0.5 dB over CDF-9/7 and 0.7 dB over

VBL-6/10.

� WPB-22/14 is remarkably better than TVC-10/18 for the \Barbara"

image and the two �lterbanks achieve about the same performance for

the other two images.

In the last chapter, we found that WTWB-9/7, WTWB-13/7, and WTWB-

13/11 achieved about the same PSNR performance as CDF-9/7. Therefore,

WPB-22/14 is signi�cantly better than the three �lterbanks in BC systems in

the rate-distortion sense.

Figure 5.1 illustrates the \Barbara" images coded at 0.25 bpp using

the four �lterbanks. While the four coded images have comparable perceptual

qualities, WPB-22/14 resulted in slightly less severe ringing e�ect.

5.5 Summary

In this chapter, we have presented a novel class of antisymmetric biorthogonal

wavelet systems and discovered that the 22/14-tapped �lterbank in this new
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Table 5.5: PSNR performance of four �lterbanks

image bit rate CDF-9/7 VBL-6/10 TVC-10/18 WPB-22/14

0.500 36.98 36.92 37.04 37.12

Lena 0.250 33.82 33.76 34.01 34.01

0.125 30.74 30.82 30.98 30.97

0.500 31.41 31.21 31.82 31.93

Barbara 0.250 27.29 27.10 27.39 27.54

0.125 24.61 24.48 24.55 24.71

0.500 32.71 32.69 32.77 32.78

Goldhill 0.250 30.31 30.26 30.31 30.34

0.125 28.27 28.36 28.37 28.36

family has a superior coding performance over several state-of-the-art �lter-

banks and thus it is the best �lterbank to date in the rate-distortion sense.

Therefore, we feel that it is a serious candidate for the wavelet system in fu-

ture image/video compression standards. We have also demonstrated that for

image coding, the generalized Coifman criterion is more appropriate than the

traditional criterion of maximizing wavelet vanishing moments.
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(a) (b)

(c) (d)

Figure 5.1: The \Barbara" images coded at 0.25 bpp using four �lterbanks:
(a) CDF-9/7; (b) VBL-6/10; (c) TVC-10/18; and (d) WPB-22/14.



Chapter 6

Biorthogonal Quincunx Coiets

Most existing developments in wavelet theory and its applications have con-

centrated on one-dimensional (1-D) systems. The multidimensional (M-D)

case has been handled via the tensor product to yield separable systems [23].

For example, a separable two-dimensional (2-D) �lter is given as the tensor

product of two 1-D �lters:

h[n] = h[n1; n2] = h[n1] h[n2]: (6.1)

Separable M-D wavelet systems preserve some properties of 1-D wavelet sys-

tems, such as �nite support, perfect reconstruction (PR), orthogonality, sym-

metry, and regularity, and often leads to simple implementations and low com-

putational complexity due to separable processing. However, it imposes a se-

vere limitation on the resulting M-D wavelet representation in the sense that it

gives a particular importance to the two directions of coordinates. Therefore,

when dealing with M-D signals, trueM-D processing (allowing both nonsepara-

ble sampling and �ltering) is more appropriate. Though nonseparable wavelet

representations su�er from higher computational complexity, they o�er more

exibility (e.g. near-isotropic processing) in multiresolution analysis, more

degrees of freedom in design, �ner multiscale/multiresolution analysis, better

86
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adaption to the human visual system, and consequently better performance. In

particular, nonseparable 2-D wavelet systems are of great importance in image

processing applications. On the other hand, since orthogonality and symme-

try/antisymmetry are a pair of conicting properties for compactly supported

wavelets [13], biorthogonal symmetric/antisymmetric wavelet systems whose

associated �lterbanks possess linear phase are the most widely used in practice.

Linear phase is often a highly desirable property in image processing.

The construction of nonseparable 2-D wavelet systems has been a chal-

lenging problem. This is because spectral factorization, which is the funda-

mental method used in the design of 1-D wavelet systems, cannot be extended

to construct 2-D nonseparable wavelet systems. This is because 2-D poly-

nomials cannot always be factored. For this reason, there exist much fewer

nonseparable wavelet systems than 1-D wavelet systems.

In this chapter, we study the theory, design, and applications of a novel

class of 2-D nonseparable wavelet systems.

6.1 Basics of Biorthogonal Quincunx Wavelets

In multiple dimensions, the change in resolution and sampling rate is given

by an integer dilation matrix D. For quincunx wavelet systems, it is required

that Dn, n 2 Z
2, is a quincunx sublattice of Z2, j detDj = 2, and the two

eigenvalues ofD have magnitude strictly greater than 1 so that there is indeed

a dilation in each dimension [10], [20]. The following are two typical choices:

D =D1 =

"
1 1
1 �1

#
or D = D2 =

"
1 �1
1 1

#
: (6.2)
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The dilation equations for the 2-D scaling functions �(t) and e�(t) becomes

�(t) =
X
n

2h[n]�(Dt� n) and e�(t) =X
n

2eh[n] e�(Dt� n) (6.3)

or equivalently, in the frequency domain

b�(!) = 1Y
i=1

H(D�i!) and
be�(!) = 1Y

i=1

fH(D�i!) (6.4)

where h[n] and eh[n] are the lowpass �lters. The highpass �lters g[n] and eg[n]
are given by

G(!) = fH(�! + �) and eG(!) = H(�! + �): (6.5)

The 2-D perfect reconstruction condition for a quincunx dilation matrix D

can be expressed as

X
n
h[n]eh[n+Dk] =

1

2
�[k]; 8k 2 Z

2 (6.6)

or equivalently

H(!)fH(�!) +H(! + �)fH(�! + �) = 1; 8! 2 R
2 : (6.7)

Figures 6.1 and 6.2 illustrate the analysis and synthesis parts of a quincunx FB,

respectively. The symbols #D and "D denote downsampling and upsampling

with the matrix D, respectively.

6.2 Vanishing Moments

We de�ne a sequence of subsets of Z2:

PL = fl : l 2 Z
2; 0 � l1 � L� 1; 0 � l2 � L� 1; l1 + l2 � L� 1g (6.8)

for L 2 N. The next two theorems state the equivalent descriptions of vanishing

moments for the wavelets and scaling functions, respectively.
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si[n]
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eh[�n]
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eh[�n]

eg[�n]

-

-
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#D
wi�2[n]

si�2[n]
� � �

Figure 6.1: Block diagram of the analysis part of a two-dimensional two-
channel iterative �lterbank

� � �
si�2[n]

-

wi�2[n]
-

"D

"D

-

-

2h[n]

2g[n]

L?
6

wi�1[n]
-

si�1[n]
-"D

"D

-

-

2h[n]

2g[n]

L?
6

si[n]

Figure 6.2: Block diagram of the synthesis part of a two-dimensional two-
channel iterative �lterbank

Theorem 10 For a biorthogonal quincunx wavelet system, the following three

equations are equivalent:

Z
tl e (t) dt = 0 for l 2 PL (6.9)

X
n

(�1)n1+n2nlh[n] = 0 for l 2 PL (6.10)

H(l1;l2)(�; �) =
@l1+l2H(!1; !2)

@!l11 @!
l2
2

�����
!=�

= 0 for l 2 PL; (6.11)

and similar equivalence holds between  (t) and eh[n].

The proof of Theorem 6.9 was given in [34].
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Theorem 11 For a biorthogonal quincunx wavelet system,

Z
tl�(t) dt = �[l] for l 2 PL (6.12)

X
n

nlh[n] = �[l] for l 2 PL (6.13)

H(l1;l2)(0; 0) =
@l1+l2H(!1; !2)

@!l11 @!
l2
2

�����
!=0

= �[l] for l 2 PL; (6.14)

and similar equivalence holds between e�(t) and eh[n].

Proof: Due to the similarity between f�(t); h[n]g and f e�(t); eh[n]g, we
only need to prove the �rst equivalence.

Let [d1 d2] =D�1. De�ne

�[l] =
Z
tl�(t) dt and �[l] =

X
n

nlh[n]: (6.15)

Using the �rst dilation equation in (6.3), we infer that for l 2 PL,

�[l] =
Z
tl
X
n

2h[n]�(Dt� n) dt (6.16)

=
Z
2jDj�1

X
n

(D�1s+ n)lh[n]�(s) ds (6.17)

=
Z X

n

lX
p=0

rX
q=0

 
l

p

! 
r

q

!
d
p

1d
l�p

2 sqnr�qh[n]�(s) ds (6.18)

=
lX

p=0

rX
q=0

 
l

p

! 
r

q

!
d
p

1d
l�p

2 �[r � q]�[q] (6.19)

where r = [p1 + p2; l1 + l2 � p1 � p2]
T .

If �(t) satis�es (6.12), it follows that

lX
p=0

 
l

p

!
d
p

1d
l�p

2 �[r] = �[l]: (6.20)
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For any l 2 N such that l < L, we de�ne lk = [k; l � k]T . Then, (6.20) can be

rewritten as2
666666664

�
l0
0

�
d01d

l0

2

�
l0
1

�
d11d

l0�1

2 � � �
�
l0
l0

�
dl01 d

0

2�
l1
0

�
d01d

l1

2

�
l1
1

�
d11d

l1�1

2 � � �
�
l1
l1

�
dl11 d

0

2

...
...

...
...�

ll
0

�
d0l d

ll

2

�
ll
1

�
d1l d

ll�1

2 � � �
�
ll
ll

�
d
ll

1d
0

2

3
777777775

2
66664
�[l0]
�[l1]
...

�[ll]

3
77775 =

2
66664
0
0
...
0

3
77775 : (6.21)

Since D�1 is non-singular, the above (l + 1)� (l + 1) matrix is non-singular.

Therefore, �[lk] = 0 for k = 0; 1; : : : ; l, which implies (6.13).

If h[n] satis�es (6.13), it follows that

lX
p=0

 
l

p

!
d
p

1d
l�p

2 �[r] = �[l]: (6.22)

For any l 2 N such that l < L, (6.22) can be rewritten as

2
666666664

�
l0
0

�
d01d

l0

2 � 1
�
l0
1

�
d11d

l0�1

2 � � �
�
l0
l0

�
dl01 d

0

2�
l1
0

�
d01d

l1

2

�
l1
1

�
d11d

l1�1

2 � 1 � � �
�
l1
l1

�
dl11 d

0

2

...
...

...
...�

ll
0

�
d0l d

ll

2

�
ll
1

�
d1l d

ll�1

2 � � �
�
ll
ll

�
d
ll

1d
0

2 � 1

3
777777775

2
66664
�[l0]
�[l1]
...

�[ll]

3
77775 =

2
66664
0
0
...
0

3
77775 :

(6.23)

Since D�1 is non-singular, the above (l + 1)� (l + 1) matrix is non-singular.

Therefore, �[lk] = 0 for k = 0; 1; : : : ; l, which implies (6.12).

Finally, according to the di�erentiation in frequency property of the 2-

D discrete-time Fourier transform, it is trivial to show that (6.13) is equivalent

to (6.14).
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6.3 De�nition

De�nition 4 A 2-D biorthogonal quincunx wavelet system is a biorthogonal

quincunx Coiet system of order (L; eL ) if

Z
tl e�(t) dt = �[l] for l 2 PL (6.24)Z
tl e (t) dt = 0 for l 2 PL (6.25)Z
tl (t) dt = 0 for l 2 PeL: (6.26)

The de�nition may be viewed as an extension of the de�nition of 1-D

biorthogonal Coiet wavelet systems to the quincunx case.

6.4 Design

While the method of solving simultaneous equations in the design of biorthog-

onal Coiet systems could still be used here, the much larger number of �lter

coe�cients in BQC systems makes it di�cult, if not impossible, to derive

closed-form formulae for the �lter coe�cients. As an alternative, we use the

McClellan transformation [17], which is a highly e�cient method for the design

of 2-D zero phase �lters.

If L is even, we rewrite the frequency response of the synthesis lowpass

�lter in the order-(L; eL) biorthogonal Coiet system given in (4.16) as

HL(!) =
1

2
+

L=2X
m=1

2hL[2m� 1]T2m�1(cos!) (6.27)

where Tn(�) denotes the nth-order Chebyshev polynomial. We choose the

transformation function

F (!) =
1

2
(cos!1 + cos!2): (6.28)
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Then, the frequency response of the synthesis lowpass �lter in the order-(L; eL)
BQC system is given by

HL(!) =
1

2
+

L=2X
m=1

2hL[2m� 1]T2m�1(F (!)): (6.29)

A similar design procedure can be used to construct fH
L;eL(!) via transforming

fH
L;eL(!) with both L and eL being even.

If we requireHL(!) and fHL;eL(!) to satisfy the vanishing moment condi-

tions in the de�nition, the numbers of vanishing moments for the order-(L; eL)
biorthogonal Coiet system and BQC system must be identical. It was shown

[10], [20] that F (!) converts the number of zeros of a 1-D frequency response

at ! = � to the same number of zeros of the transformed 2-D frequency re-

sponse at the aliasing frequency ! = �. This implies that F (!) preserves

vanishing wavelet moments.

If a 1-D zero phase �lter h[n] satis�es

H(l)(0) = �[l] for l = 0; 1; : : : ; 2K � 1 (6.30)

then the frequency response can be expressed as

H(!) = 1 + (1� cos!)K �H(!) (6.31)

where �H(!) is polynomial in cos!. Hence, F (!) converts the 2K zeros of

(1 � cos!)K at ! = 0 to the 2K zeros of (1 � 1
2
cos!1 �

1
2
cos!2)

K at ! =

0. Therefore, F (!) preserves vanishing scaling function moments, too. In

summary, F (!) is a valid transformation function for designing BQC systems.

We now give a design example. The �lters h[n] and eh[n] of the order-
(4,2) BQC system are obtained from the �lters h[n] and eh[n] of the order-(4,2)
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biorthogonal Coiet system, respectively. The �lter coe�cients fh[n]gn and

feh[n]gn are given by

1

256

2
666666666664

0 0 0 �1 0 0 0
0 0 �3 0 �3 0 0
0 �3 0 39 0 �3 0

�1 0 39 128 39 0 �1
0 �3 0 39 0 �3 0
0 0 �3 0 �3 0 0
0 0 0 �1 0 0 0

3
777777777775

(6.32)

and

1

1024

2
6666666666666664

0 0 0 0 1 0 0 0 0
0 0 0 4 0 4 0 0 0
0 0 6 0 �32 0 6 0 0
0 4 0 �72 128 �72 0 4 0
1 0 �32 128 868 128 �32 0 1
0 4 0 �72 128 �72 0 4 0
0 0 6 0 �32 0 6 0 0
0 0 0 4 0 4 0 0 0
0 0 0 0 1 0 0 0 0

3
7777777777777775

(6.33)

respectively, where the largest coe�cients 128
256

and 868
1024

correspond to h[0] and

eh[0], respectively.

6.5 Properties

6.5.1 Symmetry and Isotropism

The symmetry of h[n] and F (!) results in the following eight-fold symmetry

of h[n]:

h[n1; n2] = h[�n1; n2] (6.34)

h[n1; n2] = h[n1;�n2] (6.35)

h[n1; n2] = h[n2; n1]: (6.36)
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This symmetry implies the following spatial-domain isotropism:

kn1k = kn2k ) h[n1] = h[n2]: (6.37)

Similar properties hold for the analysis �lter eh[n].

6.5.2 Interpolating Scaling Functions

A two-dimensional scaling function �(t) is interpolating or cardinal if

�(n) = �[n] 8n 2 Z
2: (6.38)

For instance, the function

�(t) =
sin(�t1) sin(�t2)

�2t1t2
(6.39)

is interpolating. 2-D interpolating functions are desirable in sampling and

interpolation of 2-D functions. If we use the uniform samples of a 2-D function

f with a sampling matrixD, and a 2-D interpolating function � to reconstruct

f as

ef(t) =X
n

f(D�in)�(Dit� n) (6.40)

for any i 2 Z, then

ef(D�in) = f(D�in) 8n 2 Z
2 (6.41)

i.e., we obtain an exact reconstruction at those sampling points.

Theorem 12 The synthesis scaling function � in a BQC system is interpo-

lating.
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Proof: Since the (2m� 1)th-order Chebyshev polynomial T2m�1 is an

odd function for any m 2 N and

F (! + �) = �F (!); (6.42)

it follows that

H(!) +H(! + �) = 1: (6.43)

For k 2 N, let

Uk(!) =
kY
i=1

H(D�i!)I[��;�]2(D
�k!) (6.44)

where II(!) is the indicator function

II(!) =

(
1 if ! 2 I

0 otherwise.
(6.45)

Let uk be the inverse Fourier transform of Uk(!). Thus, from (6.4) we deduce

that, as k tends to in�nity, Uk(!) converges to b�(!) pointwise and
lim
k!1

uk(n) = lim
k!1

1

4�2

Z
Uk(!)e

j!T
nd! (6.46)

=
1

4�2

Z b�(!)ej!T
nd! (6.47)

= �(n): (6.48)

We de�ne a sequence of subsets of R2 :

W k = f! :D�k! 2 [��; �]2g (6.49)

with k 2 Z. We infer that for any n 2 Z
2,

uk(n) =
1

4�2

Z
Wk

kY
i=1

H(D�i!)ej!
T
nd! (6.50)

=
jDjk

4�2

Z
[��;�]2

kY
i=1

H(Dk�i�)ej(D
k
�)Tnd� (6.51)
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=
jDjk

4�2

Z
[��;�]2

k�1Y
i=1

H(Di�)ej(D
k
�)TnH(�) d� (6.52)

=
jDjk

4�2

Z
W
�1

k�1Y
i=1

H(Di�)ej(D
k
�)Tn(H(�) +H(� + �)) d� (6.53)

since
Qk�1
i=1 H(Di�)ej(D

k
�)Tn is periodic with period � in both �1 and �2. Due

to (6.43), it follows that

uk(n) =
jDjk

4�2

Z
W
�1

k�1Y
i=1

H(Di�)ej(D
k
�)Tnd� (6.54)

=
jDjk�1

4�2

Z
[��;�]2

k�2Y
i=0

H(Di�)ej(D
k�1

�)Tnd�: (6.55)

Comparing (6.52) and (6.55), we conclude that

uk(n) = uk�1(n): (6.56)

On the other hand,

u1(n) =
1

4�2

Z
W1

H(D�1!)ej!
T
nd! (6.57)

=
1

4�2

Z
[��;�]2

�
H(D�1!)ej!

T
n

+H(D�1(! + 2�))ej(!+2�)Tn
�
d! (6.58)

=
1

4�2

Z
[��;�]2

ej!
T
nd! (6.59)

= �[n] (6.60)

which implies (6.38).

The theorem states that the transformation function F (!) preserves

the property of interpolating scaling functions.

6.5.3 Asymptotic Convergence of Filters

Based on the asymptotic convergence of 1-D biorthogonal Coiet systems dis-

cussed in Chapter 4, it is straightforward to establish the theorem below by
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considering the transformation function given in (6.28).

Theorem 13 The frequency responses of the �lters in biorthogonal quincunx

Coiet systems converge pointwise to ideal diamond-shaped halfband lowpass

frequency responses as the orders of the systems tend to in�nity:

lim
L!1

HL(!) =

8>><
>>:

1 if j!1j+ j!2j < �

1=2 if j!1j+ j!2j = �

0 if j!1j+ j!2j > �, j!1j � �, j!2j � �

(6.61)

lim
L;eL!1

fH
L;eL(!) =

(
1 if j!1j+ j!2j � �

0 if j!1j+ j!2j > �, j!1j � �, j!2j � �;
(6.62)

the convergence of HL(!) is monotonic in the sense that

HL(!) � HL+2(!) if j!1j+ j!2j � � (6.63)

HL(!) � HL+2(!) if j!1j+ j!2j > �, j!1j � �, j!2j � �; (6.64)

the convergence of HL(!) does not exhibit any Gibbs-like phenomenon and the

convergence of fH
L;eL(!) exhibits a one-sided Gibbs-like phenomenon.

6.5.4 Dyadic Rational Filter Coe�cients

From the aforementioned McClellan transformation-based design with the

transformation function F (!) given in (6.28), it is trivial to check that the

�lterbanks of BQC systems possess dyadic rational �lter coe�cients. Thus,

the �lterbanks permit multiplication-free DWT's.

6.6 Application to Image Data Compression

Since we have demonstrated in Chapter 4 that several 1-D biorthogonal Coiet

systems are comparable with the popular CDF-9/7 for image data compres-
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sion, we expect that BQC systems, which are constructed based on biorthog-

onal Coiet systems, are also excellent for image coding. We attempt to com-

pare systems in the new family with the state-of-the-art quincunx wavelet

systems. Very few quincunx wavelet systems have been recommended for im-

age coding. The state-of-the-art �lterbank is the 9/7-tapped1 �lterbank by

Barlaud, Sol�e, Gaidon, Antonini, and Mathieu [3]. We refer to their �lterbank

as BSGAM-9/7. In fact, BSGAM-9/7 was constructed from CDF-9/7 via Mc-

Clellan transformation with the transformation function given in (6.28). From

the new BQC family, we choose an �lterbank of the same size as BSGAM-

9/7 for comparison. This �lterbank is denoted by WEB-9/7, for it was �rst

designed and studied by Wei, Evans, and Bovik [53]. The coe�cients of its

two lowpass �lters are given in (6.32) and (6.33), respectively. In fact, WEB-

9/7 was constructed from WTWB-9/7 via McClellan transformation with the

transformation function given in (6.28).

The images used in our simulations are \Lena", \Barbara", \Goldhill",

and \Peppers", which are all 8-bit grayscale images of size 512 � 512. Since

no high-performance image coder exists for quincunx wavelet systems, we take

the following steps to simulate a wavelet transform coding for a given image:

1. choose a preservation percentage p;

2. take a forward DWT on the original image;

3. keep the p% of DWT coe�cients with the largest absolute values un-

changed and set the others to zero;

1A 2-D 9/7-tapped �lterbank means that the sizes of its analysis and synthesis lowpass

�lters are 9� 9 and 7� 7, respectively.
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4. take a inverse DWT on the thresholded DWT coe�cients to reconstruct

the image.

Such a procedure measures the energy compaction capability of wavelet sys-

tems, which is generally consistent with their performance in terms of PSNR

versus bit rate.

In Figure 6.3, we plot the rate-distortion performance of the two �lter-

banks in terms of PSNR (de�ned in (4.67)) versus percentage of thresholded

DWT coe�cients. Figure 6.4 depicts the \Lena" and \Barbara" images recon-

structed with 7% and 20% of DWT coe�cients, respectively. The �gures show

that WEB-9/7 achieved both signi�cantly better objective and subjective im-

age quality than BSGAM-9/7 for all four images. It is interesting to note that,

while both WTWB-9/7 and CDF-9/7 are comparable in terms of compression

performance, the 2-D transformed version of the former, i.e., WEB-9/7, re-

markably outperforms that of the latter, i.e., BSGAM-9/7.

6.7 Extension to Higher Dimensions

It is straightforward to extend the aforementioned design to higher dimensions.

To construct m-dimensional biorthogonal Coiet systems, we can simply use

the transformation function

F (!1; !2; : : : ; !m) =
1

m

mX
d=1

cos!d: (6.65)

Apparently, the resulting �lterbanks have dyadic rational �lter coe�cients if

and only if m = 2k for some k 2 N.
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6.8 Summary

We have presented the design of a novel class of biorthogonal quincunx wavelet

systems, which enjoys several remarkable properties. In particular, one �lter-

bank in this family has been shown to have a signi�cantly better rate-distortion

performance than the state-of-the-art nonseparable �lterbank in DWT-based

image data compression and enjoy a much lower computational complexity,

due to the former's fast implementation of a multiplication-free DWT. There-

fore, these BQC systems are promising for the choice of nonseparable wavelet

systems in image and multidimensional signal processing applications.
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Figure 6.3: PSNR performance of two �lterbanks: (a) \Lena"; (b) \Barbara";
(c) \Goldhill"; and (d) \Peppers".
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(a) (b)

(c) (d)

Figure 6.4: The reconstructed \Lena" and \Barbara" images with 7% and 20%
of DWT coe�cients, respectively. (a) \Lena" compressed by BSGAM-9/7; (b)
\Lena" compressed by WEB-9/7; (c) \Barbara" compressed by BSGAM-9/7;
and (d) \Barbara" compressed by WEB-9/7.



Chapter 7

Generalized Biorthogonal Quincunx Coiets

In this chapter, we address the design of generalized biorthogonal quincunx

Coiet systems, which could be de�ned with the generalized Coifman crite-

rion. Naturally, we would expect to construct the new �lterbanks (FB's) via

transforming the FB's associated with generalized biorthogonal Coiet sys-

tems, which were addressed in Chapter 5. The latter FB's are half-point

symmetric and of even length. We shall study the design problem in a more

general sense.

Two extensions of the McClellan transformation have been proposed

to transform even-length half-point symmetric one-dimensional (1-D) proto-

type �lters into even/odd-size multidimensional (M-D) �lters [25], [18]. Since

numerous even-length symmetric 1-D perfect reconstruction (PR) FB's and

wavelets having useful properties have been constructed (e.g., both real-valued

biorthogonal PRFB's and complex-valued orthogonal PRFB's can possess both

even length and symmetry), it is natural to ask whether they can be trans-

formed into M-D PRFB's using the two extended McClellan transformations.

In this chapter, we answer the general question by showing that, unlike the

original McClellan transformation, the two extended McClellan transforma-

104
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tions su�er from a limitation in the design of multidimensional two-channel

FIR PRFB's and wavelets in the sense that there does not exist any trans-

formation function that can preserve PR after transformation. For one of the

transformations, we point out that near-PR FB's are possible.

Assume that H(!) and fH(!) are the frequency responses of the dual

lowpass �lters in a two-channel m-dimensional (m-D) PRFB. They satisfy

H(0) = fH(0) = 1; H(�) = fH(�) = 0 (7.1)

and the perfect reconstruction condition (see [44])

H(!)fH�(!) +H(! + �)fH�(! + �) = 1 (7.2)

for any ! 2 R
m , where the symbol \�" denotes complex conjugation and � is

the aliasing frequency associated with the m-D downsampling pattern of the

FB (e.g., � = [�; �] for 2-D quincunx downsampling lattice).

7.1 Design of Even-Size Filterbanks via an Extended

McClellan Transformation

The frequency response of an even-length symmetric 1-D FIR �lter h0[n] cen-

tered at n = 1
2
can be expressed as [25]

H0(!) = (1 + e�j!)P (cos!) (7.3)

where P (�) is a polynomial on the interval [�1; 1], and P (cos!) can be viewed

as the frequency response of a 1-D odd-length symmetric �lter. Then, the

desired m-D even-size �lter can be constructed by [25], [18]

H(!) =
mY
i=1

(1 + e�j!i)P (F (!)) (7.4)
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where F (!) is a transformation function used to substitute for cos!.

Assume that a transformation function F (!) is used to transform a

pair of 1-D even-length dual �lters H0(!) and fH0(!) having the PR property

into a pair of m-D even-size dual �lters H(!) and fH(!); i.e., H(!) is given

by (7.4) and fH(!) is given by

fH(!) =
mY
i=1

(1 + e�j!i) eP (F (!)) (7.5)

where the polynomial eP (�) is de�ned similarly as P (�). Since H0(!) and fH0(!)

satisfy the PR condition (7.2), it follows that

2(1+cos!)P (cos!) eP �(cos!)+2(1�cos!)P (� cos!) eP �(� cos!) = 1 (7.6)

for any ! 2 R. If H(!) and fH(!) are required to satisfy the PR condition

(7.2), then it follows that

2m
mY
i=1

(1 + cos!i)P (F (!)) eP �(F (!))

+2m
mY
i=1

(1� cos!i)P (F (! + �)) eP �(F (! + �)) = 1 (7.7)

for any ! 2 R
m . Since the 1-D aliasing frequency � should map to the m-D

aliasing frequency �, cos(! + �) = � cos! maps to F (! + �). Therefore, for

any ! 2 R
m ,

F (! + �) = �F (!): (7.8)

Comparing (7.6) and (7.7), we infer that the transformation function F (!)

must satisfy

F (!) = �1 + 2m�1
mY
i=1

(1 + cos!i) (7.9)

F (!) = 1� 2m�1
mY
i=1

(1� cos!i) (7.10)
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which are apparently conict with each other for any m such that m > 1.

Thus, H(!) and fH(!) cannot satisfy the PR condition. Therefore, we have

established the theorem below.

Theorem 14 There does not exist any transformation function by which a

pair of 1-D even-length dual �lters can be transformed to a pair of m-D even-

size dual �lters having the perfect reconstruction property.

7.2 Design of Odd-Size Filterbanks via an Extended

McClellan Transformation

De�ne a polynomial Q(�) on the interval [0; 1] by

Q(x) = 2P (2x� 1): (7.11)

Then, the frequency response of an even-length symmetric 1-D FIR �lter given

in (7.3) can be rewritten as

H0(!) = e�j!=2 cos(!=2)Q(cos2(!=2)): (7.12)

By substituting a transformation function F (!) for cos(!=2), we can obtain

the frequency response of an m-D odd-size �lter [18]

H(!) = F (!)Q(F 2(!)): (7.13)

Assume that a transformation function F (!) is used to transform a pair of

1-D even-length dual �lters H0(!) and fH0(!) having the PR property into a

pair of m-D odd-size dual �lters H(!) and fH(!); i.e., H(!) is given by (7.13)

and fH(!) is given by

fH(!) = F (!) eQ(F 2(!)) (7.14)
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where the polynomial eQ(�) is de�ned similarly as Q(�). From the transforma-

tion mapping of the origin and aliasing frequency we infer

F (0) = 1 and F (�) = 0: (7.15)

Since H0(!) and fH0(!) satisfy the PR condition given by (7.2), it follows that

cos2(
!

2
)Q(cos2(

!

2
)) eQ�(cos2(

!

2
)) + sin2(

!

2
)Q(sin2(

!

2
)) eQ�(sin2(

!

2
)) = 1

(7.16)

for any ! 2 R. If H(!) and fH(!) are required to satisfy the PR condition

(7.2), then it follows that

F 2(!)Q(F 2(!)) eQ�(F 2(!)) + F 2(! + �)Q(F 2(! + �)) eQ�(F 2(! + �)) = 1

(7.17)

for any ! 2 R
m . Comparing (7.16) and (7.17), we infer that the transformation

function F (!) must satisfy

R(1� F 2(!)) = R(F 2(! + �)) (7.18)

where R(x) = xQ(x) eQ�(x) is a polynomial on [0; 1]. From (7.13), (7.14),

(7.15), and (7.1), it is easy to check that R(0) = 0 and R(1) = 1. Therefore,

F (!) must satisfy

F 2(!) + F 2(! + �) = 1 (7.19)

for any ! 2 R
m . The m-D �lter F (!) satisfying both (7.15) and (7.19) is an

odd-size symmetric �lter (recall that F (!) is real-valued) and should corre-

spond to an orthogonal wavelet. It has been shown [20, Proposition 4.6] that

such a �lter does not exist for any dimension. Therefore, we have established

the theorem below.
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Theorem 15 There does not exist any transformation function by which a

pair of 1-D even-length dual �lters can be transformed to a pair of m-D odd-

size dual �lters without losing the PR property.

Although the exact solution to (7.19) does not exist, approximate so-

lutions are possible. In fact, such an approximation problem is similar to

the design of near-PR linear-phase quadrature mirror FB's, which has been

successfully solved [44]. Since often both Q and eQ are smooth functions, if

(7.19) is approximately satis�ed, then so is (7.17). Therefore, we are able to

construct m-D near-PR FB's using the transformation.

7.3 Summary

We have presented a limitation of the application of two extended McClellan

transformations to the design of two-channel M-D PRFB's and wavelet sys-

tems, which is due to the fact that when transforming 1-D even-length PRFB's,

PR cannot be preserved for the resulting M-D FB's. Thus, the existence of

the M-D non-separable counterparts corresponding to those 1-D even-length

PRFB's remains an open question for further research. In this sense, we con-

clude that the generalized biorthogonal quincunx Coiet systems, if they exist,

cannot be constructed via the two extended McClellan transformations.



Chapter 8

Conclusion

We have presented a systematic study of the theory, design, and applications

of several novel classes of Coiet-type wavelet systems. We briey review the

key contributions of this dissertation below.

In Chapter 2, we established the Mathematical theory of Coiet-type

wavelet systems.

In Chapter 3, we designed generalized orthogonal Coiet systems, dis-

cussed their useful properties such as nearly linear phase �lterbank, addressed

their advantages over the original orthogonal Coiet systems, and studied their

application to sampling and approximation of smooth functions.

In Chapter 4, we designed biorthogonal Coiet systems, discussed their

useful properties such as whole-point symmetric �lterbanks, interpolating scal-

ing functions, dyadic rational �lter coe�cients, and asymptotic convergence,

and studied their application to image data compression.

In Chapter 5, we designed generalized biorthogonal Coiet systems,

discussed their useful properties such as half-point symmetric �lterbanks and

extra vanishing moments, and studied their application to image data com-

pression.

110
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In Chapter 6, we designed biorthogonal quincunx Coiet systems, dis-

cussed their useful properties such as zero phase �lterbanks, spatial-domain

isotropism, interpolating scaling functions, dyadic rational �lter coe�cients,

and asymptotic convergence, and studied their application to image data com-

pression.

In Chapter 7, we proved that multidimensional two-channel perfect re-

construction �lterbanks including the �lterbanks of generalized biorthogonal

quincunx Coiet systems cannot be designed via extended McClellan trans-

formations.

Since Coiet-type wavelet systems possess both vanishing wavelet mo-

ments and vanishing scaling function moments, they are outstanding for dig-

ital signal processing applications. In particular, they generally outperform

wavelet systems having vanishing wavelet moments only. For image coding

applications, some of the new wavelet systems achieve better performance

than the state-of-the-art wavelet systems.

We propose a number of open problems related to Coiet-type wavelet

systems, which may be worth future research.

1. Due to the lack of closed-form formulae for biorthogonal Coiet systems

for the case that one wavelet has higher degree of vanishing moments

than the two scaling functions, the properties of those wavelet systems

have not been studied rigorously.

2. The existence and uniqueness of the analysis lowpass �lters in generalized

biorthogonal Coiet systems have not been proved.
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3. The McClellan transformation-based design of biorthogonal quincunx

Coiet systems may not lead to minimum-size �lterbanks. Other design

methods need to be studied.

4. The existence, design, and properties of generalized biorthogonal quin-

cunx Coiet systems remain open.

It is our hope that the dissertation provides a rich collection of high-

performance wavelet systems, which can be promising in solving various sci-

enti�c and engineering problems.
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Appendix A

Original Images

            

Figure A.1: The original \Boats" image.
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(a)

            

(b)

            

(c)

            

(d)

Figure A.2: The original images: (a) \Lena"; (b) \Barbara"; (c) \Goldhill";
and (d) \Peppers".
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Figure A.3: The original \Fingerprint-1" image.

            

Figure A.4: The original \Fingerprint-2" image.
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