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The use of multiple antennas, widely known as Multiple-Input Multiple-

Output (MIMO) technology, is a key feature to deploy Millimeter Wave (mmWave)

communication systems enabling high-data-rate applications. With more than

two decades of global experience in deploying Wi-Fi and cellular communica-

tion using sub-6 GHz frequency bands, simply repurposing these designs for

millimeter wave (mmWave) bands would fail to account for additional propa-

gation impairments and circuit design constraints at these higher frequencies.

A solution to overcome the propagation challenges is the use of multiple direc-

tional communication beams, whereby proper alignment between transceivers

provides sufficient link quality to enable reliable decoding of the transmitted

data.

In this dissertation, efficient link configuration solutions suitable for

mmWave cellular communications are developed. To gain some insight into
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the achievable performance of mmWave systems, two broadband channel-

estimation-based link configuration solutions are proposed for MIMO-Orthogonal

Frequency Division Multiplexing (OFDM) systems, in which both the trans-

mitter and receiver are assumed to be perfectly synchronized. The proposed

solution exploits the spatially common sparsity in the mmWave channel and

enables efficient acquisition of the Channel State Information (CSI) while al-

lowing the use of multiple Radio-Frequency (RF) chains on both the trans-

mitter and receiver sides. In a simplified scenario, the Cramér-Rao Lower

Bound (CRLB) for the channel estimation problem is derived, and the pro-

posed channel estimation algorithms are shown to both outperform prior work

in communication performance and exhibit excellent estimation performance.

Furthermore, the proposed algorithms are assessed in a more challenging sce-

nario with realistic channel parameters, and it is shown that both near-optimal

spectral efficiency and low Bit Error Rate (BER) can be attained with lower

overhead and computational complexity than prior solutions.

Next, the impact of imperfect Carrier Frequency Offset (CFO) synchro-

nization on the channel estimation problem is analyzed under a narrowband

channel model. The CRLB for the estimation of the different unknown pa-

rameters involved in the problem is theoretically analyzed, and closed-form

expressions are provided for the estimation of the different parameters. Under

a joint estimation-theoretic and Compressed Sensing (CS) framework, a low-

complexity multi-stage solution is proposed to estimate both the different un-

known synchronization parameters and the large-dimensional mmWave MIMO

ix



channel. Different trade-offs between estimation, spectral efficiency, and over-

head performance are exposed, and the proposed estimators are shown to be

asymptotically optimal in the low Signal-to-Noise Ratio (SNR) regime. The

proposed solution is assessed under a channel model with several clusters and

rays per cluster, and is shown to attain near-optimal spectral efficiency values

in both the low and high SNR regimes. The computational complexity of the

proposed solution is also analyzed, in which it is shown to achieve a marginal

increase in computational complexity with respect to the solution proposed in

the previous contribution.

Finally, the impact of Timing Offset (TO), CFO, and Phase Noise

(PN) impairments on the channel estimation problem is analyzed under a

broadband channel model. The problem of time-frequency synchronization

under PN impairments is theoretically analyzed, and the proposed solutions to

the synchronization problem are exploited to estimate the frequency-selective

mmWave MIMO channel. The hybrid CRLB for the estimation of the different

synchronization impairments is analyzed, and closed-form expressions leverag-

ing the information coupling between the different impairments are provided.

The previously proposed joint estimation-theoretic and CS framework is ex-

tended to frequency-selective scenarios, and two low-complexity multi-stage

solutions are proposed to estimate both the different synchronization impair-

ments and the large-dimensional mmWave MIMO channel. The first solution

relies on a batch-processing Linear Minimum Mean Square Error (LMMSE)-

based Expectation-Maximization (EM) algorithm to estimate the different

x



synchronization impairments, while the second solution uses a sequential-

processing Extended Kalman Filter (EKF)-Rauch-Tung-Striebel (RTS)-based

EM algorithm, thereby reducing computational complexity. Thereafter, both

the hybrid CRLB for the estimation of the equivalent beamformed complex

channels and the estimates for these parameters are exploited to estimate

the large-dimensional frequency-selective mmWave MIMO channel. Finally, a

joint PN and data detection algorithm is proposed for data transmission under

the 5G New Radio (NR) frame structure. The proposed solutions are eval-

uated using a 5G NR-based channel model, and different trade-offs between

estimation performance, computational complexity, overhead, achievable spec-

tral efficiency and BER are exposed, and comparisons with prior work are also

provided. The results show that mmWave link configuration using hybrid

MIMO architectures can be established with low overhead without assuming

synchronization, even in the low SNR regime.
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Chapter 1

Introduction

The mmWave band holds promise for developing communication sys-

tems that enable high data rates in wireless local area networks and fifth

generation (5G) cellular networks [7–10]. The small carrier wavelengths char-

acterizing mmWave frequencies enable synthesis of compact antenna arrays

having a large number of antenna elements, which are capable of providing

the necessary array gain to establish high-quality communication links while

reducing mean interference levels [7, 8, 10]. To obtain high link quality, trans-

mit and receive antenna arrays need to be properly configured to compensate

for the small antenna aperture of antenna elements at mmWave frequencies.

In this dissertation, I focus on two critical issues of implementing mmWave

MIMO systems in practice, which are: (i) channel estimation to enable high

data rate communications, and (ii) synchronization to enable channel estima-

tion at the low SNR regime.

In this chapter, I explain the motivation of the research problems ad-

dressed in this dissertation and provide a summary of my contributions. In

Section 1.1, I illustrate the transceiver structure of mmWave systems. In

Section 1.3, I highlight the challenges of estimating the CSI in mmWave sys-
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tems. In Section 1.5, I point out the importance of achieving synchronization

at mmWave before performing channel estimation. Finally, Section 1.6 sum-

marizes the dissertation, including presenting the thesis statement, the con-

tributions, organization, a list of abbreviations and the notation used in the

dissertation.

1.1 Transceiver Structure of mmWave Systems

Unlike fully-digital architectures employed in traditional sub-6 GHz

MIMO systems, hybrid analog and digital precoding has become an attrac-

tive candidate to exploit both beamforming and spatial multiplexing gains in

hardware-constrained mmWave communication systems [11]. The idea of a hy-

brid analog-digital solution for the precoders and combiners was first proposed

in [12], and then developed in [11] for sparse narrowband MIMO channels at

mmWave frequencies. In Figure 1.1, a precoded MIMO-OFDM system with

ZP is depicted, which employs K subcarriers and a hybrid precoding and

combining transceiver structure.

In a downlink scenario, a Base Station (BS) or a transmitter is equipped

with Nt transmit antennas and Lt RF chains. Likewise, a User Equipment

(UE) or a receiver uses Nr receive antennas and Lr RF chains. A similar def-

inition would apply for the uplink. The example in Figure 1.1 shows a fully-

connected array architecture, in which every antenna element is jointly con-

trolled by the different RF chains sharing the same network of phase-shifters

[13]. In this example, both the transmitter and receiver use Uniform Linear
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Figure 1.1: Illustration of a fully-connected hybrid ZP-MIMO-OFDM ar-
chitecture including analog RF precoders and combiners, and digital base-
band frequency-selective precoders and combiners. This figure has been taken
from [1].

Array (ULA). Other array geometries (e.g., Uniform Planar Array (UPA),

non-uniform arrays), and hybrid architectures (e.g., partially-connected archi-

tectures) are also possible.

In the hybrid transceiver structure, the number of RF chains is usu-

ally much smaller than the number of antennas to reduce power consumption.

The number of data streams Ns is limited by Ns ≤ min(Lt, Lr). This splits

mmWave precoding/combining into the analog and digital domains. The ana-

log precoder and combiner are subject to the hardware constraints imposed

by the particular analog networks. In the example of Figure 1.1, the analog

precoding and combining networks are based on phase-shifters, which impose

constant-modulus constraints for each phase-shifter, and only the phases are

configured, typically using a finite number of possible phase-shifts, which is

dictated by the number of quantization bits used to configure such phase-shifts.

In context of hybrid mmWave MIMO systems, the problem of designing hybrid

analog-digital precoders and combiners for data transmission has been exten-
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Figure 1.2: Illustration of a fully-connected hybrid MIMO architecture includ-
ing analog RF precoders and combiners, and digital baseband frequency-flat
precoders and combiners. This figure has been taken from [2].

sively studied, both for narrowband [11,13–19], and broadband channel mod-

els [20–27]. In Figure 1.3, an example of a partially-connected hybrid MIMO

architecture is shown, in which each RF chain is connected to a subset of an-

tennas, rather than being connected to every antenna as in Figure 1.1, through

a serial combination of phase-shifters and switches. In this case, the absence of

connection between every RF chain and every antenna makes hybrid precod-

ing/combining design more difficult due to the reduction in flexibility that the

partially-connected structure introduces. A benefit of this architecture, how-

ever, is the increase in energy efficiency during communication, which comes

from the additional reduction in power consumption owing to using a reduced

number of phase-shifters [28]. Another important benefit of this architecture

is the ease of design and fabrication, since partially-connected architectures

4



Figure 1.3: Illustration of a partially-connected hybrid MIMO-OFDM ar-
chitecture including analog RF precoders and combiners, and digital base-
band frequency-selective precoders and combiners. This figure has been taken
from [3].

result in a smaller number of connections between RF chains and antennas,

which reduces possible electromagnetic coupling between phase-shifters. Due

to the use of analog components, the spatial processing performed by analog

precoders/combiners is modeled using frequency-flat matrices FRF ∈ CNt×Lt ,

WRF ∈ CNr×Lr with entries having constraints depending on each particular

analog network. The digital precoders/combiners, however, are not limited by

constant-modulus constraints and can be optimized by leveraging the available

CSI. They can be modeled as either frequency flat, as shown in Figure 1.2, or

as frequency-selective spatial filters, as depicted in Figure 1.1 and Figure 1.3.

In this dissertation, I develop synchronization and channel estimation

techniques for mmWave MIMO systems employing hybrid architectures. For

broadband channel estimation algorithm design, I use fully-connected hybrid

architectures as shown in Figure 1.1. In my proposed CFO estimation and
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channel estimation design, I also use fully-connected hybrid architectures, yet

the baseband precoders and combiners are frequency flat owing to the mmWave

channel being modeled as narrowband. Finally, motivated by the use of array-

of-subarrays-based hybrid architectures in 5G NR, I use partially connected

hybrid architectures for joint synchronization and channel estimation design,

as depicted in Figure 1.3.

1.2 Channel Models in mmWave MIMO Systems

A unique aspect of mmWave communications stems from the very par-

ticular propagation characteristics present at such high frequencies. Under-

standing these features plays a fundamental role in designing and developing

signal processing algorithms for mmWave transceivers [8]. In this section,

I highlight two different aspects of mmWave channel modeling, namely the

relation between the path loss during propagation and the use of multiple

antennas, and the spatial characteristics of multipath channel models.

1.2.1 Why Using MIMO at mmWave?

For free-space communication, the received power Pr is related to the

transmit power Pt by Friis’ law [29] as

Pr = GrGt

(
λ

4πd

)2

Pt, (1.1)

where d denotes the distance between transmitter and receiver, λ is the wave-

length, and Gt, Gr are the transmit and receive antenna gains. Friis’ law in
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(1.1) indicates that, under unity antenna gains, the received power decreases

as the squared wavelength decreases, thereby implying that mmWave propaga-

tion will experience higher path loss than sub-6 GHz communication systems

in the absence of directional antenna gains [8]. While this is true for omni-

directional antennas, the theoretical maximum directional antenna gains are

also dependent on the wavelength, so that the increased path loss can be com-

pensated, as illustrated shortly. The physical antenna aperture, Ae, is related

to the wavelength and antenna gain G as

Ae =
λ2

4π
G. (1.2)

The antenna aperture in (1.2) shows that, for a given physical antenna aper-

ture, the maximum directional gain G scales as G ∝ λ−2, which indicates that

a larger number of antenna elements can be fit into the same physical area [8].

Therefore, incorporating a large number of antenna elements can compensate

for the increased free-space path loss at mmWave frequencies. This solution

requires directional transmission with high-dimensional antenna arrays, which

makes incorporating MIMO into mmWave communication a natural choice.

1.2.2 Space-Time MIMO Characteristics

In sub-6 GHz communications, the propagation environment typically

features rich scattering owing to both the significant diffraction present in

these frequency bands and the small path loss in comparison with mmWave

communications. The richness in scattering justifies the adoption of analytical
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channel models such as the Rayleigh, Rice, and Kronecker models [29], which

attempt to recreate the statistical behavior of the channel matrix [29].

In mmWave communications, however, the propagation environment

does not feature rich scattering, which usually makes these analytical mod-

els not applicable at higher frequencies. The main principle that drives the

modeling of mmWave MIMO channels, however, is an attempt to recreate the

geometry of the propagation environment, which is already used in sub-6 GHz

communication systems and yields the geometric channel model [6, 30]. Since

diffraction is far from being a predominant propagation effect in mmWave

bands, recreating the geometry of the environment is usually justified by the

reduced number of multipath components present in the channel.

From a geometric perspective, one of the predominant propagation ef-

fects at mmWave is space-time clustering, which makes mmWave channels

usually consist of a few clusters with several rays per cluster such that rays

belonging to the same cluster arrive closely spaced in both the temporal and

spatial domains, as shown in Fig. 1.4. Following this idea, statistical channel

models used for system simulation usually describe the multipath components

as arriving in clusters having certain distributions on the Delay Spread (DS),

power, and Angular Spread (AS) which are used to statistically characterize

each multipath [4], [6], [31], [32]. Physically, the different clusters correspond

to different macro-level paths, and the DS and AS within each cluster captures

the scattering from diffuse reflections along those paths [8]. The effect of a re-

duced number of multipath components in the mmWave channel is commonly
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Figure 1.4: Illustration of the space-time clustering behavior of multipath com-
ponents in mmWave MIMO channel models. The different multipath compo-
nents the mmWave channel comprises arrive closely spaced in both the spatial
and temporal domains, thereby being organized in clusters.

referred to as sparsity [33], [34], [17], [14], [11], [4], [35], which is the effect

whereby most of the energy contained in the channel is concentrated around

a few components in both the temporal and spatial domains, as shown in Fig.

1.4. The fact that the different multipath components in the channel are orga-

nized in spatial and temporal clusters justifies making the distinction between

sparsity in the delay domain and sparsity in the spatial (angular) domain,

which are crucial features to take into account in order to design and develop

channel estimation algorithms, as discussed in the following sections. In nar-

rowband mmWave channel models, sparsity is only significant in the spatial

(angular) domain, while for frequency-selective channel models, sparsity arises

in both the delay and the spatial domains.
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1.3 Channel Estimation in mmWave Systems

Knowledge of the wireless propagation channel is crucial to exploit the

full benefits of MIMO techniques in mmWave cellular systems. At sub-6

GHz frequency bands, MIMO systems rely on classical channel estimation

techniques (e.g. Least Squares (LS), LMMSE), which are not applicable for

mmWave frequencies owing to the deployment of large antenna arrays at

mmWave transceivers and the use of hybrid precoding and combining [8].

At mmWave, the main motivation of link configuration is to increase

the received Signal-to-Interference plus Noise Ratio (SINR) after spatial pro-

cessing. Two main approaches to accomplish this task are beam training and

channel estimation [8]. On the one hand, beam training, adopted in IEEE

802.11ad [36] and 5G NR [37], is a technique that avoids explicit estimation

of the channel by iteratively searching for transmit and receive beam pairs

that maximize the received SINR, thereby enabling reliable decoding of trans-

mitted data [17, 38–49]. Directional beam training is the most popular link

configuration strategy, whose popularity stems from its simplicity and low

complexity. Even though beam training methods can increase link quality in

both narrowband and broadband systems, these algorithms generally share

the disadvantage of converging towards only one communication beam. Ex-

tensions to multi-stream and multi-user communication are possible, but they

generally require much higher overhead.

Channel estimation, on the other hand, is more flexible since it al-

lows both multi-stream and multi-user communication, thereby overcoming
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the limitation of beam training strategies. Channel estimation is significantly

more challenging in mmWave systems than in sub-6 GHz systems. In addition

to the large training overhead associated with the large antenna arrays [14],

the SNR is typically low before hybrid precoders and combiners can be de-

signed for data transmission. Further, the hardware constraints, that result

from RF/hybrid signal processing, make the channel at baseband seen only

through the RF analog network, which acts as a compression stage for the re-

ceived signal. Consequently, received samples at antenna level are not directly

available to estimate the channel. Exploiting spatial sparsity has been critical

in formulating practical channel estimation algorithms for hybrid MIMO ar-

chitectures [11, 17]. The main reason is that, when sparsity is exploited, the

high-dimensional channel can be decomposed in terms of dictionaries under

which the channel is sparse, such that an optimization problem can be for-

mulated to estimate the locations of the sparse coefficients and their values.

Channel estimation is different from beam training [39,40,50], which attempts

to find the beams pointing in the most promising angular direction instead of

estimating the channel.

Initial solutions to estimate the channel using hybrid architectures were

based on exploiting the angular sparsity of the mmWave channel [14, 17, 51],

[52–55], [56–60]. In the frequency-flat, narrowband channel model, the spar-

sity in the angular domain is leveraged by using the extended virtual channel

model [8]. Essentially, the MIMO channel is written in terms of dictionary

matrices built from transmit and receive array steering vectors evaluated on
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uniform grids for the Angle of Departure (AoD) and Angle of Arrival (AoA) of

each multipath component. These dictionaries operate as a sparsifying basis

for the channel matrix, thereby enabling the formulation of the channel esti-

mation problem as a sparse recovery optimization problem. Using this formu-

lation, several channel estimation algorithms have been developed for hybrid

architectures [14,17,51–53] . These algorithms differ in how the measurement

matrix is designed to search for the dominant AoD and AoA. The measurement

matrix can be designed using adaptive CS [17, 54, 55], random CS [14, 51, 53],

a mixture of random and adaptive CS [53], and deterministic CS [61–64].

Other non-compressive techniques were also developed for mmWave channel

estimation, using either subspace estimation [65], overlapped beams [66, 67],

and auxiliary beams [68]. The main limitation of these techniques is that they

are tailored to narrowband channel models, hence not directly applicable to

frequency-selective scenarios.

Recently, some approaches for channel estimation in frequency-selective

mmWave channels have been proposed. These techniques aim at exploit-

ing additional features of the mmWave channel, such as sparsity in the de-

lay domain and spatial congruence between frequency subbands [34, 69, 70].

In [34], a time-domain approach aiming at estimating the wideband mmWave

MIMO channel was devised, exploiting space-time sparsity to estimate the

channel using dictionaries in both the angular domain and the delay domain.

The main limitation of [34] is the high computational complexity of the pro-

posed algorithm. Based on the Structured Sparsity-Adaptive Matching Pur-
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suit (SSAMP) algorithm [71], another approach to estimate the wideband

channel exploiting spatial congruence in the frequency domain was proposed

in [69]. Another approach exploiting common sparsity was proposed in [70].

Prior work in [69], [70] share the limitations of not considering a realistic band-

limited channel response [33], and employing Gaussian measurement matrices

to estimate the channel, which cannot be implemented using hybrid archi-

tectures. Furthermore, the algorithms are only evaluated in the high SNR

regime. Hence, it is necessary to devise new wideband channel estimation so-

lutions that are compatible with hybrid architectures, realistic channel models,

and exhibiting reduced computational complexity in comparison with current

solutions.

1.4 Machine Learning in 5G New Radio

Most prior work on CSI acquisition at mmWave, encompassing both

beam-training-based and channel-estimation-based link configuration, are model-

driven methods with the ultimate goal of effectively configuring antenna arrays

in mmWave transceivers to enable high-quality data transmission. During the

last few years, data-driven methods have also been studied to solve this prob-

lem, which generally fall within the realm of machine learning [72,73]. Machine

learning is a suitable framework for problems which are too complex owing to

high non-linearity and/or non-convexity which often results in the problem be-

coming intractable through model-based approaches. Furthermore, machine

learning can be an appropriate approach in problems requiring intensive man-
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ual hand-tuning of parameters. These difficult problems can be dealt with

by learning a function based on available data, which relates the inputs of a

system to its outputs. Thereby, conventional model-based solutions can be re-

placed by machine learning algorithms that automatically learn from previous

data [74].

There are four main different subcategories within the realm of machine

learning, namely supervised learning, unsupervised learning, semi-supervised

learning, and reinforcement learning [72–74]. These different categories are

named according to the level of supervision that the machine learning proce-

dure requires on the training stage.

In supervised learning, a learning model is trained with samples in

which inputs and outputs are labeled and paired, thereby enabling finding the

optimum solution to the problem at hand for the training samples [74], by

using a decision tree, neural network, etc. [72]. Then, the learning model is

used to predict solutions from new samples. This machine learning category

consistently provides excellent accuracy results across of variety of problems

in wireless communications, such as dynamic frequency and bandwidth al-

location [75], path-loss prediction modeling [76], channel learning [77], and

prediction of beamforming vectors [78,79], but it exhibits very high computa-

tional complexity. To reduce computational complexity, unsupervised learning

was born to solve complex problems without supervision.

Under unsupervised learning, the data used to train the machine learn-

ing algorithms is an unlabeled collection of features, and the machine learn-
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ing algorithm attempts to separate subgroups or clusters exhibiting similar

characteristics among the different variables without any guidance or supervi-

sion [72, 74]. Unsupervised learning has found several applications within the

realm of wireless communications, including cooperative spectrum sensing [80],

coverage planning of Heterogeneous Networks (HetNets) with dynamic clus-

ters [81], and resource management [82].

Finally, reinforcement learning is a variant of machine learning that

aims at finding optimum policies in stochastic environments under uncertainty.

The behavior of wireless networks, for instance, evolves according to stochastic

dynamics that can be modeled using a Markov Decision Process (MDP) [74]

comprising several states. Reinforcement learning aims at finding the best

policy to maximize the rewards by selecting the properest action in a given

state [74], which has been applied to a variety of wireless communication prob-

lems such as load balancing [83, 84], mobility management [85], and resource

allocation [86], and joint beamforming, power control and interference coordi-

nation [87].

In the context of 5G NR communications, machine-learning-based tech-

niques have been investigated to solve the problem of beam selection [78, 88–

91], channel estimation/tracking [92–94], downlink Coordinated MultiPoint

(CoMP) transmission [95], and joint beamforming, power control and inter-

ference coordination [87]. These methods generally rely on training neural

networks to predict either the optimal beam pairs or the mmWave channel,

in which explicit feedback from the UE to the BS may be required [78,87,90].
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A main limitation that these papers share is that, similar to prior work on

channel estimation at mmWave, perfect synchronization is assumed at the re-

ceiver side. Furthermore, the proposed approaches are tailored to narrowband

channel models except for the approach in [87].

With regards to channel estimation, in [92], a deep CS-aided feedfor-

ward network is used to estimate the mmWave Multiple-Input Single-Output

(MISO) channel in a massive MISO network. Thereafter, a convolutional neu-

ral network is proposed to configure the hybrid precoders given the predicted

channels. The channel tracking problem is studied in [93], in which past pre-

dicted CSI is used to predict the future channels using a Long Short Term

Memory (LSTM) structure. In [94], a convolutional neural network is pro-

posed to predict the mmWave MIMO channel by treating the sparse channel

as a natural image. While these approaches comprise initial interesting alter-

natives to model-based channel estimation solutions, the algorithms in [92–94]

are assessed using simplistic channel models comprising very few paths [92,93],

or the system is assumed to work under a high SNR assumption [94], which is

impractical at mmWave. Furthermore, a common limitation of these papers,

similar to machine learning-based beam training solutions, is that perfect syn-

chronization is assumed at the receiver side, which is also impractical since

mmWave systems are expected to work in the low SNR regime.
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1.5 Synchronization at mmWave

Channel estimation is crucial to design hybrid precoders and combiners

maximizing performance metrics such as the spectral efficiency or the received

SINR at mmWave. Estimating the channel in practice, however, requires TO,

CFO, and PN estimation and compensation. The problem of PN estimation

has been studied in [96] for Single-Input Single-Output (SISO) systems under

an Additive White Gaussian Noise (AWGN) channel model, and the problem

of joint CFO, channel and PN estimation have been studied for SISO com-

munication systems under OFDM signaling in [97], [98], [99]. In the context

of MIMO-OFDM systems, the effects of PN in MIMO-OFDM systems were

studied in [100], [101], [102], but there is a lack of understanding of theoret-

ical limits and performance of signal processing algorithms in the context of

mmWave MIMO systems, even under the assumption of a narrowband channel

model.

Compared to TO, OFDM is very sensitive to CFO and PN, which arise

due to instabilities and thermal noise in the local oscillator [103]. CFO and

time-varying PN result in both Common Phase Error (CPE) and Inter Carrier

Interference (ICI) at the receiver, which degrade the performance of OFDM

systems [104], [105], [106], [97], [98]. In particular, the impact of PN in systems

operating at mmWave frequency bands can be even more profound [107]. Thus,

as wireless communication systems and standards, e.g., IEEE 802.11ad [36],

IEEE 802.11ay [108], and 5G NR [37] migrate to mmWave frequencies to take

advantage of the large bandwidth and adopt higher order modulations and
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closely spaced subcarriers to achieve higher spectral efficiencies, it is increas-

ingly important to develop efficient and accurate estimation and detection

algorithms to compensate for the effect of CFO and PN in MIMO-OFDM

systems.

In the context of mmWave MIMO systems, synchronization parame-

ters need to be properly estimated and compensated for before CSI can be

acquired. This sets new challenges as synchronization acquisition must be

performed at the low SNR regime, before transmit and receive communication

beams can be aligned for data transmission. Joint beam training and synchro-

nization is a popular low-complexity solution to the beam alignment problem,

and it has been incorporated into the 5G NR beam management procedure

for initial access [42, 109]. The main advantage of joint beam training and

synchronization stems from the fact that, when the beam pair that maximizes

the received SNR is probed, synchronization can be performed at the high

SNR regime, thereby enabling the application of well-known CFO retrieval

algorithms such as the Moose [110] or the Schmidl-Cox [111] algorithms for

TO and CFO estimation and compensation.

The problem of CS based beam training and synchronization is stud-

ied in [5, 112]. In [112], the problem of beam training under PN errors and

unknown CFO was studied for narrowband MIMO systems using analog archi-

tectures. In [112], an EKF is proposed to track the joint phase of the unknown

PN and beamformed narrowband channel, the phase of the received signal is

compensated, and then Matching Pursuit (MP) is used to estimate the dom-
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inant AoD and AoA. In [5], a compressive initial access approach based on

omnidirectional pseudorandom analog beamforming is proposed as an alterna-

tive to the directional initial access procedure used during beam management

in 5G NR, and the effects of imperfect TO and CFO are studied therein.

Although [5] is an interesting initial solution, the proposed algorithm

is tailored to LOS channel models and presence of phase measurement errors

due to CFO, thereby ignoring space-time clustering behavior and the PN im-

pairment. While the application of joint beam training and synchronization

techniques is interesting and can provide reasonable performance while keep-

ing complexity low, beam training techniques generally converge to a single

communication path, and are difficult to scale to multi-stream and multi-user

settings without dramatically increasing the training overhead and receiver

complexity. Besides performing synchronization at the high SNR regime, an

advantage of beam training algorithms is that phase information is not ex-

plicitly needed for beam configuration, while channel estimation algorithms

generally depend on both the magnitude and phase of the received signal.

The problem of channel estimation without phase measurements was solved

using Received Signal Strength (RSS) matching pursuit [113], Hash table [114],

and sparse phase retrieval [115], although these phase-free measurements were

associated with a particular testbed, a constraint that does not necessarily

apply to mmWave systems in general.

Prior work on joint channel estimation and synchronization for mmWave

MIMO is limited, since most of prior work on channel estimation assumes
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perfect synchronization at the receiver side [34], [60], [58], [69], [70]. Prior

work on channel estimation at mmWave considering synchronization impair-

ments is limited, both for narrowband [116,117] and broadband channel mod-

els [118–121]. In [118], the problem of joint channel and PN estimation for a

SISO system is considered, which is unrealistic at mmWave, and the proposed

algorithms are only evaluated in very high SNR regime. In [116], a tensor-

based joint CFO and channel estimation algorithm is proposed for analog-only

mmWave MIMO systems, which exhibits very high computational complexity,

and it assumes that analog beamformers and combiners can be reconfigured

for each transmitted sample, which is unlikely to happen in practice [36].

In [119], analog-only architectures with a single RF chain are assumed, and an

autocorrelation-based iterative algorithm is proposed to jointly estimate the

CFO and the mmWave channel. Similarly to [116], [119] assumes that ana-

log beamformers and combiners can be instantaneously reconfigured for two

consecutive transmitted time-domain samples. Further, the algorithm pro-

posed in [119] has only been evaluated for mmWave channels having a very

reduced number of non-clustered multipath components, which is not realis-

tic at mmWave [35]. In addition, owing to the nature of the autocorrelation

function, the proposed algorithm does not perform well both when the CFO

is considerably large and the SNR is low.

In [120], a CFO-robust beam alignment technique is developed to find

the beam pairs maximizing the received SNR. The main limitation of [120]

is that the algorithm proposed therein can only be applied to analog MIMO
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architectures, and its CFO correction capability is limited by both the num-

ber of delay taps in the mmWave MIMO channel, as well as the length of

the training sequence, thereby making the algorithm impractical for practical

mmWave deployments with more significant CFO. In [121], the joint CFO and

broadband channel estimation problem is formulated as a sparse bilinear op-

timization problem, which is solved using the parametric bilinear generalized

approximate message passing (PBiGAMP) algorithm in [122]. The main limi-

tation of [121] is that the proposed estimation strategy is tailored to all-digital

MIMO architectures with low-resolution Analog-to-Digital Converter (ADC)

converters, thereby not being directly applicable to hybrid MIMO architec-

tures. In [117], a similar strategy to the one in [121] is followed, in which the

joint CFO and channel estimation problem is studied for all-digital MIMO

architectures. The problem is formulated as a quantized sparse bilinear opti-

mization problem, which is solved using sparse lifting to increase the dimension

of the CFO and channel estimation problem [123], and then applying the gen-

eralized approximate message passing (GAMP) algorithm in [124] to solve the

lifted problem.

In summary, prior work on joint synchronization and channel estima-

tion for mmWave MIMO is limited to analog-only architectures and all-digital

MIMO architectures with low-resolution ADCs. Hence, it is necessary to de-

vise practical synchronization schemes that are compatible with hybrid MIMO

architectures and are applicable to scenarios with realistic channel models.

Furthermore, it is crucial that these synchronization strategies exhibit low
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overhead and computational complexity, to ensure that CSI can be properly

acquired at the low SNR regime in practice.

1.6 Dissertation Summary

Enabling broadband mmWave MIMO systems in practice requires ad-

dressing the key challenges discussed in Sections 1.1-1.5. With this motivation,

the problems tackled in this dissertation lie on the intersection of these chal-

lenges. I propose low-overhead and low-complexity channel estimation and

synchronization solutions that are robust at low SNR and yield efficient per-

formance while respecting the hardware constraints imposed by hybrid MIMO

architectures. For a brief discussion and background on CS and estimation

theory, the reader is referred to Appendix B and Appendix C, respectively.

In the first part of this dissertation, I first propose two CS-based al-

gorithms to estimate frequency-selective mmWave MIMO channels in the fre-

quency domain using hybrid architectures. These algorithms overcome the

limitations of prior work discussed in Section 1.3 by combining the property

of spatially common sparsity present in the channel with the concept of Suc-

cessive Interference Cancellation (SIC), and have convergence guarantees that

are also analyzed. The first proposed algorithm exploits information coming

from every subcarrier and iteratively estimates the AoA, AoD, and frequency-

domain channel gains for different multipath components. In contrast, the

second proposed algorithm only exploits information coming from a reduced

number of subcarriers to estimate the AoA and AoD corresponding to the dif-
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ferent channel components, thereby reducing online computational complexity

when compared to current channel estimation approaches.

In the second part of this dissertation, I focus on the joint CFO and

channel estimation problem in mmWave MIMO systems using hybrid MIMO

architectures. I theoretically analyze the problem of narrowband channel esti-

mation under CFO impairments and accounting for the reconfiguration time

of phase-shifters imposed by hybrid architectures, and develop a multi-stage

solution to estimate the high-dimensional mmWave MIMO channel. I theo-

retically calculate the CRLB for frame-wise estimation of the CFO, baseband

equivalent beamformed channels, and noise variance, and find the optimal

ML estimates of the different parameters. Then, both of these estimates and

their corresponding CRLBs are used as proxy signals to estimate the mmWave

MIMO channel using a variant of the Orthogonal Matching Pursuit (OMP)

algorithm, without requiring prior knowledge of the channel’s sparsity level or

the noise variance.

In the final part of this dissertation, I extend the proposed synchro-

nization framework to frequency-selective hybrid mmWave MIMO systems.

I study the problem of time-frequency synchronization under the influence

of PN impairments, and extend the proposed multi-stage synchronization so-

lution to estimate the frequency-selective mmWave MIMO channel. I the-

oretically analyze the hybrid CRLB for frame-wise estimation of the CFO,

baseband equivalent frequency-selective beamformed channels, and PN syn-

chronization parameters, and then develop two EM-based algorithms to find
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the ML estimates of the CFO, baseband equivalent beamformed channels, and

the LMMSE estimator of the PN samples. Then, these estimates and their

hybrid CRLB are leveraged to estimate the mmWave MIMO channel using the

channel estimation algorithms developed in the first part of this dissertation.

Last, I propose to design a joint PN tracking and data detection algorithm

leveraging the frame structure of the 5G NR wireless standard, and enabling

spatial multiplexing of parallel data streams according to the spatial degrees

of freedom in the mmWave MIMO channel.

1.6.1 Thesis Statement

In this dissertation, I defend the following statement:

Advanced hybrid analog-digital signal processing techniques can enable

unprecedented communication performance while keeping training overhead low,

even in the practical scenario of link configuration in the low SNR regime.

1.6.2 Contributions

Hereafter, I summarize my contributions in this dissertation as follows.

• Chapter 2: Millimeter Wave Compressive Channel Estimation in the

Frequency Domain

1. I propose two novel algorithms for estimation of frequency-

selective mmWave MIMO channels in the frequency domain, over-

coming the limitations of prior work an providing different trade-
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offs between spectral efficiency and computational complexity for a

fixed training overhead. Further, I provide theoretical convergence

guarantees for both algorithms and show that they converge to a

local optimum.

2. I derive the CRLB for the estimation of the mmWave MIMO

channel accounting for the spatially common sparsity. To compute

this metric, I assume that the sparse channel support is known and

show that our proposed strategies are asymptotically efficient when

the AoD/AoD are distributed on spatially quantized grids. Further,

I show that the CRLB can be attained without using frequency-

selective baseband precoders and combiners, thereby significantly

reducing computational complexity.

3. I introduce the concept of subcarrier selection as an approach

to further reduce computational complexity during estimation of

the sparse channel support, and show that a reduced number of

subcarriers is sufficient to asymptotically attain the CRLB.

• Chapter 3: Millimeter Wave Compressive Channel Estimation with Car-

rier Frequency Offset Uncertainties

1. I formulate and propose a multi-stage solution to the problem

of joint CFO and channel estimation using a data-aided approach

based on forwarding several training frames, and accounting for

the reconfiguration time of phase-shifters in analog precoding and
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combining networks.

2. For every training frame, I theoretically calculate the CRLB

for the estimation of the CFO, equivalent beamformed channel,

and noise variance for hybrid MIMO architectures with several RF

chains, and find the optimal ML estimators for the different un-

known parameters.

3. Using both estimates of the unknown parameters for every train-

ing frame and their corresponding CRLB, I formulate the problem

of estimating the high-dimensional MIMO channel and propose an

OMP-based algorithm to find the sparse channel coefficients.

• Chapter 4: Millimeter Wave Broadband Synchronization, Compressive

Channel Estimation, and Data Transmission

1. I formulate and propose a data-aided multi-stage solution to

the problem of synchronization and compressive channel estimation

for hybrid frequency-selective mmWave MIMO systems under TO,

CFO, and PN impairments. I propose to forward several training

frames using Zadoff-Chu (ZC)-based beamforming in combination

with random subarray switching and antenna selection in order to

both acquire synchronization and enable compressive channel esti-

mation at the low SNR regime.

2. For every training frame, comprising of several OFDM symbols,

I theoretically analyze the hybrid CRLB for the problem of estimat-
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ing the CFO, PN, and equivalent frequency-selective beamformed

channels.

3. I propose two novel iterative algorithms based on the EM method,

which aim at finding the optimal ML estimates for the CFO and

beamformed equivalent channels, as well as the LMMSE estimates

for the PN samples that impair the received signal.

4. Using both estimates of the unknown parameters for every train-

ing frame and their hybrid CRLB, I formulate the problem of es-

timating the high-dimensional frequency-selective mmWave MIMO

channel, and find a solution to this problem using a variant of the

Simultaneous Weighted - Orthogonal Matching Pursuit (SW-OMP)

algorithm proposed in my first contribution.

5. Last, I propose to design a low-complexity joint PN tracking and

data detection algorithm leveraging the frame structure of the 5G

NR wireless standard, and enabling spatial multiplexing of parallel

data streams according to the spatial degrees of freedom in the

mmWave MIMO channel.

1.6.3 Thesis Organization

I organize the remainder of this dissertation as follows. In Chapter 2,

I present the proposed broadband channel estimation algorithms for hybrid

mmWave MIMO systems. In Chapter 3, I introduce the proposed joint CFO

and channel estimation strategy for mmWave MIMO systems. In Chapter 4,
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I extend the joint CFO and channel estimation strategy to frequency-selective

scenarios, and include the additional TO and PN impairments. Finally, I

conclude this dissertation and summarize potential future research directions

in Chapter 5.

1.6.4 Notation

I use the following notation throughout this dissertation. Bold low-

ercase x is used for column vectors, bold uppercase X is used for matrices,

non-bold letters x, X are used for scalars. [x]i, [X]i,j, [X]i,:, and [X]:,j de-

note ith entry of x, entry at the ith row and jth column of X, ith row of

X, and jth column of X, respectively. I use the serif font, e.g., x, for the

frequency-domain variables (the vectors (matrices) in the frequency domain

are represented using bold sans serif font, i.e., x, X). AT , AC, A∗, and A†

represent the transpose, conjugate, conjugate transpose, and Moore-Penrose

pseudo-inverse of a matrix A. 0N , 1N , and IN denote the N -dimensional vec-

tor comprising of zero-valued entries, the N -th dimensional vector with unit

entries, and the Nth order identity matrix. The matrix containing the en-

tries of a vector a in its main diagonal is denoted by diag{a}, and the block

diagonal matrix containing the matrices A1, . . . ,AN in in its block diagonal

is denoted by
⊕N−1

n=0 An. CN(µ,Σ) denotes a complex circularly symmetric

Gaussian random vector with mean µ and covariance matrix Σ. I use E{·},

‖ · ‖p, and ‖ · ‖F to denote expectation, `p-norm, and Frobenius norm, respec-

tively. X ⊗Y is the Kronecker product of X and Y, and X ◦Y denotes the

28



Khatri-Rao product of X and Y. Calligraphic letter X denotes a set. Finally,

| · | is the absolute value of its argument or the cardinality of a set, and vec{·}

yields a vector for a matrix argument.

1.6.5 List of Acronyms

3GPP Third Generation Partnership Protocol.

ADC Analog-to-Digital Converter.

AoA Angle of Arrival.

AoD Angle of Departure.

AS Angular Spread.

AWGN Additive White Gaussian Noise.

BER Bit Error Rate.

BLUE Best Linear Unbiased Estimator.

BPDN Basis Pursuit De-Noising.

BS Base Station.

CFO Carrier Frequency Offset.

CoMP Coordinated MultiPoint.

CoSaMP Compressive Sampling Matching Pursuit.
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CP Cyclic Prefix.

CPE Common Phase Error.

CRLB Cramér-Rao Lower Bound.

CS Compressed Sensing.

CSI Channel State Information.

CSI-RS Channel State Information - Reference Signal.

DFT Discrete Fourier Transform.

DGMP Distributed Grid Matching Pursuit.

DMRS Demodulation Reference Signal.

DS Delay Spread.

EKF Extended Kalman Filter.

EM Expectation-Maximization.

FET Field-Effect Transistor.

FFT Fast Fourier Transform.

FIM Fisher Information Matrix.

FLOPs Floating Point Operations.
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GHP Greedy Hybrid Precoding.

GLM General Linear Model.

GPS Global Positioning System.

GSF Gaussian-Sum Filtering.

HARQ Hybrid Automatic Repeat Request.

HetNets Heterogeneous Networks.

HIM Hybrid Information Matrix.

ICI Inter Carrier Interference.

ISI Inter Symbol Interference.

KF Kalman Filter.

KLT Karhunen-Loeve Transform.

LASSO Least Absolute Shrinkage and Selection Operator.

LDPC Low Density Parity Check.

LF Likelihood Function.

LLF Log-Likelihood Function.

LLR Log-Likelihood Ratio.

31



LMMSE Linear Minimum Mean Square Error.

LOS Line-Of-Sight.

LS Least Squares.

MAP Maximum A Posteriori.

MCS Modulation and Coding Scheme.

MDP Markov Decision Process.

MER Modulation Error Ratio.

MIMO Multiple-Input Multiple-Output.

MISO Multiple-Input Single-Output.

ML Maximum Likelihood.

MMSE Minimum Mean Square Error.

mmWave Millimeter Wave.

MP Matching Pursuit.

MPF Marginalized Particle Filtering.

MSE Mean Squared Error.

MVUE Minimum Variance Unbiased Estimator.
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NLOS Non Line-Of-Sight.

NMSE Normalized Mean Square Error.

NR New Radio.

OFDM Orthogonal Frequency Division Multiplexing.

OMP Orthogonal Matching Pursuit.

PC Per-Antenna Constrained.

PDCCH Physical Downlink Control Channel.

PDF Probability Density Function.

PDSCH Physical Downlink Shared Channel.

PN Phase Noise.

PSD Power Spectral Density.

PTRS Phase-Tracking Reference Signal.

QAM Quadrature Amplitude Modulation.

QMMSE Quadratic Minimum Mean Square Error.

QuaDRiGa Quasi Deterministic Radio channel Generator.

RF Radio-Frequency.
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RIP Restricted Isometry Property.

RSS Received Signal Strength.

RTS Rauch-Tung-Striebel.

S-OMP Simultaneous - Orthogonal Matching Pursuit.

SIC Successive Interference Cancellation.

SINR Signal-to-Interference plus Noise Ratio.

SISO Single-Input Single-Output.

SNR Signal-to-Noise Ratio.

SOCP Second-Order Cone Program.

SS Synchronization Signal.

SS-SW-OMP+Th Subcarrier Selection - Simultaneous Weighted - Orthog-

onal Matching Pursuit + Thresholding.

SSAMP Structured Sparsity-Adaptive Matching Pursuit.

SSP-OMP Spatially Sparse Precoding - Orthogonal Matching Pursuit.

SVD Singular Value Decomposition.

SW-OMP Simultaneous Weighted - Orthogonal Matching Pursuit.

TO Timing Offset.

34



UE User Equipment.

ULA Uniform Linear Array.

UMi Urban Microcell.

UPA Uniform Planar Array.

VCO Voltage-Controlled Oscillator.

W-OMP Weighted - Orthogonal Matching Pursuit.

WLS Weighted Least Squares.

ZC Zadoff-Chu.

ZP Zero Prefix.
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Chapter 2

Millimeter Wave Compressive Channel

Estimation in the Frequency Domain

2.1 Introduction

In this chapter, I propose and evaluate new channel estimation algo-

rithms for frequency-selective hybrid mmWave MIMO systems. Frequency-flat

pseudorandom training precoders and combiners are employed by the transmit-

ter and receiver to estimate the channel, and two novel algorithms exploiting

spatially common sparsity in the angular domain are devised. The first pro-

posed algorithm exploits information coming from every subcarrier, thereby

yielding the best performance in terms of spectral efficiency, estimation er-

ror, and BER. The second proposed algorithm, however, exploits information

from only a reduced number of subcarriers to further reduce computational

complexity. I evaluate different tradeoffs between communication performance

and computational complexity of the proposed algorithms, and show that the

proposed algorithms outperform prior work on broadband channel estimation

in terms of spectral efficiency, estimation error, BER, and computational com-

plexity. Further, I show that the proposed algorithms asymptotically attain

the CRLB for the estimation of the high-dimensional mmWave MIMO channel

when the AoD and AoA are distributed on quantized angular grids. This work
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was published in [1], [125].

2.1.1 Prior Work and Motivation

Two different approaches to increase SNR after spatial processing are

beam training and channel estimation [8]. On the one hand, beam training,

first adopted in IEEE 802.11ad [36], is a technique that relies on searching for

transmit and receive beam pairs that maximize the received SNR, thereby en-

abling reliable decoding of transmitted data [38–40]. Though they can increase

link quality, beam training strategies are typically restricted to single-stream

communication, which disables spatial multiplexing capabilities to obtain high

data rate communications [?]. Recently, some efforts have been made towards

extending beam training protocols to multi-stream communication [126, 127].

The main limitation of these algorithms is that the beam detection capabil-

ities are sensitive to the beamwidth of the transmit and receive candidate

beams [126]. Therefore, to obtain higher spectral efficiency, narrower beams

need to be deployed, especially for medium transmit-receive distances, which

significantly increases training overhead and detection complexity [127].

Channel estimation, on the other hand, allows transmission of several

data streams, overcoming the limitation of beam training strategies. Most of

these strategies exploit the spatially sparse structure in the mmWave MIMO

channel, formulating its estimation as a sparse recovery problem. The sup-

port of the estimated sparse vector identifies the pairs of AoD and AoA for

each multipath component in the mmWave channel, while the amplitudes of
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Figure 2.1: Summary and comparison of prior work on broadband channel
estimation algorithms as well as the approaches proposed in this Chapter.

the non-zero coefficients provide the channel gains for such multipath com-

ponents. Compressive estimation leads to a reduction in the channel train-

ing length when compared to conventional approaches such as those based

on LS estimation [14]. The main limitation of most of this prior work with

hybrid MIMO architectures comes from considering a frequency-flat channel

model [14,17,53,56–60,128], since the mmWave channel is frequency-selective.

Recently, some approaches for channel estimation in frequency-selective

mmWave channels have been proposed, which are summarized in Fig. 2.1.

In [34], a time-domain approach was designed to estimate the wideband

mmWave channel assuming a hybrid MIMO architecture. This algorithm ex-

ploits the sparsity of the wideband mmWave channel in both the angular and

delay domains. The sparse formulation of the problem in [34] includes the

effect of non-integer sampling of the transmit pulse-shaping filter, with the

subsequent leakage effect and increase of sparsity level in the channel ma-

trix. The main limitation of [34] is the high computational complexity of
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the algorithm. A frequency-domain strategy to estimate frequency-selective

mmWave channels was also proposed in [34]. A sparse reconstruction prob-

lem was formulated there to estimate the channel independently for every

subcarrier, without exploiting spatial congruence between subbands. Another

approach in the frequency domain was designed in [129], but only exploting

the information from a reduced number of subcarriers.

Based on the SSAMP algorithm, first proposed in [71], another ap-

proach to estimate the mmWave channel was proposed in [69]. Exploiting the

fact that spatial propagation characteristics do not change significantly within

the system bandwidth, [69] assumed spatially common sparsity between the

channels corresponding to the different subcarriers. The SSAMP algorithm

from [71] was then considered to reconstruct the channels in the frequency

domain. Thus, [69] is an interesting initial solution to the problem, but has

several limitations when applied to a mmWave communications system:

1. The effect of sampling the pulse-shaping filter delayed by a non integer

factor was not considered in the channel model for a given delay tap.

As shown in [33], not accounting for this effect leads to virtual MIMO

matrices with an artificially enhanced sparsity.

2. The algorithm was evaluated only for medium and high SNR regimes,

not realistic at mmWave, where the expected SNR is below 0 dB.

3. The reconstruction algorithm provides accurate results when Gaussian

measurement matrices are employed; to generate the Gaussian matrices,
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unquantized phases were considered in the training precoders, which is

unrealistic in a practical implementation of a mmWave system based on

a hybrid architecture.

Another algorithm exploiting common sparsity in the frequency domain

at mmWave was proposed in [70]. Unlike the SSAMP algorithm proposed

in [71], the algorithm in [70] is proposed to estimate mmWave wideband MU-

MIMO channels. Besides the limitations 1)-3) described above, which also

hold in this case, this algorithm exhibits another problem that makes it less

feasible to be applied in a real mmWave communication system. A LOS Rician

channel model with Kfactor = 20 dB was considered, which is only applicable

when there is a strong LOS path. Owing to this artifact of the channel model,

the algorithm in [70] estimates only a single path for each user, such that the

task of channel estimation in a general mmWave system cannot be successfully

accomplished.

2.1.2 Contributions

In this chapter, I propose two novel frequency-domain approaches to es-

timate frequency-selective mmWave MIMO channels. These approaches over-

come the limitations of prior work and provide different tradeoffs between

complexity and achievable rate for a fixed training length. As in recent work

on hybrid architectures for frequency-selective mmWave channels [69, 130], I

also consider a MIMO-OFDM communications system. Similar to [34], I use

ZP as a cyclic prefix to avoid loss and/or distortion of training data during

40



reconfiguration of RF circuitry. A geometric channel is considered to model

the different scattering clusters as in [34], [70], [33], including the bandlimiting

property in the overall channel response. The contributions of this work are

listed hereafter:

• I formulate the problem of compressive channel estimation in the fre-

quency domain, and propose two novel algorithms to solve this problem.

The two approaches explained in this chapter exploit the spatially com-

mon sparsity within the system bandwidth. The first algorithm aims

at exploiting the information on the support coming from every subcar-

rier in the MIMO-OFDM system and provides the best performance. In

contrast, the second algorithm uses less information to estimate the dif-

ferent frequency-domain subchannels, thereby managing to significantly

reduce computational complexity.

• I theoretically compute the CRLB for the estimation of the high-dimensional

mmWave MIMO channel assuming perfect retrieval of the AoD and AoA

to assess the robustness of the estimation of the channel support. I show

that the two proposed strategies are asymptotically efficient when the

channel AoD/AoA lie within quantized angular grids, since they both

attain the CRLB. Further, I show that asymptotic efficiency can be

achieved without using frequency-selective baseband precoders and com-

biners during the training stage, thereby further reducing computational

complexity.
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• I analyze and provide convergence guarantees for the proposed algo-

rithms, and show that the proposed algorithms are guaranteed to con-

verge to a local optimum when the angular grid sizes are of sufficient

size.

Simulation results in the low SNR regime show that the two proposed

algorithms significantly outperform the approach in the frequency domain de-

veloped in [34]. Comparisons with the algorithms proposed in [69] and [70]

are also provided to show their performance in terms of estimation error in

the SNR regime where mmWave systems are expected to work. To the best

of my knowledge, there is no prior work that evaluates channel estimation

algorithms with realistic frequency-selective channel samples. I evaluate the

proposed algorithms with channel realizations obtained from the NYUSIM

channel simulator [4], which was developed based on the statistical model

in [131]. I show that the proposed algorithms are suitable for estimation of

more general mmWave frequency-selective channels than the model in [33],

thereby demonstrating their practical application. The two proposed channel

estimation algorithms provide a good tradeoff between communication per-

formance and overhead. Results show that using a reasonably small training

length, approximately in the range of 60− 100 frames, leads to low estimation

errors. The computational complexity of the proposed algorithms and previ-

ous strategies is also analyzed to compare the tradeoffs between performance-

complexity provided by the different algorithms. Finally, I also show that it

is not necessary to exploit the information on the support coming from ev-
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Figure 2.2: Illustration of the structure of a hybrid MIMO architecture, which
include analog and digital precoders and combiners. This structure was already
introduced in Fig. 1.1.

ery OFDM subcarrier to estimate the different mmWave subchannels. Yet, a

reduced number of subcarriers is enough to asymptotically attain the CRLB.

I organize the rest of this chapter as follows. In Section 2.2, I intro-

duce the system and channel models. In Section 2.3, I describe the proposed

frequency-domain compressive channel estimation approaches, and include the

derivation of the CRLB. Thereafter, Section 2.4 provides the main simulation

results for the two proposed algorithms, and comparisons with the OMP-based

compressive approach proposed in [34], the SSAMP algorithm in [69] and the

Distributed Grid Matching Pursuit (DGMP) algorithm proposed in [70], re-

spectively. Finally, I draw the conclusions extracted from numerical results in

Section 2.5.

2.2 System model

I consider ammWave MIMO-OFDM link employing K subcarriers to

send Ns data streams using a transmitter with Nt antennas and a receiver
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with Nr antennas. The system is based on a hybrid MIMO architecture as

shown in Fig. 2.2, with Lt and Lr RF chains at the transmitter and receiver

sides. For a general exposition, a frequency-selective hybrid precoder is used,

with F[k] = FRFFBB[k] ∈ CNt×Ns , k = 0, . . . , K − 1, where FRF is the ana-

log precoder and FBB[k] the digital one. Note that the analog precoder is

frequency-flat, while the digital precoder is different for every subcarrier. The

RF precoder and combiner are implemented using a fully-connected network of

phase-shifters, as described in [14]. The symbol blocks are transformed into the

time domain using Lt parallel K-point IFFTs. As in [34,132], I consider ZP to

both suppress Inter Symbol Interference (ISI) and account for the RF circuitry

reconfiguration time, which can be upper bounded by 64 discrete samples at

a sampling rate of 1760 MHz [36]. The discrete-time complex baseband signal

at subcarrier k can be written as

x[k] = FRFFBB[k]s[k], (2.1)

where the transmitted symbol sequence at subcarrier k of size Ns×1 is denoted

as s[k].

The MIMO channel between the transmitter and the receiver is as-

sumed to be frequency selective, having a delay tap length D in the time

domain. The d-th delay tap of the channel is represented by a Nr×Nt matrix

denoted as H[d], d = 0, 1, ..., D − 1, which, assuming a geometric channel

model [33], can be written as

H[d] =

√
NtNr

LρL

L∑
`=1

α`prc(dTs − τ`)aR(φ`)a
∗
T(θ`), (2.2)
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where ρL denotes the path loss between the transmitter and the receiver, L

denotes the number of paths, Ts denotes the sampling period, prc(τ) is a filter

that includes the effects of pulse-shaping and other lowpass filtering evaluated

at τ , α` ∈ C is the complex gain of the `th path, τ` ∈ R is the delay of the

`th path, φ` ∈ [0, 2π) and θ` ∈ [0, 2π) are the AoA and AoD, of the `th path,

and aR(φ`) ∈ CNr×1 and aT(θ`) ∈ CNt×1 are the array steering vectors for the

receive and transmit antennas evaluated at the AoA and AoD of the `-th path.

Each one of these matrices can be written in a more compact way as

H[d] = ARG[d]A∗T, (2.3)

where G[d] ∈ CL×L is diagonal with non-zero complex entries, and AR ∈

CNr×L and AT ∈ CNt×L contain the receive and transmit array steering vectors

aR(φ`) and aT(θ`), respectively. The channel H[d] can be approximated using

the extended virtual channel model defined in [8] as

H[d] ≈ ÃRGv[d]Ã∗T, (2.4)

where Gv[d] ∈ CGr×Gt is a sparse matrix which contains the path gains at

the quantized spatial frequencies in the non-zero elements. The dictionary

matrices ÃT and ÃR contain the transmit and receive array response vectors

evaluated on angular grids of sizes Gt and Gr. Due to the few scattering

clusters in mmWave channels, the sparse assumption for Gv[d] is commonly

accepted [4, 35]. Finally, the channel at subcarrier k can be written in terms

of the different delay taps as

H[k] =
D−1∑
d=0

H[d]e−j 2πk
K
d = ARG[k]A∗T. (2.5)
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It is also useful to write this matrix in terms of the sparse matrices Gv[d] and

the dictionaries

H[k] ≈ ÃR

(
D−1∑
d=0

Gv[d]e−j 2πk
K
d

)
Ã∗T ≈ ÃRG

v[k]Ã∗T (2.6)

to help expose the sparse structure in Section 2.3.

Assuming that the receiver applies a hybrid combiner W[k] ∈ CNr×Ns ,

W[k] = WRFWBB[k], the received signal at subcarrier k can be written as

y[k] = W∗
BB[k]W∗

RFH[k]FRFFBB[k]s[k]

+W∗
BB[k]W∗

RFn[k],
(2.7)

where n[k] ∼ CN (0, σ2I) is the circularly symmetric complex Gaussian dis-

tributed additive noise vector. The receive signal model in (2.7) corresponds

to the data transmission phase. As it will be seen in Section 2.3, during the

channel acquisition phase, I will consider frequency-flat training precoders and

combiners to reduce complexity during channel estimation.

2.3 Compressive Channel Estimation in the Frequency
Domain

In this section, I formulate a compressed sensing problem to estimate

the wideband mmWave MIMO channel in the frequency domain. I also pro-

pose two algorithms to solve this problem that leverage the common support

between the channel matrices for every subcarrier, providing different trade-

offs between performance and computational complexity. The first algorithm

leverages the common support between the K different subchannels providing
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very good performance, while the second one only exploits information from a

reduced number of subcarriers, thereby keeping computational complexity at

a lower level.

2.3.1 Problem formulation

I assume that Lt and Lr RF chains are used at the transmitter and

receiver. During the training phase, M training frames are forwarded from

the transmitter to the receiver. For the m-th frame, the transmitter and

the receiver use a training precoder F(m)
tr ∈ CNt×Lt and a training combiner

W(m)
tr ∈ CNr×Lr . This means that during the training phase, frequency-

flat precoders and combiners are considered to keep the complexity of the

sparse recovery algorithms low. I assume that the transmitted symbols satisfy

E{s(m)[k]s(m)∗[k]} = P
Ns

INs , with P the total transmitted power and Ns = Lt.

To reduce computational complexity, I decompose the transmitted symbol

s(m)[k] as s(m)[k] = q(m)t(m)[k], with q(m) ∈ CLt×1 a frequency-flat vector and

t(m)[k] a pilot symbol known at the receiver. This choice is motivated to si-

multaneously enable exploitation of the Lt spatial degrees of freedom coming

from Lt RF chains and to allow channel estimation with a single subcarrier-

independent measurement matrix, as it will soon become apparent. This en-

ables both online and offline complexity reduction when the noise statistics

are used to estimate the MIMO channel at the different subcarriers. Further-

more, each entry in F(m)
tr , W(m)

tr is normalized to have squared-modulus N−1
t

and N−1
r , respectively. Then, the received samples in the frequency domain
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for the m-th training frame can be written as

y(m)[k] = W(m)∗
tr H[k]F(m)

tr q(m)t(m)[k] + n(m)
c [k], (2.8)

where H[k] ∈ CNr×Nt is the frequency-domain MIMO channel response at the

k-th subcarrier and n(m)
c [k] ∈ CLr×1, n(m)

c [k] = W
(m)
tr

∗
n(m)[k], is the frequency-

domain combined noise vector received at the k-th subcarrier. The average

received SNR is given by SNR = P
ρLσ2 . I assume that the channel coherence

time is larger than the frame duration and that the same channel can be

considered for several consecutive frames. To enable sparse reconstruction with

a single, subcarrier-independent measurement matrix, I will invert the effect

of the scalar t(m)[k] by means of multiplying the received signal by (t(m)[k])−1.

Using the result vec{AXC} = (CT⊗A) vec{X}, the vectorized received signal

after compensating for s(m)[k] is

vec{y(m)[k]} = (q(m)TF(m)T
tr ⊗W(m)∗

tr ) vec{H[k]}+ n(m)
c [k]. (2.9)

Taking into account the expression in (2.6), the vectorized channel matrix can

be written as vec{H[k]} = (ÃC
T ⊗ ÃR) vec{Gv[k]}. Therefore, if I define the

measurement matrix Φ(m) ∈ CLr×NtNr as

Φ(m) = (q(m)TF(m)T
tr ⊗W(m)∗

tr ), (2.10)

and the dictionary Ψ ∈ CNtNr×GtGr as

Ψ = ÃC
T ⊗ ÃR, (2.11)

(2.9) can be rewritten as

vec{y(m)[k]} = Φ(m)Ψgv[k] + n(m)
c [k], (2.12)
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where gv[k] = vec{Gv[k]} ∈ CGrGt×1 is the sparse vector containing the com-

plex channel gains. To have enough measurements and accurately reconstruct

the sparse vector gv[k], it is necessary to use several training frames, especially

in the very-low SNR regime. If the transmitter and receiver communicate

during M training steps using different pseudorandomly built precoders and

combiners, (2.12) can be extended to y(1)[k]
...

y(M)[k]


︸ ︷︷ ︸

y[k]

=

 Φ(1)

...
Φ(M)


︸ ︷︷ ︸

Φ

Ψgv[k] +

 n(1)
c [k]
...

n(M)
c [k]


︸ ︷︷ ︸

nc[k]

. (2.13)

Finally, the vector gv[k] can be found by solving the sparse reconstruc-

tion problem

min
{gv[k]}K−1

`=0

K−1∑
k=0

‖gv[k]‖1 subject to
1

K

K−1∑
k=0

‖y[k]−ΦΨgv[k]‖2
2 < ε,

(2.14)

where ε is a tunable parameter defining the maximum error between the mea-

surement and the received signal assuming the reconstructed channel between

the transmitter and the receiver. Since the sparsity (number of channel paths)

is usually unknown, the choice of ε is critical to solve (2.14). The choice of

this parameter will be explained in Section 2.3.3.

There is a great variety of algorithms to solve (2.14). For example,

OMP was considered in [34]. However, this requires running the algorithm

as many times as the number of OFDM subcarriers. In the next subsections
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I consider an additional assumption to solve this problem, which avoids the

need to run K OMP algorithms in parallel as proposed in [34].

The matrices Gv[k] exhibit an interesting property that can be exploited

when solving the compressed channel estimation problems defined in (2.14).

Let us define the GtGr× 1 vectorized virtual channel matrix for a given delay

tap as

gv[d] , vec{Gv[d]}. (2.15)

Let T0,T1, . . . ,TD−1 denote the supports of the virtual channel matrices Gv[d],

d = 0, . . . , Nc − 1. Then, since gv[k] = vec{Gv[k]}, with

Gv[k] =
D−1∑
d=0

Gv[d]e−j
2πk
K
d, k = 0, . . . , K − 1 (2.16)

it is clear that, in general

supp{gv[k]} =
D−1⋃
d=0

supp{gv[d]} k = 0, . . . , K − 1, (2.17)

where the union of the supports of the time-domain virtual channel matrices

comes from the additive nature of the Fourier transform. Therefore, the chan-

nel model in (2.6) exhibits the same sparse structure for every subcarrier, since

the AoA and AoD do not change with frequency in the transmission band-

width [4, 31, 32]. Notice, however, that the AoA/AoD in (4.7) do not depend

on the delay tap d, such that (2.17) reduces to supp{gv[k]} = supp{gv[d]},

k = 0, . . . , K − 1. The sparse assumption on the vectorized channel matrix

for a given delay tap gv[d] is commonly accepted, since in mmWave channels

L << GrGt. In general, the vectorized channel matrix gv[k] will have, in
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the worst case, DL non-zero coefficients. Typical values for D in mmWave

channels are usually lower than 64 symbols (for example IEEE 802.11ad has

been designed to work robustly for a maximum of 64 delay taps in the chan-

nel), while the number of measured paths usually satisfies L < 30 for out-

door and indoor scenarios [133]. From these values, using dictionaries of size

Gr ≥ 64 Gt ≥ 64, allows us to assume a spatially sparse structure for gv[k] as

well.

2.3.2 Simultaneous Weighted - Orthogonal Matching Pursuit

To develop a channel estimation algorithm that leverages the sparse

nature and the common support property for all gv[k], I propose to modify

the Simultaneous - Orthogonal Matching Pursuit (S-OMP) algorithm proposed

in [134]. For a given iteration, this algorithm aims at finding a new index of the

support exploiting information coming from several signals, thus increasing the

reliability of the final support estimate. If the algorithm processes K received

signals simultaneously, the amount of information it obtain is approximately

K times larger. Consequently, the likelihood of the estimated AoD/AoA, or

equivalently, the support of the channel, increases accordingly. The S-OMP

algorithm in [134] computes the non-zero values of the sparse vector using a

LS approach once the support is obtained, assuming that the noise covariance

matrix is the identity matrix IMLr . In this section, I generalize the S-OMP

algorithm to account for correlated noise after combining, and show that the

proposed algorithm attains the CRLB.
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2.3.2.1 Support computation with correlated noise

Before explicit estimation of the channel gains, it is necessary to com-

pute the atom, i.e., vector in the measurement matrix, which yields the largest

sum-correlation with the received signals, since the different sparse vectors

share a common support. The S-OMP algorithm is based on the assumption

that the perturbation (noise) covariance matrix is diagonal, such that no cor-

relation between the different noise components is present. The correlation

vector c[k] ∈ CMLr is defined as

c[k] = Υ∗y[k], (2.18)

in which Υ ∈ CMLr×GtGr , Υ = ΦΨ is the equivalent measurement matrix and

y[k] ∈ CMLr×1 is the received signal for a given k, k = 0, . . . , K − 1. If there is

correlation between noise components, the atom estimated from the correlation

in (2.18) may be different from the actual atom. To introduce the appropriate

correction in the correlation, the specific form the noise covariance matrix

takes needs to be taken into account. Since the received noise at antenna level

is both temporally and spatially white, the noise covariance matrix of y[k] can

be written as a block diagonal matrix C ∈ CMLr×MLr , C = σ2Cw, where Cw

is given by Cw =
⊕M

m=1 Wtr
(m)∗Wtr

(m). Now, I use the Cholesky factorization

to write Cw = D∗wDw, where Dw ∈ CMLr×MLr is an upper triangular matrix.

The subscript in Cw and Dw indicates that these matrices only depend on the

combiners {W(m)
tr }Mm=1. Then, the correlation step is performed as

c[k] = Υ∗wyw[k], (2.19)
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where Υw ∈ CMLr×GtGr is the whitened measurement matrix given by Υw =

D−∗w Υ. Likewise, the MLr × 1 post-whitened received signal yw[k] is given by

yw[k] = D−∗w y[k]. The matrix D−1
w ∈ CMLr×MLr can be further expressed as

D−1
w =

M⊕
m=1

(
D(1)

w

)−1

(2.20)

where
(
D(m)

w

)−1

can be interpreted as the frequency-flat baseband combiner

W(m)
BB,tr used in the m-th training step. Thereby, the resulting correlation

simultaneously whitens the spatial noise components and estimates the most

likely support index in the sparse vectors gv[k].

2.3.2.2 Computation of the channel gains

Once an estimate T̂ of the support of the sparse channel vectors is

found, with L̂ = |T̂| the estimated sparsity level, I can define the matrix

[Υ]:,T̂ ∈ CMLr×L̂ as [Υ]:,T̂ = [ΦΨ]:,T̂. Accordingly, the signal model for the

k-th subcarrier can be written as

y[k] = [Υ]:,T̂ [gv[k]]T̂ + ñc[k], (2.21)

where ñc[k] ∈ CMLr×1 is the residual noise in the linear model after estimating

the channel support. If the estimation of the support is accurate, ñc[k] will be

close to the post-combining noise vector nc[k]. The L̂× 1 vector [gv[k]]T̂ is the

vector of channel gains to be estimated after sparse recovery. It is important to

remark that the support estimated by the proposed algorithm may be different

from the actual channel support. In general, T̂ can be different from the actual
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support. Therefore, the vector [gv[k]]T̂ ∈ CL̂×1 can be also different from

g[k] ∈ CL×1, g[k] = vec{diag{G[k]}}. Since the model in (2.21) is linear on the

parameter vector [gv[k]]T̂, there is a Minimum Variance Unbiased Estimator

(MVUE) that happens to be the Best Linear Unbiased Estimator (BLUE) as

well [135].

The equation in (2.21) is usually referred to as the General Linear Model

(GLM), for which the estimator of [gv[k]]T̂ for real parameters is provided

in [135]. The extension for a complex vector of parameters is straightforward

and given by

[ĝv[k]]T̂ =
(

[Υ]∗:,T̂ C−1
w [Υ]:,T̂

)−1

[Υ]∗:,T̂ C−1
w y[k], (2.22)

which can be further reduced to

[ĝv[k]]T̂ =
(

[Υw]:,T̂

)†
yw[k]. (2.23)

Therefore, [ĝv[k]]T̂ is the MVUE for the parameter vector [ĝv[k]]T̂, k = 0, . . . , K−

1. Hence, it is unbiased and attains the CRLB if the support is estimated cor-

rectly. It is interesting to note that this corresponds to a Weighted Least

Squares (WLS) estimator, with the corresponding weights given by the in-

verse noise covariance matrix. An important feature of this estimator is that

the difference in performance given by the LS and the WLS estimators is

more accentuated as the number of RF chains grows (if and only if the hybrid

combiner is not built from orthonormal vectors).

To assess the robustness of the support estimator, it is important to cal-

culate the CRLB for the estimation of the channel matrices at each subcarrier
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assuming perfect sparse reconstruction. To that end, taking into account only

the non-zero entries in gv[k], the Fisher Information Matrix (FIM) is derived

from the GLM in (2.21) as

I ([gv[k]]T̂) = [Υ]∗:,T̂ C−1 [Υ]:,T̂ . (2.24)

Note that (2.24) gives the FIM for the vector [gv[k]]T̂, which contains

the actual channel gains. To compute the CRLB for the estimation of the

frequency-domain channel matrix H[k], (2.5) can be vectorized as

vec{H[k]} = (AC
T ◦AR) vec {G[k]} . (2.25)

The decomposition in (2.25) is expressed with equality, since the focus is on

finding the CRLB when the estimation of the support is perfect.

The overall minimum variance for an unbiased estimator of the KNtNr

entries in {H[k]}K−1
k=0 is given by the sum of the variances for the estimators of

the elements in the MIMO channel matrices. I will denote the overall variance

of the estimator for {H[k]}K−1
k=0 as γ

(
{H[k]}K−1

k=0

)
. Then, γ

(
{H[k]}K−1

k=0

)
is

derived as

γ
(
{H[k]}K−1

k=0

)
=

K−1∑
k=0

trace
{(

AC
T ◦AR

)
I−1 ([gv[k]]T̂)

(
AC

T ◦AR

)∗}
. (2.26)

2.3.3 Computation of the residual and noise variance estimation

After estimating the channel gains, it is necessary to determine whether

a sufficient number of paths has already been estimated or not. To solve this
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detection problem, some prior information is needed to compare the received

signals y[k] to the reconstructed signals x̂rec[k] = [Υ]:,T̂ [ĝv[k]]T̂. For this rea-

son, I assume that the noise variance is known at the receiver. This is a

practical assumption since the receiver can accurately estimate this parameter

before the training stage takes place. Therefore, the received signal y[k] can

be approximately modeled as y[k] ≈ x̂rec[k] + ñc[k], which is the same model

as in (2.7), since x̂rec[k] is an estimate of the mean of y[k]. Let us define the

complete received signal as y , vec{y[0], . . . , y[K − 1]}, and the complete re-

constructed signal as x̂rec , vec{x̂rec[0], . . . , x̂rec[K − 1]}. Then, the estimation

of the noise variance can be formulated as a ML estimation problem [135],

σ̂2
ML = arg max

σ2

L(y, x̂rec, σ
2), (2.27)

where L(y, x̂rec, σ
2) denotes the Log-Likelihood Function (LLF) of y. This

function is given by [135]

L(y, x̂rec, σ
2) =−MLr lnπσ2 − ln det{Cw}−

− 1

σ2

K−1∑
k=0

(
y[k]− x̂rec[k])∗C−1

w (y[k]− x̂rec[k]
)
.

(2.28)

The ML estimator of the noise variance is then obtained by taking the partial

derivative of L(y, x̂rec, σ
2) to zero, such that σ̂2

ML is given by

σ̂2
ML =

1

KMLr

K−1∑
k=0

(y[k]− x̂rec[k])∗C−1
w (y[k]− x̂rec[k])︸ ︷︷ ︸

r∗[k]r[k]

, (2.29)

where the MLr× 1 vector r[k] , yw[k]−D−∗w x̂rec is the residual. Observe that

r[k] can also be written as r[k] = (IMLr −P) yw[k], where P ∈ CMLr×MLr is
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the projection matrix given by P = [Υw]†
:,T̂

[Υw]:,T̂. Thereby, after a sufficient

number of iterations, L̂ different paths are expected to be estimated. Con-

sequently, the estimated noise variance will be comparable to the true noise

variance of the received signal, such that the detection process is accomplished

by setting ε in (2.14) to σ2.

1: procedure SW-OMP(y[k],Φ,Ψ,ε)
2: Compute the whitened equivalent measurement matrix
3: Υw = D−∗w ΦΨ
4: Initialize the residual vectors to the input signal vectors and

support estimate
5: yw[k] = D−∗w y[k], r[k] = yw[k], k = 0, . . . , K − 1, T̂ = {∅}
6: while MSE > ε do
7: Subcarrier-wise correlation
8: c[k] = Υ∗wr[k], k = 0, . . . , K − 1
9: Find the maximum sum-correlation
10: p? = arg max

p

∑K−1
k=0 |{c[k]}p|

11: Update the current guess of the common support
12: T̂ = T̂ ∪ p?
13: Estimate the channel gains using the support estimate

14: [ĝv[k]]T̂ =
(

[Υw]:,T̂

)†
yw[k], k = 0, . . . , K − 1

15: Update residual
16: r[k] = yw[k]− [Υw]:,T̂ [ĝv[k]]T̂, k = 0, . . . , K − 1
17: Compute the current MSE
18: MSE = 1

KMLr

∑K−1
k=0 r∗[k]r[k]

19: end while
20: end procedure

Figure 2.3: Detailed steps of the first proposed SW-OMP algorithm.

Of particular importance: the larger the number of subcarriers, the

smaller the estimation variance the ML estimator can achieve. Thereby, if the
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number of averaging subcarriers K is large enough, the lack of knowledge of

the sparsity level is not so critical because of two reasons: 1) the computation

of the support is more precise due to noise averaging during the correlation

estimation step, and 2) if the support is estimated correctly, the estimate of

σ2 will be very close to the true noise variance, such that the halting criterion

is optimal from the ML perspective. It should be clear that the higher the

correlation between adjacent noise components, the larger the performance

gap between the S-OMP and the SW-OMP algorithms, which depends on the

ratio between Nr and Lr. The modification of the S-OMP algorithm to include

the MVUE estimator for the channel gains, as well as the whitening matrix to

estimate the support and the residual is provided in Algorithm 2.3.

2.3.4 Subcarrier Selection - Simultaneous Weighted - Orthogonal
Matching Pursuit + Thresholding

Despite the use of a single, subcarrier-independent measurement matrix

Υ to estimate the frequency-domain MIMO channels, the algorithm presented

in the previous section may exhibit high computational complexity in prac-

tice. The SW-OMP algorithm computes a correlation metric exploiting every

received subcarrier; however, a tradeoff between estimation performance and

computational complexity can be achieved if a small number of subcarriers

Kp << K is used, instead. The problem amounts as to how to choose those

subcarriers, since no quality measure is available beforehand. The ideal situa-

tion would require knowledge of the SNR, which is unknown so far. Nonethe-

less, the different frequency-domain received vectors y[k], k = 0, 1, . . . , K − 1,
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can be used to infer an SNR-related metric. Therefore, with the co-authors

in [1], I proposed to use the `2-norm of the different vectors as quality metric.

Owing to the triangle inequality, ||y[k]||22 ≤ ||Φgv[k]||22 + ||nc[k]||22, such that

the Kp selected signals are expected to exhibit the strongest channel response.

Thereby, the Kp subcarrier signals having largest `2-norm can be used to de-

rive an estimate of the support of the already defined sparse channel vectors

gv[k], k = 0, . . . , K − 1.

The main problem concerning MP algorithms comes from the lack of

knowledge of the channel sparsity level L. For this reason, there is usually an it-

eration in MP algorithms at which L paths have been detected but the estimate

of the average residual energy is a little larger than the noise variance itself.

This makes the algorithm find additional paths which are not actually con-

tained in the MIMO channel. These paths usually have low power, and a prun-

ing procedure is needed to filter out these undesired components. An approach

is to remove those components whose power falls below a given threshold,

which can be related to the average power of the component in the estimated

sparse vectors having maximum average power. Let us denote this power by

P ?. Then, the threshold can be defined as η = βP ?, β ∈ (0, 1). The value P ? is

taken as P ? = max
`

1
K

∑K−1
k=0 |[ĝ

v[k]]`|2. To keep the common sparsity property

it is necessary to ensure that the channel support after thresholding remains

invariant across subcarriers. For this purpose, I define a signal p̂av ∈ CL̂×1

whose i-th component is given by p̂av,i = 1
K

∑K−1
k=0 |[ĝ

v[k]]i|
2, i = 1, . . . , L̂,

such that p̂av measures the average power of each spatial component in the
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quantized angle grid across the different subcarriers. The final support af-

ter thresholding T̂Th is defined as T̂Th =
⋃L̂
i=1 {i / p̂av,i ≥ βP ?}. Therefore,

the components in ĝv[k] indexed by T̂Th are the final channel gains estimates

for each subcarrier. The modification of the proposed SW-OMP algorithm

to reduce computational complexity and implement this pruning procedure is

provided in Algorithm 2.4.

2.3.5 Convergence Analysis

In this section, the proposed SW-OMP and Subcarrier Selection - Si-

multaneous Weighted - Orthogonal Matching Pursuit + Thresholding (SS-

SW-OMP+Th) algorithms are theoretically analyzed to show its convergence

to a local optimum. I assume that the dictionary sizes Gt, Gr are large enough

such that the coarsely quantized AoD/AoD are accurately estimated, which

holds for large enough values of M [14] and K. Since the computation of

the residual is identical for both algorithms, they are analyzed following the

same procedure. A sufficient condition for convergence to a local optimum is

that the energy of the residual computed at the (n+ 1)-th iteration is strictly

smaller than that of the n-th iteration, i.e.,

||r(n+1)[k]||22 < ||r(n)[k]||22, k = 0, . . . , K − 1. (2.30)

The residual for a given iteration n can be written as

r(n)[k] =
(
IMLr −P(n)

)
yw[k], (2.31)
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1: procedure SS-SW-OMP+Th(y[k],Φ,Ψ,Kp,β,ε)
2: Initialize counter, set of subcarriers and residual vectors
3: i = 0, K = {∅}, yw[k] = D−∗w y[k], r[k] = yw[k], k = 0, . . . , K − 1
4: Find the Kp strongest subcarriers
5: while i ≤ Kp do
6: K = K ∪ arg max

k 6∈K
‖y[k]‖2

2

7: i = i+ 1
8: end while
9: Compute the whitened equivalent measurement matrix
10: Υw = D−∗w ΦΨ
11: while MSE > ε do
12: Subcarrier-wise correlation for the Kp selected subcarriers
13: c[k] = Υ∗wr[k], k ∈ K

14: Find the maximum sum-correlation
15: p? = arg max

p

∑
k∈K |{c[k]}p|

16: Update the current guess of the common support
17: T̂ = T̂ ∪ p?
18: Estimate the channel gains using the support estimate

19: [ĝv[k]]T̂ =
(

[Υw]:,T̂

)†
yw[k], k = 0, . . . , K − 1

20: Update residual
21: r[k] = yw[k]− [Υw]:,T̂ [ĝv[k]]T̂, k = 0, . . . , K − 1
22: Compute the current MSE
23: MSE = 1

KMLr

∑K−1
k=0 r∗[k]r[k]

24: end while
25: Thresholding based on maximum average power
26: P ? = max

`

1
K

∑K−1
k=0 |[ĝ

v[k]]`|
2

27: p̂av,i = 1
K

∑K−1
k=0 |[ĝ

v[k]]i|
2, i = 1, . . . , L̂

28: T̂Th =
⋃
i / p̂av,i ≥ βP ?, i ∈ T̂

29: ĝv[k] = [ĝv[k]]T̂Th
, k = 0, . . . , K − 1

30: end procedure

Figure 2.4: Detailed steps of the second proposed SS-SW-OMP+Th algorithm.
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with P(n) ∈ CMLr×MLr a projection matrix given by P(n) , [Υw]:,T̂(n) [Υw]†
:,T̂(n)

.

Accordingly, r(n)[k] is the vector resulting from projecting yw[k] onto the sub-

space orthogonal to the column space of [Υw]:,T̂(n) . Therefore, the condition in

(2.30) can be rewritten as a function of the projection onto the column space

of [Υw]:,T̂(n) as

||P(n+1)yw[k]||22 > ||P(n)yw[k]||22. (2.32)

Observe that the term inside the `2-norm on the left side of (2.32) can be

expressed as

P(n+1)yw[k] =
[

[Υw]:,T̂(n) [Υw]:,p̂(n+1)∗

] [
[Υw]:,T̂(n) [Υw]:,p̂(n+1)∗

]†
yw[k],

(2.33)

with p̂(n+1)∗ the estimate for the support index found during the (n + 1)-th

iteration, satisfying p̂(n+1)∗ 6∈ T̂(n). Thereby, the projection matrix P(n+1) can

be recursively written as a function of P(n) using the formula for the inverse

of a 2× 2 block matrix [135] as

P(n+1) = P(n) +

(
IMLr −P(n)

)
[Υw]:,p̂(n)∗ [Υw]∗:,p̂(n)∗

(
IMLr −P(n)

)
[Υw]∗:,p̂(n)∗ (IMLr −P(n)) [Υw]:,p̂(n)∗︸ ︷︷ ︸

∆P(n+1)

, (2.34)

with ∆P(n+1) ∈ CMLr×MLr another projection matrix accounting for the re-

lation between the projection matrices at the n-th and (n + 1)-th iterations.

The equation in (2.34) can be noticed to fulfill the orthogonality principle,

P(n+1)∆P(n+1) = 0. The left-handed term in (2.32) can then be expressed as

||P(n+1)yw[k]||22 = ||P(n)yw[k] + ∆P(n+1)yw[k]||22

= ||P(n)yw[k]||22 + ||∆P(n+1)yw[k]||22,
(2.35)
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thereby satisfying the triangle equality. Finally, from (2.35), it is inmediate

that ||P(n+1)yw[k]||22 > ||P(n)yw[k]||22 since ∆P(n+1) has a non-zero unity eigen-

value. Thereby, the condition in (2.32) is satisfied and convergence of the

proposed algorithms to a local optimum is guaranteed.

2.4 Numerical Results

This section includes the main numerical results obtained with the two

proposed algorithms, SW-OMP and SS-SW-OMP+Th, and comparisons with

other frequency-domain channel estimation algorithms including SSAMP [69]

and DGMP [70] are also provided. To obtain these results, I perform Monte

Carlo simulations averaged over 100 trials to evaluate the NMSE and the er-

godic rate as a function of SNR and number of training frames M . I also

provide calculations of the computational complexity for the proposed algo-

rithms in Table 2.2 and prior work in Table 2.3.

The typical parameters for the system configuration are summarized

as follows and included in Table 2.1. Both the transmitter and the receiver

are assumed to use a ULA with half-wavelength separation. Such a ULA

has steering vectors obeying the expressions [aT(θ`)]n =
√

1
Nt
ejnπ cos (θ`), n =

0, . . . , Nt − 1 and [aR(φ`)]m =
√

1
Nr
ejmπ cos (φ`), m = 0, . . . , Nr − 1. I take

Nt = Nr = 32 and Gt = Gr = 64 for illustration. The phase-shifters used in

both the transmitter and the receiver are assumed to have NQ quantization

bits, so that the entries of the analog training precoders and combiners F(m)
tr ,

W(m)
tr , m = 1, 2, . . . ,M are drawn from a set A =

{
0, 2π

2
NQ
, . . . , 2π(2

NQ−1)

2
NQ

}
. The
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Table 2.1: Summary of typical system configuration parameters

Simulation Parameters

Description Parameter Value
Number of transmit antennas Nt 32
Number of receive antennas Nr 32
Number of transmit RF chains Lt 4
Number of receive RF chains Lr 4
Transmit angular grid size Gt 64
Receive angular grid size Gr 64
Number of phase-shifter quantization bits NQ 2
Number of OFDM subcarriers K 16
Number of ZP samples Zp 4
Number of OFDM training symbols M 80
Sampling period Ts 1/1760 µs
Number of channel paths L 4
Channel tap length D 4
Pulse-shape roll-off factor β 0.8

number of quantization bits is set to NQ = 2. The number of RF chains is

set to Lt = 4 at the transmitter and Lr = 4 at the receiver. The number of

OFDM subcarriers is set to K = 16.

I initially generate channels according to (2.2) with the following pa-

rameters:

• A number of L = 4 channel paths are assumed to be independent and

identically distributed, with delay τ` chosen uniformly from [0, (D−1)Ts],

with Ts = 1
1760

µs, as in the IEEE 802.11ad wireless standard.

• The AoD/AoA are assumed to be uniformly distributed in (0, π).

• The gains of each path are zero-mean complex Gaussian distributed such
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that Ek{‖H[k]‖2
F} = NrNt

ρL
.

• The band-limiting filter prc(t) is assumed to be a raised-cosine pulse-

shape with roll-off factor of 0.8.

• The number of delay taps of the channel is set to D = 4 symbols.

In the simulations, I consider channel realizations in which the AoD/AoA are

off-grid, i.e. do not correspond to the angles used to build the dictionary, and

also the on-grid case, to analyze the loss due to the model mismatch.

2.4.1 NMSE Comparison

An important estimation performance metric is the NMSE of a channel

estimate {Ĥ[k]}K−1
k=0 for a given realization, defined as

NMSE =

∑K−1
k=0 ‖Ĥ[k]−H[k]‖2

F∑K−1
k=0 ‖H[k]‖2

F

. (2.36)

The NMSE will be the baseline metric to compute the performance of the

different algorithms, and will be averaged over 100 channel realizations. The

normalized CRLB is also provided to compare the average performance of each

algorithm with the lowest achievable NMSE, and will also be averaged over

many channel realizations.

I compare the average NMSE versus SNR obtained for the different

channel estimation algorithms in Fig. 2.5 for a practical SNR range of −15

dB to 10 dB, on-grid AoD/AoA, and two different values for the number of

training frames.
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Figure 2.5: Evolution of the NMSE versus SNR for the different frequency-
domain algorithms when the AoD/AoA are assumed to lie on the dictionary
grid. The number of training frames is set to M = 80 (a) and M = 120 (b).
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The first proposed SW-OMP algorithm exhibits the best estimation

error performance, achieving NMSE values very close to the CRLB. The sec-

ond proposed SS-SW-OMP+Th algorithm performs similarly to SW-OMP, al-

though there is some performance loss due to the fact that SS-SW-OMP+Th

does not employ every subcarrier to estimate the common support of the sparse

channel vectors. In SS-SW-OMP+Th, the number of selected subcarriers for

the estimation of the support is set to Kp = 4 for illustration, and the pa-

rameter β is chosen as β = 0.025, which is a reasonably small value to filter

out undesired components in the sparse channel estimate. From the curves

shown in Fig. 2.5, OMP performs poorly over all the SNR range since it is

not designed to process several vectors which are sparse in a common vector

basis. Exploiting common spatial sparsity provides an NMSE reduction of ap-

proximately 7 dB, although there are slight variations depending on the SNR

value. This improvement comes at the cost of a higher offline computational

complexity in the proposed algorithms in comparison with OMP, as I show in

Section 2.4.3.

It can also be observed that the DGMP algorithm from [70] exhibits the

worst estimation error performance, which is expected since it was designed

to estimate near-LOS mmWave MIMO channels. Since it only estimates a

single path, the estimation error for NLOS channels is large. The algorithm

SSAMP is also shown for comparison. At low SNR regime, the information on

the common support is enough to outperform the OMP algorithm, but not at

the high SNR regime. This comes from the fact that the SSAMP algorithm
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estimates more than a single path per iteration. Since the dictionary matrices

are not square in this setting, the redundancy between columns in the transmit

and receive array matrices makes it difficult to properly estimate more than a

single support index per iteration.

Using a larger number of training frames M enhances estimation per-

formance, but at the cost of both higher overhead and computational complex-

ity, since the complexity of estimating the support, channel gains and noise

variance grows linearly with LrM . Nonetheless, there is an SNR-increasing

performance gap between SS-SW-OMP+Th and SW-OMP. Even further, this

gap increases with the number of training frames, which may seem counter-

intuitive. This effect comes the variance of the MVUE for the channel gains

depends on the SNR. Clearly, in high SNR regime, the estimates of the weakest

paths have smaller estimation variance than in low SNR regime. Therefore,

since the threshold (dependent on β) is not adapted to the noise variance,

these paths are more likely to be removed at higher SNR. When M increases,

the estimation variance also decreases, which further increases this gap, as

observed in Fig. 2.5(a) and 2.5(b).

I show in Fig. 2.6 the performance of the different frequency-domain

algorithms when increasing the number of subcarriers. The parameters for

the simulation scenario are the same as in Fig. 2.5, however, the number

of subcarriers is set to K = 64 in this case. Kp is set to 32 subcarriers

and β = 0.025σ2. Interestingly, both SW-OMP and SS-SW-OMP+Th are

asymptotically efficient in SNR since they are both unbiased and attain the
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Figure 2.6: Comparison of evolution of the NMSE versus SNR for the different
frequency-domain algorithms. The number of training frames is set to M = 80.
The number of subcarriers is set to K = 64.

NCRLB. A magnified plot for SNR = −5 dB is also shown to clearly see the

performance gap between the different algorithms and also the CRLB.

The previous simulations showed the performance of the algorithms

when the channel fits the on-grid model, but it is also important to analyze

the performance in a practical scenario, when the AoD/AoA do not fall within

the quantized spatial grid. Fig. 2.7 shows the performance of the different algo-

rithms under a more challenging scenario with channel realizations extracted

from the NYUSIM channel simulator [4]. The simulation parameters for this

scenario are chosen as K = 256, Kp = K/4 = 64, β = 0.01σ2 and Lt = Lr = 4.

The remaining parameters are the same as in Fig. 2.5. Results are shown for

M = 60 frames (a), and M = 100 frames (b).
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Figure 2.7: Evolution of the NMSE versus SNR for the different frequency-
domain algorithms. The number of training frames is set to M = 60 (a)
and M = 100 (b). The channel realizations are taken from NYUSIM channel
simulator.
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Figure 2.8: Comparison of evolution of the NMSE versus M at different SNR.
The SNR is set to −10 dB (a) and (d), −5 dB (b) and (e) and 0 dB (c) and
(f). Plots (a), (b), (c) consider on-grid angular parameters on the channel real-
izations, while (d), (e), (f) consider the off-grid case with channel realizations
extracted from the NYUSIM channel simulator [4].
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The estimation error is observed to be below −10 dB for values of SNR

in the order of 0 and beyond. On the other hand, since the SNR expected in

mmWave communication systems is in the order of −20 dB up to 0 dB, the

attained NMSE should be reduced. Increasing the size of the dictionary is one

of the possible solutions, as shown by the curves in Fig. 2.7 corresponding to

Gt = Gr = 128 and Gt = Gr = 256.

Fig. 2.8 shows the average NMSE vs number of training frames M .

The number of training frames M is increased from 20 to 100. The remaining

parameters in the simulation scenario are the same as in Fig. 2.7, with Gt =

Gr = 128. Results are shown for channel realizations in which the angular

parameters fall within the quantized angle grid and when they do not.

The average performance of the OMP algorithm is poor for all the

considered cases, which comes from its inability to exploit the common support

property shared by the different subchannels. The first proposed SW-OMP

algorithm can be observed to provide the best performance for the different

values of M and SNR. The larger the number of training frames and the

higher the SNR, the estimation of the support is more robust and gets closer

to the actual one. In the on-grid case, if the number of training frames is

large enough and the SNR is not low, the performance gap between SW-OMP

and the CRLB is smaller than 1 dB. The difference in performance between

SS-SW-OMP+Th and SW-OMP reduces when either M or SNR is increased.

As in Figs. 2.5 and 2.7, there is a big difference in performance between OMP

and SW-OMP, depending on both the SNR and the number of frames.
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2.4.2 Spectral efficiency comparison

Another performance metric is the spectral efficiency, which is com-

puted assuming fully-digital precoding and combining using estimates of the

Ns dominant left and right singular vectors of the channel estimate. This

gives K parallel effective channels Heff[k] =
[
Û[k]

]∗
:,1:Ns

H[k]
[
V̂[k]

]
:,1:Ns

. Ac-

cordingly, the average spectral efficiency can be expressed as [136]

R(SNR) =
1

K

K−1∑
k=0

Ns∑
n=1

log

(
1 +

SNR

Ns

λn(Heff[k])2

)
, (2.37)

with λn(Heff[k]), n = 1, . . . , Ns denoting the singular values of the effective

channel Heff[k].

In Fig. 2.9(a), I show the achievable spectral efficiency as a function of

the SNR for the different channel estimation algorithms when realistic channel

realizations are considered. The simulation parameters are the same as in

Fig. 2.7.

The difference in performance between OMP and the two proposed

algorithms is noticeable, which comes from the fact that OMP does not exploit

spatially common sparsity. The two proposed algorithms perform similarly for

all the range of SNR, which is an indicator that Kp < K subcarriers provide

sufficient information to obtain a reliable channel estimate. Therefore, SS-

SW-OMP+Th can be claimed to be a good tradeoff between performance and

computational complexity.

Finally, Fig. 2.9(b) shows the spectral efficiency as a function of the

number of training frames M for the different channel estimation algorithms.
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Figure 2.9: (a) Evolution of the spectral efficiency versus SNR for the different
frequency-domain algorithms. The number of training frames is set to M = 60.
(b) Evolution of the spectral efficiency versus number of training frames M at
different SNR for the different frequency-domain algorithms.
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Comparisons are provided for SNR = {−10,−5, 0} dB. It is observed that SW-

OMP is the algorithm providing the best performance, followed closely by SS-

SW-OMP+Th, whilst OMP performs the worst. For low values of SNR, there

is a noticeable performance gap between SW-OMP and the perfect CSI case,

which becomes smaller as M increases. It can be noticed that using M ≥ 40

frames does not bring about significant improvement in performance, which

leverages the robustness of the two proposed approaches. Simulations also

show that near-optimal achievable rates can be achieved by using a reasonable

number of frames, i.e., 40 ≤M ≤ 100.

2.4.3 Computational complexity

The computational complexity for each step in the different proposed

algorithms is also provided for the j-th iteration in Table 2.2. Since some

steps can be performed before running the channel estimation algorithms, it

is important to distinguish between on-line and off-line operations. Values are

provided for a single iteration. In the case of the SSAMP algorithm [69, 71],

the DGMP algorithm in [70], and the OMP algorithm in [34], I take the

notation used in the corresponding papers for frequency-domain vectors and

measurement matrices.

The computational complexity of SS-SW-OMP+Th is lower than its

SW-OMP counterpart, since a reduced number of correlations are computed

to estimate the channel support. It must be noticed that the complexity

of SS-SW-OMP+Th is lower than that of OMP, since the matrix product
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Table 2.2: Online computational complexity of proposed algorithms

SW-OMP

Operation Complexity
(K)× c[k] = Υ∗wr[k] O(K(GrGt − (j − 1))LrM)

Maximum of
∑N−1

k=0 |{c[k]}p| O(K(GrGt − (j − 1)))

(K)× xT̂[k] =
(

[Υw]:,T̂

)†
yw[k] O(j2LrM + j3)

(K)× r[k] = yw[k]− [Υw]:,T̂
ˆ̃ξ[k] O(KLrM)

MSE = 1
KMLr

∑K−1
k=0 r∗[k]r[k] O(KLrM)

Overall O(LrM(K(GrGt − (j − 1))))

SS-SW-OMP+Th

Operation Complexity
Find the Kp strongest subcarriers O(KLrM)
(Kp)× c[k] = Υ∗wr[k] O(Kp(GrGt − (j − 1))LrM)
Maximum of

∑
k∈K |{c[k]}p| O(Kp(GrGt − (j − 1)))

(K)× xT̂[k] =
(

[Υw]:,T̂

)†
yw[k] O(j2LrM + j3)

(K)× r[k] = yw[k]− [Υw]:,T̂
ˆ̃ξ[k] O(KLrM)

MSE = 1
KMLr

∑K−1
k=0 r∗[k]r[k] O(KLrM)

Thresholding O(KL̂)
Overall O(LrM(Kp(GrGt − (j − 1))))

Υw = D−∗w Υ can be computed before explicit channel estimation. The online

computational complexity of SW-OMP is lower than that of OMP, since OMP

computes K matrix pseudoinverses while SW-OMP only computes one. Con-

versely, the offline computational complexity of both the proposed SW-OMP

and SS-SW-OMP+Th algorithms is higher than those for the other algorithms,

since the matrix Υw must be computed before explicit channel estimation.

The computational complexity of SW-OMP is lower than its SSAMP

counterpart. SSAMP exhibits an increase in complexity of at most O(4j2)
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Table 2.3: Online computational complexity of previously proposed algorithms

OMP in [34]

Operation Complexity
(K)× c[k] = Υ∗[k]r[k] O(K(GrGt − (j − 1))LrM)
(K)× Maximum of |{c[k]}p| O(K(GrGt − (j − 1)))

(K)× xT̂[k] = [Υ]†
:,T̂

[k]z[k] O(K(2j2LrM + j3))

(K)× r[k] = y[k]− [Υ]:,T̂ [k]ξ̂[k] O(KLrM)

(K)×MSE = 1
MLr

r∗[k]r[k] O(KLrM)

Overall O(KLrM(GrGt − (j − 1) + 2j2))

SSAMP in [69,71]

Operation Complexity
(K)× ap = Φ∗pb

i−1
p O(KGrGtLrM)

Maximum of
∑N−1

p=0 ‖ap‖2
2 O(NGtGr)

(K)× {tp}Ωi−1∪Γ = ((Φp)
†
Ωi−1∪Γ

rp O(K(4j2MLr + (2j)3))
Prune support O(2Kj)
(K)× {cp}Ω = ({Φp}Ω)†rp O(K(2j2MLr + j3))
(K)× bp = rp −Φpcp O(KLrMGtGr)

Computation of total error
∑K−1

p=0 ‖bp‖2
2 O(KMLr)

Overall O(2KLrM(GrGt + 6j2))

DGMP in [70]

Operation Complexity
(K)× ap = Υ∗prp O(KGrGtLrM)

Maximum of ρ = arg max
ρ̃

∑N−1
p=0 ‖ap‖2

2 O(KGtGr)

(K)× {αp}ρ = ({Φp}†ρrp O(K(2j2MLr + j3))
Overall O(KLrM(GrGt + 2j2))

owing to the estimation of j paths at the j-th iteration of SSAMP. More

especifically, this algorithm uses an iteration index i to estimate the sparsity

level L, and a stage index j to estimate the j channel paths found at the

current iteration. Afterwards, the support of the channel estimate is pruned
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to select the j most likely channel paths. Therefore, at a given iteration i and

stage j, at most 2j = |Ω̃i−1 ∪ Γ| paths are estimated and then pruned, such

that only j paths are selected among the 2j candidates. The union of the

sets Ω and Γ comes from the possibility of finding new potential paths at the

i-th iteration and the j-th stage. This is done by jointly considering the paths

found at (i − 1)-th iteration and the ones found in the j-th stage within the

i-th iteration. While both SW-OMP, SS-SW-OMP+Th and OMP estimate

a single path at a given iteration j, SSAMP estimates at most 2j different

paths by using LS. When computing the pseudoinverse during LS estimation,

this results in an additional increase in complexity of O(4j2), as shown in

Table 2.3. By contrast, as shown in Table 2.2, the proposed ML estimator for

the channel gains exhibits computational complexity in the order of O(2j2),

thereby slightly reducing the number of operations.

While OMP does not require any offline operation, both SW-OMP and

SS-SW-OMP+Th need to compute the matrix Υw. The offline computation

of D−1
w has complexity of O(M

3
L3

r ), since C−1
w is a block diagonal matrix con-

taining M Hermitian matrices. It is important to remark that this cost comes

from the use of frequency-flat precoders/combiners. This entails a reduction

in computational complexity with respect to the case in which frequency-

selective baseband combiners were used during the channel estimation stage.

In summary, the proposed algorithms reduce the computational complexity by

approximately a factor of K vs. the OMP algorithm.
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2.4.4 Bit Error Rate

The last performance measure I consider in this chapter is the BER.

Simulation results on the BER achieved by the proposed algorithms are pro-

vided, as well as comparisons with the baseline approach in [34]. I assume

that channel estimation has already been performed, and a data transmission

phase takes places. I provide both uncoded and coded BER results. For the

latter, I use Low Density Parity Check (LDPC) codes, inspired by the IEEE

802.11ad mmWave communications standard [36], to encode the data bits to

be transmitted. I consider the OFDM-PHY transmission frame specified in

the aforementioned standard, and use the Modulation and Coding Scheme

(MCS) 18 for illustration. Such MCS considers a 16-QAM constellation using

dual carrier modulation [36], in which two constellation symbols are shared

between two subcarriers, and LDPC coding with rate RLDPC = 1
2
. To esti-

mate the equivalent (beamformed) channel, I use known symbols from the

pilot subcarriers contained in this frame, and then use spline interpolation to

estimate the beamformed channel at the data subcarriers. I denote the set

of positions of pilot subcarriers as P. Likewise, the set of positions of data

subcarriers is denoted as D. Let us express the Singular Value Decomposi-

tion (SVD) of the MIMO channel estimate Ĥ[k] as Ĥ[k] = Û[k]Σ̂[k]V̂
∗
[k].

For the data phase, information is transmitted using a precoder f[k] ∈ CNt×1,

f[k] =
[
V̂[k]

]
:,1

, and combine the received MIMO signal using a combiner

w[k] ∈ CNr×1, w[k] =
[
Û[k]

]
:,1

. Transmitted data in IEEE 802.11ad is parti-

tioned into Bdata OFDM symbols with K = 512 subcarriers, with NSD = 336
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data subcarriers, and NSP = 16 pilot subcarriers [36].

Let s(`)[p] ∈ C be the transmitted pilot in the `-th data block at sub-

carrier p ∈ P, s(`)[d] ∈ C the data constellation symbol at subcarrier d ∈ D,

g[k] ∈ C be the equivalent channel g[k] = w∗[k]H[k]f[k], g[k] = α[k]ejφ[k], and

n(`)[k] ∈ C the combined Gaussian noise sample, at subcarrier k. Then, the

l-th received block at subcarrier k is given by

r(`)[k] = g[k]s(`)[k] + n(`)[k], k = 0, . . . , K − 1. (2.38)

The unknown parameters α[k], φ[k] are estimated using the ML criterion, for

which the ML estimators are [135]

φ̂ML[p] = tan−1

{∑Bdata

`=1 Im{r(`)[p]̄s(`)[k]}∑Bdata

`=1 Re{r(`)[p]̄s(`)[k]}

}

α̂ML[p] =
1

Bdata

Bdata∑
`=1

∣∣∣r(`)[p]̄s(`)[p]e−jφ̂ML[p]
∣∣∣. (2.39)

After interpolating the estimates g[k] at k ∈ D using g[p], p ∈ P, the re-

ceiver estimates the Log-Likelihood Ratio (LLR) for the coded bits, and the

trasnmitted data bits are estimated using the belief propagation algorithm.

I show in Fig. 2.10 the empirical BER obtained with the proposed

algorithms and the baseline approach, as a function of the SNR, for the same

simulation parameters as with Fig. 2.7, and with K = 512, M = 60, and

Gt = Gr = 128.

It is observed that the proposed approaches outperform the baseline

channel estimation technique for both uncoded and coded BER, and for all
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Figure 2.10: (a) Evolution of the coded BER versus SNR for the different
frequency-domain algorithms. The number of training frames is set to M = 60.
(b) Evolution of the uncoded BER versus SNR for the different frequency-
domain algorithms. The number of training frames is set to M = 60.
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values of SNR. At the very low SNR regime, the proposed algorithms show

a noticeable performance gain, which reduces as the SNR increases because

estimating the channel support becomes easier. There is, however, still a BER

performance gain in the medium-high SNR regime, which comes from the use

of the noise covariance matrix in the proposed algorithms. This results in

more accurate estimates of the channel gains, and also better estimates of the

sparsity level.

2.5 Conclusions

In this chapter, I developed and evaluated two compressive channel es-

timation algorithms suitable for MIMO-OFDM-based communication systems

operating at the mmWave frequency band. In the proposed estimation strate-

gies, by leveraging both the spatially common sparsity present in frequency-

selective mmWave MIMO channels and the statistics of the received signal,

high-quality estimates of the large-dimensional MIMO channels can be ob-

tained. I exposed several tradeoffs in the designs of the proposed algorithms,

including offline and online computational complexity, achievable estimation

error, spectral efficiency and BER performance.

To evaluate the proposed algorithms, I first presented numerical re-

sults in a simplified scenario to evaluate the efficiency of the estimates for the

common support of the sparse channel vectors. This scenario considered a

geometric channel model with a reduced number of multipath components,

wherein no space-time clustering is considered. Thereafter, I performed nu-
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merical simulations in a more realistic scenario in which channel realizations

were taken from the NYUSIM channel simulator, in which space-time cluster-

ing is considered and the AoD/AoA do not fall within the quantized angular

grids. I compared the achievable NMSE attained by the proposed algorithms

to the CRLB for this problem when the channel support is assumed known

and showed that the algorithms are asymptotically efficient when there is no

grid quantization error and the estimation of the channel support is correct.

I also compared the performance of the proposed strategies to prior work,

and showed that the proposed approaches significantly outperform previous

channel estimation algorithms, in terms of NMSE, spectral efficiency, online

computational complexity, and BER performance for both uncoded and coded

communication. Finally, I showed that near-optimum spectral efficiency can

be attained even when information from only a reduced number of subcarri-

ers is used to compute the channel support, thereby reducing computational

complexity with respect to prior estimation algorithms.
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Chapter 3

Millimeter Wave Compressive Channel

Estimation with Carrier Frequency Offset

Uncertainties

3.1 Introduction

In the previous chapter, I proposed two novel solutions to the problem

of channel estimation for frequency-selective hybrid mmWave MIMO systems

assuming perfect synchronization at the receiver side. As discussed in Chapter

1, time-frequency synchronization cannot be taken for granted at mmWave,

since link configuration occurs in the low SNR regime before beamforming. To

gain insight into the impact of synchronization uncertainties on the channel

estimation problem, I now turn the focus on the channel estimation prob-

lem under CFO synchronization impairments assuming a narrowband channel

model.

In this chapter, I propose a multi-stage solution to the problem of

mmWave channel estimation when the received signal is impaired by Car-

rier Frequency Offset (CFO) uncertainties. Different from the proposed work

in Chapter 2 and [1], [125], I focus on narrowband channels and turn the

attention into the problem of joint channel estimation and frequency synchro-

nization in the low SNR regime. Based on a training protocol similar to that
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in Chapter 2, I develop an estimation-theoretic algorithm to infer the CFO,

the low-dimensional mmWave channels seen by every receive RF chain for

every training frame, and the noise variance. Building upon this estimation

approach, I develop an OMP-based estimation algorithm to reconstruct the

large-dimensional mmWave MIMO channel, leveraging both the statistics of

the unknown parameters, and their corresponding CRLB. Further, I analyze

the computational complexity of the proposed technique and show that near-

optimal spectral efficiency can be attained at similar computational complex-

ity to that exhibited by a near-optimal compressive channel estimator when

there is no CFO impairment. The design target here is to reduce the training

overhead required to estimate the mmWave MIMO channel, while ensuring

near-optimum channel estimation performance. This work has been published

in [2], [137]

3.1.1 Prior Work and Motivation

A significant number of papers have proposed solutions to the problem

of narrowband channel estimation [14,17,53,56–60,128], assuming both perfect

synchronization at the receiver side and zero-delay response for the phase-

shifter network that operates in the analog domain. This is not practical in

mmWave WiFi systems, for example, where both synchronization and channel

estimation are performed on a burst-by-burst basis.

In the 5G NR standard [37], synchronization and beamforming is also

performed on a frame-by-frame basis, such that joint synchronization and
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Figure 3.1: Summary and comparison of prior work on narrowband channel
estimation algorithms with impairments as well as the approach proposed in
this Chapter.

beamforming needs to be addressed. To the best of my knowledge, only [118],

[116], [119], and [120] consider non-ideal synchronization effects. These papers

have however several limitations, which are summarized in Fig. 3.1.

In [118], a SISO communications system is considered, in which the PN

and the channel are iteratively estimated using a LS-based algorithm. In [116],

a joint solution to the problem of MIMO channel and CFO is provided for

analog MIMO architectures. The main limitations of [118] are twofold: i)

it only considers a SISO communications system, which is not realistic for

mmWave communication systems; and ii) the proposed iterative method has

been evaluated only in the very high SNR regime, i.e. SNR ≥ 10 dB. The

main limitations of [116] are the following: i) it assumes that analog beam-

formers and combiners can be reconfigured for each transmitted sample. At

a sampling rate of 1760 MHz, phase-shifters need around 64 samples to be
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updated for a new configuration [36]; and ii) the proposed joint estimation of

the tensor containing the channel response and the frequency offset exhibits

high complexity, and sets both range and on-grid constraints on the CFO to

be estimated.

In [120], a compressive beam alignment algorithm is proposed to es-

timate the channel under CFO synchronization errors. The main limitations

of [120] are: i) similar to [116], it assumes that analog beamformers and com-

biners can be instantaneously reconfigured; ii) the proposed algorithm is tar-

geted at analog-only MIMO architectures, thereby making it inapplicable to

hybrid MIMO systems; iii) the proposed channel estimation algorithm heavily

depends on a sparse structure in the MIMO channel, with a small delay tap

length; and iv) the CFO correction range of the proposed algorithm is lim-

ited by the length of the training sequence and the channel delay tap length,

thereby making it difficult to apply the algorithm in practice. Finally, [119]

deals with the problem of channel estimation in frequency-unsynchronized

mmWave networks.

In [119], analog-only architectures with a single RF chain are assumed,

and an autocorrelation-based iterative algorithm is proposed to jointly esti-

mate the CFO and the mmWave channel. The limitations of [119] are: i)

similar to [116], it assumes that analog beamformer and combiners can be in-

stantaneously reconfigured for two consecutive transmitted time-domain sam-

ples; ii) the algorithm has only been evaluated for mmWave channels having

a very reduced number of non-clustered multipath components, which is not
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realistic for mmWave communication systems; iii) owing to the nature of the

autocorrelation function, the proposed algorithm does not perform well both

when the CFO is considerably large and the SNR is low; and iv) the pro-

posed algorithm assumes that the channel’s sparsity level is known, and that

the AoD/AoA lie on a spatial grid, which does not hold in practice. In sum-

mary, the joint CFO and channel estimation techniques in [118], [116], [120],

and [119] are developed based on different assumptions that make the pro-

posed algorithms both not robust to low SNR and not applicable to MIMO

systems employing hybrid architectures.

3.1.2 Contributions

In this chapter, I theoretically analyze and develop a multi-stage solu-

tion to the problem of channel estimation with CFO imperfections and hybrid

MIMO architectures. The contributions of this chapter are listed hereafter:

• I formulate and find a solution to the problem of CFO and channel esti-

mation accounting for the reconfiguration time of phase-shifters, which

sets the notion of training frame in the remaining of this chapter.

• For every training frame, I theoretically analyze and find the optimum

solution to the problem of estimating the CFO, equivalent channel,

and noise variance for an arbitrary hybrid architecture with several RF

chains. I theoretically calculate the CRLB for the estimation of each of

these parameters and also find the corresponding ML estimators.
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• Using estimates of the unknown parameters for every training frame, I

formulate the problem of estimating the high-dimensional MIMO chan-

nel. I propose an iterative low-complexity algorithm to find the sparse

channel coefficients based on OMP. It is noteworthy to mention that,

unlike prior work, the proposed strategy does not require either

knowledge of the channel’s sparsity level or the noise variance.

I assess the performance of the proposed estimators both in terms of

estimation error and spectral efficiency. I use both all-digital and hybrid pre-

coders and combiners to show the effectiveness of the proposed approaches.

Simulation results obtained from the estimated channel show that the CFO

may be estimated with sufficient reliability despite the low SNR before beam-

forming. Moreover, the proposed CFO synchronization and channel estimation

method, along with the designed hybrid precoders and combiners, is shown

to offer excellent performance, even though the MIMO channel has a large

number of multipath components and the noise variance is considered to be

unknown.

3.2 System model

I consider a single-user mmWave MIMO communications link in which

a transmitter equipped with Nt antennas sends Ns data streams to a receiver

having Nr antennas. Both transmitter and receiver are assumed to use fully-

connected hybrid MIMO architectures as shown in Fig. 3.2, with Lt and

Lr RF chains. A hybrid precoder is used, with F = FRFFBB ∈ CNt×Ns ,
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Figure 3.2: Illustration of the structure of a hybrid MIMO architecture, which
includes analog and digital precoders and combiners (same as Fig. 1.2).

where FRF ∈ CNt×Lt is the analog precoder and FBB ∈ CLt×Ns is the digital

one. The RF precoder and combiner are implemented using a fully-connected

network of phase-shifters, as described in [14]. The MIMO channel between

the transmitter and the receiver is modeled as an Nr×Nt matrix denoted as H,

which is assumed to be a sum of the contributions of C spatial clusters, each

contributing with Rc rays, c = 1, . . . , C [14], [138], [60]. I use ρL to denote the

pathloss, αc,r ∈ C is the complex gain of the r-th ray within the c-th cluster,

φc,r, θc,r ∈ [0, 2π) are the angles of arrival and departure (AoA/AoD), and

aR(φc,r) ∈ CNr×1 and aT(θc,r) ∈ CNt×1 denote the receive and transmit array

steering vectors. Using this notation, the channel matrix is given by

H =

√
NrNt

ρL

∑C
c=1Rc

C∑
c=1

Rc∑
r=1

αc,raR(φc,r)a
∗
T(θc,r). (3.1)
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I define G ∈ C
∑C
c=1Rc×

∑C
c=1 Rc as the matrix containing the complex chan-

nel gains, G =
√

NrNt

ρ
∑C
c=1Rc

diag{α1,1, . . . , α1,R1 , . . . , αC,1, . . . , αC,RC}and AR ∈

CNr×
∑C
c=1Rc and AT ∈ CNt×

∑C
c=1 Rc the matrices containing the receive and

transmit array steering vectors aR(φc,r) and aT(θc,r) in their columns. Using

this convention, H can be written in a more compact way as

H = ARGA∗T. (3.2)

Now, the matrix H in (3.2) can be approximated using the extended virtual

channel representation [8] as

H ≈ ÃRGvÃ∗T, (3.3)

where Gv ∈ CGr×Gt is a sparse matrix which contains the path gains of the

quantized spatial frequencies in the non-zero elements, and the dictionary

matrices ÃT and ÃR contain the transmit and receive array response vectors

evaluated on grids of sizes Gt and Gr. Assuming that the receiver applies a

hybrid combiner W = WRFWBB ∈ CNr×Lr , with WRF ∈ CNr×Lr being the

analog combiner, and WBB ∈ CLr×Ns the baseband combiner, the received

signal at discrete time instant n can be written as

y[n] = W∗HFs[n]ej2π∆fn + v[n], (3.4)

for n = 0, . . . , N − 1. The signal s[n] ∈ CNs×1 is a training sequence known

to the receiver during the channel estimation phase, 0 ≤ n ≤ N − 1, ∆f

is the unknown CFO normalized to the sampling frequency fs = 1/Ts, and
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v[n] ∼ CN (0, σ2W∗W) is the circularly symmetric complex Gaussian dis-

tributed additive noise vector.

Similar to prior work in [14], I consider a training protocol in which the

transmitter sends M consecutive training frames to the receiver in order to

perform both CFO synchronization and compressive estimation of the MIMO

channel. The transmitted signal corresponding to the m-th frame, 1 ≤ m ≤

M , is given by

x(m)[n] = F
(m)
RF F

(m)
BB s(m)[n]. (3.5)

I design now the training signal as s(m)[n] = q̃(m)s(m)[n], with q̃(m) ∈ CNs×1 a

frequency-flat spatial modulation vector, static for every frame, and s(m)[n] ∈

C a scalar time-domain training sequence. With this choice for q̃(m), I will

show in Section 3.3 that the information the receiver is given only depends

on the energy of s(m)[n], but not on its particular design. Now, letting q =

FBBq̃ ∈ CLt×1, which operates as an equivalent baseband precoder for this

particular design of the training sequence, the signal in (3.5) can be expressed

as

x(m)[n] = F
(m)
RF q(m)s(m)[n], (3.6)

In this chapter, I choose to design q(m) such that its entries are independent

and identically distributed energy-normalized QPSK symbols. The analog

training precoder F
(m)
RF , however, is designed to be pseudorandomly built such

that every entry [F
(m)
RF ]i,j ∈

{
e
j 2πk
NT,Q

}NT,Q−1

k=0

with uniform probability, and

NT,Q = 2BT,Q is the number of possible states for an arbitrary phase-shifter,

which depends on the number of bits BT,Q.
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As to the hybrid receive combiner W(m) = W
(m)
RF W

(m)
BB , I propose to

design the analog combiner such that its entries follow the same distribu-

tion as the analog precoder, although the number of quantization bits BR,Q

may be different in general, and so would the number of states NR,Q = 2BR,Q

be as well. The design of the baseband combiner is motivated by both the

Slepian-Bangs formula [135] and the ML principle. Using an analog-only

combiner W
(m)
RF would result in a receive noise covariance matrix C(m) =

σ2C
(m)
w = σ2W

(m)∗
RF W

(m)
RF , which is not diagonal. This entails an additional

difficulty when estimating different components in a vector under spatially

correlated noise. In fact, the optimum estimator would need to estimate all

the components in that vector at the same time, for which it may be dif-

ficult to find a closed-form solution. To overcome this difficulty, I propose

to set the baseband combiner such that the post-combining noise is spatially

white. Letting the Cholesky decomposition of C
(m)
w be C

(m)
w = D

(m)∗
w D

(m)
w ,

with D
(m)
w ∈ CLr×Lr an upper triangular matrix, then the ML philosophy es-

tablishes that the optimum baseband combiner is given by W
(m)
BB = D

(m)−1
w ,

such that W
(m)∗
BB W

(m)∗
RF W

(m)
RF W

(m)
BB = ILr .

The MIMO signal observed at the Nr received antennas is impaired

by both temporally and spatially white circularly symmetric Additive White

Gaussian Noise (AWGN) [139]. After processing this received signal using

a linear combiner, the post-combining noise vector is Gaussian owing to lin-

ear operators preserving Gaussianity. Accordingly, for the m-th transmitted

93



frame, the received signal in (4.2) can be expressed as

y(m)[n] = D(m)−∗
w W

(m)∗
RF HF

(m)
RF q(m)︸ ︷︷ ︸

α̃(m)

s(m)[n]ej2π∆f (m)n + v(m)[n], (3.7)

with v(m)[n] ∼ CN(0, σ2ILr), and α̃(m) = [α
(m)
1 ejβ

(m)
1 , . . . , α

(m)
Lr
ejβ

(m)
Lr ]T is the

complex equivalent beamformed channel for the m-th training step. There-

fore, the interest in this chapter lies on estimating the vector of parameters

ξ(m) , [α
(m)
1 , . . . , α

(m)
Lr
, β

(m)
1 , . . . , β

(m)
Lr

,∆f (m), σ2]T , prior to performing com-

pressive MIMO channel estimation. In (3.7), the CFO is considered to be

time-varying and may change for every training frame. This is justified by the

instability of high-frequency oscillators at mmWave frequencies. In [140], it

was shown that, for a Field-Effect Transistor (FET)-based Voltage-Controlled

Oscillator (VCO) at 60 GHz, small variations in temperature may result in

changes of the gate-source controlling voltage, which bring about significant

changes in the VCO’s local frequency. For this reason, the CFO is considered

to be time-varying. Furthermore, it is well-known that phase-shifters have a

reconfiguration time when the different weights are adjusted. The signaling

needed to do this reconfiguration may lead to changes in temperature, which

would also lead to changes in the local frequency of the VCO. Owing to such

changes, it is reasonable to consider a constant CFO within a given training

frame, and changes in the CFO are considered on a frame-by-frame basis.

Besides the practical assumptions adopted in the proposed framework,

there are some assumptions that need be taken into consideration for the
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proposed solution to be applicable. These assumptions are listed and properly

justified hereinafter:

• The system bandwidth is small in comparison with the carrier frequency.

More specifically, if the channel’s coherence bandwidth is larger than

the bandwidth of the transmitted signal, then the narrowband channel

model assumption holds. Practical channels are not exactly frequency-

flat, but this is a reasonable assumption if the channel’s delay spread is

sufficiently small in comparison with the time duration of the transmitted

signal. This is not necessarily a limitation of the proposed framework,

as the transmitted bandwidth is not large in comparison with the carrier

frequency. Further, the time duration of the transmitted signal is likely

to be longer than the channel’s delay spread under Line-of-Sight (LoS)

propagation, which holds with high probability under the 5G New Radio

(NR) channel model when the transmit-receive distance is sufficiently

small [6].

• Both integer and fractional timing offsets (with respect to the sampling

period Ts) are perfectly known and have already been compensated for.

In other words, both symbol and frame synchronization have already

been performed. This is a practical assumption if the number of receive

RF chains Lr ≥ 2 and the SNR is not too low [141]. In [141], probability

of perfect detection (time synchronization) is close to 1 even at SNR < 0

dB, which is the expected scenario in upcoming mmWave deployments.
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• At the receiver side, there is no interference coming from other users or

base stations. This is a reasonable assumption for indoor and certain

outdoor channels given the high oxygen absorption present at 60 GHz,

besides the already existent small antenna aperture, which requires the

use of directional beamforming for communications. This fact also con-

tributes to further reducing interference, thereby making the proposed

signal model applicable.

Regarding computational complexity, the proposed framework is based

on a frame-wise estimation of the different unknown parameters. Therefore,

computational complexity is reduced with respect to the case in which the sig-

nals received from the different training frames were processed all at once. It is

the asymptotic invariance property of ML estimators that allows keeping com-

putational complexity at a reasonable level without compromising optimality

guarantees, as it will be shown in the numerical results section.

3.3 Theoretical analysis of the estimation problem

In this section, I present the theoretical analysis for the problem of

estimating the low-dimensional beamformed channels, the CFO and the noise

variance. More specifically, I theoretically calculate the FIM and the CRLB

associated to the unknown parameters. Further, I also provide an analysis on

the asymptotic behavior of the CRLB for the different parameters to gain ad-

ditional insight into how the system parameters affect estimation performance.
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Since the signal model in (3.7) defines a Gaussian distribution on y(m)[n],

the regularity condition for the CRLB to exist is satisfied. Let Ωn ∈ CLr×Lr be

a diagonal matrix given by Ωn , ej2π∆f (m)nILr . Then, stacking the different

N samples of the received signal in (3.7) yields y(m)[0]
...

y(m)[N − 1]


︸ ︷︷ ︸

y(m)

=

 Ω
(m)
0 α̃(m)

. . .

Ω
(m)
N−1α̃

(m)


︸ ︷︷ ︸

T(ξ(m))

×

 s(m)[0]
...

s(m)[N − 1]


︸ ︷︷ ︸

s(m)

+

 v(m)[0]
...

v(m)[N − 1]


︸ ︷︷ ︸

v(m)

,

(3.8)

such that y(m) is distributed according to y(m) ∼ CN(T
(
ξ(m)

)
s(m), σ2ILr),

where T
(
ξ(m)

)
∈ CNLr×N is the transfer matrix that relates the transmitted

training signal s(m) with y(m).

Let I
(
ξ(m)

)
∈ C2(Lr+1)×2(Lr+1) denote the FIM for the estimation of

the unknown vector of parameters ξ(m). Let the mean of y(m) be denoted by

µ
(
ξ(m)

)
= T

(
ξ(m)

)
s(m). The {i, j}-th element in I

(
ξ(m)

)
is given by [135]

[I
(
ξ(m)

)
]i,j =

2

σ2
Re

{
∂µ
(
ξ(m)

)
∂ξ

(m)
i

∂µ
(
ξ(m)

)
∂ξ

(m)
j

}

+
1

σ4
trace

{
∂C
(
ξ(m)

)
∂ξ

(m)
i

∂C
(
ξ(m)

)
∂ξ

(m)
j

}
.

(3.9)

The diagonal element in the FIM corresponding to α
(m)
i can be found
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as

I
α

(m)
i ,α

(m)
i

(
ξ(m)

)
=

2

σ2
Re

{
s(m)∗∂T∗

(
ξ(m)

)
∂α

(m)
i

∂T
(
ξ(m)

)
∂α

(m)
i

s(m)

}
. (3.10)

The term
∂T(ξ(m))
∂α

(m)
i

is given by

∂T
(
ξ(m)

)
∂α

(m)
i

=
N−1⊕
n=0

ΩnEiie
j]{α̃(m)}, (3.11)

where the Lr × Lr matrix Eii is given by [Eii]k,l = δ[i − k]δ[i − l]. Then, the

term I
α

(m)
i ,α

(m)
i

(
ξ(m)

)
in (3.10) yields

I
α

(m)
i ,α

(m)
i

(
ξ(m)

)
=

2

σ2

N−1∑
n=0

Re
{
|s(m)[n]|2e−j]{α̃(m)}E2

iie
j]{α̃(m)}

}
=

2

σ2

N−1∑
n=0

|s(m)[n]|2.

(3.12)

For the phase offset parameter β
(m)
i , the diagonal FIM element is given by

I
β

(m)
i ,β

(m)
i

(
ξ(m)

)
=

2

σ2
Re

{
s(m)∗∂T∗

(
ξ(m)

)
∂β

(m)
i

∂T
(
ξ(m)

)
∂β

(m)
i

s(m)

}
, (3.13)

where the matrix partial derivative with respect to β
(m)
i is given by

∂T
(
ξ(m)

)
∂β

(m)
i

=
N−1⊕
n=0

ΩnjEiiα̃
(m). (3.14)

Then, the term I
β

(m)
i ,β

(m)
i

(
ξ(m)

)
reads as

I
β

(m)
i ,β

(m)
i

(
ξ(m)

)
=

2

σ2

N−1∑
n=0

Re
{
|s(m)[n]|2α̃(m)∗E2

iiα̃
(m)
}

=
2Nα2

i

σ2
.

(3.15)
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For the carrier frequency offset ∆f (m), the diagonal element in the FIM is

given by

I∆f (m),∆f (m) =
2

σ2
Re

{
s(m)∗∂T∗

(
ξ(m)

)
∂∆f (m)

∂T
(
ξ(m)

)
∂∆f (m)

s(m)

}
. (3.16)

The derivative
∂T(ξ(m))
∂∆f (m) is given by

∂T
(
ξ(m)

)
∂∆f (m)

=
N−1⊕
n=0

(2πn)2Ωnα̃
(m) (3.17)

such that (3.16) yields

I∆f (m),∆f (m) =
2

σ2

N−1∑
n=0

Re
{
|s(m)C[n]|2(2πn)2‖α̃(m)∗‖2

2

}
=

2 trace{P(m)}
σ2

N−1∑
n=0

|s(m)C[n]|2(2πn)2,

(3.18)

with P(m) ∈ RLr×Lr a diagonal matrix containing the energy received at the

different RF chains, P(m) , diag{α2
1, . . . , α

2
Lr
}. Finally, the diagonal element

corresponding to the noise variance σ2 is given by

Iσ2,σ2

(
ξ(m)

)
=
NLr

σ4
. (3.19)

Regarding the off-diagonal terms in the FIM, they can be checked to be zero-

valued except for I
∆f (m),β

(m)
i

(
ξ(m)

)
, which is given by

I
∆f (m),β

(m)
i

(
ξ(m)

)
=

2

σ2
Re

{
s(m)∗∂T∗

(
ξ(m)

)
∂∆f (m)

∂T
(
ξ(m)

)
∂β

(m)
i

s(m)

}
. (3.20)

The inner product
∂T∗(ξ(m))
∂∆f (m)

∂T(ξ(m))
∂β

(m)
i

can be written as

∂T∗
(
ξ(m)

)
∂∆f (m)

∂T
(
ξ(m)

)
∂β

(m)
i

= α
(m)∗
i ejβ

(m)
i

N−1⊕
n=0

(2πn)α̃(m)∗ei (3.21)
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where ei ∈ RLr×1 is the i-th element of the canonical basis, [ei]j = δ[i − j].

Thereby, the term in (3.20) can be expressed as

I
∆f (m),β

(m)
i

(
ξ(m)

)
=

2

σ2

N−1∑
n=0

|s(m)[n]|2(2πn)α2
i . (3.22)

Finally, the total FIM is found to be

I
(
ξ(m)

)
=

[
I1

(
ξ(m)

)
0

0 I2

(
ξ(m)

) ] , (3.23)

where I1

(
ξ(m)

)
∈ C(Lr+1)×(Lr+1), I2

(
ξ(m)

)
∈ C(Lr+1)×(Lr+1) are given by

I1

(
ξ(m)

)
= diag

{
2N

σ2
1TLr

,
LrN

σ4

}
(3.24)

and

I2

(
ξ(m)

)
=

2

σ2

[
trace{P(m)}

∑N−1
n=0 (2πn)2 1TLr

P(m)
∑N−1

n=0 2πn

P(m)1Lr

∑N−1
n=0 2πn NP(m)

]
. (3.25)

Upon inverting the block diagonal matrix I
(
ξ(m)

)
, the CRLB for the param-

eters is given by

var
{
α̂

(m)
i

}
≥ σ2

N
(3.26)

var
{
σ̂2
}
≥ σ4

NLr

(3.27)

var

{
∆̂f

(m)
}
≥ 6σ2

trace{P(m)}(2π)2N(N2 − 1)
(3.28)

var
{
β̂

(m)
i

}
≥
σ2

(
N2(N2 − 1)/12 +

N2(N−1)2α
(m)2
i

4 trace{P(m)}

)
2α

(m)2
i N3(N2 − 1)/12

. (3.29)

The proof concerning the derivation of these bounds can be found in Appendix

A. Although the expressions in (3.28) and (3.29) may seem difficult to analyze,
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we can notice that: i) the denominator in (3.28) is a third order polynomial

in N . Therefore, for N large, (3.28) behaves according to

var

{
∆̂f

(m)
}
∝ 3σ2

2π2 trace {P(m)}N3
. (3.30)

By direct inspection of (3.30), it is observed that the CRLB decreases with N3

and with the summation of SNR measured at the output of the different RF

chains, SNRtotal = trace
{
P(m)

}
/σ2. Accordingly, better estimates for ∆f (m)

can be found as the number of RF chains increases. Consequently, mmWave

transceivers with larger antenna arrays are capable of achieving better esti-

mates for this parameter. The terms in (3.29), however, are somewhat harder

to analyze. The numerator is a fourth-order polynomial in N , whereas the

denominator is a fifth-order polynomial. Then, for large values of N , (3.29)

may be expressed as

var
{
β̂

(m)
i

}
∝ 3σ2

2N trace {P(m)}
. (3.31)

As to (3.31), however, it is noticed that as SNRtotal increases, the estima-

tion of this parameter becomes easier, since the CFO can be more accurately

estimated and the phase offset can be thereby more succesfully dealt with.

Furthermore, the SNR at the output of every RF chain, γ
(m)
i =

α
(m)2
i

σ2 , can

also be estimated, for which the CRLB can be found using the Transformed

Parameters Property [135] as

var
{
γ̂

(m)
i

}
≥ 4γ

(m)
i

N
+
γ

(m)2
i

N
. (3.32)

The expression in (3.32) provides a clear insight into how the estimation of

γ
(m)
i is influenced by the length of the training sequence t[n] and the true SNR
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γ
(m)
i . For small values of γ

(m)
i , the CRLB is dominated by the term growing

linearly with this parameter, whereas for larger values the term that evolves

quadratically with γ
(m)
i dominates the achievable variance for the estimation

of γ
(m)
i , thereby hardening the estimation of the SNR.

3.4 Estimation of beamformed channels and high-dimensional
MIMO channel

In this section, I formulate and present a solution to the problem of es-

timating both the CFO, the equivalent channel given by the joint effect of the

hybrid precoder, channel matrix, and hybrid combiner, and the noise variance

in (4.2). Then, I formulate the problem of estimating the high-dimensional

mmWave MIMO channel H from the estimates of the equivalent channel ac-

counting for the correlated received signal, the statistical distribution of the

ML estimators, and the lack of prior knowledge on both the channel sparsity

or noise variance. The estimation approach adopted in this chapter is shown

in Fig. 3.3.

First, the ML estimators for the different parameters in ξ(m) need to

be found. The problem of finding these statistics can be formalized as{
{α̂(m)

i,ML}
Lr
i=1, {β̂

(m)
i,ML}

Lr
i=1, ∆̂f

(m)

ML , σ̂
2

ML

}
=

arg max
{α(m)
i }Lr

i=1,{β
(m)
i }Lr

i=1,∆f
(m),σ2

log p(y(m); ξ(m)),
(3.33)

with p(y(m); ξ(m)) the Probability Density Function (PDF) of y(m) in (3.8)
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Figure 3.3: Block diagram of the different components in the proposed esti-
mation framework.

parameterized by ξ(m). The LLF is given by

log p(y(m); ξ(m)) = −NLr log πσ2 − 1

σ2

(
y(m)∗y(m)

− 2 Re
{
s(m)∗T∗

(
ξ(m)

)
y(m)

}
+N trace{P(m)}

)
.

(3.34)

It is clear that, in general, each variable in ξ(m) may be coupled with the others.

For this reason, this problem is solved in four different steps by splitting the

original optimization problem in (3.33) into four connected separate problems.

This can be formalized as{
{α̂(m)

i,ML}
Lr
i=1, {β̂

(m)
i,ML}

Lr
i=1, ∆̂f

(m)

ML , σ̂
2

ML

}
=

arg max
σ2

max
∆f (m)

max
{α(m)
i }Lr

i=1

max
{β(m)
i }Lr

i=1

log p(y(m); ξ(m)).
(3.35)

The optimization problem in (3.35) consists of the maximization of a multivari-

ate function with respect to 2(Lr+1) parameters. Since a multivariate complex

Gaussian probability density function is increasing for support values below
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the mean, and decreasing for support values above the mean, it follows that

L(ξ(m)) = log{p(y(m); ξ(m))} is quasi-concave (log-concave). Thereby, search-

ing for the maximum of (3.35) along each component of ξ(m) as a function of

the other components leads to finding the global maximizer of (3.33). Con-

sequently, (3.33) and (3.35) will produce the same optimizer, and optimality

is preserved. Accordingly, first the statistics {β̂(m)
i,ML}

Lr
i=1 will be found. Then,

they can be merged into (3.35) to find the statistics {α̂(m)
i,ML}

Lr
i=1. Thereafter,

the statistic ∆̂f
(m)

ML can be found and, finally, σ̂2
ML.

To find {β̂(m)
i,ML}

Lr
i=1, notice that the only term in (3.34) that depends

on {β(m)
i }

Lr
i=1 is the second scalar inside brackets. Therefore, the optimum

{β̂(m)
i,ML}

Lr
i=1 are given by

{β̂(m)
i,ML}

Lr
i=1 = arg max

{β(m)
i }Lr

i=1

Re
{
s(m)∗T∗

(
ξ(m)

)
y(m)

}
. (3.36)

The first derivative of the cost function in (3.36) is given by

∂ log p(y(m), ξ(m))

∂β
(m)
i

=
N−1∑
n=0

Re
{
s(m)C[n]α

(m)
i (−j)e−jβ

(m)
i eTi Ωny

(m)[n]
}

=
N−1∑
n=0

Im
{
s(m)C[n]α

(m)
i e−jβ

(m)
i e−j2π∆f (m)ny

(m)
i [n]

}
.

(3.37)

Setting the derivative in (3.37) to zero allows obtaining that the optimum

estimator for the phase-offset is given by

β̂
(m)
i,ML = tan−1


∑N−1

n=0 Im
{
s(m)C[n]y

(m)
i [n]e−j2π∆f (m)n

}
∑N−1

n=0 Re
{
s(m)C[n]y

(m)
i [n]e−j2π∆f (m)n

}
 . (3.38)
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The statistic in (3.38) can be interpreted as a matched-filter with the sequence

s(m)[n] after compensating for the carrier frequency offset ∆f (m). It is impor-

tant to notice that the optimum estimator for β
(m)
i requires knowledge of the

true frequency offset ∆f (m). Since it is impossible to know its value exactly,

the optimum estimator for ∆f (m) is to be plugged in (3.38) for the estimator

to be applicable in practice.

As to the amplitude parameters, {α(m)
i }

Lr
i=1, ML estimation problem can

be formalized as

{α̂(m)
i,ML}

Lr
i=1 = arg max

α
(m)
i

2 Re
{
s(m)∗T∗

(
ξ(m)

)
y(m)

}
−N trace{P(m)}.

(3.39)

Similar to the previous parameter, the first partial derivative can be computed

as

∂ log p(y(m), ξ(m))

∂α
(m)
i

=

2
N−1∑
n=0

Re
{
y

(m)
i [n]s(m)C[n]e−jβ

(m)
i e−j2π∆f (m)n

}
− 2α

(m)
i N

(3.40)

and set to zero to obtain

α̂
(m)
i =

1

N

N−1∑
n=0

Re
{
y

(m)
i [n]s(m)C[n]e−jβ

(m)
i e−j2π∆f (m)n

}
. (3.41)

Similar to the statistic β̂
(m)
i,ML in (3.38), the statistic in (3.41) depends on the

true value of β
(m)
i and ∆f (m). Therefore, the estimators for these parameters

must be substituted in (3.41) to build the final estimator.
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Regarding the carrier frequency offset ∆f (m), the optimum estimator

can be found as the solution to the problem

∆̂f
(m)

ML = arg max
∆f (m)

Re
{
s(m)∗T∗

(
ξ(m)

)
y(m)

}
. (3.42)

The objective function f
(
∆f (m)

)
= Re

{
s(m)∗T∗

(
ξ(m)

)
y(m)

}
can be devel-

oped as

f
(
∆f (m)

)
= Re

{
N−1∑
n=0

Lr∑
i=1

α
(m)
i y

(m)
i s(m)C[n]e−jβ

(m)
i e−j2π∆f (m)n

}
. (3.43)

Now, the already calculated statistics in (3.38) and (3.41) can be plugged in

(3.43). If the statistic β̂
(m)
i in (3.38) is substituted in (3.41), the estimators

can then be rewriten as

β̂
(m)
i = ]

{
N−1∑
n=0

y
(m)
i [n]s(m)C[n]e−j2π∆f (m)n

}
(3.44)

and

α̂
(m)
i =

1

N

∣∣∣∣∣
N−1∑
n=0

y
(m)
i [n]s(m)C[n]e−j2π∆f (m)n

∣∣∣∣∣ . (3.45)

Then, the ML estimator for ∆f (m) can be expressed after substituting (3.44)

and (3.45) into (3.43), thereby obtaining

∆̂f
(m)

ML = arg max
∆f

 1

N

Lr∑
i=1

∣∣∣∣∣
N−1∑
n=0

y
(m)
i [n]s(m)C[n]e−j2π∆f (m)n

∣∣∣∣∣
2
 . (3.46)

The estimator in (3.46) can be interpreted as follows. After applying a matched-

filter with the training sequence s(m)[n], a periodogram is computed for each

of the matched-filtered signals, and the parameter ∆f (m) is estimated as the

maximum of the averaged periodograms. The periodograms can be computed
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using a Fast Fourier Transform, although there is no guarantee that the true

∆f (m) will fall within one of the discrete bins in the transform. For this rea-

son, I propose to find the maximum of the function in (3.46) using quadratic

interpolation with the three frequency bins yielding the largest absolute value.

Regarding the noise variance σ2, the optimum estimator can be found

by again setting the derivative of the LLF to zero

∂ log p(y(m); ξ(m))

∂σ2
= −NLr

σ2
+

1

σ4

∥∥∥y(m) −T
(
ξ̂(m)

)
s(m)

∥∥∥2

2
, (3.47)

which allows obtaining

σ̂2
ML =

1

NLr

∥∥∥y(m) −T
(
ξ̂(m)

)
s(m)

∥∥∥2

2
. (3.48)

Finally, the optimum estimator for the complex amplitudes α̃
(m)
i = [α̃(m)]i,

1 ≤ i ≤ Lr can be found using the property of Asymptotic Invariance from

ML estimation [135] as

ˆ̃α
(m)
i,ML = α̂

(m)
i ejβ̂

(m)
i , (3.49)

which can be more explicitly expressed as

ˆ̃α
(m)
i,ML =

1

N

N−1∑
n=0

y
(m)
i [n]s(m)C[n]e−j2π∆̂f

(m)

ML n (3.50)

3.4.1 Dictionary-Constrained Channel Estimation

In this section, I formulate the problem of estimating the high-dimensional

mmWave MIMO channel based on the statistics already estimated using the

ML criterion, as well as their corresponding CRLB. Once M training symbols
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s(m)[n], 1 ≤ m ≤ M , 0 ≤ n ≤ N − 1 are processed and the M statistics ˆ̃α
(m)
i,ML

are estimated, these statistics can be stacked into the signal model ˆ̃α
(1)
ML
...

ˆ̃α
(M)
ML

 =

 D
(1)−∗
w

(
q(1)TF(1)T ⊗W(1)∗)

...

D
(M)−∗
w

(
q(M)TF(M)T ⊗W(M)∗)

 vec{H}

+

 ṽ(1)

...
ṽ(M)

 ,
(3.51)

with ṽ(m) the estimation error of ˆ̃α
(m)
i,ML, 1 ≤ m ≤M . Now, the channel matrix

in (3.3) can be vectorized and plugged into (3.52) to yield ˆ̃α
(1)
ML
...

ˆ̃α
(M)
ML


︸ ︷︷ ︸

ˆ̃αML

≈

 D
(1)−∗
w

(
q(1)TF(1)T ⊗W(1)∗)

...

D
(M)−∗
w

(
q(M)TF(M)T ⊗W(M)∗)


︸ ︷︷ ︸

Φw

×
(
ÃC

T ⊗ ÃR

)
︸ ︷︷ ︸

Ψ

vec{Gv}︸ ︷︷ ︸
gv

+

 ṽ(1)

...
ṽ(M)


︸ ︷︷ ︸

ṽ

,

(3.52)

where Φw ∈ CMLr×NrNt is the post-whitened measurement matrix, and Ψ ∈

CNrNt×GrGt is the dictionary matrix. Since there is no prior information about

the channel, the design of the precoders and combiners needs to be such that

the equivalent measurement matrix Φw in (3.51)-(3.52) has as small correlation

(inner product in Hilbert space) between any two different columns as possible.

As proven in the compressed sensing literature [142], [143], this is necessary to

ensure that the estimation of the support will be robust. With the proposed
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design, and a reasonable number of training frames, the correlation between

columns in Φw is small enough so that the channel can be both accurately and

efficiently reconstructed, as will be shown in the numerical results. To estimate

the GrGt×1 sparse vector gv, it is necessary to have some prior knowledge on

either the sparsity level of the channel or the noise variance in the linear model

in (3.52). Knowing the sparsity level is unrealistic in practice, and it may not

be helpful as there is no guarantee that the best sparse approximation of gv has

C
∑C

c=1 Rc non-zero entries. For this reason, I will focus on finding the variance

of ṽ. From the property of asymptotic efficiency of ML estimators [135] it

can be established that, if the SNR is not too low, and the number of time-

domain samples N is large enough, the estimation errors ˆ̃v(m), 1 ≤ m ≤ M

are Gaussian-distributed, with zero mean and covariance given by the CRLB

matrix for the estimation of the complex amplitudes ˆ̃α
(m)
ML . Since the received

noise vectors v(m)[n] in (3.8) are independent and identically distributed, the

estimation errors for the complex amplitude vectors α̃(m) are independent as

well, although not identically distributed. Let us define the CRLB matrix

corresponding to I1

(
ξ(m)

)
and I2

(
ξ(m)

)
in (3.24), (3.25) as

I−1
1

(
ξ(m)

)
= diag

{
σ2

2N
1TLr

,
σ4

LrN

}
(3.53)
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and

I−1
2

(
ξ(m)

)
=

var

{
∆̂f

(m)
}

. . . . . . covar

{
∆̂f

(m)
, β̂

(m)
Lr

}
covar

{
∆̂f

(m)
, β̂

(m)
1

}
var
{
β̂

(m)
1

}
. . . covar

{
β̂

(m)
1 , β̂

(m)
Lr

}
...

...
. . .

...

covar

{
∆̂f

(m)
, β̂

(m)
Lr

}
. . . . . . var

{
β̂

(m)
Lr

}


.

(3.54)

Let us also define the covariance matrix for any estimator of the vector x(m) =

[α(m),β(m)] and denote it as Cx(m)x(m) ∈ C2Lr×2Lr . This matrix satisfies

Cx(m)x(m) ≥

[ [
I−1

1

(
ξ(m)

)]
1:Lr,1:Lr

0

0
[
I−1

2

(
ξ(m)

)]
2:Lr+1,2:Lr+1

]
, (3.55)

where A ≥ B indicates that the matrix A − B is positive semi-definite.

Therefore, the covariance matrix for any estimator of α̃(m) = f
(
α(m),β(m)

)
=

α(m)ejβ
(m)

can be denoted as Cα̃(m),α̃(m) and satisfies [135]

C ˆ̃α(m) ˆ̃α(m) ≥[
∂f∗(α(m),β(m))

∂α(m)

∂f∗(α(m),β(m))
∂β(m)

]
Cx(m)x(m)

 ∂fT (α(m),β(m))
∂α(m)

∂fT (α(m),β(m))
∂β(m)


︸ ︷︷ ︸

C ˆ̃αML,
ˆ̃αML

. (3.56)

Let the Jacobian matrix of f
(
α(m),β(m)

)
: R2Lr → CLr be denoted as Jf ∈

CLr×2Lr . This matrix can be calculated as

Jf =
[
ej diag{β(m)} j diag {α̃}

]
. (3.57)

Accordingly, the estimation error vector ṽ(m) in (3.52) is distributed as ṽ(m) ∼

CN
(
0,C ˆ̃α

(m)
ML

ˆ̃α
(m)
ML

)
. Consequently, the covariance matrix of ṽ in (3.8) is Cṽṽ =
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⊕M
m=1 C ˆ̃α

(m)
ML

ˆ̃α
(m)
ML

. Thereby, the problem of estimating gv can be formulated as

ĝv =arg min
gv

‖gv‖1, subject to(
ˆ̃αML −ΦwΨgv

)∗
C−1

ṽṽ

(
ˆ̃αML −ΦwΨgv

)
≤ ε,

(3.58)

where ε ∈ R is a design parameter defining the maximum reconstruction error

for the vector gv. Since the training precoders and combiners F(m), W(m)

will, in general, result in different covariance matrices for the estimation error

ṽ(m), it is crucial to find a good enough representative for the variance of the

entire vector ṽ. To overcome this issue, I propose to design ε as a convex

combination of the CRLB for the different α̃
(m)
i using estimates of the SNR

per RF chain. These estimates can be found by using again the property of

asymptotic invariance from ML estimators as γ̂
(m)
i,ML = α̂

(m)2
i,ML/σ̂

2
ML. Then, the

parameter ε is given by

ε =
M∑
m=1

γ̂
(m)
i,ML trace {C ˆ̃α(m) ˆ̃α(m)}∑Lr

i=1

∑M
m=1 γ̂

(m)
i,ML

. (3.59)

Similar to the problem of estimating ξ(m), I choose to decorrelate the estimates

ˆ̃α(m) using the Cholesky decomposition of estimates for the CRLB matrix Cṽṽ.

Let us express the Cholesky factorization of Cṽṽ as Cṽṽ = D∗ṽDṽ. Then, we

can use a similar approach to the SW-OMP algorithm in [1] can be used

to solve the problem in (3.58), which is henceforth referred to as Weighted

- Orthogonal Matching Pursuit (W-OMP). The detailed steps the algorithm

follows are outlined in Algorithm 3.4. The W-OMP algorithm is different from

the standard OMP in that standard OMP does assume spatially white noise

components in the received signal vector. The W-OMP algorithm is especially
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designed to account for correlated noise at the output of the analog combiner.

The weights the proposed W-OMP algorithm uses are given by the Cholesky

factor of C ˆ̃α(m) ˆ̃α(m) in (3.56).

It is noteworthy to mention that the CRLB of the channel matrix H

is not computed because, for realistic mmWave channels having C clusters

with Rc rays per cluster, the grid quantization error makes it impossible to

assume that any two different rays will fall within two different spatial bins

in the dictionary matrix Ψ. For this reason, the estimate of the sparse vector

gv will, in general, satisfy ‖ĝv‖1 6= ‖gv‖1. Consequently, the theory of CRLB

cannot be applied to this problem since unbiasedness does not hold.

3.5 Numerical Results

In this section, I show the main numerical results concerning the pro-

posed estimation strategies. I analyze the performance of the proposed esti-

mators derived in Section 3.4, showing that they are asymptotically unbiased

and asymptotically efficient, and compare the achievable estimation variance

with the CRLB derived in Section 3.3. I also show the performance of the

proposed channel estimation algorithm, both in terms of normalized mean

squared error (NMSE) and spectral efficiency. For the latter, I consider both

all-digital and hybrid design of precoders and combiners, for which I adopt the

solutions developed in [16] and [11]. I define the normalized sample variance
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Algorithm 1 W-OMP

1: procedure W-OMP(y,Φ,Ψ,Dṽ,ε)
2: Compute the whitened equivalent observation matrix
3: Υw = D−∗ṽ ΦΨ
4: Initialize the residual vector to the input signal vector and

support estimate
5: yw = D−∗ṽ y, z = yw, T̂ = {∅}
6: while MSE > ε do
7:

8: Distributed Correlation
9: c = Υ∗wz, k = 0, . . . , K − 1
10: Find the most likely atom in Υw

11: p? = arg max
p

|[c]p|

12: Update the current guess of the support
13: T̂ = T̂ ∪ p?
14: Project the input signal onto the subspace given by the

support using WLS

15: ĝv =
(

[Υw]:,T̂

)†
yw

16: Update residual
17: z = yw − [Υw]:,T̂ ĝv

18: Compute the current MSE
19: MSE = 1

MLr
‖z‖2

2

20: end while
21: end procedure

Figure 3.4: Detailed steps of the proposed W-OMP algorithm.
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of an estimate ξ̂ of a vector of parameters ξ as

nvar
(
ξ̂
)

=
trace{E{(ξ̂ − E{ξ̂})(ξ̂ − E{ξ̂})∗}}

‖ξ‖2
2

. (3.60)

I also define the NMSE of an estimator Ĥ of the channel matrix H as NMSE(Ĥ) =

‖Ĥ−H‖2F
‖H‖2F

. Finally, I define the spectral efficiency as a function of a hybrid pre-

coder F ∈ CNt×Ns and combiner W ∈ CNr×Ns as

R(F,W) = log2 det

{
INs +

SNR

Ns

(W∗W)−1 W∗HFF∗H∗W

}
. (3.61)

As to the training precoders and combiners for channel estimation, each entry

in F(m), W(m) has modulus
(√

Nt

)−1
and

(√
Nr

)−1
, and the corresponding

phases follow a discrete uniform distribution with values taken from the sets

AT =
{

0, 2π

2
NT,Q

, . . . , 2π(2
NT,Q−1)

2
NT,Q

}
and AR =

{
0, 2π

2
NR,Q

, . . . , 2π(2
NR,Q−1)

2
NR,Q

}
. The

number of quantization bits is set to NT,Q = NR,Q = 4. The simulation

parameters are included in Table 3.1 and, unless otherwise indicated, are Nt =

32, Nr = 32, Lt = 4, Lr = 4, Gt = 128, and Gr = 128. Simulation results

are obtained after averaging over 100 channel realizations. The channel is

assumed to consist of C = 4 clusters with R = 15 rays per cluster and each

cluster has an angular spread equal to 7.5 degrees. The sampling rate is set to

Ts = 1
1760

µs [36], and the CFO is uniformly distributed between − 1
2Ts

and 1
2Ts

.

3.5.1 Performance analysis of ML estimators

In this subsection, I analyze the performance of the proposed ML es-

timators from Section 3.4, and compare their achievable performance to the

derived CRLB from Section 3.3.
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Table 3.1: Summary of typical system configuration parameters

Simulation Parameters

Description Parameter Value
Number of transmit antennas Nt 32
Number of receive antennas Nr 32
Number of transmit RF chains Lt 4
Number of receive RF chains Lr 4
Transmit angular grid size Gt 64
Receive angular grid size Gr 64
Number of phase-shifter quantization bits NQ 4
Number of time-domain samples/frame N 128
Number of training frames M 128
Sampling period Ts 1/1760 µs
Number of multipath clusters C 4
Number of multipath rays/cluster R 15
Maximum CFO ∆f (m) 880 MHz

In Fig. 3.5, I show the sample estimation variance and the CRLB of the

proposed estimators as a function of SNR for N = 128 time-domain training

symbols chosen from an energy-normalized QPSK constellation.

The first behavior observed from Fig. 3.5 is that the different ML es-

timators attain the CRLB as SNR → ∞. Therefore, as the theory of CRLB

predicts, they are asymptotically efficient. Regarding the amplitude parame-

ters α
(m)
i , 1 ≤ i ≤ Lr, both the normalized sample variance and the normalized

CRLB are different for every parameter, which is due to the different values

the parameters take when the statistics are normalized. As to the phases β
(m)
i ,

the same behavior is observed, which comes from the fact that: i) the phase

parameters are different for every RF chain, and ii) since the amplitude param-
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Figure 3.5: Normalized sample variance of the ML estimators from Section
3.4 as a function of SNR. The normalized CRLB is also shown to compare
the performance of the ML estimators to the minimum achievable estimation
variance. The FFT size of the CFO estimator is set to 4LrN .

eters α
(m)
i change for every RF chain, the SNR per RF chain is also different.

This behavior is also explained by the analytical CRLB previously derived.

Depending on the number of receive RF chains Lr, the estimator in

(3.46) exhibits different performance, and so does the CRLB in (3.28) as well.

As Lr increases, the CRLB for the CFO decreases, as analyzed in (3.30). Of
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particular importance: as Fig. 3.5(c) shows, the threshold SNR that sets

the boundary of the asymptotic efficiency region for ∆̂f
(m)

ML decreases with the

number of RF chains Lr, thereby suggesting that transceivers with a larger

number of antennas (i.e. BSs) can be equipped with a larger number of RF

chains and are thus capable of obtaining extremely accurate estimates of the

CFO even when SNR < −10 dB. The sample variance of the ML estimator

would naturally be expected to decrease by the same amount as the CRLB.

Notice, however, that despite the quadratic interpolation of the three largest

spectral peaks in the weighted periodogram, this only happens if a larger

number of FFT points NFFT is chosen to estimate the CFO, such that the

ML estimator is asymptotically efficient. To obtain such desirable effect, the

FFT size of the CFO estimator should scale with the number of RF chains to

better estimate this parameter. Owing to this behavior, the FFT size is set to

NFFT = 512Lr. Notice that, for Lr = 8, there is a very small gap between the

normalized sample variance and the NCRLB for −12 ≤ SNR ≤ −5 dB, which

is due to this reason.

Regarding the SNR parameter, it is observed in Fig. 3.5(d) that, as

Lr increases, both the normalized sample variance and the NCRLB decrease.

As Lr increases, the number of samples to estimate the noise variance also

increases, such that better estimates for this parameter can be found. Notice,

however, that for the SNR parameter, there is a very small gap between the

normalized sample variance and the normalized CRLB, which slightly increases

with the SNR itself as Lr increases. This comes from the fact that, as SNR
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increases, the CRLB from Section 3.3 increases quadratically with the SNR.

Therefore, it is expected that, as SNR→∞, the gap between the normalized

sample variance and the CRLB increases, which is due to the difficulty in

estimating this parameter.

It is important to mention that, if the FFT size NFFT is large enough,

the only estimators affected by NFFT are the CFO and the SNR estimators.

This behavior is shown in Fig. 3.6.

Regarding the amplitude parameters, it is clear from the CRLB in

(3.26) that the amplitude parameters are uncoupled with the other parame-

ters, such that the behavior in Fig. 3.6 (a) is not surprising and the estimators

can therefore be said to be asymptotically efficient. Notice, however, that in

spite of the coupling between the phase parameters and the CFO, the normal-

ized sample variance of the phase parameters also attains the corresponding

normalized CRLB, such that the phase estimators are also asymptotically

efficient. The FFT size, however, does affect the performance of the CFO

estimator and the SNR estimator as Lr increases, although the performance

loss can be seen to be negligible. Of particular importance: as Lr grows, the

performance gap between the normalized sample variance of the CFO estima-

tor and the normalized CRLB increases, but the threshold SNR that sets the

boundary of the asymptotic efficiency region is invariant. This can be noticed

by comparing Fig. 3.5 (c) and Fig. 3.6 (c).

I also show in Fig. 3.7 the sample variance of the proposed SNR and

CFO estimators as a function of the number of time-domain samples N for
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Figure 3.6: Normalized sample variance of the ML estimators from Section
3.4 as a function of SNR. The normalized CRLB is also shown to compare
the performance of the ML estimators to the minimum achievable estimation
variance. The FFT size of the CFO estimator is set to K = 4N = 1024 points.
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SNR = {−10,−5, 0} dB and Lr = {1, 2, 4, 8} RF chains.

From Fig. 3.7, it can be noticed that larger numbers of RF chains Lr

enhance estimation performance for both the estimation of SNR and ∆f (m),

as the CRLB predicted. Furthermore, when N = 2x, with x a positive integer,

both the normalized CRLB and the normalized sample variance evolve linearly

with N , which is useful to design the training sequence such that a predefined

estimation performance is obtained. For the SNR estimator, it is observed

from Fig. 3.7(d-f) that N ≥ 128 guarantees asymptotic efficiency, such that

it is a reasonable value for the training sequence length. Of course, increasing

N up to N = 212 = 4096 has incredible performance, but at the cost of

higher overhead to estimate the complex beamformed channel and the channel

matrix itself. As to the CFO parameter, a similar behavior to that in Fig. 3.5

and 3.6 is observed. The threshold N for the CFO estimator to work on its

asymptotic efficiency region is a joint function of Lr and SNR. For a fixed SNR,

the minimum required N to attain the NCRLB reduces when Lr increases.

Conversely, for a fixed N , the minimum SNR to attain the CRLB decreases

as Lr increases. Decreasing Lr results in the opposite effect, such that a joint

trade-off for N and Lr is needed to guarantee the estimators perform properly

for the entire SNR regime the communications system is expected to work on.

3.5.2 NMSE of channel estimator

In this subsection, I analyze the performance of the proposed channel

estimation strategy from Section 3.4.1. I show in Fig. 3.8 (a) the sample
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Figure 3.7: Normalized sample variance of the ML estimators from Section
3.4 as a function of N , for SNR = −10 dB ((a) and (d)), SNR = −5 dB ((b)
and (e)), and SNR = 0 dB ((c) and (f)). The normalized CRLB is also shown
to compare the performance of the ML estimators to the minimum achievable
estimation variance. The FFT size of the CFO estimator is set to 4LrN .
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average NMSE obtained with the proposed W-OMP as a function of SNR,

for M = {16, 32, 64, 128, 256, 512} training frames and N = 128 time-domain

training symbols. It is observed that increasing M leads to improvement in

estimation performance. Notice, however, that the performance for M =

{128, 256, 512} is very similar for SNR ≤ −5 dB, and it significantly reduces

the estimation error in comparison with M ≤ 64. Thus, at the low and medium

SNR regime, the dramatic increase in overhead incurred when M > 128 does

not compensate for the marginal decrease in estimation error.

I also show in Fig. 3.8 (b) the sample average NMSE obtained with

the proposed strategy as a function of M , for SNR = {−10,−5, 0, 5} dB. The

number of time-domain training symbols is set to N = 128.

It is observed that increasing M leads to better estimation performance,

but at the cost of higher overhead. As M grows, the estimation performance

presents a noise plateau. This is due to the combination of the grid quantiza-

tion error (driven by Gr = Gt = 128) and the fact that every subpath in the

mmWave channel has the same average power. This is the worst case scenario,

since the effective size of the sparse channel vector gv to estimate is made the

largest, thereby significantly hardening the task of estimating the channel.

3.5.3 Spectral efficiency

In this subsection of numerical results, I analyze the spectral efficiency

achieved by the proposed estimation strategy. I compare the all-digital SVD-

based precoder with both perfect CSI and channel estimates, and I also show
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Figure 3.8: Evolution of the NMSE achieved by the joint synchronization
and channel estimation algorithm as a function of SNR (a) and M (b). The
number of training frames is M = {16, 32, 64, 128, 256, 512}, and the length of
the time-domain training sequence is N = 128.
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the performance of different hybrid precoding and combining algorithms to

show how the channel estimates impact the final achievable spectral effi-

ciency. As to hybrid precoding and combining algorithms, I consider the

Spatially Sparse Precoding - Orthogonal Matching Pursuit (SSP-OMP) al-

gorithm from [11], the Greedy Hybrid Precoding (GHP) algorithm from [16],

and the Per-Antenna Constrained (PC) algorithm in [144]. The SSP-OMP

algorithm is a dictionary-based algorithm that aims at iteratively finding the

RF and baseband precoder (combiner) that minimizes the Euclidean distance

between the unconstrained precoder (combiner) and its hybrid counterpart.

The GHP algorithm, conversely, aims at minimizing the same metric as the

SSP-OMP algorithm but using an SVD-based greedy approach, thereby being

a dictionary-free algorithm. The PC algorithm in [144], finally, aims at min-

imizing the chordal distance between the unconstrained precoder (combiner)

and the hybrid factorization. A major difference between the PC algorithm

in [144] and both the SSP-OMP and GHP algorithms is that the former is not

iterative and has closed-form, while the latter are iterative, thereby exhibiting

higher computational complexity.

I show in Fig. 3.9 the achievable spectral efficiency as a function of

SNR for M = N = 128. The number of transmitted data streams is Ns = 4.

The performance of the all-digital precoder and combiner obtained with chan-

nel estimates is very close to the optimum perfect CSI solution, even for SNR

as low as SNR = −10 dB. For SNR < −10 dB, however, the gap between the

perfect CSI and all-digital W-OMP based precoders and combiners is more no-
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ticeable. This is not surprising, since as Fig. 3.6 shows, the threshold SNR of

the asymptotic efficiency region for the CFO estimator is around SNR = −10

dB for Lr = 4 RF chains. For lower values of SNR, the CFO estimator exhibits

poor performance, although it can be certainly improved by increasing either

Lr or N . Thereby, for SNR < −10 dB, the poor performance of the CFO esti-

mator affects the remaining ML estimators from Section 3.4, thereby further

complicating channel estimation. As to the hybrid precoding and combining

strategies, the SSP algorithm performs the worst, having a significant perfor-

mance gap with respect to both the GHP and PC solutions, which exhibit

almost identical performance in terms of achievable spectral efficiency. Fur-

thermore, despite the large number of multipath components of the mmWave

channel, the performance of the estimated hybrid precoders and combiners

is close to the performance of both the perfect CSI and all-digital channel

estimates.

Finally, I show in Fig. 3.10 the spectral efficiency as a function of M

for SNR = {−10, 0} dB (a) and SNR = {−5, 5} dB (b). The number of

transmitted data streams is Ns = 4.

As expected, the spectral efficiency increases with M , up to M = 128

approximately. Beyond this value, the increase in overhead does not compen-

sate for the marginal increase in spectral efficiency. Interestingly, the GHP

and the PC algorithms exhibit almost identical performance, and significantly

outperform the dictionary-based strategy in [11]. This fact suggests that min-

imizing the chordal distance between the unconstrained and the hybrid pre-
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Figure 3.9: Evolution of the spectral efficiency versus SNR for different
precoders and combiners. The number of time-domain training symbols is
N = 128, and the number of training frames is M = 128.

coders (combiners) is approximately equivalent to minimizing their Euclidean

distance. This behavior was analyzed in [11] for perfect CSI and assuming

near-optimum sphere decoding at the receiver side, thus only focusing on the

precoding side. The results in Fig. 3.10 clearly indicate that the same be-

havior can be expected for the combining side and with channel estimates,

not only for perfect CSI. Further, near-optimum values of spectral efficiency

are obtained with the proposed joint CFO and channel estimation algorithms,

without assuming any knowledge on either the sparsity level or the

noise variance.
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Figure 3.10: Evolution of the spectral efficiency versus M for different pre-
coders and combiners. The number of time-domain training symbols is
N = 128. The SNR is set to SNR = {−10, 0} dB (a) and SNR = {−5, 5} dB
(b).
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Table 3.2: Online computational complexity of proposed algorithm

Joint CFO synchronization and channel estimation

Operation Complexity

M× Compute ∆̂f
(m)

ML O(MLr(N +NFFT log2(NFFT))

M× Compute ˆ̃α
(m)
ML O(MLrN)

Compute Cṽṽ O(4ML3
r )

Compute Dṽ O(ML3
r )

W-OMP algorithm O(MLr(GtGr − (j − 1)))
Overall O(MLr(GtGr − (j − 1) +N +NFFT log2(NFFT)))

3.5.4 Computational complexity

Last, I analyze the computational complexity of the proposed joint

synchronization and channel estimation strategy, and compare it to that of the

state-of-the-art SW-OMP algorithm in [1] for the case of a single subcarrier,

so that a fair comparison can be made. The computational complexity of each

step in both algorithms is detailed in Table 3.2.

The computational complexity of the SW-OMP algorithm in [1] is of

the order of O(MLr(GtGr− (j− 1))). In the proposed joint CFO and channel

estimation strategy, the overall complexity is O(MLr(N + NFFT log2(NFFT)))

higher, which comes from the additional complexity to estimate ∆f (m). Al-

though the number of operations involved in the joint estimation of the dif-

ferent parameters is larger, the main computationally complex operation is

the estimation of the CFO. This signal processing task is, however, performed

through computation of the weighted periodograms using the FFT algorithm,

which can be computed very efficiently. Further, the estimation of {α̃(m)}Mm=1
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is much less complex than estimating ∆f (m), and so the computation of Cṽṽ

is, as well. Thereby, the proposed synchronization plus channel estimation ap-

proach can be claimed to be computationally efficient with marginal increase

in complexity with respect to the state-of-the-art solution that assumes perfect

synchronization in the received signal [1].

3.6 Conclusions

In this chapter, I proposed a framework for CFO and channel estimation

in mmWave MIMO systems with hybrid architectures. I first formulated the

problem of estimating the equivalent channel, CFO and noise variance. Then, I

theoretically analyzed the fundamental limits of the estimation problem using

the theory of CRLB. Then, I obtained the ML estimators for the unknown

parameters and, using both these estimators and their CRLB, I proposed

a sparse reconstruction algorithm to recover the high-dimensional mmWave

MIMO channel. Simulation results showed that, despite the lack of knowledge

on the channel’s sparsity level and the noise variance, near-optimum values

of spectral efficiency are achieved using both all-digital and hybrid precoders

and combiners.
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Chapter 4

Millimeter Wave Broadband Synchronization,

Compressive Channel Estimation and Data

Transmission

4.1 Introduction

In Chapter 2, I proposed channel estimation solutions for frequency-

selective mmWave MIMO systems in which transceivers are equipped with

hybrid MIMO architectures and operate under a perfect synchronization as-

sumption. In Chapter 3, I proposed a multi-stage solution to the joint problem

of CFO synchronization and channel estimation under a narrowband channel

model to shed light on the impact of this synchronization impairment on the

channel estimation problem and the resulting spectral efficiency. In this chap-

ter, I extend the framework developed in Chapter 3 to frequency-selective

channel models and introduce the additional TO and PN impairments. Under

this setting, I show that, even under complete lack of synchronization, robust

channel estimation in the low SNR regime can be attained, and multi-stream

data transmission can be effectively carried out.

Time-frequency synchronization is one of the most important design

aspects in cellular systems. In mmWave systems, however, acquiring syn-

chronization information is significantly more challenging than for traditional
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sub-6 GHz MIMO systems. Due to the necessity of using large antenna ar-

rays to obtain the beamforming gain required to compensate for small an-

tenna aperture, time and frequency synchronization must be performed either

jointly with beam training as in 5G NR, or at the low SNR regime if the

high-dimensional mmWave MIMO channel is to be estimated. Unfortunately,

at such high operating frequency bands, synchronization, channel estimation,

and data transmission are impacted by PN impairments, which consist of ran-

dom fluctuations in the phase of the carrier generated by local oscillators.

In this last part of my Ph.D. dissertation, I will focus on designing effective

and robust time-frequency synchronization and PN compensation methods

for compressive MIMO channel estimation at mmWave and subsequent data

transmission.

4.1.1 Prior work and Motivation

In the context of mmWave MIMO systems, synchronization parameters

need to be properly estimated and compensated for before CSI can be acquired.

This sets new challenges as synchronization acquisition must be performed at

the low SNR regime, before transmit and receive communication beams can be

aligned for data transmission. Most related prior work on broadband channel

estimation with impairments is summarized in Fig. 4.1, as well as the proposed

algorithms introduced later in this Chapter.

The problem of CS-based joint beam training and synchronization is

studied in [5,112]. In [112], the problem of beam training under PN errors and
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Figure 4.1: Summary and comparison of prior work on broadband channel
estimation algorithms with synchronization impairments, as well as the ap-
proaches proposed in this Chapter.

unknown CFO was studied for narrowband mmWave MIMO systems using

analog architectures. Therein, an EKF-based solution is proposed to track

the joint phase of the unknown PN and beamformed narrowband channel, the

phase of the received signal is compensated, and then MP is used to estimate

the dominant AoD and AoA, thereby discovering a single communication path.

In [5], a compressive initial access approach based on omnidirectional pseudo-

random analog beamforming is proposed as an alternative to the directional

initial access procedure used during beam management in 5G NR, and the

effects of imperfect TO and CFO are studied therein. The main limitations of

the algorithm proposed in [5] are: i) the algorithm is targeted at LOS channel

models, thereby implicitly ignoring the presence of spatio-temporal clusters

in the propagation environment; and ii) the proposed signal model assumes

the presence of phase measurement errors only due to CFO, thereby ignoring

the PN impairment. Prior work on joint broadband channel estimation and
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synchronization for mmWave MIMO is limited, since much (if not most) of

the prior work on channel estimation assumes perfect synchronization at the

receiver side [34], [60], [58], [69], [70].

In the context of broadband channel models, prior work is limited

to [118–121]. In [118], the problem of joint channel and PN estimation for a

SISO system is considered, which is unrealistic at mmWave, and the proposed

algorithms are only evaluated in very high SNR regime. In [119], analog-only

architectures with a single RF chain are assumed, and an autocorrelation-based

iterative algorithm is proposed to jointly estimate the CFO and the mmWave

channel. Prior work in [119] assumes that analog beamformers and combin-

ers can be instantaneously reconfigured for two consecutive transmitted time-

domain samples, which is unrealistic since phase-shifters need an adjustment

time for phase reconfiguration [36]. Further, the algorithm proposed in [119]

has only been evaluated for mmWave channels having a very small number of

non-clustered multipath components, which is not realistic at mmWave [35].

In addition, owing to the nature of the autocorrelation function, the proposed

algorithm does not perform both well when the CFO is considerably large

and the SNR is low. In [120], a CFO-robust beam alignment technique is

developed to find the beam pairs maximizing the received SNR. The main

limitation of [120] is that the algorithm proposed therein can only be applied

to analog MIMO architectures, and its CFO correction capability is limited by

both the number of delay taps in the mmWave MIMO channel, as well as the

length of the training sequence, thereby making the algorithm impractical for
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practical mmWave deployments with more significant CFO. In [121], the joint

CFO and broadband channel estimation problem is formulated as a sparse

bilinear optimization problem, which is solved using the parametric bilinear

generalized approximate message passing (PBiGAMP) algorithm in [122]. The

main limitation of [121] is that the proposed estimation strategy is tailored to

all-digital MIMO architectures with low-resolution ADC converters, thereby

not being directly applicable to hybrid MIMO architectures. In [117], a similar

strategy to the one in [121] is followed, in which the joint CFO and channel

estimation problem is studied for all-digital MIMO architectures. The prob-

lem is formulated as a quantized sparse bilinear optimization problem, which

is solved using sparse lifting to increase the dimension of the CFO and chan-

nel estimation problem [123], and then applying the generalized approximate

message passing (GAMP) algorithm in [124] to solve the lifted problem.

4.2 Contributions

I develop efficient and robust solution to the problem of estimating the

TO, CFO, PN, and frequency-selective channel for hybrid mmWave MIMO

systems. The proposed solutions can leverage the spatial design degrees of

freedom brought by having several RF chains at both the transmitter and re-

ceiver to perform synchronization and compressive channel estimation, without

relying on any prior channel knowledge. Further, I plan to investigate poten-

tial PN synchronization and data detection strategies for data transmission

in mmWave MIMO systems enabling spatial multiplexing under the 5G NR
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frame structure.

I summarize my contributions as follows:

• Based on a protocol of forwarding several training frames from the trans-

mitter to the receiver [17], [5], [34], [2], I formulate and find a solution to

the problem of TO, CFO, PN and frequency-selective mmWave MIMO

channel estimation for systems employing hybrid architectures. It is

noteworthy to mention that, unlike prior work in [5], I do not consider

prior available information on the TO, and I do consider the problem of

estimating the PN impairment. Further, the focus is on analyzing the

synchronization problem at the low SNR regime.

• I propose to forward several training frames using ZC-based beamform-

ing in combination with random subarray switching and antenna selec-

tion in order to both acquire synchronization and enable compressive

channel estimation at the low SNR regime.

• For every training frame, which comprises several OFDM symbols, as

in the 5G NR wireless standard [37], I theoretically analyze the hy-

brid CRLB for the problem of estimating the CFO, PN, and equivalent

frequency-selective beamformed channel collecting the joint effect of the

transmit hybrid precoders, frequency-selective mmWave MIMO channel,

receive hybrid combiners, and equivalent transmit-receive pulse-shaping

that bandlimits the complex baseband equivalent channel.
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• I propose two novel iterative algorithms based on the EM method, which

aim at finding the ML estimates for the CFO and beamformed equiva-

lent channels, as well as the LMMSE estimates for the PN samples that

impair the receive signals. The first proposed algorithm exhibits very

good performance, yet it exhibits high computational complexity. The

second proposed algorithm, conversely, offers a trade-off between esti-

mation performance and computational complexity, and exhibits a very

small performance gap with respect to the first algorithm.

• Using estimates of the unknown parameters for every training frame,

I formulate the problem of estimating the high-dimensional frequency-

selective mmWave MIMO channel, and find a solution to this problem

using a variation of the SW-OMP algorithm in [1]. Last, using the

estimated high-dimensional mmWave MIMO channel, I propose a joint

PN tracking and data detection strategy enabling the multiple spatial

degrees of freedom in the mmWave MIMO channel.

I evaluate the performance of the proposed algorithms in terms of

NMSE, spectral efficiency, BER, and computational complexity. I use all-

digital precoders and combiners to show the effectiveness of the proposed al-

gorithms. Simulation results obtained from the estimated channel show that

both the TO, CFO, and equivalent channels can be accurately estimated even

in the presence of strong PN, and when the MIMO channel has several clus-

ters with non-negligible AS. Furthermore, I show that near-optimum spectral
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efficiency can be attained, without incurring in significant overhead and/or

computational complexity. To the best of my knowledge, this is the first

work that theoretically analyzes and provides solutions to the problem of joint

synchronization and compressive channel estimation at mmWave considering

hybrid MIMO architectures, and that is robust to both CFO, PN, and low

SNR regime.

4.3 System model with synchronization impairments

I consider a single-user mmWave MIMO-OFDM communications link

in which a transmitter equipped with Nt antennas sends Ns data streams to

a receiver having Nr antennas. Both transmitter and receiver are assumed

to use partially-connected hybrid MIMO architectures [14], as shown in Fig.

4.2, with Lt and Lr RF chains. A frequency-selective hybrid precoder is used

at the transmitter, with F[k] = FRFFBB[k] ∈ CNt×Ns , where FRF ∈ CNt×Lt

is the analog precoder and FBB[k] ∈ CLt×Ns is the digital one at subcarrier

k, 0 ≤ k ≤ K − 1. The RF precoder and combiner are implemented using a

partially-connected network of phase-shifters and switches, as described in [14].

Likewise, the receiver applies a hybrid linear combiner W[k] = WRFWBB[k] ∈

CNr×Lr , where WRF ∈ CNr×Lr is the analog combiner, and WBB[k] ∈ CLr×Ns is

the baseband combiner at the k-th subcarrier.

Without loss of generality, I assume that the transmitted signal com-

prises Ntr OFDM symbols with a Cyclic Prefix (CP) of length Lc, similarly

to the 5G NR wireless standard [37]. Let us define the rectangular pulse-
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shape wN [n] = 1 for n ∈ [0, N − 1], and wN [n] = 0 otherwise. Then, the

hybrid-precoded transmitted signal can be expressed as

x[n] =
1

K
FRF

K−1∑
k=0

Ntr−1∑
t=0

FBB[k]st[k]ej
2πk(n−Lc−t(K+Lc))

K wK+Lc [n− t(K + Lc)],

n = 0, . . . , (Ntr − 1)(K + Lc)− 1,

(4.1)

Then, let n0 ∈ K+, ∆f ∈ R, θ[n] ∈ R denote the unknown TO, CFO

normalized to the sampling rate fs = 1/Ts, and n-th receive PN sample. Also,

let {W[`]}K−1
`=0 denote the time-domain hybrid combiner, given by the IFFT of

the frequency-selective hybrid combiner {W[k}K−1
k=0 . Then, the received signal

at discrete time instant n can be written as

y[n] = {W∗[`]}K−1
`=0 ∗

(
D−1∑
d=0

H[d]x[n− d− n0]ej(2π∆fn+θ[n])

)
+ v[n], (4.2)

for n = 0, . . . , N + D + n0 − 1, with N being the length of the time-domain

transmitted signal x[n], and v[n] ∼ CN
(
0, σ2

∑K−1
`=0 W∗[`]W[`]

)
is the post-

combining received noise, where σ2 denotes the variance of the noise at any

receive antenna.

In this chapter, I focus on the problem of estimating the unknown

CFO ∆f , PN samples θ[n], and frequency-selective mmWave MIMO channel

{H[d]}D−1
d=0 . Given the high dimensionality of the channel matrices, I consider

a training protocol in which the transmitter forwards M training frames to

the receiver [2], [34], [17], [1], which must estimate the different unknown

synchronization parameters. In view of this, for the m-th training frame, 1 ≤

m ≤ M , I set F(m)[k] = F(m)
tr , and W(m)[k] = W(m)

tr , for every 0 ≤ k ≤ K − 1.
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Figure 4.2: Illustration of the structure of a partially-connected hybrid MIMO
architecture, which includes analog and digital precoders and combiners (same
as Fig. 1.3).

Furthermore, I design the training symbols in (4.1) as s(m)
t [k] = q(m)s(m)

t [k],

where q(m) operates as an equivalent baseband precoder for this particular

design of the training sequence [2]. Therefore, for the transmission of the m-

th training frame, comprising of Ntr OFDM symbols, the received signal reads

as

y(m)[n] = W(m)∗
tr

D−1∑
d=0

H[d]F(m)
tr q(m)s[n− d− n0]ej(2π∆f (m)n+θ(m)[n]) + v(m)[n],

(4.3)

in which v(m)[n] ∼ CN
(
0, σ2W(m)∗

tr W(m)
tr

)
is the received post-combining circularly-

symmetric complex additive Gaussian noise. As shown in [145], [2], the ML

criterion establishes that the baseband combiner must whiten the received sig-

nal to estimate the different unknown parameters. For this purpose, let us con-

sider the Cholesky decomposition of C(m)
w = W(m)∗

tr W(m)
tr as C(m)

w = D(m)∗
w D(m)

w ,

with D(m)
w ∈ CLr×Lr an upper triangular matrix. Now, let us define a vector
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g(m)[d] ∈ CLr×1, g(m)[d] = D(m)−∗
w W(m)∗

tr H[d]F(m)
tr q(m), containing the complex

equivalent channel samples for a given training step 1 ≤ m ≤M . Accordingly,

for the m-th transmitted frame, the received signal in (4.3) can be expressed

as

y(m)[n] = ej(2π∆f (m)n+θ(m)[n])

D−1∑
d=0

g(m)[d]s(m)[n− d− n0]︸ ︷︷ ︸
x(m)[n,d,n0]

+ v(m)[n], n = 0, . . . , n0 + (Lc +K)Ntr +D − 1

(4.4)

with v(m)[n] ∼ CN(0, σ2ILr) being the post-whitened spatially white received

noise vector, and g(m)[d] = [α1[d]ejβ1[d], . . . , αLr [d]ejβLr [d]]T is the complex equiv-

alent beamformed channel for the m-th training step and d-th delay tap.

Therefore, the interest here lies on estimating the vector of parameters ξ(m) ,[{
g(m)T [d]

}D−1

d=0
,∆f (m), {θ(m)[n]}N+n0+D−1

n=0 , n0

]T
for every training frame. In

the next section, I theoretically analyze this estimation problem and find the

hybrid CRLB for the different parameters in ξ(m).

To model the PN model is taken from the IEEE 802.11ad wireless

standard, which is given in [146]. The Power Spectral Density (PSD) of the

PN is given in [147] as

P (f) = Gθ

[
1 + (f/fz)

2

1 + (f/fp)2

]
, (4.5)

in which Gθ is the PSD at f = 0 Hz and it is measured in dBc/Hz, fz = 100

MHz, and fp = 1 MHz [147]. Using the inverse Fourier transform of the PSD

in (4.5), the autocorrelation of the PN can be obtained as

Rθ(m)θ(m)(τ) = Gθ

[
f 2

p

f 2
z

δ(τ (m)) + πfp

(
1−

f 2
p

f 2
z

)
e−2πfp|τ (m)|

]
. (4.6)
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From (4.6), the covariance matrix of the PN vector θ(m) ∈ RN , θ(m) =[
θ(m)[0] . . . θ(m)[N − 1]

]
can be obtained by sampling the autocorrelation

function as [Cθ(m)θ(m) ]i,j = Rθ(m)θ(m) (|i− j|Ts). From this, it is clear that the

PN variance does not depend on the particular time instant at which the PN

sample is observed, but only depends on the absolute time difference |i− j|Ts.

The discrete-time MIMO channel between the transmitter and the re-

ceiver is modeled as a set of Nr×Nt matrices denoted as H[d], for a given delay

tap d = 0, . . . , D− 1, with D the delay tap length of the channel. Each of the

matrices H[d] is assumed to be a sum of the contributions of C spatial clusters,

each contributing with Rc rays, c = 1, . . . , C. I use ρL to denote the pathloss,

αc,r ∈ C is the complex gain of the r-th ray within the c-th cluster, τc,r ∈ R+

is the time delay of the r-th ray within the c-th cluster, φc,r, θc,r ∈ [0, 2π)

are the AoA and AoD, aR(·) ∈ CNr×1 and aT(·) ∈ CNt×1 denote the receive

and transmit array steering vectors, pRC(τ) is the equivalent transmit-receive

baseband pulse shape including analog filtering effects evaluated at τ [33], and

Ts is the sampling interval. Using this notation, the frequency-domain channel

matrix at the k-th subcarrier is given by

H[k] =

√
NrNt

ρL

∑C
c=1 Rc

K−1∑
k=0

C∑
c=1

Rc∑
r=1

αc,rpRC(dTs − τc,r)×

× aR (φc,r) a∗T(θc,r)e
−j 2πk

K .

(4.7)

Taking the inverse Fourier transform of (4.7) allows obtaining the discrete-

time MIMO channel used in (4.3). The channel matrix can be represented
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more compactly as

H[k] = ARG[k]A∗T, (4.8)

where G[k] ∈ C
∑C
c=1 Rc×

∑C
c=1Rc is a diagonal matrix containing the path gains

and the equivalent pulse-shaping effect, and AT ∈ CNt×
∑C
c=1Rc , AR ∈ CNr×

∑C
c=1Rc

are the frequency-selective array response matrices evaluated on the AoD and

AoA, respectively. Finally, the matrix H[k] in (4.8) can be approximated using

the extended virtual channel model [8] as

H[k] ≈ ÃRG
v[k]Ã

∗
T, (4.9)

where Gv[k] ∈ CGr×Gt is a sparse matrix containing the path gains of the

quantized spatial frequencies in the non-zero elements, and the dictionary

matrices ÃT ∈ CNt×Gt , ÃR ∈ CNr×Gr contain the transmit and receive array

response vectors evaluated on spatial grids of sizes Gt and Gr, respectively.

4.4 Theoretical analysis of the estimation problem

In this section, I theoretically analyze the problem of estimating the

unknown parameters in ξ(m). Let us assume, without loss of generality, that

Ntr OFDM symbols are transmitted for the m-th training frame, and that

the number of available received time-domain samples of y(m)[n] is given by

N = n0 + (Lc + K)Ntr + D. Assuming that the received time-domain noise

samples in (4.4) are independent and identically distributed, the received signal

142



in (4.4) has LLF given by

log p
(
{y(m)[n]}N−1

n=0 ; ξ(m)
)

= −N log (πσ2)− 1

σ2

N−1∑
n=0

∥∥y(m)[n]
∥∥2

2

+ 2
N−1∑
n=0

Re

{
y(m)∗ej(2π∆f (m)n+θ(m)[n])

D−1∑
d=0

x(m)[n, d, n0]

}
−

N−1∑
n=0

∥∥∥∥∥
D−1∑
d=0

x(m)[n, d, n0]

∥∥∥∥∥
2

2

.

(4.10)

To ensure robustness of the synchronization algorithm, I will focus on

finding the ML estimators for the different unknown parameters in ξ(m). From

(4.10), it is observed that maximizing L(ξ(m)) = log p
(
{y(m)[n]}N−1

n=0 ; ξ(m)
)

as

a function of n0 requires knowledge of the other parameters contained in ξ(m),

which suggests that the ML estimator exhibits high computational complexity.

To reduce computational complexity, I propose to exploit the good correlation

properties of Golay sequences [36], [108], and append a 64-point Ga,64 sequence

at the beginning of the training frame, which has been shown to offer excellent

performance in the absence of PN [141]. Thereby, a practical TO estimator can

be devised by maximizing the third term in (4.10), which is given by [5, 141]

n̂0 = arg max
n0

Lr∑
i=1

63∑
n=0

∣∣∣y(m)∗
i [n]s(m)[n− d− n0]

∣∣∣ , (4.11)

which explicitly exploits the information coming from having Lr ≥ 1 at the

receiver side. Assuming that the TO has been estimated perfectly using

(4.11), this parameter can be compensated by advancing the receive signal

by n̂0 as y(m)[n] = y(m)[n + n0], n = 0, . . . , (Lc + K)Ntr + D − 1. Now,

let the initial sample of the t-th OFDM symbol after CP removal be defined
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as k0[t] , Lc + n0 + t(K + Lc), let φ(m)[n0, t] , ej2π∆f (m)k0[t] be the com-

mon phase change at the t-th OFDM symbol due to TO, let Ωt

(
∆f (m)

)
,

φ(m)[n0, t]
⊕K−1

n=0 e
j2π∆f (m)n be the CFO matrix impairing the t-th OFDM sym-

bol, and let S(m)
t ,

⊕K−1
k=0 s

(m)
t [k] and S(m) ,

[
S(m)T

0 . . . S(m)T
Ntr

]T
be ma-

trices containing the t-th OFDM training symbol and the Ntr OFDM train-

ing symbols, respectively. Also, let g(m)
i ,

[
g

(m)
i [0] . . . g

(m)
i [K − 1]

]
be

the frequency-response of the equivalent beamformed channel seen by the i-

th receive RF chain, let v
(m)
i,t ,

[
v

(m)
i [k0[t]] . . . v

(m)
i [k0[t] +K − 1]

]
con-

tain the time-domain noise samples impairing the t-th OFDM symbol, let

θ
(m)
t =

[
θ(m)[k0[t]] . . . θ(m)[k0[t] +K − 1]

]T
be the PN vector correspond-

ing to the t-th OFDM symbol, and let P
(
θ

(m)
t

)
,
⊕K−1

n=0 e
jθ(m)[k0[t]+n] be

the diagonal PN matrix impairing the received t-th OFDM symbol. Letting

F ∈ CK×K denote the K-point DFT matrix, the received time synchronized

signal y(m)[n] can be vectorized as y
(m)
i [k0[t]]

...

y
(m)
i [k0[t] +K − 1]


︸ ︷︷ ︸

y
(m)
i,t

= Ωt

(
∆f (m)

)
Pt

(
θ

(m)
t

)
F∗

(
K−1⊕
k=0

s
(m)
t [k]

)
︸ ︷︷ ︸

S
(m)
t

×

 g
(m)
i [0]
...

g
(m)
i [K − 1]


︸ ︷︷ ︸

g
(m)
i

+

 v
(m)
i [k0[t]]

...

v
(m)
i [k0[t] +K − 1]


︸ ︷︷ ︸

v
(m)
i,t

,

(4.12)
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such that the vectorized received signal can be simplified as

y
(m)
i,t = Ωt

(
∆f (m)

)
Pt

(
θ

(m)
t

)
F∗S(m)

t g(m)
i + v

(m)
i,t . (4.13)

Now, the K × 1 random vector y
(m)
i,t can be stacked for the different received

OFDM symbols 1 ≤ t ≤ Ntr and RF chains 1 ≤ i ≤ Lr as
y

(m)
i,1
...

y
(m)
i,Ntr


︸ ︷︷ ︸

y
(m)
i

=

(
Ntr⊕
t=1

Ωt

(
∆f (m)

))
︸ ︷︷ ︸

Ω(∆f (m))

(
Ntr⊕
t=1

Pt

(
θ

(m)
t

))
︸ ︷︷ ︸

P(θ(m))

(INtr ⊗ F∗)︸ ︷︷ ︸
F∗

⊗

×

 S(m)
1
...

S(m)
Ntr


︸ ︷︷ ︸

S(m)

g(m)
i +


v

(m)
i,1
...

v
(m)
i,Ntr


︸ ︷︷ ︸

v
(m)
i

.

(4.14)

Therefore, the received signal y
(m)
i is distributed according to CN

(
µ

(m)
i

(
ξ(m)

)
, σ2IKNtr

)
,

where µ
(m)
i

(
ξ(m)

)
= Ω

(
∆f (m)

)
P
(
θ(m)

)
F∗⊗S

(m)g(m)
i . Finally, stacking the re-

ceived signals y
(m)
i for the different RF chains yields y

(m)
1
...

y
(m)
Lr

 =
(
ILr ⊗Ω

(
∆f (m)

)
P
(
θ(m)

)
F∗⊗S

(m)
) g(m)

1
...

g(m)
Lr

+

 v
(m)
1
...

v
(m)
Lr

 .
(4.15)

For the purpose of theoretically analyzing the estimation problem of

finding the unknown parameters, let g
(m)
i [k] be further expressed as g

(m)
i [k] =

α
(m)
i [k]ejβ

(m)
i [k], and let g̃(m)

i [k] ∈ C2 be defined as g̃(m)
i [k] , [α

(m)
i [k], β

(m)
i [k]]T .

Finally, let g̃(m)
i ∈ C2K×1 be given by g̃(m)

i , [g̃(m)T
i [0], . . . , g̃(m)T

i [K−1]]T , and
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g̃(m) , [g̃(m)T
1 , . . . , g̃(m)T

Lr
]T . Likewise, let θ(m) , [θ

(m)T
0 , . . . ,θ

(m)T
Ntr−1]T . Now,

the vector of parameters to be estimated is defined as ξ(m) ∈ C(K(Lr+Ntr)+1)×1,

given by ξ(m) , [∆f (m), g̃(m)T ,θ(m)T ]T .

4.4.1 Computation of the HIM

In this section, I derive the HIM of the vector of parameters ξ(m) and

derive the hybrid CRLB for any unbiased estimator of ξ(m). Since there is prior

knowledge on the PN parameters in θ
(m)
t , 0 ≤ t ≤ Ntr, the HIM H

(
ξ(m)

)
can

be defined as [148]

H
(
ξ(m)

)
= ID

(
ξ(m)

)
+ IP

(
ξ(m)

)
, (4.16)

where

ID

(
ξ(m)

)
, Eθ(m)

{
I
(
ξ(m)

)}
, (4.17)

with I
(
ξ(m)

)
denoting the FIM and

IP

(
ξ(m)

)
, −Eθ(m)|g̃(m),∆f (m)

∂
2 log p

(
θ(m)|g̃(m),∆f (m)

)
∂ξ(m)ξ(m)T

 (4.18)

is the prior information matrix with p
(
θ(m)|g̃(m),∆f (m)

)
denoting the prior

distribution of the PN vector given the equivalent beamformed channels g̃(m)

and the CFO ∆f (m).

The FIM associated to ξ(m), I
(
ξ(m)

)
∈ R(K(Lr+Ntr)+1)×(K(Lr+Ntr)+1), can

be expressed as [135]

[I
(
ξ(m)

)
]r,c =

2

σ2

Lr∑
i=1

Re

{
∂µ

(m)∗
i

(
ξ(m)

)
∂ξ

(m)
r

∂µ
(m)
i

(
ξ(m)

)
∂ξ

(m)
c

}
, 1 ≤ r, c ≤ K(Lr+Ntr)+1.

(4.19)
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Let enm ∈ Rn denote the m-th canonical vector in Rn, and let p[t, `] = n0 +

Lc + (t− 1)(K + Lc) + `. Then, the terms
∂µ

(m)
i (ξ(m))
∂ξ

(m)
r

are given by

∂µ
(m)
i

(
ξ(m)

)
∂ξ

(m)
r

=


jMΩ

(
∆f (m)

)
P
(
θ(m)

)
F∗⊗S

(m)g(m)
i ξ

(m)
r = ∆f (m)

j diag
{

Ω
(
∆f (m)

)
F∗⊗S

(m)g(m)
i

}
ejθ

(m)
t [`]eKNtr

p[t,`] ξ
(m)
r = θ

(m)
t [`]

ejβ
(m)
i [k]Ω

(
∆f (m)

)
P
(
θ(m)

)
F∗⊗S

(m)eKk ξ
(m)
r = α

(m)
i [k]

jg
(m)
i [k]Ω

(
∆f (m)

)
P
(
θ(m)

)
F∗⊗S

(m)eKk ξ
(m)
r = β

(m)
i [k].

(4.20)

where M ∈ CK×K is given by M ,
⊕Ntr−1

t=0 M[t], with M[t] given by M[t] =

2π
⊕K−1

n=0 (k0[t] + n). The FIM can be structured as

I
(
ξ(m)

)
=

2

σ2
Re


 i∆f (m),∆f (m)

(
ξ(m)

)
i∆f (m),g̃(m)

(
ξ(m)

)
i∆f (m),θ(m)

(
ξ(m)

)
ig̃(m),∆f (m)

(
ξ(m)

)
Ig̃(m),g̃(m)

(
ξ(m)

)
Ig̃(m),θ(m)

(
ξ(m)

)
iθ(m),∆f (m)

(
ξ(m)

)
Iθ(m),g̃(m)

(
ξ(m)

)
Iθ(m),θ(m)

(
ξ(m)

)
 .

(4.21)

The element i∆f (m),∆f (m)

(
ξ(m)

)
is given by

i∆f (m),∆f (m)

(
ξ(m)

)
=

Lr∑
i=1

g(m)∗
i S(m)∗F⊗M∗MF∗⊗S

(m)g(m)
i

=
Lr∑
i=1

Ntr−1∑
t=0

g(m)∗
i S(m)∗

t FM∗[t]M[t]F∗S(m)
t g(m)

i .

(4.22)

The vector i∆f (m),g̃(m)

(
ξ(m)

)
can be expressed as

i∆f (m),g̃(m)

(
ξ(m)

)
=
[

i
∆f (m),g̃

(m)
1

(
ξ(m)

)
. . . i

∆f (m),g̃
(m)
Lr

(
ξ(m)

) ]
, (4.23)

with i
∆f (m),g̃

(m)
i

(
ξ(m)

)
, 1 ≤ i ≤ Lr, being given by

i
∆f (m),g̃

(m)
i

(
ξ(m)

)
=
[

i
∆f (m),g̃

(m)
i [0]

(
ξ(m)

)
. . . i

∆f (m),g̃
(m)
i [K−1]

(
ξ(m)

) ]
,

(4.24)
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and the vector i
∆f (m),g̃

(m)
i [k]

(
ξ(m)

)
, 0 ≤ k ≤ K − 1, is given by

i
∆f (m),g̃

(m)
i [k]

(
ξ(m)

)
=
[
i
∆f (m),α

(m)
i [k]

(
ξ(m)

)
i
∆f (m),β

(m)
i [k]

(
ξ(m)

) ]
=

Ntr−1∑
t=0

[
−jejβ

(m)
i [k] g

(m)
i [k]

]
g(m)∗
i S(m)∗

t FM[t]F∗S(m)
t eKk .

(4.25)

Furthermore, the vector i∆f (m),θ(m)

(
ξ(m)

)
can be written as

I∆f (m),θ(m)

(
ξ(m)

)
=
[

I
∆f (m),θ

(m)
0

(
ξ(m)

)
. . . I

∆f (m),θ
(m)
Ntr−1

(
ξ(m)

) ]
, (4.26)

where i
∆f (m),θ

(m)
t

(
ξ(m)

)
, 0 ≤ t ≤ Ntr − 1, is given by

i
∆f (m),θ

(m)
t

(
ξ(m)

)
=
[
i
∆f (m),θ

(m)
t [0]

(
ξ(m)

)
. . . i

∆f (m),θ
(m)
t [K−1]

(
ξ(m)

) ]
.

(4.27)

Each of the terms in (4.27) can be expressed as

i
∆f (m),θ

(m)
t [`]

(
ξ(m)

)
=

Lr∑
i=1

g(m)∗
i S(m)∗

t FM[t] diag
{

F∗S(m)
t g(m)

i

}
eK` . (4.28)

The submatrix Ig̃(m),g̃(m)

(
ξ(m)

)
can be expressed as

Ig̃(m),g̃(m)

(
ξ(m)

)
=


I
g̃

(m)
1 ,g̃

(m)
Lr

(
ξ(m)

)
. . . I

g̃
(m)
1 ,g̃

(m)
Lr

(
ξ(m)

)
...

. . .
...

I
g̃

(m)
Lr

,g̃
(m)
1

(
ξ(m)

)
. . . I

g̃
(m)
Lr

,g̃
(m)
Lr

(
ξ(m)

)
 , (4.29)

which has a particularly interesting structure from an estimation theoretic

perspective. By observing the Kronecker structure in (4.15), as well as the

derivatives in (4.20), it is clear that I
g̃

(m)
i ,g̃

(m)
j

(
ξ(m)

)
= 0 for i 6= j. Therefore,
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only the terms I
g̃

(m)
i ,g̃

(m)
i

(
ξ(m)

)
are non-zero valued, which can be computed as

I
g̃

(m)
i ,g̃

(m)
i

(
ξ(m)

)
=


I
g̃

(m)
i [0],g̃

(m)
i [0]

(
ξ(m)

)
. . . I

g̃i(m)[0],g̃
(m)
i [K−1]

(
ξ(m)

)
...

. . .
...

I
g̃

(m)
i [K−1],g̃

(m)
i [0]

(
ξ(m)

)
. . . I

g̃
(m)
i [K−1],g̃(m)[K−1]

(
ξ(m)

)
 .

(4.30)

The matrix in (4.30) has a similar structure to that of (4.29). From (4.20) and

(4.14), it is observed that I
g̃

(m)
i [k1],g̃

(m)
i [k2]

(
ξ(m)

)
= 0 if k1 6= k2. The non-zero

matrices I
g̃

(m)
i [k],g̃

(m)
i [k]

(
ξ(m)

)
can be written as

I
g̃

(m)
i [k],g̃

(m)
i [k]

(
ξ(m)

)
=

[
I
α

(m)
i [k],α

(m)
i [k]

(
ξ(m)

)
I
α

(m)
i [k],β

(m)
i [k]

(
ξ(m)

)
I
β

(m)
i [k],α

(m)
i [k]

(
ξ(m)

)
I
β

(m)
i [k],β

(m)
i [k]

(
ξ(m)

) ] . (4.31)

By plugging the corresponding partial derivatives in (4.20) into (4.19), the

matrix in (4.31) is given by

I
g̃

(m)
i [k],g̃

(m)
i [k]

(
ξ(m)

)
=

Ntr−1∑
t=0

∣∣∣[S(m)
t ]k,k

∣∣∣2 [ 1 0

0 α
(m)2
i [k]

]
︸ ︷︷ ︸

Λ
(m)
i [k]

, (4.32)

which shows that estimation of both the amplitude and phase of a given

subchannel g
(m)
i [k] do not interfere with each other, a result that has been

shown in [2]. Let s(m)
k ∈ CNtr×1 be the vector containing the training pi-

lots for a given subcarrier and all the transmitted OFDM symbols, s(m)
k =

[s
(m)
0 [k], . . . , s

(m)
Ntr−1[k]]T . Then, the matrix in (4.30) can be expressed as

I
g̃

(m)
i ,g̃

(m)
i

(
ξ(m)

)
=

K−1⊕
k=0

∥∥∥s(m)
k

∥∥∥2

2
Λ

(m)
i [k], (4.33)

and (4.29) can be written as

Ig̃(m),g̃(m)

(
ξ(m)

)
=

Lr⊕
i=1

K−1⊕
k=0

∥∥∥s(m)
k

∥∥∥2

2
Λ

(m)
i [k]. (4.34)
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Now, the block Ig̃(m),θ(m)

(
ξ(m)

)
can be expressed as

Ig̃(m),θ(m)

(
ξ(m)

)
=


I
g̃

(m)
1 ,θ

(m)
0

(
ξ(m)

)
. . . I

g̃
(m)
1 ,θ

(m)
Ntr−1

(
ξ(m)

)
...

. . .
...

I
g̃

(m)
Lr

,θ
(m)
0

(
ξ(m)

)
. . . I

g̃
(m)
Lr

,θ
(m)
Ntr−1

(
ξ(m)

)
 , (4.35)

wherein the blocks I
g̃

(m)
i ,θ

(m)
t

(
ξ(m)

)
are of the form

I
g̃

(m)
i ,θ

(m)
t

(
ξ(m)

)
=


I
g̃

(m)
i [0],θ

(m)
t

(
ξ(m)

)
...

I
g̃

(m)
i [K−1],θ

(m)
t

(
ξ(m)

)
 , (4.36)

with I
g̃

(m)
i [k],θ

(m)
t

(
ξ(m)

)
given by

I
g̃

(m)
i [k],θ

(m)
t

(
ξ(m)

)
=
[

i
g̃

(m)
i [k],θ

(m)
t [0]

(
ξ(m)

)
. . . i

g̃
(m)
i [k],θ

(m)
t [K−1]

(
ξ(m)

) ]
.

(4.37)

Let s(m)
t ∈ CK×K be the column vector containing the training pilots for the t-

th transmitted OFDM symbol. This vector is given by s(m)
t = vec{diag{S(m)

t }}.

Furthermore, let f` ∈ CK×1 be the `-th column in the Discrete Fourier Trans-

form (DFT) matrix F. Then, plugging the corresponding derivatives from

(4.20) into (4.19) allows expressing each column in (4.37) as

I
g̃

(m)
i [k],θ

(m)
t [`]

(
ξ(m)

)
= Re

{[
je−jβ

(m)
i [k]

g
(m)C
i [k]

] (
eKk
)T (

s(m)C
t ◦ f`

)(
s(m)T
t ◦ f∗`

)
g(m)
i

}
.

(4.38)

Finally, the block matrix Iθ(m),θ(m)

(
ξ(m)

)
can be expressed in the form

Iθ(m),θ(m)

(
ξ(m)

)
=


I
θ

(m)
0 ,θ

(m)
0

(
ξ(m)

)
. . . I

θ
(m)
0 ,θ

(m)
Ntr−1

(
ξ(m)

)
...

. . .
...

I
θ

(m)
Ntr−1,θ

(m)
0

(
ξ(m)

)
. . . I

θ
(m)
Ntr−1,θ

(m)
Ntr−1

(
ξ(m)

)
 . (4.39)
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Owing to the structure of the partial derivative of µ
(m)
i

(
ξ(m)

)
with respect to

θ
(m)
t [`] in (4.20), the different matrices I

θ
(m)
t ,θ

(m)
u

(
ξ(m)

)
can be checked to be

zero-valued for t 6= u. Further, the matrices in the main block diagonal of

Iθ(m),θ(m)

(
ξ(m)

)
can be expressed as

I
θ

(m)
t ,θ

(m)
t

(
ξ(m)

)
=


i
θ
(m)
t [0],θ

(m)
t [0]

(
ξ(m)

)
. . . i

θ
(m)
t [0],θ

(m)
t [K−1]

(
ξ(m)

)
...

. . .
...

i
θ
(m)
t [K−1],θ

(m)
t [0]

(
ξ(m)

)
. . . i

θ
(m)
t [K−1],θ

(m)
t [K−1]

(
ξ(m)

)
 ,

(4.40)

which again, due to the structure of the partial derivative of µ
(m)
i

(
ξ(m)

)
with

respect to θ
(m)
t [`] in (4.20), is a diagonal matrix given by

I
θ

(m)
t ,θ

(m)
t

(
ξ(m)

)
=

K−1⊕
k=0

(
Lr∑
i=1

∥∥∥diag
{

F∗S(m)
t g(m)

i

}
eKNtr

p[t,k]

∥∥∥2

2

)
. (4.41)

Using (4.41), the matrix in (4.39) can be expressed as

Iθ(m),θ(m)

(
ξ(m)

)
=

Ntr−1⊕
t=0

K−1⊕
k=0

(
Lr∑
i=1

∥∥∥diag
{

F∗S(m)
t g(m)

i

}
eKNtr

p[t,k]

∥∥∥2

2

)
. (4.42)

Due to the structure of the FIM, the matrices below the main block diagonal

in (4.21) are given by Ig̃(m),∆f (m)

(
ξ(m)

)
= IT

∆f (m),g̃(m)

(
ξ(m)

)
, Iθ(m),∆f (m)

(
ξ(m)

)
=

IT
∆f (m),θ(m)

(
ξ(m)

)
, and Iθ(m),g̃(m)

(
ξ(m)

)
= IT

g̃(m),θ(m)

(
ξ(m)

)
.

Finally, to obtain ID

(
ξ(m)

)
, notice that the terms in (4.22), (4.25),

(4.28), (4.34), (4.38) and (4.42) do not depend on θ(m) since the PN exponen-

tials get canceled by their conjugates. Hence, there is no need to calculate the

explicit expectation of I
(
ξ(m)

)
over θ(m), and ID

(
ξ(m)

)
= I

(
ξ(m)

)
.

Now, the only matrix left to compute in order to find the HIM H
(
ξ(m)

)
is IP

(
ξ(m)

)
in (C.7). From the expression in (C.9), since no prior knowledge
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on either g̃(m) or ∆f (m) is assumed, IP

(
ξ(m)

)
is structured as

IP

(
ξ(m)

)
, −


Eθ(m)

{
∂2 log p(θ(m))
∂∆f (m)2

}
Eθ(m)

{
∂2 log p(θ(m))
∂∆f (m)∂g̃(m)T

}
Eθ(m)

{
∂2 log p(θ(m))
∂∆f (m)θ(m)T

}
Eθ(m)

{
∂2 log p(θ(m))
∂g̃(m)∂∆f (m)

}
Eθ(m)

{
∂2 log p(θ(m))
∂g̃(m)∂g̃(m)T

}
Eθ(m)

{
∂2 log p(θ(m))
∂g̃(m)θ(m)T

}
Eθ(m)

{
∂2 log p(θ(m))
∂θ(m)∂∆f (m)

}
Eθ(m)

{
∂2 log p(θ(m))
∂θ(m)∂g̃(m)T

}
Eθ(m)

{
∂2 log p(θ(m))
∂θ(m)θ(m)T

}



= −


0 0 0
0 0 0

0 0 Eθ(m)

{
∂2 log p(θ(m))
∂θ(m)θ(m)T

}
 ,

(4.43)

where the last equality comes from the PDF of the PN being independent of

the CFO and equivalent channel gains. The LLF of the PN is given by

log p
(
θ(m)

)
= −KNtr

2
log (2π)−Ntr

2
log det{Cθ(m),θ(m)}−

1

2
θ(m)TC−1

θ(m),θ(m)θ
(m),

(4.44)

and its Hessian reads

∂2 log p
(
θ(m)

)
∂θ(m)θ(m)T

= −C−1
θ(m),θ(m) . (4.45)

Therefore, by combining ID

(
ξ(m)

)
and IP

(
ξ(m)

)
, the HIM H

(
ξ(m)

)
is obtained

as

H
(
ξ(m)

)
=

 iH,1,1
(
ξ(m)

)
iTH,1,2

(
ξ(m)

)
iTH,1,3

(
ξ(m)

)
iH,2,1

(
ξ(m)

)
IH,2,2

(
ξ(m)

)
IH,2,3

(
ξ(m)

)
iH,3,1

(
ξ(m)

)
IH,3,2

(
ξ(m)

)
IH,3,3

(
ξ(m)

)


=

 i∆f (m),∆f (m)

(
ξ(m)

)
i∆f (m),g̃(m)

(
ξ(m)

)
i∆f (m),θ(m)

(
ξ(m)

)
ig̃(m),∆f (m)

(
ξ(m)

)
Ig̃(m),g̃(m)

(
ξ(m)

)
Ig̃(m),θ(m)

(
ξ(m)

)
iθ(m),∆f (m)

(
ξ(m)

)
Iθ(m),g̃(m)

(
ξ(m)

)
Iθ(m),θ(m)

(
ξ(m)

)
+ C−1

θ(m),θ(m)

 .
(4.46)
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Finally, the hybrid CRLB is given by the inverse of the HIM, H−1
(
ξ(m)

)
. In

particular, using the formula for the inverse of block matrices [135], the hybrid

CRLB for the CFO can be found as follows. Let ĩ∆f (m),∆f (m)

(
ξ(m)

)
∈ R,

Ĩg̃(m),g̃(m)

(
ξ(m)

)
∈ R2KLr×2KLr and x

(
ξ(m)

)
∈ R2KLr×1 denote the HIM for the

CFO parameter when the channel g̃ is known, the HIM for the channels when

the CFO is known, and a vector accounting for the coupling between the PN,

channel, and CFO parameters. These parameters are given by

ĩ∆f (m),∆f (m)

(
ξ(m)

)
= iH,1,1

(
ξ(m)

)
− iTH,1,3

(
ξ(m)

)
I−1

H,3,3

(
ξ(m)

)
iH,3,1

(
ξ(m)

)
(4.47)

Ĩg̃(m),g̃(m)

(
ξ(m)

)
= IH,2,2

(
ξ(m)

)
− IH,2,3

(
ξ(m)

)
I−1

H,3,3

(
ξ(m)

)
IH,3,2

(
ξ(m)

)
. (4.48)

x
(
ξ(m)

)
= iH,1,2

(
ξ(m)

)
− iTH,1,3

(
ξ(m)

)
I−1

H,3,3

(
ξ(m)

)
IH,2,3

(
ξ(m)

)
. (4.49)

Then, the hybrid CRLB for any unbiased estimator of ∆f (m), g̃(m) are given

by

var

{
∆̂f

(m)
}
≥ 1

ĩ
(m)
∆f (ξ(m))− xT (ξ(m)) I−1

g̃(m),g̃(m) (ξ(m)) x (ξ(m))
, (4.50)

covar
{

ˆ̃g(m), ˆ̃g(m)
}
≥ Ĩ−1

g̃(m),g̃(m)

(
ξ(m)

)
+

I−1

g̃(m),g̃(m)

(
ξ(m)

)
x
(
ξ(m)

)
xT
(
ξ(m)

)
I−1

g̃(m),g̃(m)

(
ξ(m)

)
ĩ
(m)
∆f (ξ(m))− xT (ξ(m)) I−1

g̃(m),g̃(m) (ξ(m)) x (ξ(m))
.

(4.51)

The main insights from equations (4.50) and (4.51) are two fold: i) The

hybrid CRLB for the estimation of the CFO parameter can be interpreted as

the hybrid CRLB for CFO estimation plus an additional term that gathers the
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information coupling between the CFO, beamformed channels and PN impair-

ments, and ii) the hybrid CRLB for the estimation of the beamformed channels

is the hybrid CRLB for beamformed channel estimation in the absence of CFO

plus a correction term that comprises the information coupling between the

CFO, beamformed channels and PN impairments, scaled by the hybrid CRLB

for the estimation of the CFO. Since the hybrid CRLB for CFO estimation is

expected to be small (similar to the result in Chapter 3), the hybrid CRLB for

the estimation of the beamformed channnels will be mainly determined by the

first term in (4.51), thereby reducing the impact of the information coupling

between the CFO and the PN on the resulting hybrid CRLB.

4.5 Estimation of equivalent beamformed channels and
high-dimensional MIMO channel

In this section, I formulate and present novel solutions to the problem

of estimating both the CFO, the equivalent frequency-selective beamformed

channels, and the PN vector for the signal model in Section 4.3. Then, I

formulate the problem of estimating the high-dimensional frequency-selective

mmWave MIMO channel {H[k]}K−1
k=0 from the estimates of the equivalent chan-

nel accounting for both the estimates for these parameters and their hybrid

CRLB. Since prior statistical information on the PN vector is available, it is

well-known that the optimum estimator for the PN is the Minimum Mean

Square Error (MMSE) estimator, which is well-known to be unbiased and

attain the hybrid CRLB. The main problem concerning applying the MMSE
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estimator is that it requires knowledge of the CFO and the equivalent channels,

which is not available a priori. Another strategy to find the PN vector relies

on using the Maximum A Posteriori (MAP) estimator, which is attractive due

to its simplicity, but it present the drawback of being, in general, biased. Due

to this, the application of the MAP estimator may well lead to the different

estimates ĝ(m)
i , 1 ≤ i ≤ Lr, 1 ≤ m ≤M having random phase errors that could

destroy incoherence in the measurements, thereby invalidating the application

of CS-based algorithms to retrieve the frequency-selective channel {H[k]}K−1
k=0 .

For this reason, it is crucial to consider an unbiased estimator for the different

parameters. Owing to the difficulty in finding a closed-form solution for the

estimation of ∆f (m), {g(m)
i }

Lr
i=1, and {θ(m)

t }Ntr−1
t=0 , I propose to use the EM ap-

proach [135] to find these estimators. I will show that this leads to finding the

MMSE estimator for the PN impairment, parameterized by the current esti-

mates of the unknown CFO and equivalent channels, which can be computed

as it will soon become apparent. The EM method is a well-known iterative

approach to find the ML estimators for unknown parameters when the LLF is

unknown, and hence impossible to optimize directly. The first proposed algo-

rithm aims at finding the LMMSE estimator for the PN by batch processing

the LrKNtr received measurements at once, thereby providing very good per-

formance. The second proposed algorithm also aims at finding the LMMSE

estimator for the PN but, unlike the first proposed algorithm, it processes the

received measurements in sets of Lr samples to reduce computational com-

plexity. A block diagram of the proposed estimation approach is shown in Fig.
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Figure 4.3: Block diagram of the proposed estimation-theoretic framework for
joint synchronization and compressive channel estimation under broadband
mmWave MIMO channels.

4.3.

4.5.1 LMMSE-EM Algorithm

In this subsection, I present the first proposed algorithm to find the

ML estimates for the CFO and the equivalent beamformed channels using the

EM iterative estimation approach. At each iteration, this algorithm processes

all the LrKNtr received measurements using single-shot estimation to find a

closed-form solution to the problem of estimating the PN vector. The EM

algorithm consists of two steps:
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• E-step: in the first step of the EM algorithm, the posterior expected

value of the joint LLF of y(m) and ξ
(m)
R is computed. Let us consider

a partition of the vector of parameters to be estimated, ξ(m), into a

vector of deterministic parameters ξ
(m)
D = [∆f (m), g(m)T

1 , . . . , g(m)T
Lr

]T , and

a vector of random parameters ξ
(m)
R = [θ

(m)T
0 , . . . ,θ

(m)T
Ntr−1]T . Then, the

expectation step for the n-th step can be formalized as

Q
(
ξ

(m)
D , ξ̂

(m,n−1)
D

)
, E

ξ
(m)
R |y(m),ξ̂

(m,n−1)
D

{
log p

(
y(m), ξ

(m)
R ; ξ

(m)
D

)}
,

(4.52)

where ξ̂
(m,n)
D is the estimate of ξ

(m)
D found at the n-th iteration of the

algorithm.

• M-step: this step consists of finding ξ̂
(m,n)
D , which is defined as the

maximizer of the function found during the E-step. The maximization

step is formalized as

ξ̂
(m,n)
D = arg max

ξ
(m)
D

Q
(
ξ

(m)
D , ξ̂

(m,n−1)
D

)
. (4.53)

Due to the independence of the PN sequence on the deterministic pa-

rameters in ξ
(m)
D , the Q function in (4.52) can be expressed as

Q
(
ξ

(m)
D , ξ̂

(m,n)
D

)
= − 1

σ2

Lr∑
i=1

∥∥∥y(m)
i −Ω

(
∆f (m)

)
P
(
θ̂

(m,n)
MMSE

)
F∗⊗S

(m)g(m)
i

∥∥∥2

2
,

(4.54)

where θ̂
(m,n)
MMSE , E

ξ
(m)
R |y(m),ξ̂

(m,n−1)
D

{θ(m)} is the MMSE estimator of the

PN sequence found during the n-th E-step.
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Finding the MMSE estimator of the PN sequence requires finding the

posterior PDF of the PN sequence, given the received measurements y
(m)
i ,

1 ≤ i ≤ Lr. Finding this PDF, however, requires multi-dimensional integration

over the joint PDF of the received measurements and the PN sequence, which

is difficult to find, in general. For this reason, I propose another approach to

estimate the PN as follows. Exploiting the fact that the PN sequence typically

has small amplitude [5], I use a first-order Taylor series approximation to

linearize the received measurement with respect to the PN sequence around

the expected value of θ(m), given by µθ(m) , as

y(m) ≈
(
ILr ⊗Ω

(
∆f (m)

)
P
(
θ(m)

)
F∗⊗S

(m)
)
g(m)︸ ︷︷ ︸

h
(
θ(m),ξ

(m)
D

)
+∇f

(
θ(m)

) ∣∣∣∣
θ(m)=µ

θ(m)

θ(m)+v(m),

(4.55)

where ∇f

(
θ(m), ξ

(m)
D

)
is the Jacobian matrix of f

(
θ(m), ξ

(m)
D

)
: RKLrNtr →

CKLrNtr , f
(
θ(m), ξ

(m)
D

)
=
(
ILr ⊗Ω

(
∆f (m)

))
P
(
θ(m)

) (
ILr ⊗ F∗⊗S

(m)
)
g(m), which

is given by

∇f

(
θ(m)

)
=

[
∂f
(
θ(m),ξ

(m)
D

)
∂θ

(m)T
0

. . .
∂f
(
θ(m),ξ

(m)
D

)
∂θ

(m)T
Ntr−1

]
. (4.56)

Each of the submatrices
∂f
(
θ(m),ξ

(m)
D

)
∂θ

(m)T
t

∈ CKLrNtr×K is given by

∂f
(
θ(m), ξ

(m)
D

)
∂θ

(m)T
t

=

[
∂f
(
θ(m),ξ

(m)
D

)
∂θ

(m)
t,0

. . .
∂f
(
θ(m),ξ

(m)
D

)
∂θ

(m)
t,K−1

]
, (4.57)
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wherein
∂f(θ(m))
∂θ

(m)
t,k

is given by

∂f
(
θ(m), ξ

(m)
D

)
∂θ

(m)
t,k

= jejθ
(m)
t,k

(
ILr ⊗ eKNtr

p[t,`]

(
eKNtr

p[t,`]

)T
Ω
(
∆f (m)

)
F∗⊗S

(m)

)
g(m)

= jejθ
(m)
t,k


diag

{
Ω
(
∆f (m)

)
F∗⊗S

(m)g(m)
1

}
eKNtr

p[t,`]

...

diag
{

Ω
(
∆f (m)

)
F∗⊗S

(m)g(m)
Lr

}
eKNtr

p[t,`]


(4.58)

Using (4.56)-(4.58), the time and measurement update equations for the esti-

mation of ξ
(m)
R = θ(m) at the n-th E-step are given by

• Time update

θ̂
(m,n)
TU = µ

(m)
θ

Ĉ
(n)

θ̂
(m)
TU ,θ̂

(m)
TU

= C
(m)

θ(m),θ(m) .
(4.59)

• Measurement update

Ĉ
(n)

θ(m),y(m) = Ĉ
(n)

θ̂
(m)
TU ,θ̂TU(m)

∇∗f
(
θ̂

(m,n)
TU , ξ̂

(m,n−1)
D

)
Ĉ

(n)

y(m),y(m) = ∇f

(
θ̂

(m,n)
TU , ξ̂

(m,n−1)
D

)
Ĉ

(n)

θ̂
(m)
TU ,θ̂

(m)
TU

∇∗f
(
θ̂

(m,n)
TU , ξ̂

(m,n−1)
D

)
+ σ2IKNtrLr

θ̂
(m,n)
MU = θ̂

(m,n)
TU + Ĉ

(n)

θ(m),y(m)

(
Ĉ

(n)

y(m),y(m)

)−1 (
y(m) − h

(
θ̂

(m)
TU , ξ̂

(m,n−1)
D

))
Ĉ

(n)

θ̂
(m)
MU ,θ̂

(m)
MU

= Ĉ
(n)

θ̂
(m)
TU ,θ̂

(m)
TU

− Ĉ
(n)

θ(m),y(m)

(
Ĉ

(n)

y(m),y(m)

)−1

Ĉy(m),θ(m) .

(4.60)

Finally, motivated by the linearization in (4.55) and the assumption that the

PN sequence is Gaussian [97,98], the MMSE estimator for the PN sequence at
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the n-th E-step is substituted by the approximate LMMSE estimate obtained

by the EKF recursions in (4.59)-(4.60).

Then, the optimum ML estimator found during the n-th M-step is found

by maximizing (4.52). Optimizing (4.52) directly is, however, computationally

complex because of the lack of closed-form solutions for the estimation of ∆f (m)

[141]. Therefore, to circumvent this issue, I propose to reduce the complexity

associated with the M-step by carrying out the optimization in (4.53) with

respect to one of the parameters while keeping the remaining parameters at

their most recently updated values. First, by using the equivalent channel

estimates at the (n− 1)-th E-step, ĝ(m,n−1), and the PN vector estimate from

the E-step, θ̂
(m,n)
MU , the function in (4.52) is maximized with respect to ∆f (m)

to obtain the estimate for the n-th iteration, ∆̂f
(m,n)

as

∆̂f
(m,n)

ML = arg min
∆f (m)

Lr∑
i=1

∥∥∥y(m)
i −Ω

(
∆f (m)

)
P
(
θ̂

(m,n)
MU

)
F∗⊗S

(m)ĝ(m,n−1)
i

∥∥∥2

2
.

(4.61)

After simplifying (4.61), it is obtained that

∆̂f
(m,n)

ML = arg max
∆f (m)

Lr∑
i=1

Ntr−1∑
t=0

Re
{

y
(m)∗
i,t Ωt

(
∆f (m)

)
Pt

(
θ̂

(m,n)
t,MU

)
F∗S(m)

t ĝ(m,n−1)
i,ML

}
.

(4.62)

To resolve the non-linearity in (4.62), I resort to a second-order Taylor series ex-

pansion of the function in (4.62) around the previous CFO estimate, ∆̂f
(m,n−1)

.

For this purpose, let h
(m,n)
i,t , Ωt

(
∆̂f

(m,n−1)

ML

)
Pt

(
θ̂

(m,n)
t,MU

)
F∗S(m)

t ĝ(m,n−1)
i,ML . Then,
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(4.62) can be approximated as

∆̂f
(m,n)

ML =arg max
∆f (m)

Lr∑
i=1

Ntr−1∑
t=0

Re
{

y
(m)∗
i,t h

(m,n)
i,t

}
+

(
∆f (m) − ∆̂f

(m,n−1)
) Lr∑

i=1

Ntr−1∑
t=0

Re
{

y
(m)∗
i,t jMh

(m,n)
i,t

}
+

1

2

(
∆f (m) − ∆̂f

(m,n−1)
)2 Lr∑

i=1

Ntr−1∑
t=0

Re
{

y
(m)∗
i,t j2M2h

(m,n)
i,t

}
.

(4.63)

Setting the partial derivative of (4.63) to zero allows finding the estimate of

∆f (m) at the n-th iteration as

∆̂f
(m,n)

ML = ∆̂f
(m,n−1)

ML −

∑Lr

i=1

∑Ntr

t=0 Im
{

y
(m)∗
i,t Mh

(m,n)
i,t

}
∑Lr

i=1

∑Ntr

t=0 Re
{

y
(m)∗
i,t M2h

(m,n)
i,t

} . (4.64)

Finally, using (4.61), we can find the estimator of g(m)
i at the n-th M-step as

ĝ(m,n)
i,ML =

(
S(m)∗S(m)

)−1

S(m)∗F⊗P∗
(
θ̂

(m,n)
MU

)
Ω∗
(

∆̂f
(m,n)

ML

)
y

(m)
i . (4.65)

Therefore, using (4.59), (4.60), (4.64), and (4.65), the proposed algorithm iter-

atively updates the PN, CFO, and equivalent channel gains respectively. The

algorithm is terminated when the difference between the Likelihood Function

(LF) at two iterations is smaller than a threshold η, i.e.,∣∣∣∣ Lr∑
i=1

∥∥∥∥y(m)
i −Ω

(
∆̂f

(m,n)
)

P
(
θ̂

(m,n)
MU

)
F∗⊗S

(m)ĝ(m,n)
i

∥∥∥∥2

2

−
∥∥∥∥y(m)

i −Ω

(
∆̂f

(m,n−1)
)

P
(
θ̂

(m,n−1)
MU

)
F∗⊗S

(m)ĝ(m,n−1)
i

∥∥∥∥2

2

∣∣∣∣ ≤ η.

(4.66)

The overall LMMSE-EM estimation algorithm is summarized in Algorithm 2.
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Algorithm 2 LMMSE-EM algorithm

1: Initialize CFO, beamformed channel estimates, and initial differ-
ence in LLF

2: ∆̂f
(0)

= arg max
∆f

∑Lr

i=1 ‖Ω(∆f)F∗⊗S
(m)S(m)∗F⊗Ω∗(∆f)y

(m)
i ‖2

2

3: ĝ(m,0)
i =

(
S(m)∗S(m)

)−1

S(m)∗F⊗Ω

(
∆̂f

(0)
)

y
(m)
i , i = 1, . . . , Lr

4: η̂(m,n) =∞, n = 1
5: while η̂(m,n) > η do
6: Update PN estimate
7: (4.56)-(4.60)
8: Update CFO estimate

9: h
(m,n)
i,t , Ωt

(
∆̂f

(m,n−1)

ML

)
Pt

(
θ̂

(m,n)
t,MU

)
F∗S(m)

t ĝ(m,n−1)
i,ML

10: ∆̂f
(m,n)

ML = ∆̂f
(m,n−1)

ML −
∑Lr
i=1

∑Ntr
t=0 Im

{
y

(m)∗
i,t Mh

(m,n)
i,t

}
∑Lr
i=1

∑Ntr
t=0 Re

{
y

(m)∗
i,t M2h

(m,n)
i,t

}
11: Update the beamformed channel estimates

12: ĝ(m,n)
i,ML =

(
S(m)∗S(m)

)−1

S(m)∗FP∗
(
θ̂

(m,n)
MU

)
Ω∗
(

∆̂f
(m,n)

ML

)
y

(m)
i ,

i = 1, . . . , Lr

13: Iteration update
14: n = n+ 1
15: Update difference in likelihood function

16: η̂(m,n) =

∣∣∣∣∑Lr

i=1

∥∥∥∥y(m)
i −Ω

(
∆̂f

(m,n)
)

P
(
θ̂

(m,n)
MU

)
F∗⊗S

(m)ĝ(m,n)
i

∥∥∥∥2

2

−∥∥∥∥y(m)
i −Ω

(
∆̂f

(m,n−1)
)

P
(
θ̂

(m,n−1)
MU

)
F∗⊗S

(m)ĝ(m,n−1)
i

∥∥∥∥2

2

∣∣∣∣
17: end while

Figure 4.4: Detailed steps of the first proposed LMMSE-EM algorithm.

162



4.5.2 EKF-RTS-EM Algorithm

In this subsection, I present an alternative strategy to using our first

proposed LMMSE-EM algorithm. Despite the simplicity of (4.61) and (4.65),

the algorithm introduced in the previous subsection exhibits high compu-

tational complexity. The main computational bottleneck of the LMMSE-

EM algorithm is the inversion of Ĉ
(n)

y(m),y(m) in (4.60), which has complexity

O((KNtrLr)
3) in the worst case. This high complexity comes at the cost of

batch processing the LrKNtr measurements at once to find the LMMSE esti-

mator for the PN, which exhibits very good performance but it may not be

computationally feasible if the number of subcarriers is in the order of a few

thousands. However, a trade-off between estimation performance and com-

putational complexity can be achieved if the size of the matrix inversion in

(4.60) is reduced. To reduce computational complexity, I propose to sequen-

tially process every set of Lr received measurements to reduce complexity to

be O (L3
r ) at most, which is computationally affordable since Lr is usually a

small number [11]. The PN estimate can be found using a combination of the

EKF and the RTS smoother [149], which exploits a first-order linearization of

the received measurement vector and uses the RTS smoother on the linearized

vector as follows.

Using (4.13), the Lr-dimensional time-domain received measurement
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can be expressed as
y

(m)
1,t [k0[t] + `]

...

y
(m)
Lr,t

[k0[t] + `]


︸ ︷︷ ︸

y
(m)
t [k0[t]+`]

= ej2π∆f (m)(k0[t]+`)ejθ
(m)
t [k0[t]+`]

 f∗` S
(m)
t g(m)

1
...

f∗` S
(m)
t g(m)

Lr


︸ ︷︷ ︸

h`,t

(
ξ

(m)
D ,θ

(m)
t [k0[t]+`]

)

+


v

(m)
1,t [k0[t] + `]

...

v
(m)
Lr,t

[k0[t] + `]

 .
(4.67)

The RTS smoother consists of a backward filter that follows the EKF recursion

given by the following:

• Forward recursion: Time Update Equations:

θ̂
(m)
t,TU[k0[t] + `] =


0 t = 0, ` = 0

θ̂
(m)
t,MU[k0[t] + `− 1] ` > 0,

θ̂
(m)
t−1,MU[k0[t− 1] +K − 1] ` = 0, t > 0,

(
σ̂

(`)

θ̂t,TU

)2

=



∥∥∥[Cθ(m),θ(m)

]
1,:

∥∥∥2

2
` = 0, t = 0,(

σ̂
(`−1)

θ̂t,MU

)2

+
∥∥∥∆dt,kt,k−1

∥∥∥2

2
` > 0(

σ̂
(K−1)
t−1,MU

)2

` = 0, t > 0,

(4.68)

Measurement Update Equations:

θ̂
(m)
t,MU[k0[t] + `] = θ̂

(m)
t,TU[k0[t] + `] + Re

{
ĉ

(`)

θ
(m)
t ,y

(m)
t

(
Ĉ

(`)

y
(m)
t ,y

(m)
t

)−1

×
(
y

(m)
t [k0[t] + `]− h`,t

(
ξ̂

(m,n−1)
D , θ̂

(m)
t,TU[k0[t] + `]

))}
(
σ̂

(`,t)

θ̂
(m)
t,MU

)2

= Re

{(
σ̂

(`)

θ̂t,TU

)2

−
(
ĉ

(`)

y
(m)
t ,θ

(m)
t

)∗ (
Ĉ

(`)

y
(m)
t ,y

(m)
t

)−1

ĉ
(`)

y
(m)
t ,θ

(m)
t

}
,

(4.69)
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where ĉ
(`)

y
(m)
t ,θ

(m)
t

∈ CLr×1, Ĉ
(`)

y
(m)
t ,y

(m)
t

∈ CLr×Lr are the covariance matrix

of y
(m)
t [k0[t] + `] and θ

(m)
t [k0[t] + `], and the autocovariance matrix of

y
(m)
t [k0[t] + `], which are given by

ĉ
(`)

y
(m)
t ,θ

(m)
t

= jh`,t
(
ξ̂

(m,n−1)
D , θ̂

(m)
t,TU[k0[t] + `]

)(
σ̂

(`,t)

θ̂MU

)2

Ĉ
(`)

y
(m)
t ,y

(m)
t

= h`,t

(
ξ̂

(m,n−1)
D , θ̂

(m)
t,TU[k0[t] + `]

)(
σ̂

(`,t)

θ̂MU

)2

× h∗`,t

(
ξ̂

(m,n−1)
D , θ̂

(m)
t,TU[k0[t] + `]

)
+ σ2ILr .

(4.70)

• Backward recursion:

G
(`)
t =

(
σ̂

(`,t)

θ̂
(m)
t,MU

)2

(
σ̂

(`,t)

θ̂
(m)
t,MU

)2

+
∥∥∥∆dt,k+1

t,k

∥∥∥2

2

θ̂
(m)
t,RTS[k0[t] + `] = θ̂

(m)
t,MU[k0[t] + `] +G

(`)
t

×
(
θ̂

(m)
t,RTS[k0[t] + `+ 1]− θ̂t,MU[k0[t] + `+ 1]

)
(
σ̂

(`,t)

θ̂
(m)
t,RTS

)2

=

(
σ̂

(`,t)

θ̂
(m)
t,MU

)2

+
(
G

(`)
t

)2

×

((
σ̂

(`+1,t)

θ̂
(m)
t,RTS

)2

−
(
σ̂

(`+1,t)

θ̂
(m)
t,MU

)2

−
∥∥∥∆dt,k+1

t,k

∥∥∥2

2

)
.

(4.71)

In (4.68), the proposed algorithm is initialized as θ̂t,TU[k0[0]] = 0 since the PN

vector is assumed to have zero mean, and the predicted variance is initialized

as

(
σ̂

(0)

θ̂
(m)
0,TU

)2

=
∥∥∥[Cθ(m),θ(m)

]
1,:

∥∥∥2

2
. Also, notice that the CP is removed after

timing offset synchronization, which requires properly updating the PN pre-

dicted statistics from the last sample of the t-th OFDM symbol to the first

sample of the (t+ 1)-th OFDM symbol, as reflected in (4.68).
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Thereby, using (4.68)-(4.71), and then (4.64) and (4.65), the second

proposed algorithm can iteratively update the PN sample estimates, CFO,

and equivalent channel gains, respectively. The termination criterion for the

proposed algorithm is analogous to the termination criterion for the first pro-

posed LMMSE-EM algorithm, given in (4.66). The detailed steps the proposed

EKF-RTS algorithm follows are summarized in Algorithm 3.

4.5.3 Initialization and Convergence

Appropriate initialization of the CFO, ∆f (m), and equivalent beam-

formed channels, {g(m)
i }

Lr
i=1, are essential to ensure global convergence of the

proposed algorithms. The initialization process can be summarized as follows:

• Similar to [98], an initial CFO estimate ∆̂f
(m,0)

is obtained by applying

an exhaustive search for the value of ∆f (m) that minimizes the cost

function in the absence of PN. This cost function is given in ( [141],

equation (17)). Simulation results in Section 4.7 show that an exhaustive

search with a coarse step size of 0.02 is sufficient to initialize the proposed

algorithms.

• Using ∆̂f
(m,0)

, the initial channel estimates {ĝ(m,0)
i }Lr

i=1 are obtained by

applying ĝ(m,0)
i =

(
S(m)∗S(m)

)−1

S(m)∗FΩ∗
(

∆̂f
(m,0)

)
y

(m)
i .

Based on the equivalent system model in (4.13) and the simulation results in

Section 4.7, it can be concluded that the proposed LMMSE-EM and EKF-

RTS-EM algorithms converge globally when the PN vector is initialized as
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Algorithm 3 EKF-RTS-EM algorithm

1: Initialize CFO, beamformed channel estimates, and initial differ-
ence in LF

2: ∆̂f
(0)

= arg max
∆f

∑Lr

i=1 ‖Ω(∆f)F∗⊗S
(m)S(m)∗F⊗Ω∗(∆f)y

(m)
i ‖2

2

3: ĝ(m,0)
i =

(
S(m)∗S(m)

)−1

S(m)∗F⊗Ω

(
∆̂f

(0)
)

y
(m)
i , i = 1, . . . , Lr

4: η̂(m,n) =∞, n = 1
5: while η̂(m,n) > η do
6: Update PN estimate
7: (4.68)-(4.71)
8: Update CFO estimate

9: h
(m,n)
i,t , Ωt

(
∆̂f

(m,n−1)

ML

)
Pt

(
θ̂

(m,n)
t,RTS

)
F∗S(m)

t ĝ(m,n−1)
i,ML

10: ∆̂f
(m,n)

ML = ∆̂f
(m,n−1)

ML −
∑Lr
i=1

∑Ntr
t=0 Im

{
y

(m)∗
i,t Mh

(m,n)
i,t

}
∑Lr
i=1

∑Ntr
t=0 Re

{
y

(m)∗
i,t M2h

(m,n)
i,t

}
11: Update the beamformed channel estimates

12: ĝ(m,n)
i,ML =

(
S(m)∗S(m)

)−1

S(m)∗FP∗
(
θ̂

(m,n)
RTS

)
Ω∗
(

∆̂f
(m,n)

ML

)
y

(m)
i ,

i = 1, . . . , Lr

13: Iteration update
14: n = n+ 1
15: Update difference in likelihood function

16: η̂(m,n) =

∣∣∣∣∑Lr

i=1

∥∥∥∥y(m)
i −Ω

(
∆̂f

(m,n)
)

P
(
θ̂

(m,n)
RTS

)
F∗⊗S

(m)ĝ(m,n)
i

∥∥∥∥2

2

−∥∥∥∥y(m)
i −Ω

(
∆̂f

(m,n−1)
)

P
(
θ̂

(m,n−1)
RTS

)
F∗⊗S

(m)ĝ(m,n−1)
i

∥∥∥∥2

2

∣∣∣∣
17: end while

Figure 4.5: Detailed steps of the second proposed EKF-RTS-EM algorithm.
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θ̂(m,0) = 0KNtr×1.

4.5.4 Dictionary-Constrained Channel Estimation

In this section, I formulate the problem of estimating the frequency-

selective mmWave MIMO channel using the ML statistics already estimated

using the proposed LMMSE-EM and EKF-RTS-EM algorithms. Once M

training frames are processed, each comprising of Ntr OFDM symbols, the

estimated equivalent beamformed channels can be stacked to form the signal

model ĝ(1,N)
ML [k]
...

ĝ(M,N)
ML [k]


︸ ︷︷ ︸

ĝ
(N)
ML

=

 q(1)TF(1)T
tr ⊗D(1)−∗

w W(1)∗
tr

...

q(M)TF(M)T
tr ⊗D(M)−∗

w W(M)∗
tr


︸ ︷︷ ︸

Φw

vec{H[k]}+

 ṽ(1,N)[k]
...

ṽ(M,N)[k]


︸ ︷︷ ︸

ṽ(N)[k]

,

(4.72)

where ṽ(m,N) ∈ CLr×1 is the estimation error of ĝ(m,N)
ML [k], 1 ≤ m ≤ M , and

Φw ∈ CMLr×NtNr is the post-whitened measurement matrix. Now, the channel

matrix in (4.9) can be vectorized and plugged into (4.72) to obtain

ĝ(N)
ML [k] ≈ Φw

(
Ã

C

T ⊗ ÃR

)
︸ ︷︷ ︸

Ψ

vec{Gv[k]}︸ ︷︷ ︸
gv[k]

+ṽ(N)[k], (4.73)

where Ψ ∈ CNtNr×GtGr is the angular dictionary matrix, and gv[k] ∈ CGrGt×1

is the sparse vector containing the complex channel path gains in its non-zero

coefficients [1]. To estimate the frequency-selective sparse vectors {gv[k]}K−1
k=0 ,

the design of the measurement matrix Φw in (4.73) needs to be such that this

matrix has as small correlation between columns as possible, which is a re-
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sult proven in the CS literature to ensure that the estimation of the channel’s

support will be robust, and this depends on the design of the precoding and

combining matrices F(m)
tr , q(m), and W(m)

tr . As discussed in [141], the precoders

and combiners should be designed accounting for the lack of timing synchro-

nization, such that the equivalent measurement matrix design is suitable for

compressive estimation and the estimated timing offset n̂0 matches the actual

timing offset. For this reason, I adopt the design method in [141] to gener-

ate hybrid precoders and combiners, which has been shown to offer excellent

performance at the low SNR regime.

Another issue to overcome when estimating the sparse channel vectors is

how to obtain prior information on either the sparsity level of the channel or the

variance of the noise in (4.73). As discussed in [2], knowing the sparsity level is

unrealistic in practice, and even if it were known, there is no guarantee that the

best sparse approximation of {gv[k]}K−1
k=0 has as many non-zero components as

the actual number of multipath components in the frequency-selective channel.

This mismatch is even more severe in the frequency-selective scenario, in which

transmit and receive pulse-shaping bandlimit the channel, thereby limiting the

resolution to detect multipath components at baseband level [150]. For this

reason, I will focus on finding the variance of the estimation error in (4.73).

From the property of asymptotic efficiency of ML estimators it is known

that, if the SNR is not too low, and the number of samples used to estimate

the different parameters is large enough, the estimation errors ṽ(m,N)[k] are

Gaussian, with zero mean and covariance given by the hybrid CRLB matrix

169



for the estimation of the complex path gains ĝ(m,N)
ML [k]. Since the received

noise vectors v(m)[n] in (4.4) are independent and identically distributed, it

is clear that estimation errors for ĝ(m,N)
ML [k] are independent as well, although

not identically distributed. For this reason, it is necessary to compute the

covariance matrix for each of the estimation error vectors corresponding to

the M different training frames. Let C
ĝ

(m)
i ,ĝ

(m)
i
∈ CLc×Lc denote the hybrid

CRLB matrix for the estimation of g
(m)
i . Using that g

(m)
i [d] = [g

(m)
i ]d =

α
(m)
i [d]ejβ

(m)
i [d], it follows that

g
(m)
1 [0]
...

g
(m)
1 [Lc − 1]

...

g
(m)
Lr

[0]
...

g
(m)
Lr

[Lc − 1]


︸ ︷︷ ︸

g(m)

=



α
(m)
1 [0]ejβ

(m)
1 [0]

...

α
(m)
1 [Lc − 1]ejβ

(m)
1 [Lc−1]

...

α
(m)
Lr

[0]ejβ
(m)
Lr

[0]

...

α
(m)
Lr

[Lc − 1]ejβ
(m)
Lr

[Lc−1]


︸ ︷︷ ︸

f(α(m),β(m))

. (4.74)

Using (4.74), the covariance matrix of any unbiased estimator ĝ(m) of g(m) is

lower bounded by the hybrid CRLB as

Cĝ(m),ĝ(m) ≥ Jf

(
α(m),β(m)

)
Cˆ̃g(m),ˆ̃g(m)Jf

(
α(m),β(m)

)∗
, (4.75)

where Jf

(
α(m),β(m)

)
∈ CLrLc×2LrLc is the Jacobian matrix of f

(
α(m),β(m)

)
Jf

(
α(m),β(m)

)
=

Lr⊕
i=1

D−1⊕
d=0

[
ejβ

(m)
i [d] jg

(m)
i [d]

]
. (4.76)

Next, the hybrid CRLB for the estimation of g(m) is computed as follows.

Notice that the different frequency-domain channel vectors g(m)
i are related to
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their time-domain counterparts through a Fourier transform, mathematically

represented using F1 ∈ CK×Lc , which comprises of the first Lc in F. Thereby,

using (4.75) the covariance for any unbiased estimator ĝ(m) is simply given by

Cĝ(m),ĝ(m) ≥ (ILr ⊗ F1) Cĝ(m),ĝ(m) (ILr ⊗ F1)∗ . (4.77)

Now, the hybrid CRLB for the estimation of g(m)[k] =
[
g

(m)
1 [k] . . . g

(m)
Lr

[k]
]T

is related to the hybrid CRLB in (4.77) through a selection matrix as

g(m)[k] =

 eTk g
(m)
1
...

eTk g
(m)
Lr


=
(
ILr ⊗ eTk

)
g(m),

(4.78)

whereby the hybrid CRLB for any unbiased estimator ĝ(m)[k] of g(m)[k] is given

by

Cĝ(m)[k],ĝ(m)[k] ≥
(
ILr ⊗ eTk

)
Cĝ(m),ĝ(m) (ILr ⊗ ek) . (4.79)

Finally, the overall covariance matrix for the estimation error vector ṽ(N)[k] in

(4.73) needs to be found. Using the fact that the received noise at the antenna

level is temporally white, the covariance matrix of ṽ(N)[k] is given by the hybrid

CRLB for any unbiased estimator of g[k] =
[
g(1)T [k] . . . g(M)T [k]

]T
. The

final hybrid CRLB is given by

Cĝ[k],ĝ[k] ≥
M⊕
m=1

Cĝ(m)[k],ĝ(m)[k]. (4.80)

Then, the estimation error is distributed as ṽ(N)[k] ∼ CN
(
0,Cṽ(N)[k],ṽ(N)[k]

)
.

Let Dṽ(N)[k] ∈ CMLr×MLr be the Cholesky factor of Cṽ(N)[k],ṽ(N)[k], i.e., Cṽ(N)[k],ṽ(N)[k] =
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D∗
ṽ(N)[k]

Dṽ(N)[k]. Thereby, the problem of estimating {gv[k]}K−1
k=0 can be formu-

lated as

ĝv[k] = arg min
{gv[`]}K−1

`=0

K−1∑
k=0

‖gv[k]‖1 ,

subject to
1

K

K−1∑
k=0

∥∥∥D−∗
ṽ(N)[k]

(
ĝ(N)

ML [k]−ΦwΨgv[k]
)∥∥∥2

2
≤ ε,

(4.81)

where ε ∈ R is a design parameter defining the maximum allowable recon-

struction error for the sparse vectors {gv[k]}K−1
k=0 . From a computational com-

plexity standpoint, the main difficulty in (4.81) comes from the fact that post-

whitening the proxy estimates ĝ(n)
ML[k] results in frequency-dependent measure-

ment matrices Υ[k] = D−∗
v(N)[k]

ΦwΨ, which increases the complexity of sparse

recovery algorithms by a factor of K. Since K can be in the order of hundreds

or thousands of subcarriers, using frequency-dependent measurement matrices

results in high-complexity channel estimation algorithms. To circumvent this

issue, I propose to find a covariance matrix Cv(N),v(N) that accurately repre-

sents the covariance matrix of the estimation error for every subcarrier in the

MMSE sense. Let ˆ̃g(N)
ML [k] ∈ CMLr×1 denote an approximate estimate of ĝ(N)

ML [k]

given by

ˆ̃g(N)
ML [k] ≈ g[k] + ṽ(N)[k], (4.82)

in which ṽ(N)[k] ∼ CN
(
0,Cv(N),v(N)

)
. Then, the problem of finding the covari-

ance matrix Cv(N),v(N) can be stated as

Cv(N),v(N) = arg min
C

K−1∑
k=0

E
{∥∥∥ˆ̃g(N)

ML [k]− ĝ(N)
ML

∥∥∥2

2

}
. (4.83)
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Upon developing the cost function in (4.83), and letting D ∈ CMLr×MLr be

the Cholesky factor of C, i.e., C = D∗D, the optimal covariance matrix can be

found as the solution to the problem

Cv(N),v(N) = arg min
C

K−1∑
k=0

E
{∥∥D−Dv(N)[k],v(N)[k]

∥∥2

F

}
, (4.84)

which is a LS problem with solution given by

Cv(N),v(N) =

(
1

K

K−1∑
k=0

Dv(N)[k],v(N)[k]

)∗(
1

K

K−1∑
k=0

Dv(N)[k],v(N)[k]

)
. (4.85)

The result in (4.85) indicates that the covariance matrix that best represents

the covariance of every estimation error vector in the MMSE sense has a

Cholesky decomposition with Cholesky factor given by the average of the

Cholesky factors for the covariance matrices of the estimation error at the

different subcarriers.

The last step to close the estimation problem in (4.81) is the definition

of ε. Since the training precoders and combiners might lead, in general, to

different covariance matrices Cṽ(N)[k],ṽ(N)[k], an overall representative for the

noise variance of the entire vector ṽ(N) = [ṽ(N)T [0], . . . , ṽ(N)T [K−1]]T is needed.

To overcome this issue, similarly to [2], I propose to design ε as a convex

combination of the hybrid CRLB for the different g
(m)
i [k], 1 ≤ Lr, 0 ≤ k ≤

K − 1, 1 ≤ m ≤ M , using estimates of the SNR per RF chain. Using the

property of asymptotic invariance of ML estimators, the ML estimate of the

SNR per RF chain can be written as γ̂
(m)
i,ML[k] = α̂

(m)2
i,ML[k]/σ2. Letting Γ̂(m)[k] =
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⊕Lr

i=1 γ̂
(m)
i,ML[k], the parameter ε can be set as

ε =
M∑
m=1

K−1∑
k=0

trace
{

Γ̂(m)[k]Cĝ(m)[k],ĝ(m)[k]

}
∑M

m=1

∑K−1
k=0 trace

{
Γ̂(m)[k]

} . (4.86)

Then, the SW-OMP or SS-SW-OMP+Th algorithms in [1] can be used to solve

the problem in (4.81). These algorithms have been shown to offer very good

performance even when the mmWave MIMO channel has several clusters with

non-negligible AS. It is important to highlight that the hybrid CRLB for the

estimation of the channel matrices {H[k]}K−1
k=0 is not computed. The reason

is that, for realistic mmWave MIMO channel models such as NYUSIM [4],

Quasi Deterministic Radio channel Generator (QuaDRiGa) [31], [32], and the

5G NR channel model [6], the finite antenna resolution, bandlimitedness of the

baseband equivalent channel, and lack of knowledge of the number of multipath

components, make it impossible to assume that an unbiased estimator for

the channel can be found. For this reason, the estimates {ĝv[k]}K−1
k=0 will,

in general, have a different number of entries than the number of multipath

components the channel actually comprises of. Consequently, the theory of

CRLB cannot be directly applied to this problem.

4.6 Joint Data Detection and PN Mitigation

In this section, I devise and propose a joint data detection and PN

mitigation algorithm for data transmission. Although the derivation of the

algorithm is general, I will especially focus on the Physical Downlink Shared

Channel (PDSCH) of the 5G NR wireless communication standard [37]. The
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data frame structure of the 5G NR PDSCH channel depends on the specific

numerology used for data transmission, which itself depends on the subcarrier

spacing. I assume that the subcarrier spacing is known, as it can be transmit-

ted through the Physical Downlink Control Channel (PDCCH), as well as the

MCS.

A 5G NR radio frame comprises 10 subframes, with a variable number

of slots within each subframe, and each slot carries 14 OFDM symbols [37].

The number of slots can be easily calculated as Nslots = 2
∆fs
15 , where ∆fs is

the OFDM subcarrier spacing in kHz units. Within each OFDM symbol, a

number of data subcarriers are allocated for data transmission, and others

contain PDSCH pilot signals, which include Demodulation Reference Signal

(DMRS), Phase-Tracking Reference Signal (PTRS), and Channel State Infor-

mation - Reference Signal (CSI-RS). A small number of subcarriers is zeroed

to facilitate spectral shaping, typically at the edges of the OFDM symbol. Let

the positions of the data subcarriers be denoted by the set Pdata, the number

of DMRS training symbols be denoted by NDMRS, and the number of OFDM

data symbols be denoted by Ndata.

After the channel has been estimated, and assuming that the receiver

feeds back relevant CSI information for hybrid precoder and combiner de-

sign, both the transmitter and the receiver configure the frequency-flat analog

and frequency-selective digital precoders and combiners for data transmis-

sion using the algorithm in [151]. Let G[k] ∈ CLr×Lt denote the frequency-

selective analog precoded channel at the k-th subcarrier, which is given by
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G[k] = W∗
RFH[k]FRF. Using the CFO estimate obtained during training, the

effect of the CFO on the received data symbol can be compensated. Then,

after CFO compensation, the vectorized received signal at the t-th received

OFDM symbol and the i-th RF chain reads as (see (4.13))

yi,t = P (θt) F∗Dtgi + vi,t (4.87)

where P (θt) ∈ CK×K is diagonal and contains the PN impairment for the

time-domain received samples, and Dt ∈ CK×KNs is defined as

Dt ,
K−1⊕
k=0

sTt [k], (4.88)

and gi ∈ CKNs×1 is defined as

gi =

 gi[0]
...

gi[K − 1]


=

 FTBB[0] [G[0]]Ti,:
...

FTBB[0] [G[K − 1]]Ti,:

 .
(4.89)

Notice that (4.87) can be also expressed as

yi,t = P (θt) F∗Gist + vi,t, (4.90)

where Gi ∈ CK×KNs is defined as

Gi ,
K−1⊕
k=0

gTi [k], (4.91)

and st ∈ CKNs×1 is defined as

st ,
[
sTt [0] . . . sTt [K − 1]

]T
. (4.92)
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As it will soon become apparent, the expression in (4.87) will be useful for

channel estimation, while the alternative expression in (4.90) will be used for

data detection. To reduce computational complexity during PN estimation,

similarly to the proposed EKF-RTS-EM algorithm, PN tracking is performed

on a sample-by-sample basis. The n-th received sample is Lr-dimensional and

it is given by

yt[n] = ejθt[n]

 f∗nDtg1
...

f∗nDtgLr

+

 v1,t[n]
...

vLr,t[n]

 . (4.93)

First, using the received DMRS pilots, the proposed EKF-RTS-EM algorithm

is employed to iteratively estimate the frequency-selective low-dimensional

channels {bsfgi}Lr
i=1 while compensating for the PN impairment. Then, the

received data signal in (4.93) undergoes an iterative data detection, and PN

estimation and compensation process. Even though channel estimates are

readily available after initial CSI acquisition, those have been obtained at

the low SNR regime. Motivated by the deployment of especially dense con-

stellations such as 64/256-QAM, it is crucial to obtain high-quality channel

estimates to be able to track the PN impairment and detect the transmitted

data. To exploit the information coming from every RF chain, it is of interest

to express the received signal after stacking the vectors in (4.87), (4.90) for
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the different RF chains, which respectively yield y1,t

...
yLr,t


︸ ︷︷ ︸

yt

= (ILr ⊗P (θt)) F∗⊗ (ILr ⊗Dt)

 g1
...

gLr


︸ ︷︷ ︸

g

+

 v1,t

...
vLr,t



= (ILr ⊗P (θt)) F∗⊗

 G1

...
GLr

 st +

 v1,t

...
vLr,t

 .
(4.94)

Based on the received signal in (4.94), the LLF for the CFO compensated t-th

received OFDM symbol yt can be written as

log p (yt, st,θt) =− C − 1

σ2

Lr∑
i=1

‖yi,t −P (θt) F∗Gist‖2
2︸ ︷︷ ︸

Likelihood of data

− 1

σ2
d

‖st‖2
2︸ ︷︷ ︸

Prior PDF of st

− 1

2
θTt C−1

θt,θt
θt︸ ︷︷ ︸

Prior PDF of PN θt

,

(4.95)

where a Gaussian prior is placed on the transmitted constellation symbols.

Even though the transmitted symbols are not Gaussian-distributed, this ap-

proximation is useful since it leads to low-complexity linear detectors for the

received data [29, 152]. It is important to note that, in the event that a uni-

form prior is placed on the transmitted constellation symbols, the LMMSE

estimator of st is the solution to maximizing (4.95) obtained after placing a

Gaussian prior to the transmitted symbols. While the mathematical solution

to both problems is identical, the assumptions are different in both cases, and

so the properties of the corresponding estimators of st are, as well.

To perform PN estimation, and data detection, I propose to follow an

EM-based approach, for similar reasons as with the proposed synchronization
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algorithms. The ML estimator of gi, ĝi,ML found using training DMRS pilots,

is used to both estimate the Ndata data symbols and compensate for the PN

impairment at the data subcarriers. In the event that a dense constellation, i.e.

64/256-QAM is employed, PN tracking depends on the quality of the equalized

constellation symbols, which decreases with the order of the constellation.

Therefore, for densely packed constellations, there is a potentially high increase

in estimation quality while keeping computational complexity low.

Motivated by the linear model with respect to st in (4.90), the expec-

tation step (E-step) is performed with respect to the PN vector, which yields

(see (4.52), (4.90))

Q

(
{gi}

Lr

i=1 st,
{
ĝ(n)
i

}Lr

i=1
, ŝ(n)
t

)
∝− 1

σ2

Lr∑
i=1

∥∥∥yi,t −P
(
θ̂

(n)
t,MMSE

)
F∗Ĝist

∥∥∥2

2

− 1

σ2
d

‖st‖2
2.

(4.96)

Similarly to (4.54), the expected LLF of the received signal depends on the

MMSE estimator for the PN impairment, which can be approximated by using

the EKF-RTS set of equations (4.68)-(4.71). Let the estimated PN vector at

the end of the n-th E-step be denoted by θ̂
(n)
t,MMSE.

The final part of the proposed data detection algorithm is the esti-

mation of the data symbols. Since prior information on the data symbols is

approximately modeled as Gaussian, it turns out that, after taking the partial

derivative of (4.96) and using the estimates ĝi,ML, θ̂
(n)
t,MMSE, the optimal max-

imizer st of (4.96) at the n-th iteration is the MAP estimator, ŝ(n)
t,MAP, given
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by

ŝ(n)
t,MAP =

((
Lr⊕
i=1

Ĝi,MLĜ
∗
i,ML

)
+
σ2

σ2
d

IKLr

)−1

×

(
Lr⊕
i=1

Ĝ
∗
i,ML

)
F⊗

(
ILr ⊗P∗

(
θ̂

(n)
t,MMSE

))
yt,

(4.97)

which can also be seen as the MMSE estimator for the data symbols condi-

tioned on the current channel and PN estimates. Furthermore, as discussed

earlier in this section, if a uniform prior is placed on the transmitted sym-

bols, the LMMSE solution to the data symbols estimation problem coincides

with the solution in (4.97), even though the properties of both the MAP and

LMMSE estimators are different. Using the data subcarrier positions, the

final symbol estimates are given by
[
ŝ(n)
t,MAP

]
Pdata

. The proposed algorithm it-

eratively updates the PN and data estimates until the difference between the

LF at two iterations is smaller than a threshold η, similarly to (4.66). To

obtain the LF, the estimated symbols in (4.97) are replaced by their hard de-

cisions, since the transmitted symbols belong to a particular constellation. Let

ŝ(0)
t,MAP denote the initial estimate of the transmitted data vector. Appropriate

initialization of ŝ(0)
t,MAP results in the proposed iterative detector converging

quickly. In the proposed algorithm, the initial data estimate is obtained using

the approximate LMMSE estimate for θt−1 from the previous OFDM symbol.
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This initial estimate can be obtained as

ŝ(0)
t,MAP =

((
Lr⊕
i=1

Ĝ
(0)∗
i,MLĜ

(0)

i,ML

)
+
σ2

σ2
d

IKLr

)−1

×

(
Lr⊕
i=1

Ĝ
(0)∗
i,ML

)
F⊗

(
ILr ⊗P∗

(
θ̂

(N)
t−1,MMSE

))
yt,

(4.98)

which can be seen to comprise a PN cancellation block, Fast Fourier Trans-

form (FFT)-based OFDM demodulation, and an LMMSE detector for the

transmitted data.

4.7 Numerical Results

This section includes numerical results obtained with the proposed syn-

chronization algorithms. These results are obtained after performing Monte

Carlo simulations averaged over 100 trials to evaluate the NMSE, ergodic

spectral efficiency, and BER. I also provide calculations of the computational

complexity for the proposed algorithms in Table 4.2 and prior work in Table

4.3.

Unless otherwise stated, the typical parameters for the system config-

uration are as follows and included in Table 4.1. Both the transmitter and

the receiver are assumed to use a ULA with half-wavelength separation. Such

a ULA has array response vectors given by [aT(θ`)]n =
√

1
Nt
ejnπ cos (θ`), n =

0, . . . , Nt − 1 and [aR(φ`)]m =
√

1
Nr
ejmπ cos (φ`), m = 0, . . . , Nr − 1, for both

transmitter and receiver, respectively. The I take Nt = 64 and Nr = 32

for illustration, and Gt = Gr = 128. The phase-shifters used in both the
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Table 4.1: Summary of typical system configuration parameters

Simulation Parameters

Description Parameter Value
Number of transmit antennas Nt 64
Number of receive antennas Nr 32
Number of transmit RF chains Lt 8
Number of receive RF chains Lr 4
Transmit angular grid size Gt 128
Receive angular grid size Gr 128
Number of phase-shifter quantization bits NQ 6
Number of training frames M 32
Number of OFDM training symbols/frame Ntr 2
Number of OFDM subcarriers K 256
Number of CP samples Lc 32
Sampling period Ts 0.509 ns
Number of multipath channel clusters C 40
Number of multipath channel rays/cluster Rc 20
Channel Rician factor −10 dB
Pulse-shape roll-off factor β 0.3
Maximum CFO ∆f (m) 5 ppm [5]
PN PSD Gθ −85 dBc/Hz

transmitter and the receiver are assumed to have NQ quantization bits, so

that the entries of the analog training precoders and combiners F(m)
tr , W(m)

tr ,

m = 1, 2, . . . ,M are drawn from a set A =
{

0, 2π

2
NQ
, . . . , 2π(2

NQ−1)

2
NQ

}
. The num-

ber of quantization bits is set to NQ = 6. The number of RF chains is set to

Lt = 8 at the transmitter and Lr = 4 at the receiver. The number of OFDM

subcarriers is set to K = 256, the carrier frequency is set to 60 GHz, and the

sampling period is set to Ts = 0.509 ns [37].

The frequency-selective mmWave MIMO channel is generated using
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(4.7) with small-scale parameters taken from the QuaDRiGa channel simula-

tor [31], [32], which implements the 3GPP 38.901 UMi channel model in [6].

The channel samples are generated with an average Rician factor of −10 dB,

mobility with speed 20 m/s, and the distance between the transmitter and the

receiver is set to d = 30 meters for illustration.

4.7.1 Performance analysis of EM-based algorithms

In this subsection, I analyze the performance of the proposed LMMSE-

EM and EKF-RTS-EM algorithms from Section 4.5, and compare their achiev-

able performance to the derived hybrid CRLB from Section 4.4.

In Fig. 4.6, I show the evolution of the NMSE of the CFO estimates

versus SNR for the proposed LMMSE-EM and EKF-RTS-EM algorithms. The

hybrid CRLB is also provided as an estimation performance bound. I evaluate

both algorithms using two different values for the PN variance, which are

Gθ = −85 dBc/Hz and Gθ = −95 dBc/Hz. In Fig. 4.6 (a), I set the number of

receive RF chains to Lr = 4 and sweep Ntr within the range {1, 2, 4} OFDM

training symbols. Conversely, in Fig. 4.6 (b), the number of OFDM training

symbols is set to Ntr = 4, and the number of receive RF chains is swept within

the range {1, 2, 4}.

Several observations can be made from Fig. 4.6:

• The proposed LMMSE-EM and EKF-RTS-EM algorithms exhibit very

similar estimation performance, which suggests that the proposed EKF-
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Figure 4.6: Evolution of the NMSE of the CFO estimates obtained using the
proposed algorithms versus SNR. The hybrid CRLB is also provided as a
performance bound.
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RTS-EM algorithm does not compromise estimation performance while

dramatically reducing computational complexity during the measure-

ment update in PN estimation.

• The estimation performance of the proposed algorithms exhibits a small

gap with respect to the hybrid CRLB. At low SNR, the gap between

the NMSE and the hybrid CRLB is more noticeable, but it shrinks as

SNR→∞. It is also observed that the NMSE and the hybrid CRLB are

monotonically decreasing proportionally to the SNR. There is, however,

a certain SNR value beyond which both the performance of the proposed

algorithms and the hybrid CRLB saturate and exhibit a plateau effect.

This behavior sets the distinction between the noise-limited regime and

the PN-limited regime, whereby estimation performance cannot longer

improve even if SNR → ∞. This behavior is shown in Fig. 4.7 for

Ntr = 4 and Lr = 4.

• The estimation performance in the low SNR regime does not depend

on the PSD of the PN, which indicates that the synchronization perfor-

mance is limited by the AWGN. Notice, however, that as SNR→∞,

• The estimation performance in the low SNR regime does not depend

on the PSD of the PN, which indicates that the synchronization perfor-

mance is limited by the AWGN. Notice, however, that as SNR → ∞,

both the estimation performance of the proposed algorithms and the hy-

brid CRLB are different for the two values of the PSD Gθ of the PN. In-
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tuitively, as Gθ increases, the information coupling between the PN and

the CFO impairments increases, thereby reducing both the achievable

CFO estimation performance of the proposed algorithms and the hybrid

CRLB. Conversely, reducing Gθ reduces this information coupling, which

results in better CFO estimates and lower hybrid CRLB.

• When the SNR is very low, the NMSE of the proposed algorithms is

high. However, when the SNR increases, a waterfall effect is observed,

and the SNR at which this effect happens depends on both the number

of RF chains Lr and the number of OFDM training symbols Ntr. More

especifically, increasing Ntr or Lr shifts the minimum SNR at which this

waterfall effect is observed. Thereby, increasing Ntr and Lr results in

more accurate estimates of the CFO parameter, even for SNR < −10

dB.

• Last, increasing the number of OFDM training symbols Ntr and the

number of receive RF chains Lr have a different impact on both the

CFO estimation performance and the hybrid CRLB. More especifically,

doubling Ntr results in a performance gain of approximately 9 dB, which

indicates that the estimation performance depends onN3
tr, which is a sim-

ilar result to the CFO estimation performance and CRLB from Chapter

3. Regarding the number of receive RF chains, doubling Lr enhances

estimation performance by a factor of 3 dB, which indicates that the

estimation approach averages the receive noise across multiple receive
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RF chains, thereby exhibiting an NMSE estimation performance pro-

portional to L−1
r .

In Fig. 4.8 (a), I show the NMSE evolution of the equivalent beam-

formed channels versus SNR, for both the proposed LMMSE-EM and the

EKF-RTS-EM algorithms. The number of receive RF chains is set to Lr = 4,

and the number of OFDM training symbols Ntr is swept within {1, 2, 4}. A

similar behavior to that in Fig. 4.6 is observed. For both proposed algorithms,

the estimation performance is very close to the hybrid CRLB, although there

is a more noticeable performance gap for SNR < 10 dB. Similar to Fig. 4.6, it

is observed that the reduction in computational complexity of the second pro-

posed EKF-RTS-EM algorithm does not compromise estimation performance,

thereby showing that synchronization in the low SNR regime can be success-

fully accomplished with reduced computational complexity. It is also observed

that doubling the number of OFDM training symbols Ntr results in enhanced

estimation performance by a factor of 3 dB, which is expected since it was ob-

served that the Fisher information of the channel coefficients increases linearly

with the number of training samples.

Furthermore, the performance of the proposed algorithms, as well as

the hybrid CRLB, do not depend on the PSD of the PN in both the mid

and low SNR regimes. Notice, however, that for SNR > 0 dB, the estimation

performance and hybrid CRLB depend on the PSD of the PN, similar to

Fig. 4.6. This behavior sets the beginning of the PN-limited regime, which is
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Figure 4.8: Evolution of the NMSE of the beamformed channel estimates
obtained using the proposed algorithms versus SNR. The hybrid CRLB is
also provided as a performance bound.
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more pronounced as SNR → ∞, as shown in Fig. 4.8 (b). In Fig. 4.8, the

number of OFDM training symbols is set to Ntr = 4. It is observed that the

estimation performance gap between the proposed algorithms and the hybrid

CRLB increases as SNR → ∞, and it is more pronounced for smaller values

of the PSD of the PN. This behavior is due to two different factors: i) instead

of using the MMSE estimator for the PN, the proposed algorithms attempt

to approximate this estimator using statistical linearization (LMMSE), such

that non-linearities are not dealt with, and ii) for smaller values of the PSD

of the PN, the covariance matrix of the PN has smaller eigenvalues, thereby

reducing the amount of prior information on this parameter. This second fact

makes the covariance after propagation update be significantly larger than the

AWGN impairment, thereby making the Kalman gain for the PN estimator

rely more heavily on the measurement and less on the AWGN. Consequently,

the PN impairment is more difficult to estimate, which affects the estimation

of the equivalent beamformed channels.

Last, I show the estimation performance of the proposed LMMSE-EM

and EKF-RTS-EM algorithms versus SNR in Fig. 4.9 and Fi.g 4.10. In Fig.

4.9, the number of receive RF chains is swept within {1, 2, 4}, and it is set to

Lr = 4 in Fig. 4.10. The PSD of the PN is set to Gθ = −85 dB in Fig. 4.9,

which corresponds to a stronger PN process. The number of OFDM training

symbols is set to Ntr = 4 in both Fig. 4.9 and Fig. 4.10.

The first observation from both Fig. 4.9 and Fig. 4.10 is that the

PN estimation performance of the first proposed LMMSE-EM algorithm sig-
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Figure 4.10: Asymptotic evolution of the NMSE of the PN estimates ob-
tained using the proposed algorithms versus SNR. The curves in (a) show
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nificantly outperforms that of the second proposed EKF-RTS-EM algorithm.

This is not surprising, since the estimation approach in both cases comes from

a linearization of the measurement signal through its Jacobian matrix, which is

very sensitive to AWGN if a small number of measurements are processed. If a

single Lr-dimensional measurement is processed, as in the EKF-RTS-EM algo-

rithm, the Jacobian matrix of the measurement varies significantly depending

on the AWGN variance and the PSD of the PN process, thereby making it

harder for the second proposed algorithm to track the PN variations. If every

measurement is processed in a larger-dimensional batch, as in the first pro-

posed LMMSE-EM algorithm, the Kalman measurement update is performed

taking the multiple measurements into account, thereby contributing to sta-

bilizing the Jacobian matrix and making it easier to track the PN variations.

This is a significant effect only in the low SNR regime, and the performances

of both proposed algorithms exhibit convergence as SNR increases, as shown

in Fig. 4.10.

It is also observed that increasing Lr results in a noise averaging effect,

which results in an estimation performance improvement of approximately 3

dB. This is a similar effect to that in Fig. 4.8 as a function of Ntr, which

indicates that the AWGN can be more effectively filtered out as Lr increases.

It is also observed that, for a wide range of SNR values, the first pro-

posed LMMSE-EM algorithm exhibits estimation performance lying very close

to the hybrid CRLB, and divergence from the bound is observed as SNR→∞,

for similar reasons as with Fig. 4.8 (b). It is also observed that the NMSE
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predicted from the first proposed LMMSE-EM algorithm is very close to the

actual NMSE performance, while for the second proposed EKF-RTS-EM al-

gorithm it is more difficult to predict the NMSE performance in the low SNR

regime, which is expected due to the varying nature of the Jacobian matrix

of the measurement when the received samples are sequentially processed, in-

stead of performing simultaneous batch-processing, as in the first proposed

LMMSE-EM algorithm.

4.7.2 NMSE of channel estimator

In this subsection, I analyze the performance of the proposed channel

estimation algorithms in the absence of synchronization. I show in Fig. 4.11

the evolution of the NMSE of the high-dimensional MIMO channel estimates

versus the training frame length M , for SNR = {−10, 0} dB and Ntr = {1, 2}

OFDM training symbols.

First, it can be observed from Fig. 4.11 that the estimation perfor-

mance of the proposed algorithms increases with M , as expected. Notice,

however, that for SNR = −10 dB, there is a small yet noticeable perfor-

mance gap between the first proposed LMMSE-EM algorithm and the second

proposed EKF-RTS-EM algorithm. This effect is due to the more effective

PN estimation carried out by the batch-processing-based LMMSE-EM algo-

rithm, which helps obtaining more accurate estimates of both the CFO and the

frequency-selective beamformed channels. Furthermore, the stopping criterion

of the proposed channel estimation algorithm depends on the hybrid CRLB for
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Figure 4.11: Evolution of the NMSE of the mmWave MIMO channel estimates
obtained using the proposed algorithms versus M , for SNR = −10 dB (a) and
SNR = 0 dB (b).
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the estimation of the different parameters. Therefore, even though both syn-

chronization algorithms exhibit similar performance as shown in the previous

subsection, the first proposed LMMSE-EM algorithm produces slightly more

accurate phase information estimates than the second proposed EKF-RTS-EM

algorithm, thereby resulting in MIMO channel estimates having slightly higher

quality. Notice, however, that using Ntr = 2 results in the EKF-RTS-EM al-

gorithm producing MIMO channel estimates that have slightly higher quality

than the LMMSE-EM algorithm using only Ntr = 1. This suggests a trade-off

between overhead and computational complexity between the LMMSE-EM

and the EKF-RTS-EM algorithms. Notice that accurate estimation of the

CFO parameter in the low SNR regime heavily depends on Ntr, such that us-

ing Ntr = 2 is desirable to guarantee accurate synchronization in the practical

SNR range that mmWave systems are expected to work.

Furthermore, using Ntr = 2 OFDM training symbols increases the es-

timation performance gap between both algorithms at SNR = −10 dB, while

there is marginal improvement at SNR = 0 dB. The reasoning for this effect is

similar to the effect discussed in the previous paragraph. At SNR = −10 dB,

increasing Ntr significantly enhances the CFO estimator performance, while

at SNR = 0 dB such enhancement is more negligible. Thereby, it can be con-

cluded that having Ntr > 1 plays a pivotal role in obtaining accurate phase

synchronization information in the low SNR regime, while using Ntr = 1 in the

mid SNR regime yields phase synchronization information having comparable

quality to that obtained using Ntr = 2.
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4.7.3 Spectral efficiency

In this subsection, I analyze the achievable ergodic spectral efficiency

obtained with the proposed algorithms, and compare it to that of the state-

of-the-art compressive initial access algorithm in [5]. In Fig. 4.12, I show the

evolution of the spectral efficiency versus SNR using Ntr = 1 OFDM symbol

and Lr = 1 RF chains, for both of the proposed algorithms as well as the

algorithm in [5]. The number of training frames is set to M = 32. The

channel model is set as the 3GPP UMi LOS channel model in Fig. 4.12 (a),

and the 3GPP UMi NLOS channel model in Fig. 4.12 (b), with a Rician factor

of 0 dB.

The first observation from Fig. 4.12 is that the algorithm in [5] is

unable to properly estimate the AoD and AoA of the dominant multipath

component, while the proposed algorithms manage to successfully establish

synchronization for SNR ≥ −11 dB in both cases. This is due to: i) the

TO and CFO synchronization algorithm in [5], which is based on the Moose

algorithm [110], ii) the algorithm in [5] does not consider the effect of PN

impairments on the received signal, and iii) the algorithm in [5] was designed

specifically for LOS channels, so that the algorithm is ineffective under NLOS

channel models. The Moose algorithm is very effective when both the transmit

training sequences are periodic and the SNR is high enough, although it is

also used when the transmit training sequences are aperiodic yet the channel

has high enough Rician factor. Since the training sequences used in [5] are

the Synchronization Signal (SS) Blocks used in 5G NR, these sequences are
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Figure 4.12: Evolution of the ergodic spectral efficiency achieved by the pro-
posed algorithms and the compressive beamforming algorithm in [5] under PN
impairments versus SNR, for Ntr = 1 OFDM training symbol. The curves in
(a) are obtained using the mmMAGIC LOS channel model, while those in (b)
are obtained using the mmMAGIC NLOS channel model with a Rician factor
of −10 dB.
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periodic across SS Blocks comprising 4 OFDM symbols. Using only M = 32

training frames, the algorithm in [5] estimates M − 1 = 31 CFO estimates

by comparing the phase differences of the received signal between consecutive

SS Blocks. Thereby, the long periodicity of the SS Blocks reduces the CFO

estimation performance. Further, the inability to estimate and keep track

of the PN impairment hardens the CFO estimation task, especially in the

low SNR regime. In Fig. 4.12 (b), the CFO estimation task is significantly

more challenging under a NLOS channel, thereby limiting the application of

the Moose algorithm for frequency synchronization. Last, regarding AoD and

AoA estimation, the algorithm in [5] assumes the channel comprises is a single

pair of AoD and AoA, which is not true under NLOS channels. When several

AoDs/AoAs are present in the channel, the lack of orthogonality between

array steering vectors results in information coupling between different AoDs

and AoAs, which must be exploited to correctly estimate the different angular

parameters [145]. For this reason, the algorithm in [5] fails to estimate the

AoD and AoA corresponding to the dominant multipath component, thereby

significantly reducing the achievable spectral efficiency.

In view of the results in Fig. 4.12, it can be concluded that the proposed

algorithms significantly outperform the beam-training-based strategy in [5] in

terms of achievable spectral efficiency, thereby making the proposed algorithms

attractive owing to their applicability to more challenging NLOS scenarios even

in the low SNR regime.

I show in Fig. 4.13 the evolution of the ergodic spectral efficiency
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achieved by the proposed algorithms versus SNR, for Ntr = 2, M = 32 training

frames, and Ns = {1, 2, 4} data streams.

The first observation from Fig. 4.13 is that the proposed algorithms are

capable of achieving near-optimum spectral efficiency values for Ns = {1, 2},

yet there is a more noticeable spectral efficiency performance gap between

the proposed algorithms and the perfect CSI scenario. This is due to the

fact that, under the 3GPP UMi NLOS channel model with Rician factor of

−10 dB, the mmWave MIMO channel comprises a large number of multipath

components, and exploiting the benefits of using a larger number of spatial

degrees of freedom requires a more accurate estimation of the MIMO channel.

This issue can be circumvented by increasing the number of training frames

M , as well as the dictionary sizes Gt and Gr, as also discussed in Section 2.4.1.

Furthermore, it is also observed that both the first proposed LMMSE-

EM algorithm and second proposed EKF-RTS-EM algorithm perform similarly

for the entire SNR range under study. The more complex PN estimator in the

LMMSE-EM algorithm results in slightly more accurate estimation of the dif-

ferent unknown parameters than in the EKF-RTS-EM algorithm, which in

turn results in slightly higher spectral efficiency values. Notice, however, that

this marginal increase in ergodic spectral efficiency comes at the expense of

significantly higher computational complexity, such that the second proposed

EKF-RTS-EM algorithm is a more flexible alternative enabling synchroniza-

tion with reduced computational complexity.

Last, I show in Fig. 4.14 the evolution of the ergodic spectral efficiency
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Figure 4.13: Evolution of the ergodic spectral efficiency achieved by the pro-
posed algorithms versus SNR, for Ntr = 2 OFDM training symbol. The curves
are obtained using the 3GPP UMi NLOS channel model [6].
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versus the number of training frames M , for SNR = −10 dB (a) and SNR = 0

dB.

The first observation from Fig. 4.14 is that increasing the number of

training frames M increases the ergodic spectral efficiency until a certain value

of M , beyond which additional training results in an inadequate allocation of

resources for channel estimation and data transmission, as expected. It is also

observed that, similar to Fig. 4.13, near-optimum spectral efficiency values can

be attained for Ns = {1, 2}, yet the performance gap with respect to perfect

CSI increases for Ns = 4. The reasoning for this effect is similar to the one pro-

vided for Fig. 4.13. It is also observed that, for M = 64 training frames, the

proposed algorithms exhibit near-optimum spectral efficiency even for Ns = 4.

This suggests that using more training pilots allows more accurate channel

estimation since more compressed measurements are available to estimate the

channel matrices. Notice, however, that the achievable spectral efficiency for

M = 64 at SNR = 0 dB is lower than its M = 32 counterpart, which indicates

that over-training the channel results in a penalty for the achievable spectral

efficiency that can be achieved. Furthermore, for M < 32, there is a huge

performance difference between the achievable spectral efficiency and the per-

fect CSI scenario. Therefore, in view of Fig. 4.14, it can be concluded that

using M = 32 comprises a reasonable trade-off between overhead and spectral

efficiency performance.
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Figure 4.14: Evolution of the ergodic spectral efficiency achieved by the pro-
posed algorithms versus the number of training frames M , for SNR = −10 dB
(a) and SNR = 0 dB (b), and Ntr = 2 OFDM training symbols. The curves
are obtained using the 3GPP UMi NLOS channel model [6].
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4.7.4 Computational complexity analysis

In this subsection, I analyze the computational complexity of the pro-

posed LMMSE-EM and EKF-RTS-EM algorithms, as well as the proposed

data detection and PN mitigation algorithm. For the proposed LMMSE-EM

and EKF-RTS-EM algorithms, the variable N∆f denotes the number of dis-

crete frequencies used to perform the initial exhaustive-search-based CFO es-

timation, and the variable NSIC denotes the number of iterative SIC-based

optimization steps performed by the SS-SW-OMP+Th algorithm presented in

Chapter 2. The online computational complexity of the proposed algorithms

is summarized in Table 4.2. The computational complexity of the compressive

beam-training-based approach in [5] is also included in Table 4.3, in which I

include the notation used therein. Likewise, I include the number of measured

FLOPs required by the proposed algorithms in Table 4.4 and Table 4.5, for

the two following sets of system parameters:

• System Parameters 1: K = 256, Lr = 4, Ntr = 2, N∆f = 129, and

NDMRS = 2.

• System Parameters 2: K = 1024, Lr = 4, Ntr = 2, N∆f = 129, and

NDMRS = 2.

The number of measured FLOPs required by the proposed algorithms has been

obtained using the MATLAB library in [153].

The main observation from Table 4.2 is that the proposed LMMSE-EM

and EKF-RTS-EM algorithms exhibit higher online computational complexity
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Table 4.2: Online computational complexity of proposed synchronization and
channel estimation algorithms

LMMSE-EM

Operation Complexity

Initialize ∆̂f
(m,0)

O(N∆fLrNtrK log2(K))

M× Initialize ĝ(m,0)
i O(MLrNtrK log2(K))

M× Update PN estimate O(MNiter(LrKNtr)
3)

M× Update ∆̂f
(m,n)

ML O(MNiterLrNtrK log2(K))

M× Update ĝ(m,n)
i,ML O(MNiterLrNtrK log2(K))

M× Update LF difference O(MNiterLrNtrK)
Overall synchronization O(LrKNtr(log2(K)N∆f

+MNiter(LrKNtr)
2))

Compute hybrid CRLB O(L2
rLcK log2(K))

Channel estimation O(NSICLrMKpGrGt)

EKF-RTS-EM

Operation Complexity

Initialize ∆̂f
(m,0)

O(N∆fLrNtrK log2(K)))

M× Initialize ĝ(m,0)
i O(MLrNtrK log2(K))

M× Update PN estimate O(MNiterKNtrL
3
r )

M× Update ∆̂f
(m,n)

ML O(MNiterLrNtrK log2(K))

M× Update ĝ(m,n)
i,ML O(MNiterLrNtrK log2(K))

M× Update LF difference O(MNiterLrNtrK)
Overall synchronization O(LrKNtr(log2(K)(N∆f

+MNiter) +MNiterL
2
r ))

Compute hybrid CRLB O(L2
rLcK log2(K))

Channel estimation O(NSICLrMKpGrGt)

PN mitigation and data detection

Operation Complexity
Estimate ĝi,ML O(LrNDMRSK log2(K))

Initialize ŝ(0)
t,MAP O(LrK log2(K))

Update PN estimate O(NiterNdataKL
3
r )

Update ŝ(n)
t,MAP O(NiterNdataLrK log2(K))

Overall O(LrK(NDMRS log2(K)
+NiterNdata(L2

r + log2(K))))
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Table 4.3: Online computational complexity of previously proposed algorithm

Compressive beam training from [5]

Operation Complexity
PSS FIR corr. O(PNB)
Detection and time sync. O(NB)
Excess. delay est. O(PGD)
AoA/AoD est. O(MGTGR)
CFO est. O(MGTGR)
Alternative updates O(KiterNTNRMP )
Error norm evaluation O(KiterMP )
Overall O(MGTGR + P (KiterMNTNR +M +GD +NB))

than prior work in [5]. This fact is due to the algorithm in [5] being targeted at

LOS channels, thereby only estimating a single multipath component in the

frequency-selective mmWave MIMO channel. Consequently, the AoA/AoD

estimation requires single-shot estimation and additional gradient-based re-

finement steps. Single-path estimation thereby requires a single compressive

estimation step, without performing SIC-based multipath estimation as in the

proposed SS-SW-OMP+Th algorithm in Chapter 2.

Notice, however, that the computational complexity of the approach

in [5] increases linearly with the number of subcarriers (denoted by P ), the

number of gradient iterations (denoted by Kiter), and the number of trans-

mit and receive antennas (denoted by NT and NR, respectively). The number

of gradient iterations is set to Kiter = 1000 for the algorithm in [5], which

indicates this algorithm exhibits slow convergence for the desired estimation

accuracy. For large numbers of transmit and receive antennas, the algorithm
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Table 4.4: Asymptotic complexity from Tables 4.2 and 4.3 and number of
measured FLOPs required by the proposed LMMSE-EM, EKF-RTS-EM, and
PN mitigation and data detection algorithms for the set of system parameters
in Table 4.1 of K = 256, Lr = 4, and Ntr = 2, and algorithm parameters
N∆f = 129, and NDMRS = 2.

LMMSE-EM

Operation Complexity FLOPs

Initialize ∆̂f
(m,0)

2.1135 · 106 5.0328 · 106

M× Initialize ĝ(m,0)
i 16384M 13360M

M× Update PN estimate 8.5899 · 109MNiter 10.7694 · 109MNiter

M× Update ∆̂f
(m,n)

ML 16384MNiter 13817MNiter

M× Update ĝ(m,n)
i,ML 16384MNiter 13360MNiter

M× Update LF difference 2048MNiter 4108MNiter

Compute hybrid CRLB 1.048 · 106 3.984 · 106

Channel estimation 1.342 · 108NSIC 4.871 · 108NSIC

EKF-RTS-EM

Operation Complexity FLOPs

Initialize ∆̂f
(m,0)

2.1135 · 106 5.0328 · 106

M× Initialize ĝ(m,0)
i 16384M 13360M

M× Update PN estimate 32768MNiter 77815MNiter

M× Update ∆̂f
(m,n)

ML 16384MNiter 13817MNiter

M× Update ĝ(m,n)
i,ML 16384MNiter 13360MNiter

M× Update LF difference 2048MNiter 4108MNiter

Compute hybrid CRLB 1.048 · 106 3.984 · 106

Channel estimation 1.342 · 108NSIC 4.871 · 108NSIC

PN mitigation and data detection

Operation Complexity FLOPs
Estimate ĝi,ML 16384 13360

Initialize ŝ(0)
t,MAP 8192NiterNdata 6696NiterNdata

Update PN estimate 16384NiterNdata 38904NiterNdata

Update ŝ(n)
t,MAP 8192NiterNdata 6696NiterNdata
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Table 4.5: Asymptotic complexity and number of measured FLOPs required
by the proposed LMMSE-EM, EKF-RTS-EM, and PN mitigation and data
detection algorithms for the set of System Parameters 2: K = 1024, Lr = 4,
Ntr = 2, N∆f = 129, and NDMRS = 2.

LMMSE-EM

Operation Complexity FLOPs

Initialize ∆̂f
(m,0)

1.056 · 107 2.0091 · 107

M× Initialize ĝ(m,0)
i 81920M 53296M

M× Update PN estimate 5.497 · 1011MNiter 6.3602 · 1011MNiter

M× Update ∆̂f
(m,n)

ML 81920MNiter 58573MNiter

M× Update ĝ(m,n)
i,ML 81920MNiter 53296MNiter

M× Update LF difference 8192MNiter 16396MNiter

Compute hybrid CRLB 5.242 · 106 18.350 · 106

Channel estimation 1.342 · 108NSIC 7.895 · 108NSIC

EKF-RTS-EM

Operation Complexity FLOPs

Initialize ∆̂f
(m,0)

1.056 · 107 2.0091 · 107

M× Initialize ĝ(m,0)
i 81920M 53296M

M× Update PN estimate 131072MNiter 305124MNiter

M× Update ∆̂f
(m,n)

ML 81920MNiter 58573MNiter

M× Update ĝ(m,n)
i,ML 81920MNiter 53296MNiter

M× Update LF difference 8192MNiter 16396MNiter

Compute hybrid CRLB 5.242 · 106 18.350 · 106

Channel estimation 1.342 · 108NSIC 7.895 · 108NSIC

PN mitigation and data detection

Operation Complexity FLOPs
Estimate ĝi,ML 81920 53296

Initialize ŝ(0)
t,MAP 40960Ndata 26704Ndata

Update PN estimate 65536NiterNdata 152558NiterNdata

Update ŝ(n)
t,MAP 40960Ndata 26704Ndata
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in [5] exhibits high computational complexity to estimate a single path in

the mmWave MIMO channel. In simulation results, the number of EM itera-

tions the proposed algorithms require to reach convergence is upper bounded

by Niter = 4, thereby indicating that the proposed synchronization strategies

manage to obtain highly reliable estimates significantly faster that the algo-

rithm in [5].

The proposed LMMSE-EM and EKF-RTS-EM algorithms exhibit higher

computational complexity, which comes from the facts that: i) the proposed al-

gorithms perform ML EM-based estimation of both the CFO and the frequency-

selective beamformed channels, instead of using ad-hoc approaches as in [5],

and ii) unlike the algorithm in [5], the proposed algorithms do perform statistical-

linearization-based MMSE (LMMSE) estimation of the PN impairment. From

a computational complexity standpoint, the first proposed LMMSE-EM al-

gorithm differs from the second proposed EKF-RTS-EM algorithm in that

the former performs LMMSE estimation of the PN impairment by processing

the entire frame of Ntr OFDM training symbols, while the latter algorithm

processes each time-domain received symbol in a sequential manner, thereby

making the E-step significantly more efficient than in the former algorithm.

More specifically, the E-step in the first proposed algorithm has complexity

growing proportionally to O((LrKNtr)
3)), while the corresponding E-step in

the second proposed algorithm exhibits linear complexity on the number of

subcarriers, K, and the number of OFDM training symbols, Ntr, and exhibits

cubic complexity in the number of RF chains Lr. Since the number of RF
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chains is usually a small number at mmWave frequencies (i.e. Lr ≤ 16), the

second proposed algorithm exhibits significantly lower complexity than the

first proposed algorithm, and without significantly compromising estimation

performance, as shown in the numerical results from the previous sections.

4.7.5 Bit Error Rate and Modulation Error Ratio

In this last section, I present numerical results on the achievable com-

munication performance of the proposed joint PN mitigation and data detec-

tion algorithm, both in terms of BER and MER. I consider the PDSCH in 5G

NR with 16-QAM, 64-QAM, and 256-QAM modulations with LDPC channel

coding using a target code rate of RLDPC = 4/5. The number of transmitted

data streams is set to Ns = 2. The MER is defined as

MER = −10 log10

(
1

Ndata

Ndata∑
t=1

1

|Pt,data|
‖[st]Pdata

− [ŝt,MAP]Pt,data
‖2

2

)
, (4.99)

where ŝt,MAP, st denote the MAP estimates of the detected QAM symbols and

the original transmitted constellation symbols, respectively, and |Pt,data| is the

number of data subcarriers in an OFDM symbol. The average constellation

energy is set to 1 (i.e. normalized constellation).

I show in Fig. 4.15, Fig. 4.16, and Fig. 4.17 the average BER (a) and

MER (b) for 16-QAM, 64-QAM, and 256-QAM constellations, respectively.

The first observation from Figs. 4.15-4.17 is that the proposed PN mit-

igation and data detection algorithm exhibits a very small performance gap

with respect to the case in which both the channel and the PN impairments are
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perfectly known, which is labeled as ’Perfect channel and PN’. Moreover, not

compensating for the PN impairment results in similar BER as both the pro-

posed algorithm and the perfect channel and PN case in the low SNR regime.

In the mid-high SNR regimes, not compensating for the PN impairment results

in a plateau effect in the BER performance, which is due to the PN having

a significantly more degrading effect on the received signal than the AWGN

impairment, which also makes it harder to improve the MER across iterations.

For this reason, demodulation and equalization introduce CPE in the received

OFDM data symbols, which makes it harder to estimate the LLRs and de-

code the receive data. This effect becomes less significant as the constellation

order increases, which comes from the fact that, as the constellation size in-

creases, noise amplification brought by equalization significantly degrades the

quality of the received constellation. Hence, the effect of the PN impairment

is significantly harder to remove. This is also the reason why, for 64-QAM

and 256-QAM constellations, the BER performance of the proposed algorithm

exhibits a larger performance gap with respect to the perfect channel and PN

case, especially in the high SNR regime.

4.8 Conclusions

In this chapter, I proposed a framework for time-frequency synchro-

nization that is robust under PN impairments and suitable for channel esti-

mation in frequency-selective mmWave MIMO systems with hybrid architec-

tures. I also developed a joint PN mitigation and data detection algorithm for
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Figure 4.15: Evolution of the BER versus SNR (a) and MER versus number
of iterations in the proposed PN mitigation and data detection algorithm (b),
for SNR = {−14,−11,−8,−5,−2} dB before beamforming, using a 16-QAM
constellation and Ns = 2 data streams.
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Figure 4.16: Evolution of the BER versus SNR (a) and MER versus number of
iterations in the proposed PN mitigation and data detection algorithm (b), for
SNR = {−14,−11,−8,−5,−2, 1} dB before beamforming, using a 64-QAM
constellation and Ns = 2 data streams.
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Figure 4.17: Evolution of the BER versus SNR (a) and MER versus number of
iterations in the proposed PN mitigation and data detection algorithm (b), for
SNR = {−14,−11,−8,−5,−2, 1} dB before beamforming, using a 256-QAM
constellation and Ns = 2 data streams.
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data transmission under the 5G NR frame structure for the PDSCH. I formu-

lated the problem of jointly estimating the TO, CFO, PN impairments, and

frequency-selective beamformed channels. Then, I theoretically analyzed the

fundamental limits of the estimation problem using the theory of CRLB, and

provided closed-form expressions for the hybrid CRLB when estimating the

CFO, PN, and equivalent beamformed channels once time synchronization

has already been performed. Then, I proposed two novel algorithms based

on the EM approach and, using both the estimates obtained from these al-

gorithms as well as their hybrid CRLB, I proposed a sparse reconstruction

algorithm based on the solutions provided in Chapter 2 to retrieve the high-

dimensional broadband mmWave MIMO channel. Finally, I proposed a joint

PN mitigation and data detection algorithm using also the EM approach to

detect the transmitted data under a variety of different constellation formats

considered in 5G NR. Simulation results showed that synchronization can take

place efficiently even in the low SNR regime, and near-optimum values of spec-

tral efficiency can be obtained as well enabling spatial multiplexing. Further,

the proposed algorithms were shown to significantly outperform prior work in

terms of spectral efficiency, and without incurring higher overhead and keeping

computational complexity low. Last, simulations of the joint proposed syn-

chronization, compressive channel estimation, and data detection framework

showed that unprecendented communication performance can be attained even

when the mmWave link is configured in the low SNR regime, with communi-

cation performance very close to the perfect CSI case.
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Chapter 5

Conclusions and Future Work

This chapter concludes the dissertation with a summary of contribu-

tions in Section 5.1 and potential future research directions in Section 5.2.

5.1 Summary

Unlike sub-6 GHz wireless cellular communication systems such as the

Long Term Evolution (LTE) family, in which link configuration can be per-

formed in the medium/high SNR regimes using quasi-omnidirectional antenna

arrays, enabling broadband mmWave MIMO systems in practice requires ad-

dressing the challenges of TO and CFO synchronization, and PN tracking and

compensation prior to undergoing Channel State Information (CSI) acquisi-

tion that kicks off link configuration. A popular solution to solve this problem

is joint beam training and synchronization, which enables synchronization in

the high SNR regime once the SINR-maximizing beam pair is probed, and it

has been incorporated in the 5G NR wireless cellular standard owing to its

simplicity and robustness. Beam training techniques, however, are difficult to

extend to multi-stream and multi-user settings, and both their complexity and

overhead dramatically increases when more than a single communication path
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is to be discovered.

In my dissertation, I develop efficient synchronization and channel es-

timation techniques by leveraging both the spatially common sparsity present

in the mmWave MIMO channel and advanced estimation-theoretic techniques

to obtain high quality CSI and enable data transmission without compromis-

ing the resulting overhead and computational complexity. Further, it is also

important that these solutions satisfy the hardware constraints imposed by

hybrid MIMO architectures, as well as being robust at low SNR. Robustness

at low SNR is important since the path loss in the propagation environment

increases quadratically with the carrier frequency (thereby significantly in-

creasing when moving from sub-6 GHz to mmWave bands), the use of large

bandwidth, and the high directionality of antenna arrays. I use different es-

timation, information-theoretic, and communication performance metrics (i.e.

variance, Mean Squared Error (MSE), NMSE, CRLB, spectral efficiency, BER,

MER, overhead, and complexity) throughout this dissertation to show that

advanced hybrid analog-digital signal processing techniques can enable un-

precedented communication performance while keeping training overhead low,

even in the practical scenario of link configuration in the low SNR regime.

I first developed two CS-based techniques to estimate frequency-selective

mmWave MIMO channels. The first algorithm I proposed leverages the spa-

tially common sparsity present in mmWave MIMO channels, while fully ex-

ploiting the multiple received signals at different OFDM subcarriers. The

second proposed algorithm, however, exploits a reduced number of subcar-
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rier signals to estimate the sparse channel support, thereby reducing com-

putational complexity with respect to the first algorithm, and incorporates

a thresholding-based pruning procedure to discard residual multipath com-

ponents having small energy that are not contained in the actual mmWave

channel. I provided theoretical convergence guarantees for both algorithms,

and showed that they offer excellent estimation and communication perfor-

mance in comparison with prior solutions.

Thereafter, I focused on the joint CFO and narrowband channel estima-

tion problem in mmWave systems using hybrid MIMO architectures in order

to obtain further insight into the fundamental limits of both channel estima-

tion and communication performance when the received signal is impaired by

CFO synchronization uncertainties. I formulated the problem of estimating

the unknown synchronization and baseband equivalent channel parameters,

and theoretically obtained closed-form expressions regarding the CRLB for

the estimation of these parameters. Then, I proposed a multi-stage solution

to estimate these parameters as well as the high-dimensional mmWave MIMO

channel, relying on both the estimators for the synchronization and baseband

equivalent channel parameters and their CRLB. I used several numerical ex-

amples to show that the proposed strategies provide excellent estimation and

communication performance, even for practical channels having a significant

number of clusters with multiple rays per cluster. Last, I also showed that the

proposed multi-stage solution exhibits a marginal increase in computational

complexity with respect to the solutions proposed in the first part of my Ph.D.
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research.

Last, I focused on the joint problem of synchronization and broad-

band channel estimation, encompassing the estimation of TO, CFO, PN, and

the high-dimensional frequency-selective mmWave MIMO channel. I formu-

lated the problem of estimating the different synchronization impairments as a

prior step to MIMO channel estimation, and theoretically analyzed the hybrid

CRLB for the estimation of the TO, CFO, PN, and frequency-selective complex

baseband equivalent channels. Then, I extended the multi-stage solution pro-

posed in the second part of my Ph.D. research to estimate the unknown param-

eters. More especifically, I proposed two synchronization algorithms to esti-

mate the CFO, PN, and frequency-selective baseband equivalent channels. The

first proposed synchronization algorithm processes the complete received signal

to estimate the PN impairments using a batch-processing-based EKF, while

the second algorithm sequentially processes the received time-domain samples

using a dual forward-and-backward-filtering-based EKF and RTS smoothing.

Then, the estimates of the different synchronization impairments and their hy-

brid CRLB are exploited to estimate the mmWave MIMO channel using the

frequency-selective channel estimation algorithms developed in the first part

of my Ph.D. research. I showed that the proposed multi-stage solution offers

excellent estimation and communication performance, and that the frequency-

selective mmWave MIMO channel can be accurately reconstructed despite lack

of synchronization, even in the low SNR regime. A qualitative summary of

the proposed broadband synchronization and channel estimation algorithms
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Figure 5.1: Illustration of qualitative performance of proposed broadband
channel estimation and synchronization algorithms.

introduced in this dissertation is included in Fig. 5.1.

5.2 Future Work

In this dissertation, I have addressed some of the critical issues to en-

able hybrid-architecture-based link configuration of mmWave MIMO systems.

There are still issues left to be addressed to successfully deploy these ideas into

mmWave communication systems in the field. Hereafter, I present promising

future research directions related to the topics in this dissertation.
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• Channel estimation without assuming knowledge on the an-

tenna array geometry: The broadband channel estimation algorithms

presented in Chapter 2 achieved near-optimal spectral efficiency with

reasonable computational complexity and low overhead. An important

assumption in those algorithm is that the antenna array geometry is fully

known, which is necessary to find the sparsifying basis of the mmWave

MIMO channel. Then, the next question would be how to estimate the

channel when only partial or no knowledge on the array geometry is

known. Based on the linear model relating the received signal to the

vectorized mmWave MIMO channel, dictionary learning techniques can

be used to solve this problem. Dictionary learning is a branch of com-

pressive sampling that aims to finding the optimum sparsifying basis in

linear models that enable retrieval of sparse vectors lying on an unknown

vector basis. As the dimensionality of the antenna array increases, it is

expected that the channel estimation problem becomes more challeng-

ing, since the number of degrees of freedom in the unknown vector basis

increases. Likewise, when partial antenna geometry knowledge is avail-

able, the problem is expected to be easier owing to the reduction in

dimensionality of the unknown dictionary. Therefore, it is necessary to

thoroughly investigate channel estimation techniques when knowledge of

antenna array geometry cannot be assumed, as well as investigating the

suitability of sparsifying basis such as the DFT basis or the one given by

the Karhunen-Loeve Transform (KLT).
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• Channel estimation using prior information on the AoD/AoA:

The channel estimation algorithms presented in Chapter 2 assume no

prior information on the AoD/AoA is available beforehand. While this

choice ensures robustness of the proposed algorithms when no informa-

tion on the channel is available, the training overhead can be further

reduced if statistical priors on the angular parameters are exploited, and

consequently computational complexity can be reduced as well. There-

fore, the questions here are how to obtain and exploit statistical pri-

ors on the small-scale parameters. The first question can be answered

through the use of ray-tracing software to predict/analyze statistical de-

viations of the angular parameters for different snapshots, as well as

prior information on the user’s location using Global Positioning System

(GPS) information. Once statistical priors are obtained, non-linear esti-

mation techniques can be used to more accurately estimate the angular

parameters and the high-dimensional MIMO channels themselves, such

as Gaussian-Sum Filtering (GSF) for beam alignment and Marginalized

Particle Filtering (MPF) for channel estimation.

• Multi-user channel estimation in the presence of CFO uncer-

tainties: The joint synchronization and channel estimation framework

presented in Chapter 3 assumes a single-user scenario in which the re-

ceived signal is impaired by CFO synchronization errors. While this

scenario is interesting to shed light on the achievable performance of

a hybrid mmWave MIMO system, mmWave transceivers are part of a
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multi-user network, which results in the corresponding BS measuring

a superposition of signals corresponding to each different user in the

network. Furthermore, each user may be moving at a different speed,

thereby resulting in a per-user CFO term that must be inferred and

compensated before the channel can be estimated in practice. The ques-

tions here are how to obtain estimates of the multi-user channel and

how to compensate for the potentially different CFO terms. An an-

swer to the first question can be given by using either of the proposed

broadband channel estimation algortithms from Chapter 2, SW-OMP

or SS-SW-OMP+Th, which have already been shown to offer excellent

performance in a multi-user setting under a perfect synchronization as-

sumption [26, 154, 155]. The second question, however, is more chal-

lenging to answer. Assuming perfect TO synchronization and no PN

impairments, the problem of estimating the multiple CFOs correspond-

ing to the different users translates into a subspace alignment problem,

similar to the interpretation in [141]. Using an ML formulation, and

assuming U different active users communicating with the BS, the prob-

lem of estimating the U CFO terms consists of finding the U scalars that

parameterize the vector subspace in which the received multi-user sig-

nal belongs, thus being a non-convex matched-filtering problem. In this

context, the SNR is the defined as the ratio between the energy of the

projected signal onto the aforementioned subspace and the energy of the

projected signal onto the corresponding orthogonal subspace. The most
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straightforward yet complex approach to find such U scalars is through

performing an exhaustive search over the U -dimensional hypercube de-

fined by such scalars. Note that, similar to the EM-based algorithms

developed in Chapter 4, an iterative quadratic optimization algorithm

can be used to relax this non convex problem and thereby reduce com-

putational complexity.

• Joint PN mitigation and data detection using Hybrid Auto-

matic Repeat Request (HARQ): The joint PN mitigation and data

detection algorithm developed in Chapter 4 assumes transmission of a

single OFDM-modulated data stream to the receiver. In practice, how-

ever, one or more retransmissions are usually enabled, in which the esti-

mated LLRs of the received bits are jointly processed using the concept

of soft-combining. The question here is whether enabling HARQ along

with soft-combining can further reduce the receive BER in comparison

with single OFDM symbol transmission. For small constellation sizes

(i.e. 4-QAM), the use of HARQ may not bring about significant per-

formance gains. For especially dense constellations, such as 64-QAM or

even denser constellations, the use of HARQ enables the availability of

several observations at the receiver, which can be processed to improve

the quality of the received LLRs, thereby enabling the use of such dense

constellations for highly frequency-selective scenarios.

• Joint synchronization, PN mitigation and data detection under

non-linear power amplifiers: The joint PN mitigation and data detec-
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tion algorithm developed in Chapter 4 assumes a linear structure relating

the time-domain mmWave MIMO channel and the training pilots/data

symbols. In practical systems, however, hybrid MIMO transceivers are

equipped with power amplifiers, which introduce non-linear distortions

in both the amplitude and phase of the input signal. The severity of

such non-linear distortions greatly depends on the dynamic range of the

input signal. For OFDM-based signaling, the effect of non-linearities is

more pronounced as either/both the number of subcarriers or the size

of the constellation grows, so that properly accounting for such non-

linearities is crucial to ensure that both synchronization is successful

and the transmitted data can be successfully decoded. The questions

here are how to efficiently synchronize the received signal and detect

the transmitted data under the effect of these non-linearities. The first

question can be answered using the EM algorithm, for instance. The

E-Step in the EM algorithm can be used to find the approximate MMSE

estimator of the PN impairment, while the M-Step would be used to

estimate both the CFO and the low-dimensional equivalent beamformed

channels, after (potentially) a Taylor-series-based quadratic approxima-

tion of the transmitted signal. The effect of the equivalent beamformed

channels on the received signals is linear, which in turns enables the ap-

plication of LS-like estimators to retrieve the beamformed channels. The

second question is slightly more involved than the first. Mitigating the

PN impairment while simultaneously estimating the transmitted constel-
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lation symbols is not straightforward. However, the availability of prior

statistical information on both the PN impairment and the transmitted

symbols enables the application of Kalman Filter (KF)-like stochastic

estimation techniques that might prove useful in solving this problem.

Motivated by the typically small-amplitude of the PN impairment, a sta-

tistical linearization approximation might suffice to retrieve the MMSE

estimate the PN impairment. Owing to the non-linearities introduced by

the transmit power amplifiers, estimation of the transmitted data sym-

bols, however, cannot be dealt with through simple linearization. Differ-

ent stochastic estimation approaches can be used to solve this problem,

such as the GSF with backward smoothing or the MPF with backward

smoothing.

226



Appendices

227



Appendix A

Derivation of the Cramér-Rao Lower Bound

Let us consider the block diagonal FIM I
(
ξ(m)

)
in (3.23). The mini-

mum variance of any unbiased estimator of α
(m)
i is given by the i-th diagonal

elements of I−1
1

(
ξ(m)

)
, i = 1 . . . , Lr in (3.24) which is simply given by

var
{
α̂

(m)
i

}
≥ σ2

2N
. (A.1)

Likewise, the corresponding minimum variance for the estimation of σ2 is given

by the (Lr + 1)-th diagonal element in I
(
ξ(m)

)
, given by

var
{
σ̂2
}
≥ σ4

LrN
. (A.2)

Now, the CRLB for the estimation of ∆f (m) and β
(m)
i , 1 ≤ i ≤ Lr, is given

by the diagonal elements in I−1
2

(
ξ(m)

)
. Let the {i, j}-th minor of I2

(
ξ(m)

)
be

defined as Ai,j =
[
I2

(
ξ(m)

)]
Si,Sj

, with Si = {1, . . . , i− 1} ∪ {i+ 1, . . . , Lr + 1}

and Sj = {1, . . . , j − 1} ∪ {j + 1, . . . , Lr + 1}. The element corresponding to

∆f (m) can be found as

var
{

∆̂f
(m)
}
≥ det {A1,1}

det {I2 (ξ(m))}
, (A.3)

whereas the elements corresponding to β
(m)
i are given by

var
{
β̂

(m)
i

}
≥ det {Ai+1,i+1}

det {I2 (ξ(m))}
. (A.4)
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Hereafter, I introduce S1 =
∑N−1

n=0 2πn and S2 =
∑N−1

n=0 (2πn)2 to simplify the

notation. The determinant of I2

(
ξ(m)

)
can be found as

det
{
I2

(
ξ(m)

)}
=

(
2

σ2

)Lr+1

∣∣∣∣∣∣∣∣
[

trace
{
P(m)

}
S2 S11

T
Lr

P(m)

S1P
(m)1Lr NP(m)

]
︸ ︷︷ ︸

B

∣∣∣∣∣∣∣∣ .
(A.5)

The determinant of B can be found by developing the determinant along its

first column as

det{B} = trace
{
P(m)

}
S2N

Lr det
{
P(m)

}
− S2

1α
(m)2
1 NLr−1 det

{
P(m)

}
−

− S2
1α

(m)2
2 NLr−1 det

{
P(m)

}
− . . .

− S2
1α

(m)2
Lr

NLr−1 det
{
P(m)

}
= trace

{
P(m)

}
S2N

Lr det
{
P(m)

}
− S2

1

Lr∑
i=1

α
(m)2
i NLr−1 det

{
P(m)

}
.

(A.6)

The numerator in (A.3) is found to be given by

det {A1,1} = NLr det
{
P(m)

}
. (A.7)

The values of S1 = (2π)N(N+1)/2 and S2 = (2π)2N(N−1)(2N−1)/6 can be

plugged in (A.6) and thereafter substituted in (A.5) and (A.3), which yields

the bound in (3.28).

As to the bound in (A.4), the only term left to compute is the deter-
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minant of Ai+1,i+1. Let us define P
(m)
−(i) ∈ RLr−1×Lr−1 as

P
(m)
−(i) = diag{eT1 P(m)e1, . . . , e

T
i−1P

(m)ei−1,

eTi+1P
(m)ei+1, . . . , e

T
Lr

P(m)eLr}.
(A.8)

Then, the numerator in (A.4) is given by

det {Ai+1,i+1} =

(
2

σ2

)Lr

∣∣∣∣∣∣∣∣∣
[

trace
{
P(m)

}
S2 S11

T
Lr−1P

(m)
−(i)

S1P
(m)
−(i)1Lr−1 NP

(m)
−(i)

]
︸ ︷︷ ︸

D

∣∣∣∣∣∣∣∣∣ .
(A.9)

The determinant of D can be obtained by again developing the determinant

of the minors along its first column as

det{D} = trace
{
P(m)

}
S2N

Lr−1 det
{
P(m)

}
α

(m)2
i

− S2
1N

Lr−2α
(m)2
1

det
{
P(m)

}
α

(m)2
i

− . . .

. . .− S2
1N

Lr−2α
(m)2
i−1

det
{
P(m)

}
α

(m)2
i

− S2
1N

Lr−2α
(m)2
i+1

det
{
P(m)

}
α

(m)2
i

−

− S2
1N

Lr−2α
(m)2
Lr

det
{
P(m)

}
α

(m)2
i

= trace
{
P(m)

}
S2N

Lr−1 det
{
P(m)

}
α

(m)2
i

− S2
1N

Lr−2 det
{
P(m)

}
α

(m)2
i

trace
{

P
(m)
−(i)

}
.

(A.10)

Finally, the values of S1 and S2 can be plugged in (A.10) and (A.9), such that

(A.4) yields the bound in (3.29).

230



Appendix B

Fundamentals of Compressive Sensing

In this appendix, I provide background on compressed sensing (CS)

theory, which is used to develop the solutions proposed in this dissertation.

Let us imagine a continuous-time signal which we wish to sample. Ac-

cording to the sampling theorem [156], the sampling frequency has to be at

least twice the maximum frequency present in the signal (or twice the sig-

nal bandwidth, if the continuous-time signal is a bandpass signal) in order to

guarantee lossless reconstruction. This is a deterministic focus, in the sense

that if the signal is sampled at a rate that satisfies the requirements of the

sampling theorem, then the probability of perfect reconstruction is 1, i.e., it

always holds. This fact can be also analyzed from the linear algebra point of

view.

Let y ∈ CM , A ∈ CM×N , and x ∈ CN , with M ≤ N , and consider the

problem of finding the vector x satisfying Ax = y. To recover x from y, then

it is compulsory to store at least as many measurements in y as the dimension

of x, i.e, N . This is a deterministic principle of digital processing systems, in

which under M = N , and A having linearly independent columns, the system

is determined and the solution is unique. If M < N , however, linear algebra
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tells us that, in principle, the linear system of equations y = Ax has no unique

solution. Despite this, there are some cases in which the solution is unique,

as long as two conditions are met: sparsity, which pertains to the vector of

interest x, and incoherence, which refers to the measurement process under-

gone through the matrix A. CS theory asserts that certain vectors/signals can

be recovered from a much smaller number of samples or measurements than

traditional methods use, as long as these conditions are met [142].

In discrete-time systems, sparsity expresses the idea that a discrete sig-

nal depends on a number of degrees of freedom which is comparably much

smaller than its length. More precisely, many natural signals are sparse or

compressible in the sense that they have a concise representation when ex-

pressed in an appropriate basis Ψ. For instance, a sampled cosine signal is

generally dense in the time domain. When expressed in the frequency do-

main, however, most of the signal content is concentrated around the discrete

tone. Thus, this signal is compressible in the DFT basis. Incoherence extends

the duality between time and frequency and conveys the intuition that sig-

nals having a sparse representation in Ψ must be spread out in the domain in

which they are acquired. In our example, the DFT representation of a cosine

is (approximately) a spike in the frequency domain, while it is spread out in

the time domain.

Intuitively, if a vector x ∈ CN can be expressed in a basis Ψ ∈ CN×L

as x = Ψz, with z ∈ CL being K-sparse (i.e., only K entries in z are non-

zero), then it is not necessary to store N samples in y such that x can be
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retrieved through these measurements. Only a number M > K measurements

are needed to reconstruct x from y. Then, under the assumption that x

is K-sparse, the vector x can be reconstructed from y when the number of

measurements M obeys K < M << N , because the sparse vector has much

lower information entropy than a non-sparse one. Consequently, the amount of

samples needed to represent it is much lower. To undergo this reconstruction,

the matrix A must fulfill the Restricted Isometry Property (RIP), which can

be stated as follows [142,157]:

Definition: For each integer K = 1, 2, . . ., the isometry constant δK

of a matrix A is the smallest number such that

(1− δK)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δK)‖x‖2
2 (B.1)

holds for all K-sparse vectors x.

A matrix A is loosely said to fulfill the RIP of order K if δK is not too

close to one. Intuitively, if δK is small, and x is any K-sparse vector, then

(B.1) establishes that any set of K columns of A approximately behaves like

an orthonormal system. Therefore, when A fulfills this property, then A ap-

proximately preserves the Euclidean length of S-sparse signals, which implies

that S-sparse vectors cannot be in the null space of A (which is useful, as oth-

erwise these vectors could not be reconstructed). The connection between the

RIP and CS can be made as follows. Let us imagine that we wish to acquire

any K-sparse vector using A, and assume that δ2K is sufficiently smaller than
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one. The RIP then translates into

(1− δ2K)‖x1 − x2‖2
2 ≤ ‖Ax1 −Ax2‖2

2 ≤ (1 + δ2K)‖x1 − x2‖2
2, (B.2)

in which x1, x2 are K-sparse vectors, and hence x1−x2 is at most 2K-sparse.

The result in (B.2) implies that all pairwise distances between any two K-

sparse signals must be well preserved in the measurement space. The result in

(B.2) guarantees the existence of efficient and robust algorithms for discrimi-

nating K-sparse signals based on their compressive measurements [142]. Ex-

amples of matrices that fulfill (B.2) with high probability are matrices formed

by independent and identically distributed samples taken from a normal, a

symmetric Bernoulli, or a sub-Gaussian distribution [142]. With overwhelm-

ing probability, all these matrices obey the RIP providing that [142]

M ≥ CK log(N/K), (B.3)

where C is some constant. Therefore, using these matrices makes it possible

to retrieve K-sparse vectors using a number of measurements M << N . The

main difficulty of applying CS theory into real-world problems stems from

the fact that natural signals are not exactly K-sparse, but approximately K-

sparse, in which K is generally unknown. This means that most of the content

of these signals is concentrated on K components, but no knowledge on the

value of K is available a priori.

Let us imagine that we wish to recover a K-sparse signal x from y =

Φx + w, where w ∈ CN(0, σ2I). Likewise, let us assume that x can be
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(approximately) sparsely represented in the vector basis Ψ as x = Ψz. The

conditional density of the measurement is given by

p(y|z) = nc(ΦΨz, σ2I).︸ ︷︷ ︸
Complex Gaussian density

(B.4)

Intuitively, to retrieve a K-sparse vector z, it would be desirable to use the

`0-norm of z to find the sparsest solution, which is unique if the RIP holds.

Unfortunately, the `0-norm is not mathematically tractable to solve an opti-

mization problem. In the Bayesian framework, a prior Laplacian PDF on z is

usually chosen since it has high kurtosis

p(z) =
λ

2
e−λ‖z‖1 , (B.5)

which depends on λ, a parameter that controls the spikeness of p(z). The larger

the value of λ, the more concentrated the probability density of z around zero.

Using this prior PDF, the MAP estimator of z, ẑMAP, can be found as

ẑ = arg max
z

p(y|z)p(z)

= arg min
z

‖y −ΦΨz‖2
2 + λ‖z‖1.

(B.6)

The optimization problem in (B.6) is called Basis Pursuit De-Noising (BPDN)

[158], and it can be interpreted as follows. The first term in (B.6) is the usual

LS error term characterizing estimation problems with conditionally Gaussian

densities, while the second term is a penalty factor that depends on both

λ and the sparsity on z. The larger the value of λ, the higher the penalty

that the second term in (B.6) introduces for having a non-zero element in z.
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Intuitively, this means that higher values of λ will result in sparser estimates

z. The problem in (B.6) is often expressed as [142]

ẑ = arg min
z

‖z‖1, subject to ‖y −ΦΨz‖2
2 ≤ ε, (B.7)

where ε bounds the amount of noise in the measurement y. The problem

in (B.7) is often called Least Absolute Shrinkage and Selection Operator

(LASSO) [159–161]. It is a Second-Order Cone Program (SOCP) (hence con-

vex) which can be solved efficiently. The problem in (B.7) is different from the

one in (B.6) in that (B.7) allows setting a maximum allowable LS error in z

to control how well the sparse estimate z fits the data, and the sparsity in z

is optimized within an ε-error interval. In general, the formulation in (B.7) is

preferred when prior information on the measurement noise is available, since

it allows finding sparse estimates of z while controlling how well z explains

the measurement y. There is a variety of algorithms to solve the optimization

problem in (B.7), some of which include the Compressive Sampling Match-

ing Pursuit (CoSaMP) [162], and the OMP [163] algorithms. Notice that the

problems in (B.6)-(B.7) can be seen as static sparse estimation problems. Ex-

tensions to scenarios with time-varying dynamic sparse signals have also been

investigated [158], and algorithms to efficiently retrieve dynamic sparse signals

have also been proposed, some of which exhibit convergence guarantees.
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Appendix C

Fundamentals of Estimation Theory

In this appendix, I provide background on estimation theory, which is

used to develop the solutions proposed in this dissertation.

Let us consider two vectors ξ ∈ CP and y ∈ CN , and let us assume

that they are related as y = h(ξ) + w, with h : CP → CN being, in general,

a non-linear function, and w ∈ CN being additive noise with a certain PDF

pw(w). Estimation theory deals with the problem of how to optimally infer

ξ from y, i.e. how to find optimal functions g(y) to approximate ξ. This

process makes sense only if y and ξ depend on each other or, equivalently, if

y contains some information on ξ. There are two main flavors of estimation

theory, which are usually called classical estimation and Bayesian estimation.

The main difference between them is that the former deals with optimal esti-

mation of deterministic parameters/vectors from noisy observations, while in

the latter the vectors to be estimated are random, hence belonging to a certain

distribution with prior PDF pξ(ξ).

There are two main questions that can be formulated from an estima-

tion problem. The first one is related to how well the vector ξ can be estimated

from y, and the second one relates to how to find functions g(y) such that
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ξ̂ = g(y) is as close as possible to ξ. The most common metric to assess

the quality of an estimator is the MSE of e = ξ − g(y), which is denoted as

mee = Ee{ee∗}. In the particular event that Ee{g(y)} = Eξ{ξ} = mξ, the

estimator ξ̂ = g(y) is said to be unbiased, and the MSE boils down to the co-

variance matrix of the estimation error e. It turns out that in many scenarios

there is a lower bound for the MSE any unbiased estimator can attain, which

is called the CRLB.

C.1 Fisher Information and Cramér-Rao Lower Bound

The CRLB is a lower bound on the MSE any unbiased estimator can at-

tain, hence a lower bound on the covariance matrix of any unbiased estimator.

Let us consider the measurement model introduced earlier

y = h(ξ) + w, (C.1)

where w is fully described by its PDF pw(w). Let us first consider that ξ is a

deterministic parameter. The Fisher’s score function is defined as the partial

derivative of the LLF of y, ∂ log p(y; ξ)/∂ξ, which plays a central role in both

the existence and derivation of the CRLB. A condition for the CRLB to exist

is that the Fisher’s score function is zero mean

E
{
∂ log py(y; ξ)

∂ξ

}
= 0, (C.2)

which generally holds unless the support of py(y; ξ) depends on ξ. The condi-

tion in (C.2) is called the regularity condition [135]. The amount of information
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that y provides about ξ is collected in the FIM, usually denoted by I(ξ), which

can be computed as the covariance matrix of Fisher’s score [135]

I(ξ) = −E
{
∂ log p(y; ξ)

∂ξ

(
∂ log p(y; ξ)

∂ξ

)∗}
. (C.3)

The result in (C.3) is general and independent of the distribution of w. In the

event that y follows a Gaussian distribution, y ∼ CN(my(ξ),Cyy(ξ)), then

the FIM in (C.3) can be computed using the Slepian-Bangs formula [135]

[I(ξ)]i,j = 2 Re

{
∂m∗y(ξ)

∂ξi
C−1

yy(ξ)
∂my(ξ)

∂ξj

}
+trace

{
C−1

yy(ξ)
∂Cyy(ξ)

∂ξi
C−1

yy(ξ)
∂Cyy(ξ)

∂ξj

}
.

(C.4)

Let ξ̂ = g(y) be any estimator of ξ. Then, the CRLB inequality states that

the covariance matrix of the estimation error ξ − ξ̂ is lower bounded as [135]

Ey {(ξ − g(y)) (ξ − g(y))∗}︸ ︷︷ ︸
Cξ̂ξ̂

≥ I−1(ξ), (C.5)

where A ≥ B indicates that A − B is a positive semidefinite matrix. Fur-

thermore, an unbiased estimator may be found that attains the bound in that

Cξ̂ξ̂ = I−1(ξ) if and only if

∂ log p(y; ξ)

∂ξ
= I(ξ) (g(y)− ξ) , (C.6)

for some function g(y). Such estimator is ξ̂ = g(y), and its covariance matrix

is I−1(ξ). For a more detailed discussion about the CRLB, the reader is referred

to [135].

Now, let us turn our attention into the scenario in which some prior in-

formation on ξ is available. In statistical estimation, prior information means
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that a prior PDF pξ(ξ) is available. The extension of the FIM for the esti-

mation of random parameters is called the HIM, which is usually denoted by

H(ξ). This matrix is defined as [148]

H(ξ) , ID(ξ) + IP(ξ), (C.7)

where ID(ξ) is the expected value of the FIM I(ξ) in (C.3) with respect to ξ

ID(ξ) , Eξ {I(ξ)} , (C.8)

and IP(ξ) is the prior information matrix given by

IP(ξ) , −Eξ(m)

{
∂ log p(ξ)

∂ξ

(
∂ log p(ξ)

∂ξ

)∗}
. (C.9)

Then, for any unbiased estimator ξ̂ = g(y), the hybrid or Bayesian CRLB

inequality states that the covariance matrix of the estimation error ξ − ξ̂ is

lower bounded as [148]

Eξy {(ξ − g(y)) (ξ − g(y))∗}︸ ︷︷ ︸
Cξ̂ξ̂

≥ I−1(ξ), (C.10)

which is recognized as an extension of (C.5). For a more detailed discussion

about the hybrid CRLB and other types of Bayesian bounds, the reader is

referred to [148].

C.2 Finding Optimal Estimators

In the previous section, an introduction to the theory of CRLB was

provided, both for estimation of deterministic and random parameters. Let
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us now turn our attention into the problem of finding unbiased estimators

ξ̂ = g(y) whose performance index, i.e. covariance matrix, is as close as

possible to the CRLB. In the context of classical estimation of deterministic

parameters, the most common estimators are the MVUE, the BLUE, and

the ML estimator. The MVUE ξ̂MVUE is known to be an efficient estimator,

meaning that it is unbiased and its covariance attains the CRLB with equality.

Usually, it is found through (C.6) when the Fisher’s score can be appropriately

factorized. The BLUE estimator is a linear estimator that has the property of

exhibiting the minimum variance among all the unbiased estimators that are

linear on the data. In general, the BLUE is not an optimal estimator, but it is

known to be optimal when the measurement model falls under the GLM [135]

y = Hξ + w, (C.11)

with w having covariance matrix Cww. In this case, the BLUE is given by

ξ̂BLUE = (H∗C−1
wwH)

−1
H∗C−1

wwy, as long as H is full column rank. The ML

estimator is the maximizer of the likelihood function p(y; ξ) parameterized

by ξ. This estimator is not optimal in general, but under certain conditions

on the PDF [135], the ML estimator is asymptotically efficient for large data

records or as N → ∞, where we recall that N is the dimension of y. Hence,

asymptotically it is the MVUE. The performance of the ML estimator for finite

number of samples N depends on the PDF. Asymptotically, however, the ML

estimator is distributed as

ξ̂ML
a∼ CN

(
ξ, I−1(ξ)

)
. (C.12)
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In the particular case that the measurement model is linear and driven by

Gaussian noise, then the MVUE, BLUE, and ML estimators coincide.

Now, let us focus on the Bayesian scenario, in which an unbiased es-

timator ξ̂ = g(y) is to be found, and prior knowledge on the distribution

of ξ, denoted by pξ(ξ), is known. Usually, a Bayesian estimator is found

when optimizing a performance index depending on the posterior PDF of

the random vector we wish to estimate. In this context, the most common

estimators are the MAP and the MMSE estimators. Since our main inter-

est is on finding unbiased estimators of ξ, only the MMSE estimator will

be discussed here. Let G denote a set of functions closed under addition

(i.e. ∀g1(y),g2(y) ∈ G, g1(y) + g2(y) ∈ G) and scalar multiplication (i.e.

∀α ∈ C,g(y) ∈ G, αg(y) ∈ G). The MMSE estimator ξ̂MMSE is the function

g?(y) ∈ G that satisfies

ξ̂MMSE , arg min
g(y)∈G

Eξy {(ξ − g(y))∗ (ξ − g(y))} . (C.13)

By virtue of the orthogonality principle, the statement in (C.13) is equivalent

to

Eξy {(ξ − g?(y)) g(y)} = 0, ∀g(y) ∈ G, (C.14)

which must hold for any g(y) ∈ G. Therefore, it must hold for g(y) = ei, for

instance, where ei is the i-th vector forming the canonical basis. This leads to

g?(y) = Eξ|y{ξ}, (C.15)

whereby the optimal MMSE estimator is given by the conditional mean. The

main difficulty about finding this estimator is that it is distribution-dependent,
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and it requires, in general, knowledge about the PDF of every random vector

involved in the estimation problem. For this reason, a linearization approach

is usually followed in order to find the best possible estimator within the class

of affine functions. This leads to the LMMSE estimator, which is known to

be the statistical linearization approximation of the MMSE. For the general

non-linear model in (C.1), the LMMSE estimator reads as

ξ̂LMMSE = Eξ{ξ}+ CξyC−1
yy (y − h (Eξ{ξ})) . (C.16)

The orthogonality principle in (C.14) can be used to derive the LMMSE es-

timator, but it can also be applied to classes of non-linear functions, such as

polynomial functions. For instance, the Quadratic Minimum Mean Square Er-

ror (QMMSE) would be the quadratic function of y that minimizes the MSE

among any possible quadratic function, and it is known to be the statistical

quadratic approximation of the MMSE estimator in this case. A more detailed

treatment of Bayesian estimators can be found in [135], [164]. When applied

to dynamic scenarios in which random vectors vary with time, hence being

random processes, Bayesian estimators are referred to as Bayesian filters and

Bayesian smoothers. Bayesian filters are time-varying estimators that filter the

measurement data forward in time, while Bayesian smoothers perform both

forward and backward filtering. A detailed treatment of both Bayesian filters

and smoothers can be found in [164] and [149].
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compressive sensing-maximum likelihood approach for off-grid wideband

channel estimation at mmwave,” in 2017 IEEE 7th International Work-

shop on Computational Advances in Multi-Sensor Adaptive Processing

(CAMSAP), Dec 2017, pp. 1–5.

[146] “IEEE draft standard for local and metropolitan area networks - specific

requirements - part 11: Wireless lan medium access control (mac) and

physical layer (phy) specifications - amendment 3: Enhancements for

very high throughput in the 60 ghz band,” IEEE P802.11ad/D8.0, May

2012 (Draft Amendment based on IEEE 802.11-2012), pp. 1–667, June

2012.

268



[147] T. A. Thomas, M. Cudak, and T. Kovarik, “Blind phase noise mitiga-

tion for a 72 GHz millimeter wave system,” in 2015 IEEE International

Conference on Communications (ICC), June 2015, pp. 1352–1357.

[148] H. L. V. Trees and K. L. Bell, Bayesian Bounds for Parameter Estima-

tion and Nonlinear Filtering/Tracking. Wiley-IEEE Press, 2007.
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and R. W. Heath, “Channel estimation and hybrid precoding for fre-

quency selective multiuser mmwave MIMO systems,” IEEE Journal of

Selected Topics in Signal Processing, vol. 12, no. 2, pp. 353–367, May

2018.

[155] J. P. Gonzalez-Coma, J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, and

L. Castedo, “Channel estimation and hybrid precoding/combining for

frequency selective multiuser mmwave systems,” in GLOBECOM 2017

- 2017 IEEE Global Communications Conference, Dec 2017, pp. 1–6.

[156] R. W. Heath Jr., Introduction to Wireless Digital Communication: a

Signal Processing Perspective. Prentice Hall, 2016.

[157] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive
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