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Introduction
• High-throughput, high-performance applications

• Sonar beamforming (100s of MB/s, 10s of GFLOPS)

• Synthetic Aperture Radar (SAR) processing

• Traditional embedded concurrent implementations

• Custom hardware

• Custom integration of embedded processors

• Commercial workstations and clusters

• Multi-core symmetric multiprocessing (SMP) computing

• Distributed (cluster) computing, high-speed interconnect

• Significant savings in design time
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High Performance
•  Single-task approaches

• Single Instruction Multiple Data (SIMD) for data parallelism

• Hand-optimized signal processing kernels and libraries

• Memory latency hiding to reduce input/output bottleneck

• Lock memory buffers to avoid swapping to disk

• Fixed-priority real-time scheduling

• Executing tasks efficiently on parallel hardware

• Scalability: more parallel hardware gives more performance

• Determinate: always gets same answer (no race conditions)

• Locking: prevent concurrent access to shared resources
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Concurrent Programming
• Tension between scalability, determinism, and deadlock

• Deadlock: processes waiting on each other in a cycle

• Coarse-grained locks yield systems that do not scale well

• Insufficient locking may cause non-determinate execution

• Industry approaches leave concurrency issues to programmer

• Threads are “wildly nondeterministic” [Lee 2006]

• Message Passing Interface compared to “assembly language”

• Formal models can handle complications of concurrency
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KPNSDF

• Programs are modeled as directed graphs

• Each node represents a computational unit

• Each edge represents a one-way first-in first-out queue

• Nodes may have any number of input or output edges

• Nodes may communicate only via these edges

• Dataflow naturally models functional parallelism in systems

• Example dataflow models

• Synchronous Dataflow (SDF), used in Agilent ADS

• Kahn Process Networks (KPN), used in NI LabVIEW

Dataßow Models
A B

P
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Static Dataßow Models
• Firing behavior of each node is known and static

• Synchronous Dataßow (SDF) [Lee 1986]

• Computation Graphs (CG) [Karp & Miller 1966]

• Termination & boundedness decidable

• Flow of control and memory usage can be compiled

• Schedule constructed once and repeatedly executed

• CG has parameters at each queue

• U: number of tokens inserted by the producer at each Þring

• W: number of tokens removed by the consumer at each Þring

• T: (firing threshold) tokens present before consumer Þres T≥W

• SDF is a special case of CG where T=W for all queues
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Firing Thresholds
• A node can access more tokens than it will dequeue

• Model sliding window algorithms

• Common in signal processing

• Digital filters, y = x * h

• Overlap-and-save fast Fourier transforms (FFTs)

• Queue maintains state and node becomes memoryless

• Prevents node from having to make local copy of state

• Enables optimizations for data management in queue
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Kahn Process Networks
• A networked set of Turing machines, dynamically scheduled

• Determinate execution regardless of execution order

• Sequential or concurrent execution

• Mathematically proven model [Kahn 1974]

• Composable: nodes can be clustered into a hierarchy to 
create larger, more complex systems

• Dynamic firing rules at each node

• Blocking reads: suspend execution when attempting to read 
from an empty queue (necessary for determinism)

• Non-blocking writes: never suspend a node for producing

• Possibly unbounded: may require infinite memory

• Termination and boundedness are undecidable in finite time

A B
P
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Dataßow Model Properties
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Model of Computation

Property SDF CG KPN

Determinism ! ! !

Boundedness ! !

Scalability !

Composability !

Firing Thresholds !

SDF: Synchronous Dataflow
CG: Computation Graphs

KPN: Kahn Process Networks



ArtiÞcial

Deadlock

Resolver

Contributions
• Distributed Dynamic Deadlock Detection and Resolution (D4R)

• For execution of KPN and CPN in bounded memory

• New model: Computational Process Networks

• Built on formal underpinnings of KPN

• Add Þring thresholds and maintain scalability and composability

• Bounded scheduling and enhancements for efÞcient implementation

• CPN Implementation and Case Studies

• High-performance, scalable, distributed, and low overhead

• Open-source implementation framework on POSIX (Unix) systems
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CPN preserves the formal properties of KPN and reduces operations 
to implement common signal processing algorithms.



KPN Bounded Scheduling
• Execute KPN in bounded memory, if possible [Parks 95]

• Place bounds on queue sizes and use blocking writes

• Queue bounds may introduce artificial deadlock

• Requires dynamic detection & resolution of deadlocks

• Lengthen shortest deadlocked full queue to resolve

• Effective: all tokens produced are eventually consumed

• Fair: nodes cannot indefinitely ignore any input or output 

• Distributed algorithm by [Mitchell & Merritt 84] can detect local 
deadlocks in KPN [Olson & Evans 05]

Parks 95 Geilen & Basten 03 D4R 

Deadlock type specified Global Local Local

Complete execution No Yes, if effective KPN Yes, if fair KPN
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ArtiÞcial

Deadlock

Resolver

Contribution #1: D4R

• D4R algorithm for KPN and CPN [Allen & Evans 07]

¥ Based on a different priority-based distributed algorithm [M&M 84]

¥ Detects whether deadlock is present

¥ Determines whether a detected deadlock is real or artiÞcial

¥ If artiÞcial, identiÞes the node blocked on culpable queue

¥ ArtiÞcial deadlock is resolved by enlarging the culpable queue

• Distributed and scalable

¥ Each process contains D4R state variables

¥ D4R state transactions occur between interacting processes
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

0 0
A A
0 0

0 0
B

0 0
0 0 1 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

• Each node is an 
independent process

• Each node contains D4R 
state variables 

• Four state variables

• Public and private sets

• Four state transitions

• Nodes directly interact

• Example is feed-forward

• One of several possible 
orders of execution
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

0 0
A A
0 0

0 0
B

0 0
0 0 1 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

1 1
A A
1 1
0 0

BLOCK 0 0
B

0 0
1 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

D4R state updated for A:

count incremented and

qSize set to size of P
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

1 1
A A
1 1
0 0 BLOCK

2 2
B

M M
1 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

D4R state updated for B:

count incremented and

qSize set to MAX_UINT
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

2 1
B A
1 1
0 0

TRANSMIT 2 2
B

M M
1 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

D4R state updated for A:

keep larger count:nodeID 

and smaller qSize:qID
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

2 1
B A
1 1
0 0 TRANSMIT

2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

D4R state updated for B:

keep larger count:nodeID

and smaller qSize:qID
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

2 1
B A
1 1
0 0

DETECT 2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

if qSize != MAX_UINT,

deadlock is artificial and

A blocked on culpable queue
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

2 1
B A
1 1
0 0

(RESOLVE) 2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

culpable queue grows
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

2 1
B A
1 1
0 0

ACTIVATE 2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

8. A activates, writes to P

dependency removed
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

2 1
B A
1 1
0 0

2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

8. A activates, writes to P

9. A writes to Q
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Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

2 1
B A
1 1
0 0

2 2
B

1 M
0 1

B
ACTIV ATE

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

8. A activates, writes to P

9. A writes to Q

10. B activates, reads from Q

 dependency removed
25

count
public private

count
nodeID

qSize qSize
nodeID

qID qID



Process A
   while (true) {
      P.put(0)
      P.put(0)
      Q.put(0)
   }

Process B
   while (true) {
      Q.get()
      P.get()
      P.get()
   }Q

P

2 1
B A
1 1
0 0

2 2
B

1 M
0 1

B

Example: ArtiÞcial Deadlock 
Detection & Resolution with D4R

1. A writes to P

2. A blocks writing to P

3. B blocks reading from Q

4. B transmits to A

5. A transmits to B

6. A detects deadlock

7. deadlock resolved

8. A activates, writes to P

9. A writes to Q

10. B activates, reads from Q

11. B reads (twice) from P
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Contribution #2: CPN Model

• Preserves KPN determinism, scalability, and composability

• Reduces operations for common signal processing algorithms

• Bounded memory when possible with D4R (Contribution #1)

• Enhancements for streaming data

• Multi-token queue transactions to reduce overhead

• Multi-channel queues for multi-dimensional synchronized data

• Firing thresholds for both consumers and producers

• Zero-copy queue transactions

• Enables high-throughput signal processing
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LabVIEW’s “G” language 
traditionally used single-

token transactions

Computation Graphs 
have only consumer 

firing thresholds



CPN Queue Semantics
• Bounded queue sizes and blocking reads and writes

• Producer and consumer firing thresholds

• CPN semantics use two steps each for read or write

• GetDequeuePtr(threshold, channel) blocks until sufficient tokens are 
readable in input queue, returns contiguous token array for consumption

• Dequeue(count) dequeues tokens from head of input queue

• GetEnqueuePtr(threshold, channel) blocks until sufficient free space is 
available in output queue, returns contiguous token array for writing

• Enqueue(count) enqueues tokens from array head into output queue

• These semantics provide a zero-copy interface for queue I/O
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// with CPN semantics
typedef complex<float> T;
const int nfft = 1024;
T filter[nfft];

while (true) {
// blocking calls for in/out buffer pointers
const T* inPtr = inQ.GetDequeuePtr(nfft);
T*      outPtr = outQ.GetEnqueuePtr(nfft);

// execute one step of filter
fft(inPtr, outPtr, nfft);
cpx_multiply(filter, outPtr, outPtr, nfft);
ifft(outPtr, outPtr, nfft);

// complete the queue transactions
inQ.Dequeue(nfft/2);
outQ.Enqueue(nfft/2);

}

// with (extended) bounded KPN semantics
typedef complex<float> T;
const int nfft = 1024;
T filter[nfft];
T workBuf[nfft]; 
while (true) {

// manage sliding window state
memcpy(workBuf, workBuf+nfft/2, nfft/2*sizeof(T));
// blocking call to copy in new data
inQ.read(workBuf+nfft/2, nfft/2);

// execute one step of filter
fft(workBuf, workBuf, nfft);
cpx_multiply(filter, workBuf, workBuf, nfft);
ifft(workBuf, workBuf, nfft);

// blocking call to copy out the results
outQ.write(workBuf, nfft/2);

}

CPN vs. KPN Semantics
FIR filter in the frequency domain using 50% overlap-and-save FFT

A
inQ outQ

29

memory for
overlap state

data
copies

// with CPN semantics
typedef complex<float> T;
const int nfft = 1024;
T filter[nfft];

while (true) {
// blocking calls for in/out buffer pointers
const T* inPtr = inQ.GetDequeuePtr(nfft);
T*      outPtr = outQ.GetEnqueuePtr(nfft);

// execute one step of filter
fft(inPtr, outPtr, nfft);
cpx_multiply(filter, outPtr, outPtr, nfft);
ifft(outPtr, outPtr, nfft);

// complete the queue transactions
inQ.Dequeue(nfft/2);
outQ.Enqueue(nfft/2);

}

// with (extended) bounded KPN semantics
typedef complex<float> T;
const int nfft = 1024;
T filter[nfft];
T workBuf[nfft]; 
while (true) {

// manage sliding window state
memcpy(workBuf, workBuf+nfft/2, nfft/2*sizeof(T));
// blocking call to copy in new data
inQ.read(workBuf+nfft/2, nfft/2);

// execute one step of filter
fft(workBuf, workBuf, nfft);
cpx_multiply(filter, workBuf, workBuf, nfft);
ifft(workBuf, workBuf, nfft);

// blocking call to copy out the results
outQ.write(workBuf, nfft/2);

}

int wtQueueCount;
T wtQueueData[];

T* CPN_Queue::GetEnqueuePtr(int inThresh)
{ int i;

// do QueueToArray for wtQueue

for (i=wtQueueCount; i<inThresh; i++) {
fbQueue.get(); // free space?

// wtQueueData[i] = 0;
}
wtQueueCount = i;

// do ArrayToQueue for wtQueue
}

void CPN_Queue::Enqueue(int inCount)
{ int i;

// do QueueToArray for wtQueue

// make sure that inThresh >= inCount
for (i=wtQueueCount; i<inCount; i++) {

fbQueue.get(); // free space?
// wtQueueData[i] = 0;

}
wtQueueCount = i;

// enqueue the first inCount tokens
for (i=0; i<inCount; i++)

this.put( wtQueueData[i] );
wtQueueCount -= inCount;

// do ArrayToQueue for wtQueue
}



Preserving KPNÕs Properties
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• Any CPN program can be transformed to KPN

• Adding queues and modifying each node

• Feedback queues (Pf and Qf) are for boundedness

• Self-loop queues (Pt and Qt) are for managing firing thresholds

• Grayed queues carry placeholder feedback tokens (value is unimportant)

• All tokens entering a process pass through self-loop queue

• GetDequeuePtr ensures self-loop contains at least threshold number of tokens

• Dequeue discards requested number of tokens from self-loop queue

• GetEnqueuePtr and Enqueue behave similarly but with feedback tokens

• Same mathematical representation, formal properties preserved 

AP

QfPf

Q

Pt

Qt



Contribution #3:
CPN Framework

• High-performance implementation of the CPN model

• Scalable framework in C++, targeting POSIX (Unix) systems

• Released as an open source library under the GNU LGPL license

• More than 4 work-years of development effort, 26K lines of code

• D4R algorithm for bounded scheduling

• Unit tests and 72 hour tests for robustness and stability

• Developers can build high-throughput distributed systems 
from deterministic, composable components

• Case studies on both multi-core and distributed platforms
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CPN Nodes and Queues
• Each CPN Node maps onto a single POSIX thread (Pthread)

• CPN Queues have firing thresholds and zero-copy interface

• Nodes operate directly on queue memory to avoid unnecessary copies

• CPN Queues use mirroring for contiguous data [Allen et al. 2006]

• Circular buffers similar to modulo addressing

• Virtual memory manager maintains data circularity

• OS dynamically schedules and load balances nodes (threads)
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mirrored data mirrored data

Virtually mapped twice

queue data region mirror region



Prime Sieve Case Study

• Simple algorithm for finding prime numbers [Eratosthenes 250BCE]

• First real example for KPN, requires dynamic creation & recursion

• Multi-core platform: 12x 2.66 GHz
Intel Xeon with Hyper-Threads

• Guidelines for high performance

• Multi-token Þrings reduce overhead

• Node granularity vs. context switch

• Load balancing of nodes

• 2500x speedup for 107 candidates
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• Multiple beams formed from cylindrical sensor array outputs

• Decomposed into horizontal and vertical components

• Optimized kernels use SIMD and OpenMP loop parallelism

• Horizontal beamformer uses FFTs and performs matched Þltering

• At 50 ks/s target: 614 MB/s in, 672 MB/s out, 24 GFLOPS

• On multi-core platform, 9.3x speedup at 12 cores

Beamformer Case Study
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• On 8-host cluster connected by 8 Gigabit Infiniband network

• Each host with four 2.33 GHz Intel Xeon processors

• Mapping file to distribute and load balance CPN program

• Increase data parallelism of horizontal with time multiplexing

• 4.6x speedup on 8 hosts w/ Infiniband output at 70% of peak

Beamformer Case Study

35

source
host 1

vbf0
host 1

f0
host 1

f1
host 1

f2
host 1

hbf0a0
host 2

hbf0a1
host 2

hbf0a2
host 3

hbf0a0
host 4

hbf0a1
host 4

hbf0a2
host 5

hbf0a0
host 6

hbf0a1
host 6

hbf0a2
host 7

j0
host 8

sink
host 8

j1
host 8

j2
host 8

hbf0b0
host 2

hbf0b1
host 3

hbf0b2
host 3

hbf0b0
host 4

hbf0b1
host 5

hbf0b2
host 5

hbf0b0
host 6

hbf0b1
host 7

hbf0b2
host 7



Conclusion
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Dataflow Model

Property SDF CG KPN CPN
Determinism ! ! ! !
Boundedness ! ! * *

Scalability ! !
Composability ! !

Firing Thresholds ! !
Zero-copy Semantics !

* Execution of fair KPN and CPN in bounded memory with D4R

CPN preserves the formal properties of KPN and reduces operations 
to implement common signal processing algorithms.



Future Work
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• Improve D4R algorithm

• ArtiÞcial deadlocks can occur without cycles [Basten&Hoogerbrugge 2001]

• A similar edge-chasing algorithm could detect these deadlocks

• CPN Node migration and distributed scheduling

• Automated load balancing on cluster computers

• CPN Queues with Remote Direct Memory Access (RDMA)

• Higher throughput, reduced overhead on cluster systems

• Integrate into design automation tools (graphical programming)

• Additional targets and applications


