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= VISION FOR 5G COMMUNICATIONS

NETWORKANALYTICS  “Network Data Analytics Function”
(3gpp)

https://www.qorvo.com/design-hub/blog/getting-to-5g-comparing-4g-and-5g-system-requirements]
P q g g/getting g paring-4g g
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= VISION FOR INTELLIGENT WIRELESS NETWORK

AAAAAAAA

Base Station (BS)

IIIIIIIIIIIIIIIII

Sub-6 GHz

mmWave

Trained models at the network edge User Equipment (UE)

Central location to coherently train
models

[https://www.qualcomm.com/media/documents/files/making-ai-ubiquitous.pdf]

Hybrid approach to unleash next-generation wireless “network intelligence”
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= MOTIVATION: DEEP LEARNING IN COMMUNICATIONS

»  Absence of accurate mathematical formulations

o data-driven approaches using ray-tracing datasets or field-measurements [Zappone19)]

* |ncremental changes in radio resource management (RRM) algorithms

o industry standards still prefer “legacy” algorithms despite successive evolutions [3epp15] & [3epp1]

" Desire for fully autonomous self-organizing networks (SON)

O operators are under constant pressure to reduce operational expenditure without
impacting performance [Zappone19)]

Long training times and high implementation complexity pose significant challenges
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=— CONTRIBUTIONS

* How to improve next-generation wireless networks system performance!?
-®: disrupt the legacy industry standards to boost reliability and eliminate performance bottlenecks

PHY perspective RRM perspective
{ N a4 )
Beamforming, Power Control and Intelligent Coordinated _ o
o . Predictive Band Switching
Interference Coordination . Multipoint J )
Contribution | Contribution 2 Contribution 3
Smll cell BS Learning Phase Exploitation
1 !
ser Eq‘.ll}{ll\l(:]l\t‘ /_ NN ,,/’/ / Kequests ; grant  deny T . Tgmn% grant deny grantij . 4
- ~ Area with . ’_T H ’_T ’_r “’_1 ‘_T _t
//,/’/,__\‘\\ 2T MIMO possibilit:y Legacy 1‘ igr}ml (Ivrn_v (l('rn_\'
I\\ \V); Proposed : :
e el : ! ' good bad
Data interface predictions
.luim‘Bs-amforming Power Control, and Inmt'wxouu--(‘uuulin«-riuu | Self-Organizing Network |
Central location \lmsm'omomsl 1De(‘isiun>
| Deep Neural Network |
| Support Vector Machine |
- d < . J

Im prove user rates

Contributions are on the downlink (BS to UE)

RRM: radio resource management layer PHY: physical layer
BS: Base station UE: user equipment.

Ph.D. Defense Faris B. Mismar 11/22/19 CONTRIBUTIONS



Contribution |

JOINT BEAMFORMING, POWER CONTROL,AND
INTERFERENCE COORDINATION

Discussed in the PhD Qualifying Exam and Included in the PhD Dissertation

Related publications:

[1]- E B. Mismar, B. L. Evans and A. Alkhateeb, “Deep Reinforcement Learning for 5G Networks: Joint Beamforming, Power Control, and
Interference Coordination,” IEEE Transactions on Communications, submitted Jun. 28,2019 and resubmitted Sep. 21,2019 and Nov. 8,2019.

[2]. F. B. Mismar and B. L. Evans, “Q-Learning Algorithm for VoLTE Closed-Loop Power Control in Indoor Small Cells,” Proceedings of the 52nd
Annual Asilomar Conference on Signals, Systems, and Computers, Oct. 2018.
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= BACKGROUND

] Problem

= User served by a base station receives interference from neighboring base station
= Base station serving the user causes interference to other users

1 Goal

= Maximize the signal to interference plus noise ratio (SINR) from serving base station to user

J Parameters

= Beamforming (BF) to create a virtual sense of a user-specific channel for data

= Power Control (PC) to control the transmit power of the serving BS towards a user
* Interference Coordination (IC) to control the transmit power of the neighboring BSs
" User spatial coordinates

 Approach

* Perform binary encoding of BF, PC, and IC actions to enable joint actions
= If SINR of all users improve, then reward actions. This resolves the race condition
= Compare proposed solution with optimal solution
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= SYSTEM MODEL

( Multi-user downlink system

= Multi-cell environment with single-antenna users

= [ total dual-band base stations

= Uniform linear array (ULA) antennas (M)

" Power control for all users

" Codebook analog beamforming for mmWave data

"= More power control commands for sub-6 GHz voice

1 Narrow-band geometric channel model

A channel path p gain suitable for both sub-6 and

v/ M v mmWVave propagation
hg p = — E OAE ba (Hgb) [Alkhateeb14] * smaller number of paths
pEA L — at mmWave (sparse)
path loss for user served : v angle of departure

by BS ['in area of BS b - array response vector

(J Beamforming vector
f, :=a(b,), n=1{1,2,...,L}

11/22/19

1 Signal model for the user
served by the ¢-th BS:

pro Inter-cellular interference

vy,

T Gaussian noise

E|ze|

ny ~ Normal(0, 02)

= Prx

(] Received SINR for the user
served by the /-th BS:

Prx e[t]|hy ,[t]fe[t] 2

’)/g[t] — 0.7% + Zb#f PTX’b[tHth[t]fb[t”Q

CONTRIBUTION I:JOINT BEAMFORMING AND POWER CONTROL



=— MOTIVATION AND PROBLEM FORMULATION

 Improve SINR through joint power control, interference coordination, beam selection

maximize H vt
Prx ;[t], Vi .
f[t] \Vl. j€{1727“’7L}
jltls V] e Set of power (and interference coordination) commands
SU-bJ ect to PTX,j [t] S P: ...................... Vj, ............... Set of beamforming vectors (where applicable)
v
f;[t] € F, V7,
A
beamforming vector of the j-th user ... f)/] [t] 2 ’Ytarget Target SINR value

received SINR of the j-th user

[ Baseline solution for voice is obtained from fixed power allocation with adaptive coding

(1 Optimal solution (upper bound) for data is found through a brute force over all
(d beam patterns
(d power commands for the BSs

3 Run-time complexity of O(M*) for M antennas and L base stations.

How can we reduce the complexity?
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= SOLUTION ®

 Deep Reinforcement Learning —’[ JB-PCIC Algorithm (Agent) if
|. Create an environment from the system model Srace [ ol Action
2. Create a joint reward 7s,s,alt; g« Bearer selector Next State acA

ses
3. Reward the agent for every time the SINR improves. —i Cellular Network ].
(Environment)

1 Use deep Q-network (DQN) as an estimator for state-action value function @~(-)

|.  Greedy policy 71
2.  Train the DQN using minibatch samples to minimize the loss function:

States S

g DQN vectorized
; weights ©

v
minimize Li(0y) = =Es o [(yr — Qr(s,a;6,))°]

rvrissree e ————————— State'a.ction value funCtion

estimated state-action value function e ro 1.
Yt = Ey[rs s o +ymaxQr(s’,a’;0;1) | st, ai]
A a

A : .
s s discount rate

LA— reward Hidden layers ©

Can an &-greedy policy do better?
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= SOLUTION (L = 2)

U Joint beamforming, power control, and interference coordination (JB-PCIC) encoding

Bearer selector 2 2

IC,lt] PCslt] P = {—3,—1,1,3} = p(00) = =3,p(01) = —1,p(10) = 1,p(11) = 3

fbl[t] ffl[t] ICi[t] PClb[t] 0 p_yq_1,1p  enables upto |6 simultaneous actions for voice and 16 for data

"""""" ' . @ e A ‘ N Bitwise AND, masking, and shifting

s string of bits in a register a

w

0: step down beamforming codebook
|: step up beamforming codebook

(1 Reward function ] States
realtsal = (Blaiaaillh = p@RAEN ) 1 - o+ (hrst) = UBClalll ). (s D)= UBLalt) o1,
A A 5
s, =P tl, s} =P tl.
.............. bearer selector a0 [t],a[3] [t] N an [t],a[Q] [t] St TX,E[ ]/ t TX,b[ ]
To e q s = f,[t]. sl = f[t],

data

1. : o , o A total of 8 states
Ts,s',alt;q] = Tmin  if any constraint in problem formulation becomes inactive.

Ts,s,alt; q) = Ts,57,a[t; 4] + Tmax  if the target SINR is achieved.
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= SIMULATION

Communication System Parameters

Parameter Value _Paramoter Value Deep Reinforcement Learning Hyperparameters
Base station (BS) maximum transmit power PEg* 46 dBm Downlink frequency band (2100 MHz, 28 GHz)
Cellular geometry circular Cell radius r (350, 150) m Paranleter Va/lue Pal'alneter Value
Propagation model (voice, bf) (COST231, [63]) User equipment (UE) antenna gain 0dBi  iscount factor 0.995 Exploration rate decav d 0.9995
Antenna gain (GYX, Giy) (11, 8) dBi  Inter-site distance R (525, 225) m Initial ex loratic;g rate € 1.000 Miﬁimum ex lorationyrate (€vciee ¢bE ) (0.15,0.10)
Max. number of UEs per BS N 10 Number of multipaths IV, (15, 4) p ) b min ’ “min e
Probability of LOS pyaee, pphg (0.9, 0.8) UE average movement speed v (5, 2) km/h Number of states [S| 8 Number of actions |A 16
Number of transmit antennas M Veice, pfbf (1,{4,8,16,32,64}) Radio frame duration Toice, TPf (20, 10) ms  Deep @-Network width H 24 Deep Q-Network depth 2
) 10°
1.0 - - 19 ] ! = —&— JB-PCIC
% ’ 160 % —a— Upper Bound
Q (o )
0.8 Qf 1 =@ -~ Q:' E 10—1 o
E 50 & 2
= = =1
0 6 N E 08 n wm E
e O = o
= £ 06 Z g 107
. 140 © N
“ 04 T £ 3
S04 —+—TX Power JBPCIC = g
0.2 | —#=Deep Qlearning (proposed) z —e—TX Power Brute Force | g % ZO 10-3 -
: =~ Tabular Q-learning g 0.2 ——SINR JBPCIC S
—&— Fixed P - Allocati FPA .
&~ Dixed Power Allocation (FPA) Z —e—SINR Brute Force » é .__./"-———_/
00 T \. T T I 0 I } { T 2() <Q-' 10_4
0 2 4 6 8 10 12 14 4 8 16 32 64 48 16 39 64

Voice effective SINR, ~gice [dB]

Number of antennas, M

Number of antennas, M
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= SUMMARY

r

Obtiizellisers keceivedisINR |

|. Voice bearers * Exponential in number of base stations
* Perform power control for the serving cell * Uses brute force
* Coordinate transmit power for the other cells
* Voice uses adaptive coding

ll. Data bearers , ~
* Perform power control for the serving cell Proposed

* Coordinate transmit power for the other cells . :
* Uses deep reinforcement learning

* Encoding to facilitate joint actions
* Avoids exhaustive search in the action
space
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Contribution 2

IMPROVED DOWNLINK COORDINATED
MULTIPOINT PERFORMANCE

Related publications:

[I]. FE B.Mismar and B. L. Evans,“Deep Learning in Downlink Coordinated Multipoint in New Radio Heterogeneous Network,” [EEE Wireless
Communications Letters, vol. 8, no. 4, pp. 1040-1043,Aug. 2019.

[2]. F B. Mismar and B. L. Evans,“Machine Learning in Downlink Coordinated Multi-point in Heterogeneous Networks,” Technical Report,
Feb.2019. [Online]. arXiv:1608.08306.
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= BACKGROUND

] Problem

* Industry implementations trigger coordinated multipoint (CoMP) based on user SINR
" This yields low user throughput

J Goal

= Develop triggering function to improve the user throughput

1 Parameters

= Block Error Rate (BLER) target for codeword reception error
= Channel State Information (CSl) to help derive transmission rank

L Approach

* Train a classifier to learn the relationship between the reported measurements and the BLER
* |f a user is predicted to have a BLER lower than the target, configure rank-2 transmission
* Compare with SINR-based trigger
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= SYSTEM MODEL

(] Multi-user downlink system L The received power for the i-th

: , , , er at the j-th antenna:
= Multi-cell environment with multiple-antenna users user at the j-t (_? tenna
P (2

. . . , , o '
Small cells scattered in the service area Pé%,j = 029\ = ;s JECHT, =1,
=  Macro cells and small cells can form a distributed MIMO t

channel with n; transmit antennas

= Zero-Forcing (ZF) receiver at the user end [ The received reference symbol

power (RSRP) for the i-th user:
U Signal model for the i-th user (narrowband): | . .~ o number of resource blocks

(@) _ p) y
Egi Prg = PUE,jzl/(]\ISCNPRB)
r;, = 7;’ Hisi + V; A :
¢ ‘ A [Tse05] S UE received power measured

e number of subcarriers in a resource block
-------------- Gaussian noise at the first antenna

— distributed MIMO channel (both large- and small-scale gain)

"""""" energy per symbol (J The codeword block error rate
(BLER) for the i-th user:
d The received SNR for the i-th user at the j-th antenna 5, = 1 ﬁ(l 5.
(i) e . 2
(1) _ PBS sy 1—1 . . j=1
fyj B nta'g [H'L Hz]jvj ! J = 1’ s Ths = mln(?}r’ nt) BLER for the codeword transmitted to the
v ' j-th antenna

ZF receiver enhanced noise power :
number of receive antennas :
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=— MOTIVATION AND PROBLEM FORMULATION

O Industry approach is to use the users’ reported CSI to determine proper transmission rank
1 BLER increases as the transmission rank increases

* Throughput decreases as BLER increases

* Throughput increases as transmission rank increases, assuming decorrelated transmission streams

R = ZRGH (1= Bi)nsBlogy(L + %)

; S S— bandwidth Users report a “quantized” SNR value known

as the channel quality indicator (CQI)

] How to optimize this group of conflicting variables?

1 Answer: main idea:

cqQl

*  When the BLER is low, try to increase the transmission rank, if the
second spatially decorrelated stream (i.e., rank-2) is possible.

0 i i ! !
—-15-10 =5 0 5 10 15 20 25

e  Otherwise, default to a rank-1 transmission. CSLSINR [dB]

Can a dynamic data-driven approach help?

CSl: Channel State Information BLER: Block Error Rate
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= SOLUTION

1 Simplify the problem to rank-2 MIMO channel and build a binary classifier

[ For the binary classifier:
e Labels are a function of the BLER meeting the standard threshold
e Use standard-compliant CSI as learning features that help define the transmission rank

[ Invalidate the learned model after the channel coherence time passes.

1 Coordinated Multipoint (CoMP) trigger function:

D[t] = arg man fy (y[t]) found from either standards-compliant or proposed CoMP “votes”
S— CoMP trigger (MIMO), based on the majority of votes

— a frequency function: percentage of y=0 and y=1 samples (i.e., an empirical probability): fy (yz) = #(y = yz)/M, yc {O, 1}M

Standards-Compliant

yilt] = ]l[vf) [t] > voomp] gilt] == Surrogate(fi [t])

A

uses SINR as a measure of decorrelation

CSlI reported by the i-th user

a machine learning function
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= SOLUTION

1 Construct the surrogate function from:

* fully connected deep neural network (DNN)
* support vector machine (SVM)

[ Define the classification label based on the BLER
being within target y;[t] := 1[8; < Srarget]

1 Train classifiers to minimize loss objective

minimize: L(y S’; @ = = Z Yi log ng + (1 — yk) log(l — f&k) binary cross-entropy for DNN
© E The i-th support vector

minimize: [ Z max (0,1 — y; (W X1 —b)| + a||w]| hinge loss and regularization for SYM
W

- hyperplane weights

_

Bias term Float Equal to unity
X1 CSI-RSRP Float Narrowband received power
X2 CQl Integer Wideband received SNR on the first antenna (linear)
X3 Rank Integer Number of received streams j
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= SIMULATION

DNN Hyperparameter Search range SVM Hyperparameter Search range
DNN depth d {1,3,5} Kernel {gaussian, polynomial*}
DNN width w {1,3,10} Box constraint Cgox {0.01,1,10}
Optimizer Stochastic Gradient Descent | Kernel scale 7y auto [73]
* Degrees p € {1,2,3,4}.
Algorithm Asymptotic run-time Number of features Param‘?ter Value
Static O(1) o0(1) Ba,ndvsrldth B 10 MHz
SVM CoMP O( M3) O(p) Downl%nk center frequency f, 2.100 MHZ
DNN CoMP O(Muw d) O(w d) Downlink user scheduler Proportional Fair
Macro BS maximum power 46 dBm
Small cell BS maximum power 37 dBm
1 Maximum number of streams ng 2
0ol Number of PRBs Nprp 50
0.8
0.7
0.61 Average
LS o5l Algorithm User Throughput [Mbps] BLER 8; Streams ny CQI CSI-RSRP [dBm]
o Statict 1.02 - - - -
04r SVM CoMP 1.10 7.15% 1.59 3 —58.17
0.3} DNN CoMP 1.16 3.76% 1.55 3 —58.17
0.2} = Static CoMP ! Quantities not reported in the published version.
= SVM CoMP
0.1 -+ DNN CoMP ||
0 H

0 05 1 15 2 25 3
UE Throughput [Mbps]
CoMP: Coordinated Multipoint, DNN: Deep Neural Network,

PRB: Physical Resource Block, SVM: Support Vector Machine.
Ph.D. Defense Faris B. Mismar 11/22/19

Because CoMP decision is an “imbalanced” classification, DNN does better
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= SUMMARY

r

Optimize users’ achievable rate

* Achievable rate depends on a group of features, some of which have opposing effects on the rate.
* The use of a data-driven approach to find an improved achievable rate is possible.
* Higher transmission rank does not always lead to better achievable rates.

« Triggers rank-2 based on * Triggers rank-2 based on a surrogate function based
reported SINR (absolute cutoff). on deep learning.
e The surrogate function is relearned every time the
channel coherence time passes.

SVM DNN

More features and more complicated models lead to better performance
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Contribution 3

DEEP LEARNING PREDICTIVE BAND
SWITCHING IN WIRELESS NETWORKS

Discussed in the PhD Qualifying Exam and Included in the PhD Dissertation

Related publications:

[I] F B. Mismar, A.AlAmmouri, A.Alkhateeb, ]. G.Andrews, and B. L. Evans, “Deep Learning Predictive Band Switching in Wireless
Networks,” IEEE Transactions on Wireless Communications, submitted Oct. 2,2019.

[2] F B. Mismar and B. L. Evans, “Partially Blind Handovers for mmWWave New Radio Aided by Sub-6 GHz LTE Signaling,” Proceedings of IEEE
International Conference on Communications Workshops, May 2018.
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= BACKGROUND

] Problem

= Users want to switch to a different frequency band if they expect to get higher throughput
= Switching between frequency bands requires a “measurement gap” which reduces user throughput

J Goal

* |mprove user throughput by exploiting the spatial correlation to eliminate the measurement gap

J Parameters

= Band switch request threshold which defines the rate below which UE requests a band switch
= Band switch grant threshold which defines the rate above which the UE request is granted

" Percentage of users in sub-6 GHz or mmWave vs total users

" User spatial coordinates

1 Approach

* Employ a data-driven approach using a ray-tracing dataset
" Use deep learning to rank the downlink channel quality based on the users’ coordinates
= Grant a band switch if predicted to improve the user throughput (no need for the gap)
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= SYSTEM MODEL

 Multi-user downlink system

= Single-cell with multiple transmit antennas
= Sub-6 GHz and mmWave bands (28 GHz)
*  Analog beamforming using DFT-based codebook

O Signal model for the i-th user at the j-th frequency band:

— p0)
T(i,5) —P h(z,g)f(m)s(w)+”(m) s

b Gaussian noise

beamforming precoder

oo channel vector

transmit power and large scale channel gain

L The received SINR for the i-th user at the j-th
frequency band

Yt =

noise power :

L The received instantaneous rate for
the i-th user at the j-th frequency band:

RO [t] = BY) logy (1 4+ 4" [1])

bandwidth received SINR

O The received effective achievable rate for
the ¢-th user at the j-th frequency band:

(4) (k)
i Ty +T Iy
R(E,J,k)[t] — (1 — 4 ot ) R( ,J)[t]
Ty
A

beam training time - band switching overhead

“ channel coherence time

Here, kis the band switching algorithm.
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=— MOTIVATION AND PROBLEM FORMULATION

0 Next-generation wireless networks will use more frequency bands. [UE [Bs]

Received power of the user
on f; drops below threshold

L The band selection problem becomes more complicated: Request band switch to f
* How does user choose a band to improve their rate? Measurement gap configured at f;

Measure the new channel at f;

D Probl em: [3gpp!8] Report the measurements R
* Measurement gap reduces users’ effective achievable rates ) Band switch decision
* Blindly switching user eliminates need for gap but risks rates
Learning Phase Exploitation
 Solution: — 1 Td I I LT Td f ;
.. . . equests grant eny grant grant deny grant =
* Main idea: rank bands based on their qualit | |
. ) ] 9 )’. e | s I s B s s | .
* Grant switch to band with the highest rank if requested. Legacy grant deny deny
| ot
Proposed | 4
' ' good bad
predictions

Data-driven approach to eliminate the “measurement gap”
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= SOLUTION

d Optimal solution (upper bound)

(4)

: T

RVt = max 1— R[] Use DeepMIMO ray-tracing dataset and engineer more features
o j€{sub-6,mmWave} T(j ) [AlkEateebl9] ’" 5 &

L Proposed solution
* Exploit the spatial correlation between frequency bands based on the location of the user

* Define the band switch request and the band switch grant decision as follows:
-------------------- band switching threshold

xl(or)[ ] — ]1[(R(i7j)[ ] < Tthreshold)] ( )[ ] ]1[(}%(7;’1/>[ ] > R(i’”[ﬂ)], Vi

-------------------- estimated instantaneous rate based on other users
* Train a machine learning algorithm using the following features

_

Bias term Integer Equal to unity
X1 Effective rate at sub-6 Float Based on (2) with j = sub-6
X2 Effective rate at mmWave Float Based on (2) with j = mmWave
X3 Source technology Boolean (I = for sub-6 and 0 for mmWave)
(X4,Xs5,X6) Coordinates Float The latitude, longitude, and height of the user (from the BS)
X7 Band switch requested Boolean Did UE request band switch? 2
Yy Band switch decision Boolean Was this requested switch granted? yt¥

Ph.D. Defense Faris B. Mismar 11/22/19 CONTRIBUTION 3: DEEP LEARNING PREDICTIVE BAND SWITCHING



= SIMULATION ®

O Scenarios O Parameters (DNN: deep neural networks, XGBoost: Extreme Gradient Boosting)

DNN XGBoost Parameter Value

m Users at Start Parameter Value | Parameter Value zubcarrfier bandwidth (sub-6, mmWave) (18:?; 182080)(§gz
A 100% sub-6 GHz Exploitation split Texploitation 0.8 | Exploitation split Texploitation 0.8 Uglforis;eg:s;ty (3.5, )7 i ];
K-fold cross-validation K 2 | K-fold cross-validation K 2 DeepMIM Ob Scenario O1 Base Station 3

B 100% mmWWave Optln}lzer [101] | &4 regula.r.lzat?on term a {0.1} DeepMIMO Scenario O1 number of antennas (M, My, M) (1,64,4)
Learning rate 7 0.05 | £ regularization term A {0,1} DeepMIMO Scenario O1 OFDM limit 64

C 70% sub-6 GHz and 30% mmWave Activation function o(-) sigmoid | Complexity control term ~y {0, 0.02, 0.04} Band switch threshold for sub-6 GHz rsi>-6 1.72 Mbps
Depth of neural network d {1.3,5} | Sample weights {0.5, 0.7}  Band switch threshold for mmWave rijmyave 7.00 Mbps

Width of the hidden layer w {3,5,10} | Child weights {0, 10} Measurement gap fraction of coherence time p 0.6

O DNN requires a run-time of O(P’ﬁvf),while XGBoost requires a run-time of O(nlogn),

S DNN depth

Number of rows in the feature matrix = ... DNN width

0 DNN outperforms XGBoost in receiver operator characteristic area and classification accuracy.

[ Confusion Matrix

Grant 17 2734 Grant 46 32512 Grant 76 21438 Grant 48 2703 Grant 208 32350 Grant 103 21411
E E E 3 E 3
E E e = 3 <
: : : e : :
g Deny | 40645 188 ;; Deny| 10997 29 & Deny | 21974 96 g Deny | 40651 182 g; Deny| 10915 111 5 Deny | 21907 163
Deny Grant Deny Grant Deny Grant Deny Grant Deny Grant Deny Grant
Predicted label Predicted label Predicted label Predicted label Predicted label Predicted label
DNN Confusion Matrix (Scenarios A, B, and C) XGBoost Confusion Matrix (Scenarios A, B, and C)
Ph.D. Defense Faris B. Mismar 11/22/19
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= SIMULATION

o . a—8
L Impact of the band switching threshold on the performance 35 GHs
8- 28 GHz
Normalized mean effective throughput Rr [Mbps] s
Tthreshold | Legacy Blind Proposed Optimal 8 ””””””””””””””””””””
1.72 0.55 0.54 0.75 1.00 =
Scenario A 2.00 0.45 0.46 0.77 1.00 2
260 | 0.34 0.60 1.00 2L Higher band switching thresholds cause the 8
2.00 0.43 0.88 1.00 1.00 | h perf d -
Scenario B 9.00 | 0.39 0.84 1.00 1.00 €gacy approach performance to do worse.
1250 | 0.33 0.76 1.00 1.00
0 12 14
Higher band switching thresholds enable my proposed algorithm to do even better
1 T - T ‘ 1 1 ‘ . ¥
0.9 H =~ Optlmal : {1 1 : ! 0.9 :
—4— Proposed | 1 1 w 3
0.8+ doLLLLL oo 4 -l LLL (Y A B S R ) ST / At 0. :
o | :gi:igxlétlcy 1 absence of measurement o |/ ---and near perfect DNN |
o \ gap in 'optimal = I 1 " classification decisions & !
o6 P ORE S 06- R | - 06 ‘
z SEiE £ 051 el ot £ 05+ }
g S oa- R A e ‘
g 1 L1 B o3 / 11 | == Optimal E 03 1 -A- Optimal
| . 02 i i ! i j ~4— Proposed 03 ! —4— Proposed
S ' A e Lesary | ‘ —e— Legacy
=TT 0.1 ; P ~~ —a—Blind 0-1-] ‘ —=— Blind
. | | |1||ii 0 — = T t — 1t 0 = { T T T
10-! 100 10 10~ 100 10! 10! 10° 10!
Throughput [Mbps| Throughput [Mbps] Throughput [Mbps]
Scenario A: 100% users sub-6 GHz Scenario B: 100% users mmWave Scenario C: 30%-70% users

Legacy approach performs better than blind in low throughput regime.
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= SUMMARY

r

Optimize users’ achievable rate

* Band switching grows in importance with successive evolutions of wireless technology
* The use of a data-driven approach to rank channels by their estimated quality is possible.
e Using measurement gaps for the band switching procedure is a “performance overkill.”

* Use a gap to measure the candidate * Does not require a measurement gap.
frequency band. * Exploits the spatial and spectral correlation of
* Blindly switch to a different band. frequency bands at a given location.

o Predicts the quality and ranks the bands.

| disrupt the need to use a measurement gap in band switching
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— DISSERTATION SUMMARY AND CONCLUSION

 Next-generation wireless networks will require intelligent predictive and prescriptive abilities
" boost reliability and eliminate performance bottlenecks
= disrupt reactive legacy standards

PHY Layer Perspective
[ Beamforming, Power Control and Interference Coordination ] [ Intelligent Coordinated Multipoint ]
((( ) )) Base Station 1 Base Station L
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ata interface
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Central location

RRM Layer Perspective

[ Predictive Band Switching ]

Learning Phase Exploitation
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Requests grant  deny grant grant deny gmnttime t
1 |
R s R s =t =ttt =t
Legacy A rgrant deny deny
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=— FUTURE WORK IN DEEP LEARNING FOR COMMUNICATIONS

1 Optimal hybrid beamforming

" | used simple DFI-based analog beamforming, but digital beamforming generates more patterns

o at mmWave, a disjoint solution exists, but may not be optimal.
o Exploit powers of two in the number of antennas

 Improved Cell-Free Massive MIMO

" Use coordinated BS capabilities with massive MIMO to improve joint-beamforming capabilities

1 Generalized multi-band predictive handoff

" |ntroduce mobility over multiple base stations and build a multi-class classifier
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o Faris B. Mismar, Ahmad AlIAmmouri, Ahmed Alkhateeb, Jeffrey G. Andrews, and Brian L. Evans, “Predictive Band Switching
in Wireless Networks,” IEEE Transactions on Wireless Communications (submitted).

o Faris B. Mismar, Brian L. Evans, and Ahmed Alkhateeb, “Deep Reinforcement Learning for 5G Networks: Joint Beamforming,
Power Control, and Interference Coordination,” IEEE Transactions on Communications (submitted).

o Faris B. Mismar, Jinseok Choi, and Brian L. Evans, “A Framework for Automated Cellular Network Tuning with Reinforcement
Learning,” IEEE Transactions on Communications, vol. 67, no. 10, pp. 7152-7167, Oct. 2019.

o Faris B. Mismar and Brian L. Evans, “Deep Learning in Downlink Coordinated Multipoint in New Radio Heterogeneous
Networks,” IEEE Wireless Communications Letters, vol. 8, no. 4, pp. 1040-1043, Aug. 2019.

1 Conference papers
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— SOFTWARE RELEASES

Available at https://github.com/farismismar

o Faris B. Mismar and Brian L. Evans, “Band Switching with Deep Learning,” Python 3 code to accompany a paper entitled
“Predictive Band Switching in Wireless Networks,” Version 1.0 (Sep. 28, 2019). [Online].
Available: https://github.com/farismismar/Bandswitch-DeepMIMO
Builds on top of the 3.5 GHz and 28 GHz ray tracing dataset from ASU.

o Faris B. Mismar and Brian L. Evans, “Deep Reinforcement Learning for 5G Networks: Joint Beamforming, Power Control, and
Interference Coordination,” Python 3 code to accompany a paper entitled “Deep Reinforcement Learning for 5G Networks: Joint
Beamforming, Power Control, and Interference Coordination,” Version 2.0 (Nov. 6, 2019). [Online].

Available: https://github.com/farismismar/Deep-Reinforcement-Learning-for-5G-Networks

o Faris B. Mismar and Brian L. Evans, “Deep Q-Learning for SON Performance Improvement,” Python 3 and MATLAB codes to
accompany a paper entitled “A Framework for Automated Cellular Network Tuning with Reinforcement Learning,” IEEE
Transactions on Communications, 2019. Version 2.0 (Jun. 27, 2019). [Online].

Available: https://github.com/farismismar/Deep-Q-Learning-SON-Perf-Improvement
Builds on top of Vienna University of Technology (TU Wien) Vienna LTE-A Downlink System Level Simulator v1.9.

o Faris B. Mismar and Brian L. Evans, “Deep Learning in Downlink Coordinated Multipoint in New Radio Heterogeneous
Networks,” Python 3 and MATLAB codes to accompany a paper entitled “Deep Learning in Downlink Coordinated Multipoint in
New Radio Heterogeneous Networks,” IEEE Wireless Communications Letters, 2019. Version 2.0 (Jul. 30, 2019). [Online].
Available: https://github.com/farismismar/DL-CoMP-Machine-Learning
Builds on top of Vienna University of Technology (TU Wien) Vienna LTE-A Downlink System Level Simulator v1.9.
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=— ACRONYMS AND ABBREVIATIONS

3GPP 3rd Generation Partnership Project
BLER Block Error Rate

BS Base Station

CDF Cumulative Distribution Function
CoMP Coordinated Multipoint

CQI Channel Quality Indicator

CSI Channel State Information

DFT Discrete Fourier Transform

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

FDD Frequency Division Duplex

FPA Fixed Power Allocation

JBPCIC Joint Beamforming Power Control

and Interference Coordination

LOS Line of Sight

LTE(-A) Long Term Evolution (-Advanced)
MAC Medium Access Control

MIMO Multiple Input Multiple Output
ML Machine Learning

NLOS Non-Line of Sight

NR New Radio

O-RAN Open Radio Access Network

OFDM Orthogonal Frequency Division Multi-
plexing

PHY Physical Layer

PRB Physical Resource Block

QoE Quality of Experience

RAN Radio Access Network

RL Reinforcement Learning

ROC Receiver Operating Characteristic

RRM Radio Resource Management

RSRP Reference Symbol Received Power

SGD Stochastic Gradient Descent

SINR Signal to Interference plus Noise Ratio

SNR Signal to Noise Ratio

SON Self-Organizing Networks

SVM Support Vector Machine

TTI Transmit Time Interval

UE User Equipment

ULA Uniform Linear Array

UPA Uniform Planar Array

VoLTE Voice over Long Term Evolution

ZF Zero-Forcing
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= DISSERTATION CONTRIBUTIONS

_ 1. Joint BF, PC, IC 2. Improved CoMP

3. Band Switching

Dissertation 2 3
Chapter
Reference [Mismar&Evans20a] [Mismar&Evans|9a]

Frequency band mmWVave and sub-6 GHz sub-6 GHz
Stack layer PHY PHY
Algorithm DRL DNN and SVM
Direction Downlink
Users Multi-User

BF: Beamforming, CoMP: Coordinated Multipoint, DNN: Deep Neural Network, DRL: Deep Reinforcement Learning,
IC: Interference Coordination, PC: Power Control, PHY: Physical Layer, SON: Self-Organizing Network, XGBoost: Extreme Gradient Boosting.
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[Mismar&Evans20b]

mmWVave and sub-6 GHz

RRM

DNN and XGBoost

36




= SIMULATION

Average
Algorithm User Throughput [Mbps] BLER f8; Streamsns CQI CSI-RSRP [dBm]
Statict 1.02 - - - -
SVM CoMP 1.10 7.15% 1.59 3 —58.17
DNN CoMP 1.16 3.76% 1.55 3 —58.17

! Quantities not reported in the published version.

Algorithm Asymptotic run-time Number of features
Static o(1) O(1)
SVM CoMP O(M?) O(p)
DNN CoMP O(Muw?) O(w?)
1 ‘o
0.9 7
! =i
0.8 '+ ‘8 i S —
0.7 e E
- A
L 06 P >
805 =
0.4 K O
0.3
0.2 - Static CoMP (lower bound) || 0 5 10 15 20 25 30
+SVM CoMP TTI
01r + DNN CoMP Sta
% 05 1 15 2 25 3 (a) Static

CoMP: Coordinated Multipoint, DNN: Deep Neural Network,

UE Throughput [Mbps]

PRB: Physical Resource Block, SVM: Support Vector Machine.
CONTRIBUTION 2: IMPROVED DOWNLINK COORDINATED MULTIPOINT
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Parameter Value
Bandwidth B 10 MHz
Downlink center frequency f. 2100 MHz
Downlink user scheduler Proportional Fair
Macro BS maximum power 46 dBm
Small cell BS maximum power 37 dBm
Maximum number of streams ng 2
Number of PRBs Nprp 50

0
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0

5

10

15 20 25 30

TTI
(b) SVM

TTI
(c) DNN

CoMP decisions are “imbalanced” and DNN does better



= SOLUTION
0O Why DNN?

* SupportVector Machines

g m-th support vector

M M v
1
o 4 Cortes95
maxgmze. Z)" 5 Z ZAm)\nymyn[E(Xmaxn) [Cortes93]

i m=1n=1 SVM Hyperparameter Search range
Mo Kernel Kernel {gaussian, polynomial*}
subject to: Z AmYm = 0, Box constraint Cpeyx {0.01,1,10}
1 Kernel scale + auto [71]
0<Am <CBox, m=1,....M " Degrees p € {1.2,3,4}.
A

- “Box” constraint to control overfitting

e Lagrangian multipliers

* Can be faster than DNN, but suffers from bias towards majority class.

#(y =0)=1,522 #(y=1)=7,658

M = 9, 180 — SVM will trigger more rank-2s than DNN, but at the wrong time!

Is CoMP triggered in a balanced fashion in a cell?
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= SIMULATION

—————

""" r AUC ~ 1.0

[N
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20.6 = W{
0.97
04 ‘
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
T'training T'training
Scenario A — DNN Scenario A — XGBoost

DNN achieved ROC AUC = |.0 with far less training samples than XGBoost
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= SUPPORT VECTOR MACHINES

J Primal
= i
mlmmlze [ Z max (0 yz(WTXi —b)| + 04||W||2
-------------------- hinge loss

d Dual

maximize: Z)\ — = Z Z A )\nymyn xm,xn)

A m=ln=1 & k
ernel

subject to: Z )\mym =0, [Cortes95]

OS)\mSCBOX, mzl,...,M

Computationally more efficient, exploits strong duality,
and enables the kernel “trick”
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— XGBOOST

A tree-ensemble learning technique, WhICh m|n|m|zes this objective function

regularlzatlon terms

minimize: Obj(y) := L(y y) —I—a||W||1 + )\HWHZ +’YT
------------------ number of leaves
Euvveereesensneee convex loss function (e.g., logistic Ioss) i e minimum loss reduction required to make a
weight vector further partition (i.e., complexity control)

d Fast and accurate hence used in many data mining contests

(d Uses the sub-gradient (or derivative if differentiable) for the first (gradient) and
second order (Hessian) of the objective function

g(t) = D50bj(§:1) A(t) = 20Dj(3:1)
1 Logistic loss function:
L i) — zl = 1 — i 1 =
(y:9i) = yilog T———- + (1 — i) log ———

d Using the gradient and Hessian, compute the “gain” for both the right and left

subtrees. Choose the direction with the maximum gain. Chent
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= DEEP NEURAL NETWORKS

D Pe I"Ceptr'on """""""""""""""""" input feature vector
= q(XTH +b) x,0¢ RM

. e perceptron weights
bias term

Non-linear activation function

1 Deeper and wider neural networks

* Feed-forward (no loops, adjusts weights 6)

*  Backpropagation (method of calculating the gradient with
respect to the neural network weights)

d Optimizers -
earning rate
«  Stochastic Gradient Descent 6 := 60 — nVL(y,§;0) loss function

° Adaptive moments “Adam”  Uses the gradient and its second moment (i.e., gradient squared). Adapts the learning rate.

1 Slower execution time compared to SVM and XGBoost

[Goodfellow]
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— DEEP Q-LEARNING

States S

d Reinforcement learning

* Learns through interaction with an environment

* Seeks to maximize the expected future reward of an agent

(1 Policy: defines a mapping from states to the actions taken

Hidden layers ©

e Stochastic Te(als):S x A —|0,1] Deep Q-Network (DQN)
 Experience g next state - .0,) = Q*
P groee """""" current reward t—l}—l—moo QW(S) a7 (-)t) - Qﬂ- (8’ a)
i
€t 1= (Sf’ Cita T't, Stv—i—l) [ Stored in a replay buffer J Universal approximation theorem
""""" current state
0 Replay e current action  Exploration vs exploitation

* Select a random action w.p. €

* Samples from prior experience (i.e., the replay buffer) to

remove potential correlation and improve stability of DQN *  Find action that maximizes
Q;(S,CL) W.P. (1 — 6)

D Be”man gros— discount rate
€-greedy has linear “regret”

Q;(Sta a't) = Es’ [’rs,s’,a + 7Y Hi?X Q;—(Sla CL/) | St at} ) [Sutton]

future discounted reward

[Silver]
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