
Computational
Process Networks

a model and framework for
high-throughput signal processing

Gregory E. Allen
Ph.D. Defense
25 April 2011

Committee Members:
James C. Browne

Craig M. Chase
Brian L. Evans (Advisor)

Lizy K. John
Charles M. Loeffler

Outline
• Need for speed

• Dataflow models

• Contributions

• Dynamic Distributed Deadlock Detection & Resolution (D4R)

• The Computational Process Network (CPN) model

• CPN framework implementation & case studies

• Conclusion

2

Introduction
• High-throughput, high-performance applications

• Sonar beamforming (100s of MB/s, 10s of GFLOPS)

• Synthetic Aperture Radar (SAR) processing

• Traditional embedded concurrent implementations

• Custom hardware

• Custom integration of embedded processors

• Commercial workstations and clusters

• Multi-core symmetric multiprocessing (SMP) computing

• Distributed (cluster) computing, high-speed interconnect

• Significant savings in design time

3

High Performance
• Single-task approaches

• Single Instruction Multiple Data (SIMD) for data parallelism

• Hand-optimized signal processing kernels and libraries

• Memory latency hiding to reduce input/output bottleneck

• Lock memory buffers to avoid swapping to disk

• Fixed-priority real-time scheduling

• Executing tasks efficiently on parallel hardware

• Scalability: more parallel hardware gives more performance

• Determinate: always gets same answer (no race conditions)

• Locking: prevent concurrent access to shared resources

4

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

+ + + +

= = = =

Concurrent Programming
• Tension between scalability, determinism, and deadlock

• Deadlock: processes waiting on each other in a cycle

• Coarse-grained locks yield systems that do not scale well

• Insufficient locking may cause non-determinate execution

• Industry approaches leave concurrency issues to programmer

• Threads are “wildly nondeterministic” [Lee 2006]

• Message Passing Interface compared to “assembly language”

• Formal models can handle complications of concurrency

5

B

C

A

Outline
• Need for speed

• Dataflow models

• Contributions

• Dynamic Distributed Deadlock Detection & Resolution (D4R)

• The Computational Process Network (CPN) model

• CPN framework implementation & case studies

• Conclusion

6

KPNSDF

• Programs are modeled as directed graphs

• Each node represents a computational unit

• Each edge represents a one-way first-in first-out queue

• Nodes may have any number of input or output edges

• Nodes may communicate only via these edges

• Dataflow naturally models functional parallelism in systems

• Example dataflow models

• Synchronous Dataflow (SDF), used in Agilent ADS

• Kahn Process Networks (KPN), used in NI LabVIEW

Dataßow Models
A B

P

7

Static Dataßow Models
• Firing behavior of each node is known and static

• Synchronous Dataßow (SDF) [Lee 1986]

• Computation Graphs (CG) [Karp & Miller 1966]

• Termination & boundedness decidable

• Flow of control and memory usage can be compiled

• Schedule constructed once and repeatedly executed

• CG has parameters at each queue

• U: number of tokens inserted by the producer at each Þring

• W: number of tokens removed by the consumer at each Þring

• T: (firing threshold) tokens present before consumer Þres T≥W

• SDF is a special case of CG where T=W for all queues

8

A B C
P

4 3 2 4

Q

ABABCABBC

Firing Thresholds
• A node can access more tokens than it will dequeue

• Model sliding window algorithms

• Common in signal processing

• Digital filters, y = x * h

• Overlap-and-save fast Fourier transforms (FFTs)

• Queue maintains state and node becomes memoryless

• Prevents node from having to make local copy of state

• Enables optimizations for data management in queue

9

Kahn Process Networks
• A networked set of Turing machines, dynamically scheduled

• Determinate execution regardless of execution order

• Sequential or concurrent execution

• Mathematically proven model [Kahn 1974]

• Composable: nodes can be clustered into a hierarchy to
create larger, more complex systems

• Dynamic firing rules at each node

• Blocking reads: suspend execution when attempting to read
from an empty queue (necessary for determinism)

• Non-blocking writes: never suspend a node for producing

• Possibly unbounded: may require infinite memory

• Termination and boundedness are undecidable in finite time

A B
P

10

Dataßow Model Properties

11

Model of Computation

Property SDF CG KPN

Determinism ! ! !

Boundedness ! !

Scalability !

Composability !

Firing Thresholds !

SDF: Synchronous Dataflow
CG: Computation Graphs

KPN: Kahn Process Networks

ArtiÞcial

Deadlock

Resolver

Contributions
• Distributed Dynamic Deadlock Detection and Resolution (D4R)

• For execution of KPN and CPN in bounded memory

• New model: Computational Process Networks

• Built on formal underpinnings of KPN

• Add Þring thresholds and maintain scalability and composability

• Bounded scheduling and enhancements for efÞcient implementation

• CPN Implementation and Case Studies

• High-performance, scalable, distributed, and low overhead

• Open-source implementation framework on POSIX (Unix) systems

12

CPN preserves the formal properties of KPN and reduces operations
to implement common signal processing algorithms.

KPN Bounded Scheduling
• Execute KPN in bounded memory, if possible [Parks 95]

• Place bounds on queue sizes and use blocking writes

• Queue bounds may introduce artificial deadlock

• Requires dynamic detection & resolution of deadlocks

• Lengthen shortest deadlocked full queue to resolve

• Effective: all tokens produced are eventually consumed

• Fair: nodes cannot indefinitely ignore any input or output

• Distributed algorithm by [Mitchell & Merritt 84] can detect local
deadlocks in KPN [Olson & Evans 05]

Parks 95 Geilen & Basten 03 D4R

Deadlock type specified Global Local Local

Complete execution No Yes, if effective KPN Yes, if fair KPN

13

ArtiÞcial

Deadlock

Resolver

Contribution #1: D4R

• D4R algorithm for KPN and CPN [Allen & Evans 07]

¥ Based on a different priority-based distributed algorithm [M&M 84]

¥ Detects whether deadlock is present

¥ Determines whether a detected deadlock is real or artiÞcial

¥ If artiÞcial, identiÞes the node blocked on culpable queue

¥ ArtiÞcial deadlock is resolved by enlarging the culpable queue

• Distributed and scalable

¥ Each process contains D4R state variables

¥ D4R state transactions occur between interacting processes

14

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

0 0
A A
0 0

0 0
B

0 0
0 0 1 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

• Each node is an
independent process

• Each node contains D4R
state variables

• Four state variables

• Public and private sets

• Four state transitions

• Nodes directly interact

• Example is feed-forward

• One of several possible
orders of execution

15

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

0 0
A A
0 0

0 0
B

0 0
0 0 1 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

16

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

1 1
A A
1 1
0 0

BLOCK 0 0
B

0 0
1 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

D4R state updated for A:

count incremented and

qSize set to size of P

17

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

1 1
A A
1 1
0 0 BLOCK

2 2
B

M M
1 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

D4R state updated for B:

count incremented and

qSize set to MAX_UINT

18

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

2 1
B A
1 1
0 0

TRANSMIT 2 2
B

M M
1 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

D4R state updated for A:

keep larger count:nodeID

and smaller qSize:qID

19

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

2 1
B A
1 1
0 0 TRANSMIT

2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

D4R state updated for B:

keep larger count:nodeID

and smaller qSize:qID

20

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

2 1
B A
1 1
0 0

DETECT 2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

if qSize != MAX_UINT,

deadlock is artificial and

A blocked on culpable queue

21

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

2 1
B A
1 1
0 0

(RESOLVE) 2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

culpable queue grows

22

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

2 1
B A
1 1
0 0

ACTIVATE 2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

8. A activates, writes to P

dependency removed

23

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

2 1
B A
1 1
0 0

2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

8. A activates, writes to P

9. A writes to Q

24

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

2 1
B A
1 1
0 0

2 2
B

1 M
0 1

B
ACTIV ATE

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

8. A activates, writes to P

9. A writes to Q

10. B activates, reads from Q

 dependency removed
25

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Process A
 while (true) {
 P.put(0)
 P.put(0)
 Q.put(0)
 }

Process B
 while (true) {
 Q.get()
 P.get()
 P.get()
 }Q

P

2 1
B A
1 1
0 0

2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

8. A activates, writes to P

9. A writes to Q

10. B activates, reads from Q

11. B reads (twice) from P
26

count
public private

count
nodeID

qSize qSize
nodeID

qID qID

Contribution #2: CPN Model

• Preserves KPN determinism, scalability, and composability

• Reduces operations for common signal processing algorithms

• Bounded memory when possible with D4R (Contribution #1)

• Enhancements for streaming data

• Multi-token queue transactions to reduce overhead

• Multi-channel queues for multi-dimensional synchronized data

• Firing thresholds for both consumers and producers

• Zero-copy queue transactions

• Enables high-throughput signal processing

27

LabVIEW’s “G” language
traditionally used single-

token transactions

Computation Graphs
have only consumer

firing thresholds

CPN Queue Semantics
• Bounded queue sizes and blocking reads and writes

• Producer and consumer firing thresholds

• CPN semantics use two steps each for read or write

• GetDequeuePtr(threshold, channel) blocks until sufficient tokens are
readable in input queue, returns contiguous token array for consumption

• Dequeue(count) dequeues tokens from head of input queue

• GetEnqueuePtr(threshold, channel) blocks until sufficient free space is
available in output queue, returns contiguous token array for writing

• Enqueue(count) enqueues tokens from array head into output queue

• These semantics provide a zero-copy interface for queue I/O

28

// with CPN semantics
typedef complex<float> T;
const int nfft = 1024;
T filter[nfft];

while (true) {
// blocking calls for in/out buffer pointers
const T* inPtr = inQ.GetDequeuePtr(nfft);
T* outPtr = outQ.GetEnqueuePtr(nfft);

// execute one step of filter
fft(inPtr, outPtr, nfft);
cpx_multiply(filter, outPtr, outPtr, nfft);
ifft(outPtr, outPtr, nfft);

// complete the queue transactions
inQ.Dequeue(nfft/2);
outQ.Enqueue(nfft/2);

}

// with (extended) bounded KPN semantics
typedef complex<float> T;
const int nfft = 1024;
T filter[nfft];
T workBuf[nfft];
while (true) {

// manage sliding window state
memcpy(workBuf, workBuf+nfft/2, nfft/2*sizeof(T));
// blocking call to copy in new data
inQ.read(workBuf+nfft/2, nfft/2);

// execute one step of filter
fft(workBuf, workBuf, nfft);
cpx_multiply(filter, workBuf, workBuf, nfft);
ifft(workBuf, workBuf, nfft);

// blocking call to copy out the results
outQ.write(workBuf, nfft/2);

}

CPN vs. KPN Semantics
FIR filter in the frequency domain using 50% overlap-and-save FFT

A
inQ outQ

29

memory for
overlap state

data
copies

// with CPN semantics
typedef complex<float> T;
const int nfft = 1024;
T filter[nfft];

while (true) {
// blocking calls for in/out buffer pointers
const T* inPtr = inQ.GetDequeuePtr(nfft);
T* outPtr = outQ.GetEnqueuePtr(nfft);

// execute one step of filter
fft(inPtr, outPtr, nfft);
cpx_multiply(filter, outPtr, outPtr, nfft);
ifft(outPtr, outPtr, nfft);

// complete the queue transactions
inQ.Dequeue(nfft/2);
outQ.Enqueue(nfft/2);

}

// with (extended) bounded KPN semantics
typedef complex<float> T;
const int nfft = 1024;
T filter[nfft];
T workBuf[nfft];
while (true) {

// manage sliding window state
memcpy(workBuf, workBuf+nfft/2, nfft/2*sizeof(T));
// blocking call to copy in new data
inQ.read(workBuf+nfft/2, nfft/2);

// execute one step of filter
fft(workBuf, workBuf, nfft);
cpx_multiply(filter, workBuf, workBuf, nfft);
ifft(workBuf, workBuf, nfft);

// blocking call to copy out the results
outQ.write(workBuf, nfft/2);

}

int wtQueueCount;
T wtQueueData[];

T* CPN_Queue::GetEnqueuePtr(int inThresh)
{ int i;

// do QueueToArray for wtQueue

for (i=wtQueueCount; i<inThresh; i++) {
fbQueue.get(); // free space?

// wtQueueData[i] = 0;
}
wtQueueCount = i;

// do ArrayToQueue for wtQueue
}

void CPN_Queue::Enqueue(int inCount)
{ int i;

// do QueueToArray for wtQueue

// make sure that inThresh >= inCount
for (i=wtQueueCount; i<inCount; i++) {

fbQueue.get(); // free space?
// wtQueueData[i] = 0;

}
wtQueueCount = i;

// enqueue the first inCount tokens
for (i=0; i<inCount; i++)

this.put(wtQueueData[i]);
wtQueueCount -= inCount;

// do ArrayToQueue for wtQueue
}

Preserving KPNÕs Properties

30

• Any CPN program can be transformed to KPN

• Adding queues and modifying each node

• Feedback queues (Pf and Qf) are for boundedness

• Self-loop queues (Pt and Qt) are for managing firing thresholds

• Grayed queues carry placeholder feedback tokens (value is unimportant)

• All tokens entering a process pass through self-loop queue

• GetDequeuePtr ensures self-loop contains at least threshold number of tokens

• Dequeue discards requested number of tokens from self-loop queue

• GetEnqueuePtr and Enqueue behave similarly but with feedback tokens

• Same mathematical representation, formal properties preserved

AP

QfPf

Q

Pt

Qt

Contribution #3:
CPN Framework

• High-performance implementation of the CPN model

• Scalable framework in C++, targeting POSIX (Unix) systems

• Released as an open source library under the GNU LGPL license

• More than 4 work-years of development effort, 26K lines of code

• D4R algorithm for bounded scheduling

• Unit tests and 72 hour tests for robustness and stability

• Developers can build high-throughput distributed systems
from deterministic, composable components

• Case studies on both multi-core and distributed platforms

31

CPN Nodes and Queues
• Each CPN Node maps onto a single POSIX thread (Pthread)

• CPN Queues have firing thresholds and zero-copy interface

• Nodes operate directly on queue memory to avoid unnecessary copies

• CPN Queues use mirroring for contiguous data [Allen et al. 2006]

• Circular buffers similar to modulo addressing

• Virtual memory manager maintains data circularity

• OS dynamically schedules and load balances nodes (threads)

32

mirrored data mirrored data

Virtually mapped twice

queue data region mirror region

Prime Sieve Case Study

• Simple algorithm for finding prime numbers [Eratosthenes 250BCE]

• First real example for KPN, requires dynamic creation & recursion

• Multi-core platform: 12x 2.66 GHz
Intel Xeon with Hyper-Threads

• Guidelines for high performance

• Multi-token Þrings reduce overhead

• Node granularity vs. context switch

• Load balancing of nodes

• 2500x speedup for 107 candidates

33

count
2 to N

filter(2) filter(3) filter(5)

• Multiple beams formed from cylindrical sensor array outputs

• Decomposed into horizontal and vertical components

• Optimized kernels use SIMD and OpenMP loop parallelism

• Horizontal beamformer uses FFTs and performs matched Þltering

• At 50 ks/s target: 614 MB/s in, 672 MB/s out, 24 GFLOPS

• On multi-core platform, 9.3x speedup at 12 cores

Beamformer Case Study

34

vbf0

vertical

hbf0a

horizontal

front half

hbf1a

horizontal

front half

hbf2a

horizontal

front half

hbf0b

horizontal

back half

hbf1b

horizontal

back half

hbf2b

horizontal

back half

sinksource

• On 8-host cluster connected by 8 Gigabit Infiniband network

• Each host with four 2.33 GHz Intel Xeon processors

• Mapping file to distribute and load balance CPN program

• Increase data parallelism of horizontal with time multiplexing

• 4.6x speedup on 8 hosts w/ Infiniband output at 70% of peak

Beamformer Case Study

35

source
host 1

vbf0
host 1

f0
host 1

f1
host 1

f2
host 1

hbf0a0
host 2

hbf0a1
host 2

hbf0a2
host 3

hbf0a0
host 4

hbf0a1
host 4

hbf0a2
host 5

hbf0a0
host 6

hbf0a1
host 6

hbf0a2
host 7

j0
host 8

sink
host 8

j1
host 8

j2
host 8

hbf0b0
host 2

hbf0b1
host 3

hbf0b2
host 3

hbf0b0
host 4

hbf0b1
host 5

hbf0b2
host 5

hbf0b0
host 6

hbf0b1
host 7

hbf0b2
host 7

Conclusion

36

Dataflow Model

Property SDF CG KPN CPN
Determinism ! ! ! !
Boundedness ! ! * *

Scalability ! !
Composability ! !

Firing Thresholds ! !
Zero-copy Semantics !

* Execution of fair KPN and CPN in bounded memory with D4R

CPN preserves the formal properties of KPN and reduces operations
to implement common signal processing algorithms.

Future Work

37

• Improve D4R algorithm

• ArtiÞcial deadlocks can occur without cycles [Basten&Hoogerbrugge 2001]

• A similar edge-chasing algorithm could detect these deadlocks

• CPN Node migration and distributed scheduling

• Automated load balancing on cluster computers

• CPN Queues with Remote Direct Memory Access (RDMA)

• Higher throughput, reduced overhead on cluster systems

• Integrate into design automation tools (graphical programming)

• Additional targets and applications

