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Future smart grid systems will intelligently monitor and control en-

ergy flows in order to improve the efficiency and reliability of power delivery.

This monitoring and control requires low-power, low-cost and highly reliable

two-way communications between customers and utilities. To enable these

two-way communication links, powerline communication (PLC) systems are

attractive because they can be deployed over existing outdoor and indoor

power lines. Power lines, however, have traditionally been designed for one-

directional power delivery and remain hostile environments for communica-

tion signal propagation. In particular, non-Gaussian noise that is dominated

by asynchronous impulsive noise and periodic impulsive noise, is one of the

primary factors that limit the communication performance of PLC systems.

For my PhD dissertation, I propose transmitter and receiver methods

to mitigate the impact of asynchronous impulsive noise and periodic impulsive
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noise, respectively, on PLC systems. The methods exploit sparsity and/or cy-

clostationarity of the noise in both time and frequency domains, and require no

or minor training overhead prior to data transmission. Compared to conven-

tional PLC systems, the proposed transceivers achieve dramatic improvement

(up to 1000x) in coded bit error rates in simulations, while maintaining similar

throughput.
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Chapter 1

Introduction

The growth of energy demand has outpaced the rate at which gen-

eration capacity can grow by traditional means. The International Energy

Outlook 2013 projects that world energy consumption will grow by 56% from

2010 to 2040 [8]. The rise in energy consumption is not only due to pop-

ulation growth, but also the proliferation of consumer electronics and other

plug-in devices such as electric vehicles. Traditional ways to meet increasing

demand include constructing large-scale power plants and laying new trans-

mission lines, which are expensive and time-consuming. For example, a 1000

MW nuclear plant costs up to $2B and takes over 15 years to build; and laying

transmission lines costs $0.6M per kilometer and takes 5–10 years [7].

To solve the energy crisis in a more sustainable way, distributed energy

resources (DER) are used to provide an alternative to or an enhancement of

the traditional centralized power plants [7]. DERs are small-scale power gener-

ation sources (typically in the range of 1 kW to 104 kW), including renewable

energy resources (e.g. wind turbines and solar panels) and decentralized en-

ergy storage (e.g. the battery of electric vehicles and photovoltaic batteries).

These resources may deliver low-cost power to the grids during peak hours,
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or provide standby energy for emergency uses. In addition, they also have a

lower impact to the environment compared to traditional power plants.

The integration of DERs have transformed the power grids into much

more dynamic and complex systems than they used to be. To manage such

systems, a large amount of information needs to be measured, communicated

and analyzed in real time. On the utility’s side, transducers such as the Pha-

sor Measurement Units are deployed over the grids to precisely measure AC

voltages and currents at high speeds (typically 30 observations per second),

with time resolutions better than 1 µs. These measurements provide grid op-

erators with a picture of real-time grid conditions, and are helpful to speed up

their response in the case of unexpected demand disturbance and power out-

age. On the customer’s side, advanced metering infrastructure is deployed to

implement time-dependent and load-dependent electricity rates and to make

energy usage profiles available to the customer. Such information gives them

more incentives to better manage their energy consumption. During peak

hours, the advanced metering infrastructure also enables customers to offer

power-to-grid from their personal owned DERs at the market price.

1.1 Smart Grid Communications

The desire to use two-way flow of information to create an intelligent

energy delivery network has inspired the concept of the “smart grid”. A smart

grid couples a traditional power grid with a communication network. Within a

smart grid, communication technologies for smart metering applications have

2



recently obtained great interest. Such communication network typically con-

sists of three primary components [75], as illustrated in Figure 1.1:

• Home area networks (HAN) that connect smart appliances and sensors

on indoor power lines to smart meters;

• Neighborhood area networks (NAN) that connect smart meters to data

concentrators that are deployed by local utilities on medium-voltage

(MV) lines (in the US) or low-voltage (LV) lines (in Europe); and

• Communication backhaul that carries traffic between data concentrators

and local utilities.

Smart grid communications will likely be supported by a heterogeneous

set of network technologies, ranging from wireless to powerline, since no single

solution fits all scenarios [28]. In this section, I give a brief overview of the

wireless and powerline communication technologies to support the three types

of communication links in Figure 1.1 for smart metering applications.

1.1.1 Wireless Communications

Among the wireless solutions, cellular communication was once the

primary communication technology in smart meters, thanks to the rapid de-

velopment of mobile networks [6]. In particular, WiMAX operating in the 2.3,

2.5 and 3.5 GHz bands was used to provide up to 70 Mbps over distances up

to 48 km [36, 73]. A major disadvantage of cellular technologies is the high
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Figure 1.1: A smart grid for smart metering applications.

operating cost primarily due to the lease of networks and service from cellular

carriers.

Recently, wireless mesh networks have attracted a lot of attention as a

low-cost and low-power solution for smart metering applications [36, 73]. Ex-

amples of such networks are specified in international standards such as ZigBee

[1], IEEE 802.15.4g [18] and the emerging IEEE 802.11ah [11]. ZigBee deliv-

ers 20–250 kbps in the 868 MHz, 915 MHz and 2.4 GHz bands over 10–100

m. It has been used for connecting smart meters to data concentrators. The

IEEE 802.15.4g standard for smart utility networks supports low-power in-
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door communications between smart meters and smart appliances at multiple

data rates in the 450 MHz–2.4 GHz band. The IEEE 802.11ah standard for

sensor network applications, including smart metering, targets data rates of a

few hundred kbps and communication range of 200 meters in the sub-1GHz

unlicensed bands.

1.1.2 Powerline Communications

In the wireline alternatives, fiber optic networks have been deployed in

parts of the US as the communication backhaul connecting data concentrators

to local utilities [28]. Fiber optics has the advantages of high transport ca-

pacity and the immunity to electromagnetic interference and radio frequency

interference. However, due to the high deployment and maintenance cost, it

has been limited to backhaul communication links.

Powerline communications (PLC), thanks to the widespread availability

of power line infrastructure, is considered as a low-cost alternative for commu-

nications in home area networks and neighborhood area networks. Depending

on the operating bands, PLC systems can be divided into three categories

[28, 67]:

1. Ultra-Narrowband (UNB) PLC. UNB PLC systems operate in the 0.3–3

kHz band to provide about 100 bps over long distances (over 150 km).

An example of such systems is the Two-Way Automatic Communications

System that has been deployed by hundreds of utilities over the last

5



two decades for automatic meter reading, outage detection and voltage

monitoring [28, 67].

2. Narrowband (NB) PLC. This type of PLC system operates in the 3–500

kHz bands, including the European CENELEC (Committee for Elec-

trotechnical Standardization) bands (3–148.5 kHz), the US FCC (Fed-

eral Communications Commission) band (10–490 kHz), the Japanese

ARIB (Association of Radio Industries and Businesses) band (10–450

kHz) and the Chinese band (3–500 kHz). Narrowband PLC systems are

able to deliver either a few kbps using single-carrier communication, or

several hundred kbps using multicarrier communication such as Orthog-

onal Frequency Division Multiplexing (OFDM). The former, a.k.a. low

data rate narrowband PLC, has been used for commercial building au-

tomation (e.g. automatic lighting and air conditioning), and has been

standardized in BacNet and LonTalk [28, 67]. The latter, a.k.a. high

data rate narrowband PLC, has gained tremendous interest as a solu-

tion for neighborhood area networks in smart grid communications. In

fact, it is currently the most adopted (60% market share) communica-

tion technology in smart meters [61]. High data rate narrowband PLC

systems are exemplified in the industry developed standards G3 [3] and

PRIME (PoweRline Intelligent Metering Evolution) [5], and the recent

international standards IEEE P1901.2 [2] and ITU-T G.hnem [72].

3. Broadband (BB) PLC. Broadband PLC systems target home area net-

works, and use OFDM or wavelet OFDM to provide several Mbps to

6



Categories Operating Bands Data Rates Standards
UNB PLC 0.3–3 kHz ∼100 bps -

NB PLC 3–500 kHz

several kbps BacNet, LonTalk

up to 800 kbps
PRIME, G3

IEEE P1901.2
ITU-T G.hnem

BB PLC 1.8–250 MHz up to 200 Mbps
HomePlug 1.0
IEEE P1901
ITU-T G.hn

Table 1.1: Categories of powerlines communication systems.

several hundred Mbps in the 1.8–250 MHz band. Standards for broad-

band PLC include TIA-1113 (a.k.a. HomePlug 1.0), IEEE P1901 and

ITU-T G.hn recommendations.

Table 1.1 summarizes the operating bands, supported data rates and standards

of the three categories of PLC systems.

Apart from the low deployment costs, one of the advantages that make

PLC an appealing candidate for smart grid communications is the predictable

propagation channel. While wireless channels are likely to be time varying due

to mobility in the propagation environment, transfer function of a powerline

channel, as long as it does not cross the MV-LV transformer, can be determined

based on cable properties and grid topology [27, 67]. Furthermore, pathloss

over LV and MV power lines is much smaller than over typical wireless channels

(Table 1.2). In particular, PLC can work where radio propagation is weak or

completely blocked. For example, a data concentrator in the basement of a

building can barely send or receive wireless signal, while PLC on the other

7



Power Lines 100 kHz 10 MHz

LV 1.5-3 160-200
MV (Overhead) 0.5-1 30-50

MV (Underground) 1-2 50-80

Table 1.2: Typical pathloss values (in dB/km) for low-voltage (LV) and
medium-voltage (MV) power lines [28].

hand can traverse the power lines to reach smart meters in apartment units

upstairs.

However, PLC needs to overcome several communication challenges

to make itself practical. In the US, since data concentrators are typically

deployed on MV lines, communication between data concentrators and smart

meters need to traverse across MV-LV transformers. One of the primary chan-

nel impairments in this situation is the severe attenuation on signal crossing

MV-LV transformers. The attenuation is frequency selective and periodically

varying [67], and causes significant performance degradation.

On the other hand, as many wireless communication networks, PLC

systems are interference limited. A communication system is said to be in-

terference limited if the interference power from other communication and

non-communication devices is increasingly dominating the background noise

power. In PLC, such noise and interference is generated by electrical devices

connected to the power lines, and by external noise and interference coupled

to the power grids via radiation or conduction [28]. The interference may also

lead to severe performance deterioration in PLC systems. This dissertation

focuses on addressing the challenge of combating noise and interference in PLC
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systems.

1.2 Interference in Powerline Communications

Broadly speaking, interference or noise refers to the disturbance energy,

resulting from either natural or man-made sources, that adds to the transmit-

ted signal at the receiver and degrades its ability to successfully detect the

transmitted information. Throughout this dissertation, I use noise and inter-

ference interchangeably. In the 3–500 kHz (narrowband PLC) and 1.8–250

MHz (broadband PLC) bands, powerline noise can generally be decomposed

into four classes [21, 67, 70, 96]:

1. Spectrally-shaped background noise. The background noise is the sum-

mation of numerous low-power noise sources. Its power spectral density

slowly varies over time (in minutes or even hours), and exhibits a 1/f -

type decay due to the decreasing concentration of noise sources with

frequency.

2. Periodic impulsive noise. This category of noise includes all noise com-

ponents whose statistics vary periodically with half the AC cycle. The

aggregated noise exhibits cyclostationarity in both time and frequency

domain (Figure 1.2). The periodic impulsive noise can be further de-

composed into two distinctive sub-components:

(a) Periodic impulsive noise synchronous to the main powerline fre-

quency. This type of noise consists of a series of isolated impulses
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Figure 1.2: The spectrogram of a noise trace measured in the 45–450 kHz band
at an outdoor low-voltage power line [62].

of considerable duration and amplitude. The impulses has a repe-

tition rate equal to twice the main powerline frequency and always

appear at the same instant of the AC cycle. They are typically

caused by nonlinear power electronic devices, such as sillicon con-

trolled rectifiers and diodes, that switch on and off with the AC

cycle while generating abrupt switching transients.

(b) Periodic impulsive noise asynchronous to the main powerline fre-

quency. This noise component takes the form of impulse trains

with repetition rates unrelated to and much higher than the main
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powerline frequency. In addition to the high repetition frequen-

cies, it also exhibits an underlying period equal to half the AC

cycle, i.e., it is cyclostationary. The impulses in such noise typi-

cally have much lower amplitudes and shorter durations than the

ones in the synchronous impulsive noise. In the frequency domain,

such noise can be clearly identified as harmonic clusters with sig-

nificantly higher power spectral density (more than 30 dB) over the

background noise. A primary contributor to this type of noise is

switching mode power supplies, such as inverters and DC-DC con-

verters, which contain MOSFET switches operating at frequencies

above 20 kHz and up to several hundred kHz. These circuits out-

put inband harmonic contents that cannot be perfectly removed by

analog filtering.

3. Asynchronous impulsive noise. This type of noise consists of short du-

ration, high power impulses (up to 50 dB above background noise power

[95]) with random arrivals. The impulses typically arise from switching

transients caused by connection and disconnection of electrical devices.

In addition, uncoordinated interference from non-interoperable neigh-

boring PLC modems [28] is shown to be asynchronous impulsive noise

in nature [65].

4. Narrowband interference. Broadcast stations in the long-wave (153–279

kHz), medium-wave (540 kHz–1.61 MHz in the US) and short-wave (2.3
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MHz–26.1 MHz) bands introduce narrowband interference to PLC sys-

tems. The interference exhibits amplitude or frequency modulated si-

nusoids in the time domain, which correspond to harmonic clusters in

the noise spectrum. The interference level generally varies slowly with

daytime, and in some cases varies periodically with half the AC cycle.

Recent field measurements on both MV and LV lines have identified the

dominant noise component in the 3–500 kHz band to be periodic impulsive

noise [46, 62, 70]. In the 1.8–250 MHz band, asynchronous impulsive noise

becomes the dominant noise component.

1.3 Impact of Impulsive Noise in OFDM Systems

Both narrowband and broadband PLC standards adopt OFDM as the

modulation technique, since it offers great advantages in combating frequency

selective channel. Furthermore, OFDM is inherently more robust against im-

pulsive noise than single-carrier communication systems.

Compared to single-carrier systems, OFDM is more resilient to asyn-

chronous impulsive noise, whose impulses are much shorter than an OFDM

symbol. The inverse Fast Fourier Transform (IFFT) at the transmitter can be

considered as a precoder that spreads the information carried by each subcar-

rier over all samples in the time domain. This provides time-domain diversity

that allows successful recovery of the information even if a few samples are

corrupted by noise impulses. Alternatively, the Fast Fourier Transform (FFT)
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operation at the receiver smears the impulsive energy, and hence averages its

impact across all subcarriers. As such, OFDM provides significant gain over

single-carrier systems at moderate to high SNR values [56]. However, in the

low SNR regime, the smeared impulsive energy significantly raises the noise

power over all subcarriers, causing dramatic performance degradation in con-

ventional OFDM systems.

OFDM systems also provide inherent immunity to periodic impulsive

noise, in which a single noise burst may span multiple consecutive OFDM

symbols1. As mentioned in Section 1.2, periodic impulsive noise consists of

strong harmonic components similarly to narrowband interference (NBI). As

such, only the subcarriers close to the harmonic frequencies will be severely

corrupted while the rest are affected by low-power background noise. In other

words, not all data symbols are contaminated during the noise bursts as would

happen in single-carrier systems. In spite of this, the rich harmonic contents in

the noise power spectrum still cause significant corruption over a considerable

portion of the transmission band, and hence limits the bit error rate (BER)

performance of the OFDM system.

1For example, the OFDM symbol duration in the G3 standard operating in the
CENELEC-A band from 3–95 kHz is 695 µs (see Table 2.1). Typical noise bursts last
from 10% to 30% of a period (i.e., half the AC cycle). A noise burst lasting for 30% of a
period will contaminate up to 4 consecutive OFDM symbols.
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1.4 Dissertation Summary

This dissertation aims to improve communication performance of OFDM-

based PLC systems in the presence of asynchronous impulsive noise and peri-

odic impulsive noise, respectively, without significantly reducing throughput.

I seek to achieve the goal using two distinctive approaches.

In the first approach, I design nonparametric noise mitigation algo-

rithms at the receiver, which estimate and subtract asynchronous impulsive

noise or periodic impulsive noise from received signal. Using recent results in

compressed sensing, the algorithms exploit sparsity of impulsive noise in time

domain to estimate the noise impulses from thier projection on various sub-

carriers of received signal. The algorithms do not assume prior knowledge on

the statistical noise models, and hence do not impose training overhead prior

to data transmission.

The second approach, on the other hand, is a parametric, joint trans-

mitter and receiver design to combat periodic impulsive noise. The proposed

transceivers use modulation diversity in both time and frequency domains,

which exploits the knowledge on the periodically varying and spectrally shaped

sub-channel SNRs to improve communication reliability. The noise power spec-

tral density can be estimated primarily during data transmission, which entails

minimal training overhead prior to data transmission.

1.4.1 Thesis Statement

In this dissertation, I defend the following thesis statement:
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Reliability of smart grid communications over power lines can be dra-

matically improved without sacrificing throughput by exploiting sparsity and

cyclostationarity of the impulsive noise in both time and frequency domains.

1.4.2 Summary of Contributions

The primary contributions of this dissertation can be summarized as

follows.

1. Nonparametric mitigation of asynchronous impulsive noise.

In this contribution, I propose nonparametric algorithms at OFDM PLC re-

ceivers to estimate and subtract asynchronous impulsive noise from received

signal. Exploiting the sparsity of the noise in time domain, I apply sparse

Bayesian learning (SBL) techniques and propose three iterative algorithms,

with different complexity vs. performance trade-offs, that

(a) utilize the noise projection onto null and pilot tones;

(b) add the information in the date tones to perform joint noise estimation

and symbol detection; and

(c) use decision feedback from the decoder to further enhance the accuracy

of noise estimation.

All the methods are nonparametric, i.e., they do not require prior knowledge

on the statistical noise model or model parameters. In the simulations, the

proposed receivers provide up to 9 dB gain in signal-to-noise power ratio
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(SNR), or alternatively over 1000x reduction in coded BER, compared to

conventional coherent receivers without impulsive noise mitigation.

2. Nonparametric mitigation of periodic impulsive noise.

In this contribution, I utilize the three algorithms developed in the previous

contribution to mitigate periodic impulsive noise. Since periodic impulsive

noise consists of long noise bursts that span multiple OFDM symbols, I

adopt a time-domain block interleaving OFDM transceiver structure, where

the deinterleaver at the receiver spreads noise bursts into short impulses.

I then apply the noise mitigation algorithms developed in the previous

contribution to estimate and remove the short impulses from received sig-

nal. In the simulation results, the proposed receivers provide up to 6.8 dB

gain in SNR, or alternatively over 100x reduction in coded BER, compared

to conventional coherent receivers with frequency domain interleaving and

without impulsive noise mitigation.

3. Time-frequency modulation diversity to combat periodic impul-

sive noise.

In this contribution, I develop a robust transmission scheme and corre-

sponding receiver methods to combat periodic impulsive noise. Towards

that end, I propose (1) a time-frequency modulation diversity scheme at

the transmitter and a diversity receiver to improve communication reliabil-

ity without decreasing throughput; and (2) an online noise power estimator

that exploits sparsity of periodic impulsive noise in the frequency domain
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to estimate the noise power spectrum for reliable decoding at the diversity

receiver. The simulation results show more than 1000x reductions in coded

BER compared to conventional coherent and non-coherent OFDM systems

at typical SNRs in narrowband PLC.

1.5 Organization

The rest of the dissertation is organized as follows.

Chapter 2 gives a brief overview of several digital communication con-

cepts and statistical methodologies used in this dissertation. It starts with the

general OFDM system model, and describes various OFDM communication

and signal processing techniques that are tailored and adopted in current PLC

standards. Then it introduces the statistical models for asynchronous impul-

sive noise and periodic impulsive noise, respectively. After that, it presents the

Bayesian inference framework, followed by a detailed description of the sparse

Bayesian learning algorithms.

Chapter 3 presents the first two contributions on nonparametric mitiga-

tion of asynchronous impulsive noise and periodic impulsive noise, respectively.

It starts with a literature review on existing receiver methods to combat both

types of impulsive noise. Then it describes the system model, and proposes

three nonparametric impulsive noise mitigation algorithms. The chapter is

closed with a discussion of simulation results.

Chapter 4 discusses the third contribution on modulation diversity to
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combat periodic impulsive noise. First, it discusses previous transmitter and

receiver methods to combat periodic impulsive noise. After a brief review

of modulation diversity techniques, it introduces the proposed time-frequency

modulation diversity, and the diversity combining demodulator. Then it dis-

cusses the offline estimator for the noise power spectrum, and proposes an

online alternative that reduces the training overhead prior to data transmis-

sion. Simulation results are shown and discussed at the end of the chapter.

Finally, Chapter 5 concludes the dissertation with a summary of pro-

posed contributions and an outline of interesting perspectives for future re-

search.

1.6 List of Acronyms

AC alternating current

AMI advanced metering infrastructure

AR autoregressive

ARIB Association of Radio Industries and Businesses

ASK Amplitude shift keying

AWGN additive white Gaussian noise

BB broadband

BER bit error rate

BPSK binary phase shift keying

CEN A CENELEC-A

CENELEC Committee for Electrotechnical Standardization
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Conv Convolutional

CP cyclic prefix

DARMA deseasonalized autoregressive moving average

DC direct current

DCM dual carrier modulation

DER distributed energy resource

DPSK differential phase shift keying

EM expectation maximization

FCC Federal Communications Commission

FDI-OFDM frequency-domain block interleaving OFDM

FEC forward error correction

FEQ frequency-domain channel equalizer

FFT Fast Fourier Transform

GMM Gaussian mixture model

HAN Home area network

HS Hochwald/Sweldens

IEEE Institute of Electrical and Electronics Engineers

IFFT inverse Fast Fourier Transform

ISI inter-symbol interference

ITU-T International Telecommunication Union Telecommunication

Standardization Sector

LLR log-likelihood ratio

LPTV linear periodically time varing
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LTI linear time invariant

LV low-voltage

MIMO multiple-input multiple-output

MRC maximum ratio combining

NB narrowband

NBI narrowband interference

NMLSE non-coherent maximum likelihood sequence estimator

MAP maximum aposteriori

MCA Middleton Class A

MMSE minimum mean square error

MMV multiple measurement vector

MOSFET metaloxidesemiconductor field-effect transistor

MSDD multiple-symbol differential detector

MV medium-voltage

NAN Neighborhood area network

OFDM orthogonal frequency division multiplexing

PHY physical layer

PLC powerline communications

PRIME PoweRline Intelligent Metering Evolution

QAM quandrature amplitude modulation

PSK phase shift keying

RS Reed-Solomon

SBL sparse Bayesian learning
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SC selection combining

SER symbol error rate

SMV single measurement vector

SNR signal-to-noise power ratio

TDI-OFDM time-domain block interleaving OFDM

T-SBL temporally correlated SMV sparse Bayesian learning

T-MSBL temporally correlated MMV sparse Bayesian learning

UNB ultra-narrowband

WiMAX Worldwide Interoperability for Microwave Access
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Chapter 2

Background

In this chapter, I review several digital communication concepts and

statistical methodologies upon which my contributions are based. I begin in

Section 2.1 by introducing the general system model for OFDM. In Section

2.2, I briefly describe how various OFDM communication and signal processing

techniques are tailored and applied in current PLC standards. In Section 2.3, I

give an overview of the statistical models for asynchronous impulsive noise and

periodic impulsive noise, respectively. I then turn to discussing the Bayesian

inference framework in Section 2.4. It provides a basis for the sparse Bayesian

learning algorithms for the single measurement vector model and the multiple

measurement vector model, as discussed in Section 2.5.

2.1 OFDM Systems

As mentioned in the previous chapter, OFDM has been adopted in

existing narrowband PLC and broadband PLC standards, since it offers great

advantages in combating frequency selective channel and impulsive noise. This

section briefly describes the system model of OFDM. The purpose is to allow

a better understanding of the impact of impulsive noise on OFDM systems (as
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described in Section 1.3), and to define a basic system model upon which my

proposed algorithms will be built.

OFDM divides the transmission band into a number of equal-width

subbands. Each subband is associated with a subcarrier sinusoid whose fre-

quency equals to the center frequency of the subband. There are in general

three types of subcarriers (a.k.a. tones): data subcarriers, null subcarriers and

pilot subcarriers. Data subcarriers modulate data symbols. Pilot subcarriers

carry known reference symbols that may be used by the receiver for channel

estimation, synchronization, and other purposes. Null subcarriers are loaded

with zero power, and are typically located on both edges of the transmission

band to reduce out-of-band emissions, ease design of the analog transmit and

receive filter and so on. All subcarriers are orthogonal to each other, the

collection of which constitutes an OFDM symbol in the frequency domain.

The modulation of an OFDM symbol is generally implemented by in-

verse fast Fourier transform (IFFT). Let Nc denote the total number of sub-

carriers in an OFDM system. Define s as a length-Nc vector consisting of

complex signals modulated on all subcarriers; i.e., s is an OFDM symbol in

the frequency domain. An OFDM modulator takes the IFFT of s to obtain the

time-domain OFDM symbol. A cyclic prefix (CP), which is a replica of the last

Np samples of the time-domain OFDM symbol, is inserted to the beginning of

the symbol to reduce inter-symbol interference (ISI). The time-domain OFDM

symbol with CP is then transmitted through a multipath fading channel and

is further corrupted by additive noise and interference at the receiver. The
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receiver removes the CP from each OFDM symbol, which results in

r(t) = HF∗s + e + n.

Here r(t) denotes the received signal in time domain after CP removal, e and n

represent the time-domain impulsive noise and background noise, respectively,

F is the Nc-point FFT matrix, and H is called the convolutional channel

matrix. Assuming that the CP is longer than the channel delay spread (i.e.,

length of the channel impulse response), H is a circulant matrix whose rows

are circular shifts of the channel impulse response.

The receiver demodulates an OFDM symbol by taking the FFT of r(t):

r = F(HF∗s + e + n)

= Λs + Fe + Fn. (2.1)

It can be shown that since H is a circulant matrix, Λ , FHF∗ is a diago-

nal matrix, with {Λii}Nc

i=1 equivalent to the Nc-point FFT coefficients of the

channel impulse response. Effectively, the signals in s are transmitted inde-

pendently over Nc narrowband flat sub-channels. The OFDM system thereby

transforms a multipath channel to Nc flat sub-channels, each of which can be

characterized by a one-tap finite impulse response filter with the coefficient

Λii (∀i = 1, · · · , Nc) and hence allows simple one-tap equalization.

2.2 Narrowband PLC Standards

When applied to PLC, OFDM systems need to be tailored for accomo-

dating specific channel impairments, including fading and impulsive noise. In
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this section, I discuss how various digital communications and signal processing

techniques can be integrated into OFDM-based PLC systems, using existing

narrowband PLC standards as examples. The discussion will shed some light

on the communication performance vs. complexity trade-offs when design-

ing PLC systems. More importantly, it also allows a better understanding of

various assumptions and simulation settings for the proposed contributions.

PRIME and G3 are the well-known industry-developed OFDM-based

narrowband PLC standards. Both operate in the CENELEC-A (CEN A) band

from 3 to 95 kHz (ITU-T G.9955/G.9956 and IEEE P1901.2 extend G3 to the

FCC band from 159.4 to 478.1 kHz), and adopt non-coherent modulation (i.e.,

differential phase shift keying, or DPSK) in combination with forward error

correction (FEC) coding (e.g. convolutional coding (Conv) and Reed-Solomon

coding (RS)) to combat adverse channel impairments. Details about both

standards and the comparisons between them are well-described in [40] and

[47]. PRIME and G3 PLC modems have been developed by several companies,

and have demonstrated success in field trials [10, 79].

To resolve the interoperability issues among the existing technologies,

unified international standards have been developed for the next generation

narrowband PLC technology. The ITU-T Recommendations G.9955 and G.9956

specify the physical layer (PHY) and the data link layer, respectively, of

G.hnem and document PRIME and G3 to facilitate the transition period[72].

Similarly, the very recently published IEEE P1901.2 leverages IEEE 802.15.4g

and provides advanced features based on G3. Both these standards enable
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scalable data rates of 200–500 kbps over a portion of the CENELEC band (3–

95 kHz in CEN A, 95–125 kHz in CEN B and 125–148.5 kHz in CEN CD) and

the entire US FCC band (34.375–487.5 kHz). Some PHY parameters of these

two international standards are listed in Table 2.1 and compared to those of

PRIME and G3. Note that since the PHY specifications of PRIME and G3 are

defined in baseband real-valued settings, the FFT length is twice the number

of subcarriers, whereas IEEE P1901.2 and G.hnem are specified in complex

OFDM settings, where the FFT length is equal to the number of subcarriers.

M denotes the constellation size. The maximum data rates are computed by

taking into account of cyclic prefix (CP), FEC coding, and the overhead of

frame control headers, preambles, channel estimation symbols and pilots. The

two maximum data rates for PRIME in the CEN A band is with the convolu-

tional coding turned on and off, respectively. The two maximum data rates for

IEEE P1901.2 in the FCC band is with coherent and non-coherent modulation

schemes, respectively.

All the narrowband PLC standards listed in Table 2.1 employ a tone

map that specifies the locations of data subcarriers and the number of bits

loaded on each data subcarrier. Due to complexity constraints, current stan-

dards adopt uniform tone mapping, which assigns the same number of bits to

all data subcarriers. In PRIME, each transmission uses a static tone map that

is decided prior to the transmission. Other standards allow adaptive tone map-

ping, which adjusts the number of bits uniformly across all data subcarriers

based on the average SNR. Recently, observing the periodically varying and
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Table 2.1: Physical layer parameters of PRIME, G3, IEEE P1901.2 and
G.hnem standards for narrowband PLC over the CENELEC A and FCC
bands.

Parameter PRIME G3 IEEE P1901.2 G.hnem
Frequency CEN A 42–89 kHz 35.9–90.6 kHz 35.9–90.6 kHz 35.9–90.6 kHz

Range FCC / 159.4–478.1 kHz 35.9–487.5 kHz 34.4–478.1 kHz
Sampling CEN A 250 kHz 400 kHz 400 kHz 200 kHz
Frequency FCC / 1.2 MHz 1.2 MHz 800 kHz

FFT Length
CEN A 512 256 256 128

FCC / 256 256 256
Cyclic Prefix CEN A 48 (192µs) 30 (75µs) 30 (75µs) 20/32 (100µs/160µs)
(Duration) FCC / 30 (25µs) 30 (25µs) 40/64 (50µs/80µs)
Window CEN A 0 8 8 8

Size FCC / 8 8 16
Effective CP CEN A 48 (192µs) 22 (55µs) 22 (55µs) 12/24 (60µs/120µs)
(Duration) FCC / 22 (18.3µs) 22 (18.3µs) 24/48 (30µs/60µs)
Subcarrier CEN A 488 Hz 1.5625 kHz 1.5625 kHz 1.5625 kHz

Spacing FCC / 4.6875 kHz 4.6875 kHz 3.125 kHz
OFDM CEN A 2240µs 695µs 695µs 700/760µs

Duration FCC / 231.7µs 231.7µs 350/380µs

Modulation
DPSK DPSK DPSK (QAM) QAM

M=2,4,8 M=2,4,8 M=2,4,8,16 M=2,4,8,16
FEC Conv (Optional) Conv+RS Conv+RS Conv+RS

Maximum CEN A 61.4/123 kbps 45 kbps 52.3 kbps 101.3 kbps
Data Rate FCC / 207.6 kbps 203.2/207.6 kbps 821.1 kbps

spectrally shaped statistics of periodic impulsive noise, it was suggested to use

cyclic non-uniform tone mapping to improve the throughput of narrowband

PLC systems [70]. Such tone mapping varies the number of bits assigned to

each data subcarrier across time and frequency based on sub-channel SNRs,

and requires considerable amount of feedback from receiver to transmitter.

For simplicity, I assume static uniform tone mapping as specified in PRIME

throughout the dissertation. Nonetheless, the proposed transceiver methods

can be generalized to work with adaptive uniform tone mapping, and even

cyclic non-uniform tone mapping with minor modifications.

Comparing the modulation schemes in different narrowband PLC stan-

dards, one may notice that while DPSK is the only modulation supported

27



by PRIME and G3, coherent modulation schemes such as PSK and Quadra-

ture Amplitude Modulation (QAM) are included as an optional mode in IEEE

P1901.2, and a mandatory mode in G.hnem. In general, the choice between

coherent modulation and non-coherent modulation reflects complexity vs. per-

formance trade-offs. In non-coherent modulation, proper insertion of pilots

ensures that the channel phase distortion between two pilots is approximately

constant and thus is automatically canceled when subtracting the phases of

two consecutive symbols between these pilots. As such, non-coherent modu-

lation relieves the receiver from the computationally expensive channel esti-

mation and carrier frequency offset correction. On the other hand, coherent

systems generally require higher computational complexity, as well as train-

ing overhead, for channel estimation. For example, in the optional coherent

modulation mode in IEEE P1901.2, two preamble symbols are added after the

frame control header for channel estimation. Nonetheless, the SNR gain of

PSK over DPSK is generally 3 dB in additive white Gaussian noise (AWGN)

assuming perfect channel estimation. In non-Gaussian noise environments,

the SNR gain of PSK is even larger as the noise becomes more impulsive [44].

This is because the occurrence of high amplitude noise impulses can result in

noisy phase reference and severe error propagation at non-coherent receivers.

Performance of non-coherent coded modulation can be improved by

increasing the receiver complexity. In [25, 78], the authors proposed a non-

coherent maximum likelihood sequence estimator (NMLSE) and a multiple-

symbol differential detector (MSDD), respectively, that jointly decode a block
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of (more than two) differentially encoded symbols. In AWGN, by increasing

the block length, performance of the non-coherent coded modulation with

NMLSE or MSDD converges to that of the coherent coded modulation with the

Viterbi decoder. However, such performance gain is significantly suppressed

in the presence of impulsive noise [85]. In [74], it was shown that non-coherent

iterative receivers using soft decision feedback from the convolutional encoder

can asymptotically achieve the same communication performance as coherent

receivers. A drawback of this approach is the extremely high computational

complexity. A lower complexity alternative using hard decision feedback was

suggested in [80], which however is likely to encounter performance degradation

in impulsive noise due to error propagation.

Performance and complexity evaluation of coherent vs. non-coherent

modulation schemes in narrowband PLC still remains an active research area.

While non-coherent modulation allows low-complexity implementation, coher-

ent modulation becomes increasingly attractive since it provides higher data

rates, or alternatively enhanced reliability, to potentially enable more advanced

smart metering applications.

In this dissertation, I consider both non-coherent and coherent modu-

lation schemes, with an emphasis on the latter. The first two contributions

are developed and evaluated assuming coherent modulation. In the first con-

tribution, except for the decision feedback noise estimator, which requires

channel estimation that is unavailable at non-coherent receivers, all the other

algorithms can be immediately applied to non-coherent systems to mitigate
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Receiver Interferer Interference Emissions

Case I: Dominant 
Interference Source

Case II: Homogenous PLC 
Network

Case III: General PLC Network

Figure 2.1: Interference scenarios in PLC networks. Each interferer emits
a random sequence of emissions onto the power line, which add up at the
receiver. An interferer is described statistically by a mean number of emission
events µ, mean duration between emission events λ, and the pathloss to the
receiver γ.

asynchronous impulsive noise. However, in the second contribution, the pro-

posed algorithms for mitigating periodic impulsive noise may not be used in

non-coherent systems, since the time-domain block interleaving structure re-

quired by these algorithms cannot be easily incorporated into non-coherent

OFDM systems. In the third contribution, the proposed transceiver methods

are derived and simulated for both non-coherent and coherent systems. While

offline training prior to data transmission is required in non-coherent systems,

such overhead can be significantly reduced in coherent systems.

2.3 Statistical Modeling of Impulsive Noise

In this section, I briefly discuss existing statistical models for asyn-

chronous impulsive noise and periodic impulsive noise in PLC. These statis-

tical models are useful for simulating various impulsive noise environments,

under which the robustness of the proposed algorithms can be tested.
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Scenario Example Network Statistical Model
Dominant Rural Area Middleton Class A:
Interferer Industrial Area A = λµ , Ω = AγE [h2B2] /2

Homogeneous Urban Area Middleton Class A:
PLC Network Residential Buildings A = Mλµ , Ω = AγE [h2B2] /(2M)

General Dense Urban Area Gaussian Mixture:
PLC Network Commercial πk and γk given in [65]

Table 2.2: Statistical-physical models of interference in PLC networks cate-
gorized by network types. Parameters are given in Figure 2.1 and M is the
number of interferers.

2.3.1 Asynchronous Impulsive Noise Modeling

Time-domain properties of the asynchronous impulsive noise have been

empirically modeled in the literature. Many studies targeted indoor broadband

PLC, and took noise measurements in higher frequency bands from several

hundred kHz to 20 MHz [96], where asynchronous impulsive noise is dominant.

To describe the instantaneous amplitude statistics of the noise, various stud-

ies empirically fitted the noise data to Nakagami [57], Gaussian mixture and

Middleton Class A distributions [17, 24]. By characterizing random emissions

of interference events in a PLC network as a temporal Poisson point process,

analytical derivation in [65] showed that interference seen at a receiver within

a PLC network can be modeled by Gaussian mixture and Middleton Class A

distributions. The three network scenarios and corresponding noise models in

[65] are given in Figure 2.1 and Table 2.2.

For convenience of the discussion in the rest of the dissertation, I briefly

describe the Gaussian mixture and the Middleton Class A models as follows.
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• Gaussian Mixture Model. A random variable Z has a Gaussian mix-

ture distribution if its probability density function (pdf) is a weighted

summation of different Gaussian distributions, i.e.,

fZ(z) =
K∑
k=0

πk ·N(z; 0, γk), (2.2)

where N(z; 0, γk) denotes a Gaussian pdf with zero mean and variance

γk, and πk is the mixing probability of the k-th Gaussian component.

• Middleton Class A Model. The Middleton Class A model [59] is param-

eterized by an overlapping factor A and background-to-impulsive noise

power ratio Ω (e.g. A ∈ [10−2, 1] and Ω ∈ [10−6, 1] [90]). The Middle-

ton Class A model can be considered as a special case of the Gaussian

mixture distribution, with πk = e−AA
k

k!
and γk = k/A+Ω

1+Ω
as K → ∞. In

practice, only the first few significant terms are retained.

Time-domain noise traces simulated from Gaussian mixture and Middleton

Class A models are depicted in Figure 2.2 and 2.3, respectively.

2.3.2 Periodic Impulsive Noise Modeling

Studies in statistical modeling of periodic impulsive noise primarily tar-

geted outdoor narrowband PLC in the 3–500 kHz band[46, 62]. In [46], the

noise was expressed as a cyclostationary Gaussian process whose instantaneous

variance is a periodic function of time. A linear time invariant (LTI) filter was

used for shaping the noise spectrum. A more general linear periodically time
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Figure 2.2: Asynchronous impulsive noise simulated from a Gaussian mixture
distribution with π = [0.9, 0.07, 0.03] and γ = [1, 100, 1000].
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Figure 2.3: Asynchronous impulsive noise simulated from a Middleton Class
A distribution with A = 0.1, Ω = 0.01, and the pdf truncated to the first 10
mixture components.

varying (LPTV) system model was proposed in [62] and was accepted into

the IEEE P1901.2 narrowband PLC standard. The model was established on

the approximation that each AC cycle can be partitioned into a number of

intervals, and within each the noise is a stationary Gaussian process charac-

terized by a particular power spectral density. The periodic impulsive noise

can therefore be generated by passing an AWGN input through a set of LTI

filters and switching the output periodically among them. More specifically,

suppose that an AC cycle is paritioned into M intervals {Ri}Mi=1, the noise
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Figure 2.4: A time-domain trace and spectrogram of the periodic impulsive
noise synthesized from a linear periodically time varying system model.

samples nk can be expressed as

nk =
M∑
i=1

1k∈Ri

∑
τ

h(i)
τ vk−τ , vk ∼ N(0, 1). (2.3)

where 1A is the indicator function, and h
(i)
τ denotes the impulse response of

the LTI filter that the system switches to during the interval Ri.

A time-domain trace and spectrogram of the periodic impulsive noise

synthesized from an LPTV system model is shown in Figure 2.4. One period

of the noise is divided into three intervals, each assuming a different spectral
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shape. The spectral shapes are fitted to noise measurements collected at an

outdoor low-voltage site as shown in Figure 1.2.

Very recently, cyclostationary noise measurement in indoor broadband

PLC channels in the 1–30 MHz band was fitted to a deseasonalized autore-

gressive moving average (DARMA) model [31]. The DARMA model consists

of an LTI ARMA spectral shaping filter followed by a noise power amplifier

that scales the noise power periodically. Similarly to [46], this model does not

capture the spectral variation of the noise within a period.

2.4 The Bayesian Framework

In this section, I provide an overview of the Bayesian inference frame-

work. The purpose is to establish some concepts and methodologies that

reappear throughout this dissertation.

Informally speaking, Bayesian inference attempts to extract informa-

tion about certain unknown parameters θ from some known data observations

y. In particular, one might be interested in the posterior distribution on θ

p(θ|y,λ) =
p(y|θ)p(θ|λ)∫

θ
p(y|θ)p(θ|λ)dθ

, (2.4)

which is a consequence of two probability distributions, namely a prior p(θ|λ),

and a likelihood p(y|θ). In general, the prior is a parameterized distribution

with the hyperparameters λ. It is used to incorporate any a priori information

on the unknown parameters into the inference.
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2.4.1 Conjugate Priors

There are many perspectives on the choice of prior distribution. An

informative prior encodes specific subjective belief about the unknown param-

eters. On the other hand, an noninformative prior allows the data to speak

most loudly. A pragmatic choice, which leads to computationally tractable

posterior distributions, is the use of conjugate priors. A prior distribution on

θ is called a conjugate prior for the likelihood function p(y|θ), if the posterior

remains in the same family as the prior. Depending on the choice of hyper-

parameters, these priors can encode different amount of information (from

weakly informative to strongly informative) that influences the analysis of θ.

In the following, I briefly outline the prior distributions associated with a

complex Gaussian distribution, which will be frequently used in the rest of the

dissertation.

A single variable complex Gaussian distribution is parameterized by a

mean µ and a variance σ2

p(y;µ, γ) =
1

πγ
exp(−|e− µ|

2

γ
).

I denote this Gaussian distribution by CN(y;µ, γ). For fixed mean and un-

known variance, the conjugate prior on γ is an inverse Gamma distribution.

An inverse Gamma distribution, with shape parameter a and scale parameter

b, is given by

p(γ; a, b) =
ba

Γ(a)
γ−a−1exp(− b

γ
), ∀γ > 0 (2.5)
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and denoted by IG(γ; a, b). The posterior distribution of γ is an updated

inverse Gamma distribution

p(γ|y, a, b) = IG(γ; ã, b̃), (2.6)

where the hyperparameters are updated according to

ã = a+
1

2
, b̃ = b+

|y − µ|2

2
. (2.7)

More generally, a multivariate complex Gaussian distribution on an

N × 1 vector y is parameterized by a mean vector µ and a covariance matrix

Σ

p(y;µ,Σ) =
1

πN |Σ|
exp
[
− (y − µ)∗Σ−1(y − µ)

]
.

Similarly, we denote this distribution by CN(y;µ,Σ). If the covariance is

the only uncertain parameter, the conjugate prior on Σ is an inverse Wishart

distribution. An inverse Wishart distribution on the positive definite matrix

Σ is

p(Σ; d,Ψ) =
|Ψ|d/2

2
dN
2 ΓN(d

2
)
|Σ|−

d+N+1
2 exp

[
− 1

2
Tr(ΨΣ−1)

]
, (2.8)

with the degress of freedom d ≥ N and covariance parameter Ψ. We denote

this distribution by IW(Σ; d,Ψ). The posterior distribution of Σ is an updated

inverse Wishart distribution given by

p(Σ|y, µ,Ψ) = IW(Σ; d̃, Ψ̃), (2.9)

where the hyperparameters are updated by

d̃ = d+ 1, Ψ̃ = Ψ + (y − µ)(y − µ)∗ (2.10)

37



2.4.2 Expectation Maximization Algorithm

One may find the maximum a posteriori (MAP) estimate of θ by maxi-

mizing the posterior distribution (2.4) over θ. This can be solved by taking the

derivatives of the posterior with respect to θ, setting them to zero and solving

the resulting equations. In many cases, it is difficult or even impossible to find

a closed-form solution to the equations. The expectation maximization (EM)

algorithm provides an alternative, simpler way to solve the MAP problem in

these cases.

The EM algorithm first introduces a set of latent (hidden) variables x,

and rewrites the likelihood function as

p(y|θ) =
∑

x

p(y,x|θ).

In order to find the MAP solution of the posterior

argmax
θ

∑
x

p(y,x|θ)p(θ|λ),

the algorithm iteratively apply two steps:

• Expectation step (E-step): computeQ(θ|θ(k)) = Ex|y,θ(k)
[

log p(y,x|θ)p(θ|λ)
]

• Maximization step (M-step): solve θ(k+1) = argmax
θ

Q(θ|θ(k)).

The convergence of the EM algorithm requires the unknown parameters

θ to be continuous valued. In this case, starting with certain initial values

of θ(0), the algorithm monotonically converges to a local maximum of the

posterior, which is exactly the MAP solution if the posterior is a concave

function.
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2.5 Sparse Bayesian Learning

Having established the Bayesian inference framework, I will discuss how

the Bayesian approach can be used for the recovery of a sparse signal from its

linear observations, a.k.a. compressed sensing.

The basic mathematical model for compressed sensing is

y = Φx + v, (2.11)

where y is an M × 1 observation vector, v is an unknown noise vector, Φ ,[
Φ1 · · · ΦN

]
is anM×N known dictionary matrix (M < N), and is assumed

to be full rank. The task is to estimate the source vector x. Although it is

generally an ill-conditioned problem, there exists a unique global solution if

the number of nonzero entries in x is less than a threshold.

This basic single measurement vector (SMV) model can be extended

to the multiple measurement vector (MMV) model

Y = ΦX + V, (2.12)

where Y ,
[
y1 · · · yL

]
is a measurement matrix consisting of L measure-

ment vectors, X ,
[
x1 · · · xL

]
is an unknown source matrix with each row

representing a possible source, and V is an unknown noise matrix. In addition,

the MMV model assumes that the support of every column in X is identical.

Similar to the constraint in the SMV model, the number of nonzero rows in

X has to be below a threshold to ensure a unique global solution.
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Among the compressed sensing algorithms, sparse Bayesian learning

(SBL) has received much attention. SBL was initially proposed by Tipping

[83]. It was introduced to sparse signal recovery for the SMV model by Wipf

and Rao [87], and was later extended to the MMV model in [88] and [91]. The

key idea of SBL is to impose a sparsity promoting prior on the source vector x

or the source matrix X, which leads to a posterior density that is concentrated

over sparse vectors or row-sparse matrices.

Compared to traditional compressed sensing algorithms such as Basis

Pursuit [19] and FOCUSS [33], SBL has several unique advantages [87], includ-

ing (1) the global optimum is always the sparsest solution; (2) all local optimal

solutions are sparse; and (3) the number of local optima is the smallest. All

these contribute to the excellent recovery performance of the SBL algorithm.

2.5.1 Single Measurement Vector

For the SMV model, SBL imposes a hierarchical parameterized Gaus-

sian prior on x

p(x|γ) = CN(x; 0,Γ) (2.13)

p(γ|a,b) =
N∏
i=1

IG(γi; ai, bi), (2.14)

where Γ , diag(γ), and a,b are given hyperparameters. From the hierarchical

formulation of the prior, it appears that a non-sparse Gaussian prior is used.

To discover the true identity of this prior, one may integrate out γ to obtain
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Figure 2.5: The density of the prior p(x; a,b), where x is a length-2 vector,
and the parameters γ have been integrated out.

the marginal distribution of x

p(x; a,b) =
N∏
i=1

[ ∫
p(xi|γi)p(γi|ai, bi)dγi

]
=

N∏
i=1

baii Γ(ai + 1
2
)

(2π)
1
2 Γ(ai)

(bi +
|xi|2

2
)−(ai+

1
2

) (2.15)

Each term in (2.15) corresponds to a Student-t distribution. That is, the prior

imposes an independent Student-t distribution on each dimension of x. A

visualization of the prior (2.15) for N = 2 (Figure 2.5) clearly shows its sparsity

encouraging property. We observe that the probability mass is concentrated

both at the origin, i.e., x = 0, and along the two axes, where one of the two

elements of x is zero. When ai = bi = 0, ∀i, the inverse Gamma distribution
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reduces to a uniform distribution over the positive support. With the uniform

hyperprior, the marginalized prior becomes p(x; a,b) ∝
∏N

i=1 1/|xi|, which is

also a sparse prior since it is sharply peaked at zero.

Assuming that the noise v is AWGN with zero mean and unknown

variance, i.e., v ∼ CN(0, σ2). The likelihood of the observations y given the

unknown parameters γ and σ is Gaussian

p(y|γ, σ) = CN(y; 0,ΦΓΦ∗ + σ2IM), (2.16)

where IM denotes the M ×M identity matrix. The posterior distribution of

γ and σ is therefore

p(γ, σ|y, a,b) ∝ CN(y; 0,ΦΓΦ∗ + σ2IM)
N∏
i=1

IG(γi; ai, bi). (2.17)

To find the MAP estimate of γ and σ, one may employ the EM algorithm,

which treats x as latent variable. Details about the derivation of the E-step

and M-step can be found in [83]. The k-th iteration of the EM algorithm is

summarized as:

γ
(k+1)
i = argmax

γi≥0
Ex|y;γ(k),σ(k)

[
log p(y,x|γ, σ(k))p(γ|a,b)

]
= argmax

γi≥0
Ex|y;γ(k),σ(k)

[
log p(y|x, σ(k))p(x|γ)p(γ|a,b)

]
=

Σx
(k)
,ii + (µx

(k)
,i )2 + 2bi

1 + 2ai
, (2.18)

(σ(k+1))2 = argmax
σ≥0

Ex|y;γ(k),σ(k)

[
log p(y|x, σ)

]
=

1

M
{||y −Φµ(k)

x ||2 + (σ(k))2

N∑
i=1

[1− (γ
(k)
i )−1Σx

(k)
,ii ]}. (2.19)
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Note that the parameters are updated one at a time while keeping the others

fixed. Here µx and Σx are the posterior mean and covariance of x, given y and

the current estimates of γ and σ. It can be shown that the posterior density

of x is also a Gaussian distribution [83]

p(x|y;γ(k), σ(k)) = CN(x;µ(k)
x ,Σx

(k)),

µ(k)
x = (σ(k))−2Σx

(k)Φ∗y, (2.20)

Σx
(k) = Γ(k) − Γ(k)Φ∗

(
(σ(k))2IM + ΦΓ(k)Φ∗

)−1

ΦΓ(k).(2.21)

Upon convergence, most components of γ are driven to zero. A point estimate

of x can be given by the posterior mean µx. One can see from (2.20) and

(2.21) that as most components of γ go to zero, µx becomes a sparse vector

as well.

2.5.2 Sequential Sparse Bayesian Learning

The core SBL algorithm in (2.21) involves an M ×M matrix inversion,

which has a computational complexity of O(M3) and hence might be practi-

cally infeasible on a hardware platform if M is large. An accelerated version

of SBL that utilizes the properties of the marginal likelihood has been pro-

posed in [84]. Using these properties, the accelerated SBL algorithm performs

a sequential addition and deletion of candidate basis functions given by the

columns of Φ in (2.11), while keeping the same reconstruction performance.

A non-zero entry in vector x at index i contributes xiφi to the mea-

surement vector y, where φi denotes the i-th column in Φ. The accelerated
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algorithm will sequentially add, remove, or update basis φi until convergence.

At convergence, the bases that remains in the model will indicate the support

of vector x. Given that x is sparse, the number of bases that remains in each

iteration is generally smaller than M . As such, the sequential SBL algorithm

reduces the computational complexity of the matrix inversion operation in

each iteration from O(M3) to O(N3
B), where NB is the number of remaining

bases and varies among different iterations. Furthermore, significant compu-

tational savings can be obtained if the background noise power σ2 is known.

This will allow for efficient calculations without any matrix inversions as given

in [84]. Please refer to [84] for more mathematical details.

2.5.3 Multiple Measurement Vector

To solve the MMV model, the SBL algorithm was extended to the

temporally correlated MMV sparse Bayesian learning (T-MSBL) algorithm in

[91].

Let Xi· denote the i-th row of X. The algorithm imposes a parameter-

ized Gaussian prior on Xi·

p(Xi·; γi,B) = CN(Xi·; 0, γiB), ∀i = 1, · · · , N (2.22)

where γ , [γ1 · · · γN ] are nonnegative parameters controlling the row sparsity

of X, and B is a positive definite matrix that captures the covariance of Xi·.

In addition, hyperpriors on γ can be imposed to form a hierarchical prior as

(2.13) in the SMV model. However, for simplicity, one could simply assume a

uniform hyperprior, i.e., γi ∼ IG(γi; 0, 0), and adopt (2.22) as the prior.
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The MMV model (2.12) can be transformed to a block sparsity SMV

model by vectorizing the matrices Y,X and V. Defining ȳ , vec(YT ), x̄ ,

vec(XT ), v̄ , vec(VT ), and D , Φ⊗ IL, where L is the number of columns in

X, we have

ȳ = Dx̄ + v̄. (2.23)

Since x̄ is constructed by concatenating the rows of X into a vector, row

sparsity in X indicates block sparsity in x̄ with length-L blocks. The prior

(2.22) can now be rewritten succinctly as

p(x̄;γ,B) = CN(x̄; 0,Σ0), (2.24)

with Σ0 , diag{γ} ⊗B.

Suppose that the unknown noise v can be modeled by AWGN with zero

mean and variance λ. The posterior distribution of the unknown parameters

θ , {γ,B, λ} is proportional to the likelihood

p(θ; ȳ) ∝ p(ȳ;θ) = CN(ȳ; 0,DΣ0D
∗ + λI). (2.25)

The MAP solution of θ can then be computed using the EM algorithm, by

treating x̄ as latent variables. The update rules in each iteration of the EM

algorithm were derived in [91] and are summarized as follows.

γ
(k+1)
i =

1

L
Tr
[
(B(k))−1(Σx̄

(k)
,i + µx̄

(k)
,i µx̄

(k)∗
,i )

]
,∀i = 1, · · · , N

B(k+1) =
1

N

N∑
i=1

Σx̄
(k)
,i + µx̄

(k)
,i µx̄

(k)∗
,i

γi
,

(σ(k+1))2 =
||ȳ −Dµ

(k)
x̄ ||22 + (σ(k))2

[
NL− Tr(Σx̄

(k)(Σ
(k)
0 )−1)

]
ML

. (2.26)
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Here Σx̄,i denotes the i-th L × L diagonal block of Σx̄, and similarly µx̄,i is

the i-th length-L block of µx̄. The posterior mean and covariance of x̄ given

the current estimate of the parameters can be expressed as

µ
(k)
x̄ = Σ

(k)
0 D∗

(
(σ(k))2I + DΣ

(k)
0 D∗

)−1

ȳ,

Σx̄
(k) = Σ

(k)
0 −Σ

(k)
0 D∗

(
(σ(k))2I + DΣ

(k)
0 D∗

)−1

DΣ
(k)
0 . (2.27)

The T-SBL algorithm [91] comprised of (2.26) and (2.27) transforms

the original MMV model into a higher dimensional SMV model, and learns the

parameters in the higher dimensional space. This results in high computational

complexity due to the high dimensional matrix/vector operations. In light of

this, a low-complexity near-optimal algorithm, namely T-MSBL, was proposed

to back-map the T-SBL algorithm to the original lower dimensional space [91].

The EM update rules in the k-th iteration of T-MSBL are summarized in

Algorithm 1, where Γ , diag{γ}, and || · ||F denotes the Frobenius norm of a

matrix. Upon convergence, most components of γ are driven to zero, thereby

rendering a block sparse estimate of x, or equivalently a row sparse estimate

of X.

2.6 Conclusion

In this chapter, I give an extensive review of the basic OFDM system

model, and several digital communications and signal processing techniques

that are adopted in OFDM-based PLC systems. After a brief description of the

statistical models for impulsive noise, I proceed to discuss the general Bayesian
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Algorithm 1 T-MSBL [91]

1: Initialize parameters γ(0) = 1,B(0) = IL, λ
(0) = 0.

2: for k = 1, · · · , K do
3: E-Step:

Ξ(k) =
(

(Γ(k))−1 +
1

λ(t)
Φ∗Φ

)−1

,

X̂(k) = Γ(k)Φ
∗
(λ(k)IL + ΦΓ(k)Φ

∗
)−1Y. (2.28)

4: M-Step:

γ
(k+1)
i =

1

L
X̂

(k)
i· (B(k))−1X̂

(k)∗
i· + Ξ

(k)
ii ,∀i = 1, · · · , N

B̃(k+1) =
N∑
i=1

X̂
(k)∗
i· X̂

(k)
i·

γ
(k)
i

,

B(k+1) = B̃(k)/||B̃(k)||F

λ(k+1) =
1

ML
||Y −ΦX̂

(k)||2F +

λ(k)

M
Tr
[
ΦΓ(k)Φ∗

(
λ(k)IM + ΦΓ(k)Φ∗

)−1]
. (2.29)

5: end for
6: Return γ(K), X̂(K).

inference framework, and in particular the sparse Bayesian learning algorithms.

All of these establish the fundamental system model and methodologies upon

which the contributions of the dissertation will be built.
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Chapter 3

Nonparametric Mitigation of Impulsive Noise

Asynchronous impulsive noise and periodic impulsive noises limit com-

munication performance in OFDM-based PLC systems. Conventional OFDM

receivers that assume additive white Gaussian noise experience degradation in

communication performance in impulsive noise. Alternate designs assume a

statistical noise model and use the model parameters in mitigating impulsive

noise. These receivers require training overhead for parameter estimation, and

degrade due to model and parameter mismatch. To mitigate asynchronous

impulsive noise, I exploit its sparsity in the time domain, and apply sparse

Bayesian learning methods introduced in Section 2.5.1 to estimate and sub-

tract out the noise impulses. I propose three iterative algorithms, with different

complexity vs. performance trade-offs, which (1) utilize the noise projection

onto null and pilot subcarriers; (2) add the information to (1) in the data

subcarriers to perform joint noise estimation and symbol detection; and (3)

use decision feedback from the decoder to further enhance the accuracy of

noise estimation. These algorithms are also embedded in a time-domain block

interleaving OFDM system to mitigate periodic impulsive noise. Compared

to conventional OFDM receivers, the proposed methods achieve SNR gains of

up to 9 dB in coded and 10 dB in uncoded systems in asynchronous impulsive
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noise, and up to 6.8 dB in coded systems in periodic impulsive noise.

3.1 Introduction

Various statistical properties of the impulsive noise can be exploited

to improve the reliability and throughput of PLC systems. In particular,

assuming a specific statistical noise model, one can design a noise whitening

filter [52], minimum mean square error (MMSE) equalizer [89] or decoder

[38, 39] to compensate the performance loss due to non-Gaussianity of the

noise. Such approaches, however, entail significant training overhead prior to

data transmission for model parameter estimation, and may be vulnerable to

parameter estimation errors.

In this part of the dissertation, I aim to mitigate asynchronous impul-

sive noise and periodic impulsive noise, respectively, at OFDM-based PLC re-

ceivers. My work distinguishes from the above approaches in two perspectives:

(1) I propose “nonparametric” algorithms that do not make any assumptions

on statistical noise models and hence do not require extra training; and (2) my

approach estimates and subtracts the impulsive noise from received signal and

can be implemented as a denoising block prepended to conventional receivers.

For asynchronous impulsive noise, I develop three denoising algorithms

based on SBL techniques that were proposed in [87] and reviewed in Section

2.5.1. I exploit the sparse structure of the noise in the time domain and esti-

mate it using SBL by observing various subcarriers (a.k.a. tones) of received

OFDM symbols. In coded systems, I also show that decision feedback from
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the convolutional decoder can be used as side information to further improve

the denoising performance.

Unlike asynchronous impulsive noise, periodic impulsive noise occurs in

bursts that generally span multiple OFDM symbols, and therefore denoising

methods directly applied to individual OFDM symbols may not be successful.

Instead, I rely on a time-domain block interleaving OFDM transceiver struc-

ture (as previously proposed in [9]), where the transmitted and received signals

are interleaved and deinterleaved, respectively, in the time domain across mul-

tiple OFDM symbols. The deinterleaver effectively scatters the noise bursts

into short impulses, which enables us to leverage the SBL-based algorithms

for noise estimation.

The rest of this chapter is organized as follows. In Section 3.2, I review

existing receiver algorithms for impulsive noise mitigation. Having established

the system model in Section 3.3, I propose three nonparametric impulsive noise

mitigation algorithms in Section 3.4. Then I perform complexity analysis and

present a low-complexity implementation of the first proposed algorithm in

Section 3.5. To demonstrate the performance of the proposed algorithms,

simulation results are presented and discussed in Section 3.6.

3.2 Prior Work

Prior work on combating asynchronous impulsive noise and periodic

impulsive noise involves efforts from both transmitter and receiver’s perspec-

tives. In Section 2.3, I have described various statistical models to capture
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temporal and spectral properties of asynchronous impulsive noise and peri-

odic impulsive noise, respectively. These models have been exploited to derive

parametric receiver methods based on the estimated model parameters. Alter-

natively, nonparametric receiver methods that do not rely on any assumptions

on the noise models have also been investigated in the literature.

3.2.1 Asynchronous Impulsive Noise Mitigation

Asynchronous impulsive noise arises not only in BB PLC but also in

wireless networks such as ad hoc and cellular networks [35]. Earlier approaches

in mitigating asynchronous impulsive noise involve parametric methods, which

assume a particular statistical noise model and typically estimate the param-

eters of the statistical model during a training stage. Examples of such algo-

rithms include pre-filtering techniques [64, 66], nulling and clipping methods

[93], MMSE symbol-by-symbol detectors [38], and iterative decoders [39, 63].

The advantage of parametric methods is that they lead to performance gains

by exploiting information of the noise model and its parameters. However, they

require extra training overhead and/or can suffer from performance degrada-

tion when the noise model or parameters mismatch the possibly time-varying

noise statistics. In [68], low-complexity message passing OFDM receivers were

proposed that leverage recent results in approximate message passing [77] and

sparse Bayesian learning [84] for joint channel / interference estimation and

data decoding. While achieving huge improvements in communication per-

formance without training overhead, the approach in [68] assumes Gaussian
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mixture modeled or hidden Markov modeled impulsive noise, and might ex-

pect performance degradation if actual noise statistics does not follow either

of these models.

Recently, there has been growing interest in developing nonparamet-

ric denoising methods that exploit the sparse structure of the asynchronous

impulsive noise in the time domain. In particular, [16] applied Basis Pursuit

[19] based compressed sensing techniques to estimate the impulsive noise from

the null tones (i.e., tones that do not carry data or pilots) of the received sig-

nal. The algorithm was subject to a sufficient recovery condition stating that

the number of impulses within an OFDM symbol does not exceed a threshold

that is uniquely determined by the FFT size and the number of null tones.

However, for common OFDM system settings in PLC, the threshold turns out

to be too restrictive for many impulsive noise environments where an OFDM

symbol is corrupted by multiple impulses. This approach was extended in [50]

to a bursty impulsive noise detector that exploits the block-sparsity of the

noise. The performance of the algorithm, however, is affected by parameters

that should be ideally adapted to the number of noise bursts within an OFDM

symbol, and the background noise level.

My work seeks to develop nonparametric mitigation algorithms that are

applicable to all asynchronous impulsive noise scenarios. Towards this end, I

extend the Basis Pursuit based algorithm in [16] to a sparse Bayesian learning

(SBL) approach [87] for improved performance and robustness.
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3.2.2 Periodic Impulsive Noise Mitigation

In general, parameter estimation in periodic impulsive noise is even

more difficult than that in asynchronous impulsive noise. This is because of

the significant increase in the number of parameters, and hence the degrees

of freedom, in order to capture the non-negligible time-domain correlation in

periodic impulsive noise. Accurate estimation of these parameters generally

requires a large amount of data, i.e., over multiple cycles, which entails not only

significant training overhead, but also a large memory typically not present in

current PLC modems. Furthermore, the increased degrees of freedom makes

the estimation more vulnerable to outliers.

Despite of the difficulty in parameter estimation, parametric methods

for cyclostationary noise mitigation, assuming perfect knowledge of the second-

order statistics, have been explored in the literature. In [14, 30], it was observed

that the cyclic spectrum, i.e., the Fourier transform of the autocorrelation

function, of a second-order cyclostationary process contains harmonic peaks,

and therefore can be used for the detection and extraction of such process. In

[20, 89], a linear MMSE frequency domain equalizer for single-carrier OFDM

systems was derived based on the second-order noise statistics.

Exploiting the strong correlation between time-domain noise samples,

adaptive filtering algorithms were proposed to predict [29, 51] or whiten [52]

the periodic impulsive noise at the NB PLC receivers. In particular, in [52],

the noise was fitted to a periodically switching autoregressive (AR) process by

nonparametric Bayesian learning. Based on the estimated AR model, a peri-
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odically switching moving average filter was adopted at the receiver for noise

whitening. A common drawback of these filter-based methods [29, 51, 52] is

the vulnerability to outliers, e.g. asynchronous impulsive noise simultaneously

present in the higher frequency bands of NB PLC. The improvement in ro-

bustness against such outliers generally requires longer training sequences.

At the transmitter side, coding and interleaving schemes that are re-

silient to bursty impulsive noise have been investigated [9, 55, 60]. Since peri-

odic impulsive noise occurs in bursts that typically span more than one OFDM

symbol, joint processing across a large number of OFDM symbols can be bene-

ficial. Such joint processing includes forward error correction (FEC) coding at

the application layer [55] and time-domain interleaving [9, 60]. In particular,

a time-domain block interleaving OFDM (TDI-OFDM) transceiver structure

was proposed in [9] to cope with bursty impulsive noise. Unlike conventional

frequency-domain interleaving OFDM (FDI-OFDM) systems where the inter-

leaver is placed before the IFFT at the transmitter, the TDI-OFDM scheme

interleaves and deinterleaves the signal in the time domain, i.e., post-IFFT at

the transmitter and pre-FFT at the receiver. The purpose is to spread the

samples that are corrupted by impulsive noise, and thus average the impact

on bit error rates (BER) over a large number of OFDM symbols. It was shown

in [9] that TDI-OFDM has superior BER improvement over FDI-OFDM at

higher SNRs (e.g. above 10 dB or 20 dB, depending on noise scenarios). How-

ever, typical SNR values in NB PLC systems range from -5 dB to 10 dB [67],

in which TDI-OFDM generally has diminishing gains over FDI-OFDM and
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Figure 3.1: A conventional baseband coded OFDM system, where +CP (-CP)
means inserting (removing) the cyclic prefix to (from) each OFDM symbol,
and FEQ stands for frequency-domain equalization.

even performs worse towards lower SNRs.

Although the TDI-OFDM scheme itself does not provide much benefit

in NB PLC, I will show that by embedding the proposed SBL-based denoising

algorithms into the TDI-OFDM framework, significant BER improvement over

conventional FDI-OFDM systems can be achieved even at low SNR regimes.

The idea is to exploit the sparse structure of the noise after the time-domain

deinterleaver, and leverage the SBL-based denoising algorithms I have devel-

oped for asynchronous impulsive noise mitigation.

3.3 System Model

For asynchronous impulsive noise mitigation in BB PLC, I consider a

conventional OFDM system whose complex baseband equivalent representa-

tion is shown in Fig. 3.1. At the transmitter, a convolutionally coded data

stream is mapped to a set of PSK or QAM symbols. Suppose that each
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Figure 3.2: A time-domain interleaved OFDM system. Π denotes the sample-
level interleaver, and Π−1 the corresponding deinterleaver.

OFDM symbol has Nc subcarriers, N0 of which are non-data subcarriers (i.e.,

null tones and pilot tones). The PSK/QAM symbols are then modulated onto

the Nc −N0 data subcarriers of a number of OFDM symbols. As interpreted

in Section 2.1, if the cyclic prefix (CP) is longer than the channel delay spread,

a received and demodulated OFDM symbol can be expressed as

r = Λs + Fe + g. (3.1)

Here I adopt the same notations as defined in Section 2.1, where s denotes

the transmitted OFDM symbol in the frequency domain, e and g represent

the time-domain impulsive noise and the AWGN modeled background noise

in the frequency domain, respectively, F is the Nc-point FFT matrix, and Λ

is a diagonal matrix, with {Λii}Nc

i=1 equal to the Nc-point FFT coefficients of

the channel impulse response.

Let I denote the index set of the non-data subcarriers, and define (·)I as

the sub-matrix (or sub-vector) corresponding to the rows (or elements) indexed

by the set I. The non-data subcarriers of the transmitted OFDM symbol,
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written as sI, are known in advance at the receiver since they are either zeros

or predefined pilots. Assuming perfect channel estimation, subtracting (Λs)I

from rI results in linear observations of the impulsive noise

y , rI − (Λs)I = FIe + gI. (3.2)

Recognizing the sparse nature of e (since impulsive noise has very few non-zero

samples in the time domain), the recovery of e from y based on the under-

determined N0 × Nc linear system in (3.2) is the standard SMV compressed

sensing problem as in (2.11).

I would like to use the estimated impulsive noise to improve the detec-

tion of s. More specifically, the impulsive noise estimate ê can be subtracted

from the received symbol on the data tones to form a new decision metric

r̂I = rI − FIê

= (Λs)I + gI + FI(e− ê). (3.3)

where (·) indicates set complement and thus I indicates the set of data tone

indices. Assuming that ê ≈ e, the receiver can then proceed as if only AWGN

were present and apply the conventional detection and decoding algorithms.

For periodic impulsive noise mitigation in NB PLC, I consider a TDI-

OFDM system [9] as shown in Fig. 3.2. At the transmitter, multiple OFDM

symbols are interleaved using a sample-level block interleaver after the IFFT

and before CP insertion. Inserting the CP after the interleaver maintains the

cyclic structure within each transmitted OFDM symbol, and hence the re-

ceived signal after CP removal is the circular convolution of the transmitted
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signal with the multi-path channel. Similar to conventional OFDM systems,

such signal can be equalized by one-tap frequency-domain channel equalizer

(FEQ). The equalized signal is then deinterleaved before converted to the

frequency domain by FFT. Assuming perfect channel estimation, the demod-

ulated OFDM signal y can be expressed as

r = s + Feπ + Fnπ = s + Feπ + gπ. (3.4)

Here eπ and nπ denote the time-domain impulsive noise and background noise

after deinterleaving, and gπ , Fnπ. Note that although in NB PLC, the

background noise n is typically spectrally shaped, it becomes less correlated

in the time domain after the block deinterleaver. Therefore nπ, as well as gπ,

can be well approximated by AWGN.

One may notice that (3.4) can be considered as a special case of (2.1)

with Λ = I. Furthermore, with appropriate selection of the interleaver size, the

deinterleaved noise eπ assumes similar sparisty structure as the asynchronous

impulsive noise. Therefore, all the algorithms derived from (3.1) can also be

directly applied to the periodic impulsive noise case, simply by replacing Λ by

I, and e,g by eπ,gπ, respectively.

Given a particular noise scenario, the size of the interleaver is an im-

portant design factor that determines the sparsity level of eπ, which affects

the recovery performance of the compressed sensing algorithms. The sparsity

level of a vector is defined as the number of non-zero elements in the vector.

The key is to maintain the sparsity level of eπ below a certain threshold to
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ensure a unique global solution. In NB PLC systems, the interleaving can be

done over an entire packet, which contains up to 56 QPSK modulated OFDM

symbols according to the G3 standard in the CENELEC-A band. This gives

a maximum interleaver size of 38.92 ms, spanning about 2.3 AC cycles in the

US, or equivalently 4.6 noise periods. The maximum packet duration will be

doubled in BPSK modulation and even larger when repetition code is used.

As such, I claim that the assumption of having a large interleaver with the size

approximately equal to integer multiples of the noise period is realistic in NB

PLC systems. These interleavers will result in eπ with a sparsity level ranging

from 10% to 30% of its total length. While being challenging for traditional

compressed sensing algorithms such as Basis Pursuit, such sparsity level can

be robustly handled by the SBL-based algorithms, as will be demonstrated by

the simulation results.

3.4 Nonparametric Impulsive Noise Estimation

The estimation of impulsive noise converts to solving an underdeter-

mined linear regression problem in (3.2) under sparsity constraints. Among

various compressed sensing algorithms, SBL has become increasingly attrac-

tive due to its improved robustness over deterministic approaches such as Basis

Pursuit. Furthermore, the Bayesian framework makes it convenient to fuse in-

formation not only in the null tones but also in the data tones of the received

signal to enhance the accuracy of the noise estimation. Therefore I apply

the SBL techniques and propose three nonparametric algorithms for impulsive
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noise estimation, with different complexity vs. performance trade-offs. For

conciseness purpose, I only present the algorithms for estimating asynchronous

impulsive noise. The corresponding estimators for periodic impulsive noise can

be immediately deduced by replacing Λ by I, and e,g by eπ,gπ, respectively.

3.4.1 Estimation Using Null and Pilot Tones

Since (3.2) is an example of the SMV model, an estimate of e can be

obtained by applying the SBL algorithm. More specifically, without further

prior information, I set a = b = 0, and substitute Φ = FI, x = e and v = gI

into (2.18), (2.19), (2.20) and (2.21), resulting in the update rules for the iter-

ative noise estimator using null and pilot tones, as summarized in Algorithm

2.

Algorithm 2 Impulsive noise estimation using null and pilot tones

1: Initialize parameters γ(0) = 1, σ(0) = 0.
2: for k = 1, · · · , K do
3: Compute the posterior mean and variance of e (E-Step):

µ(k)
e = (σ(k))−2Σe

(k)F∗Iy, (3.5)

Σe
(k) = Γ(k) − Γ(k)F∗I

(
(σ(k))2IM + FIΓ

(k)F∗I

)−1

FIΓ
(k). (3.6)

4: Update the parameters (M-Step):

γ
(k+1)
i = Σe

(k)
,ii + (µe

(k)
,i )2, (3.7)

(σ(k+1))2 =
1

N0

{||y − FIµ
(k)
e ||2 + (σ(k))2

Nc∑
i=1

[1− (γ
(k)
i )−1Σe

(k)
,ii ]}.(3.8)

5: end for
6: Return the MAP estimate ê = µ

(K)
e .
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Upon termination of the EM algorithm, I obtain the MAP estimate of

the time-domain impulsive noise ê = µe. I then transform ê to the frequency

domain and subtract it from the received signal in the data tones according

to (3.3).

3.4.2 Estimation Using All Tones

Similar to other compressed sensing techniques, assuming full-rank dic-

tionaries, the recovery performance of the SBL algorithm will be improved as

the number of observations increases. In this case, the sub-FFT matrix FI (i.e.,

the dictionary) is always full-rank, and therefore the more non-data tones used

in the estimation, the more accurate are the impulsive noise estimates. How-

ever in a given OFDM system, having more non-data tones indicates reduced

throughput. Furthermore, in realistic OFDM systems, part of the null tones

are designated for adjacent band interference suppression. These null tones

are likely to be suppressed by analog filtering at the receiver front end, and

hence cannot be used to estimate impulsive noise accurately.

When the number of non-data tones is limited, it is desirable to exploit

information available in all tones to estimate the impulsive noise. To do this,

define a length-Nc vector g̃ such that g̃I = gI and g̃I = (Λs)I + gI. The SMV

model in (3.1) can be complemented by an additional set of linear observations

of the impulsive noise

ỹ ,

[
y
rI

]
= Fe + g̃. (3.9)
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The extra observations come from the demodulated data tones, rI. Due to the

presence of unknown data signal, the associated noise g̃I can be modeled as

Gaussian with unknown mean and variance, i.e., p(g̃I) = CN
(
(Λs)I, σ

2INc−N0

)
.

The SBL algorithm needs to be modified to incorporate the additional

unknown parameters sI. It is straightforward to show that the posterior den-

sity of e given ỹ and the current estimates of γ, σ and sI is Gaussian whose

mean and covariance take the same forms as (3.5) and (3.6), while replacing

FI by F, and y by ỹ − Λs(k). Here s(k) combines the known null and pilot

tones with the estimated data tones in the current iteration. Now let us take

a look at the update rules for the three sets of parameters, γ, σ and sI.

• The update rule for γ remains in the same form as (3.7), since according

to the EM algorithm,

γ
(k+1)
i = argmax

γi≥0
E

e|ỹ;γ(k),σ(k),s
(k)

I

[
log p(ỹ|e, σ(k), s

(k)

I
)p(x|γ)

]
= argmax

γi≥0
E

e|ỹ;γ(k),σ(k),s
(k)

I

[
log p(x|γ)

]
= Σe

(k)
,ii + (µe

(k)
,i )2. (3.10)

In other words, the estimate of s
(k)

I
affects the update rule for γ only

through the posterior mean and covariance of e.
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• The update rule for σ now becomes

(σ(k+1))2 = argmax
σ≥0

E
e|ỹ;γ(k),σ(k),s

(k)

I

[
log p(ỹ|e, σ, s(k)

I
)
]

=
1

Nc

{||ỹ −Λs(k) − Fµ(k)
e ||2

+(σ(k))2

Nc∑
i=1

[1− (γ
(k)
i )−1Σe

(k)
,ii ]}. (3.11)

• Although sI consists of discrete valued constellation points, I temporarily

relax it to be continuous to ensure the convergence of the EM algorithm.

The update rule for sI can be easily derived as

s
(k+1)

I
= argmax

s
I

E
e|ỹ;γ(k),σ(k),s

(k)

I

[
log p(ỹ|e, σ(k), sI)

]
= argmin

s
I

|ỹI − (Λs)I − FIµ
(k)
e |2

= Λ−1

I
(ỹI − FIµ

(k)
e ). (3.12)

The entire EM algorithm is summarized in Algorithm 3. Intuitively, the al-

gorithm estimates the impulsive noise and the signal transmitted on the data

tones iteratively, assuming the knowledge of one when estimating the other.

3.4.3 Decision Feedback Estimation

The estimators described above do not impose any prior information

on the impulsive noise other than the fact that it is a sparse vector. As

mentioned in Section 2.5.1, additional knowledge about the impulsive noise

can be incorporated into the SBL inference using the hierarchical prior in

(2.13) and (2.14) with non-zero values of a and b. Suppose that in addition
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Algorithm 3 Impulsive noise estimation using all tones

1: Initialize parameters γ(0) = 1, σ(0) = 0, s
(0)

I
= 0.

2: for k = 1, · · · , K do
3: Compute the posterior mean and variance of e (E-Step):

µ(k)
e = (σ(k))−2Σe

(k)F∗(ỹ −Λs(k)), (3.13)

Σe
(k) = Γ(k) − Γ(k)F∗

(
(σ(k))2IM + FΓ(k)F∗

)−1

FΓ(k). (3.14)

4: Update the parameters (M-Step):

γ
(k+1)
i = Σe

(k)
,ii + (µe

(k)
,i )2, (3.15)

(σ(k+1))2 =
1

Nc

{||ỹ −Λs(k) − Fµ(k)
e ||2

+(σ(k))2

Nc∑
i=1

[1− (γ
(k)
i )−1Σe

(k)
,ii ]}, (3.16)

s
(k+1)

I
= Λ−1

I
(ỹI − FIµ

(k)
e ). (3.17)

5: end for
6: Return the MAP estimate ê = µ

(K)
e .

to the MAP estimate ê given by the estimator using non-data tones, a second

estimate of e, denoted by ê′, is available based on certain side information.

The side information contained in ê′ can be fused into ê via the posterior

distribution of γ given ê′. Since the hyper-prior in (2.14) is conjugate to

(2.13), the posterior density of γ given ê′, a and b is also an inverse Gamma

distribution, i.e.,

P (γ|ê′; a,b) =
Nc∏
i=1

IG(γi; ãi, b̃i) (3.23)
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with the updated parameters

ãi = ai +
1

2
,

b̃i = bi +
|ei|2

2
, ∀i = 1, · · · , Nc. (3.24)

One can then proceed with the SBL inference using (3.23) as the hyper-prior.

In coded OFDM systems, the redundancy in the coded data tones can

be exploited as the side information to provide a second estimate of ê′. More

specifically, the decoder takes the OFDM symbols after impulsive noise mit-

igation as the input, and produces hard decisions on the uncoded and coded

bits, b̂ and ĉ, respectively. Using ĉ one can recover the data tones of the

OFDM symbols by appropriate constellation mapping. This gives an estimate

of ŝI, which is multiplied by the channel frequency response ΛI, transformed

to the time domain and subtracted from the received signal r to generate the

estimate ê′. Then I use ê′ to update a and b, through which the information

extracted from the coding redundancy is transferred back to the impulsive

noise estimator. As such, I form a decision feedback estimator that transfers

information back-and-forth between the impulsive noise estimator using non-

data tones and the decoder using data tones. The algorithm is summarized in

Algorithm 4 and the receiver structure is depicted in Fig. 3.3. Compared to

the estimator using all tones in Section 3.4.2, the decision feedback estimator is

expected to have better performance by exploiting the redundant information

(i.e., coding structure) on the data tones.
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Figure 3.3: A decision feedback impulsive noise (IN) estimator for an OFDM
receiver.

3.5 Low-Complexity Implementation

The proposed noise estimators require a matrix inversion operation per

iteration. For example, the estimator using null tones requires an N0 × N0

matrix inversion in (3.6), where N0 is the number of null and pilot tones.

For typical values of N0 in PLC, such matrix inversions might be practically

infeasible on a hardware platform. To allow low-complexity implementation of

the proposed algorithms while maintaining the same performance, one could

apply the sequential SBL algorithm introduced in Section 2.5.2.

Table 3.1 compares the complexity per iteration of the original SBL-

based algorithms and the sequential implementation of it. The computational

complexity of the original algorithms is dominated by the matrix multiplica-

tion and inversion operations for example in (3.6). Compared to the estimator

using null and pilot tones, the estimator using all tones increases the complex-

ity from O(N2
cN0) per iteration to O(N3

c ) per iteration, where Nc is the FFT

size. On the other hand, each iteration of the sequential SBL involves matrix

multiplications and inversions that have complexities of O(N2
cNB) and O(N3

B),
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Estimator Operation Complexity

Using null and pilot tones
Matrix multiply O(N2

CN0)
Matrix inversion O(N3

0 )

Using all tones
Matrix multiply O(N3

c )
Matrix inversion O(N3

c )
Sequential SBL Matrix multiply O(N2

cNB)
w/ unknown background noise power Matrix inversion O(N3

B)
Sequential SBL

Matrix multiply O(N2
cNB)

w/ known background noise power

Table 3.1: Complexity per iteration of the proposed algorithms. Nc is the FFT
size, N0 is the number of null and pilot tones, and NB is the number of model
bases in the current iteration.

respectively, where NB is the number of bases that remains in that particu-

lar iteration. As mentioned in Section 2.5.2, further complexity reduction is

possible by making use of the knowledge of background noise power, which

eliminates any matrix inversion operations.

3.6 Simulation Results

To evaluate the performance of the proposed algorithms, I simulate a

complex baseband OFDM system over a flat channel. The system parameters

are listed in Table 3.2 and compared with those in the G3 standard operating

in the CENELEC-A band. In all simulations, I use the SBL algorithm in

its full-complexity version, since the sequential SBL algorithm has the same

reconstruction performance.
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Parameters Simulation G3 in CENELEC-A
FFT Length 128 256
Modulation QPSK DQPSK
# of Tones 128 128

# of Data Tones 72 36
# of Null Tones 56 92

FEC code
Rate-1/2 Rate-1/2

Convolutional Convolutional
Interleaver TDI or FDI FDI

Interleave Size 0.5–1 AC cycles up to 2.3 AC cycles

Table 3.2: Parameters of the simulated complex basedband OFDM system
and the real passband OFDM system in the G3 standard operating in the
CENELEC-A band. Interleaving is only simulated in periodic impulsive noise.

3.6.1 Performance in Asynchronous Impulsive Noise

I generate asynchronous impulsive noise from two different statisti-

cal models: a 3-component Gaussian mixture (GM) distribution with π =

[0.9, 0.07, 0.03] and γ = [1, 100, 1000], and a Middleton Class A (MCA) distri-

bution with A = 0.1, Ω = 0.01, and the pdf truncated to the first 10 mixture

components. The values of the model parameters are selected so that the

impulsive-to-background noise power ratio is up to 30 dB in the GM noise,

and 20 dB in the MCA noise, which reflect typical noise scenarios in the field

measurement targeting BB PLC [95]. The noise samples are assumed to be

independent and identically distributed (i.i.d.). Traces of the simulated asyn-

chronous impulsive noise have been shown earlier in Figures 2.2 and 2.3.

In asynchronous impulsive noise, I compare the BER performance of

the proposed algorithms with the Basis Pursuit based algorithm [16]. To com-
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pare the performance of these nonparametric methods to the parametric ones,

I also implement the two MMSE detectors in [38], since they are optimal in

the MMSE sense among other parametric methods such as nulling and clip-

ping [93]. Both MMSE detectors assume perfect knowledge of the GM model

parameters (with the truncated MCA as a special case), and one even assumes

perfect noise state information (NSI), i.e., noise variance at each time instance.

In reality, the NSI can be estimated using decision feedback. More specifically,

based on the decision feedback, the receiver can estimate the impulsive noise

samples in time domain. The NSI can be obtained by categorizing each noise

sample into one of the multiple Gaussian components in the GM distribution.

Performance of such MMSE detector with decision feedback is upper-bounded

by the MMSE detector with perfect NSI. All algorithms (except for the SBL

with decision feedback from the convolutional decoder) are simulated with and

without the convolutional code, respectively.

The BER performance of all algorithms in uncoded and coded systems

in different asynchronous impulsive noise scenarios are plotted in Fig. 3.5. For

conciseness purposes, I denote the conventional OFDM system without noise

mitigation as “No mitigation”, the three proposed algorithms as “SBL w/ null

tones”, “SBL w/ all tones” and “SBL w/ DF (decision feedback)”, the Basis

Pursuit based algorithm as “CS”, and the two MMSE detectors as “MMSE

w/o NSI” and “MMSE w/ NSI”, respectively.

In the uncoded system, the proposed estimator using null tones achieves

6–8 dB SNR gain over conventional OFDM receivers. One can obtain addi-
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tional 1–2 dB gain in a relatively wide SNR region by using all tones. The

marginal performance loss of the estimator using all tones at lower SNRs is

due to the error introduced by the continuous relaxation of constellation points

x (see Section 3.4.2). However, such error quickly becomes negligible as the

SNR increases. All the proposed estimators outperform the MMSE detector

without NSI in moderate to high SNR regimes. This does not even take into

account the potential performance degradation of the MMSE detector due to

parameter estimation errors. Moreover, the estimator using all tones reduces

the SNR gap to the MMSE detector with NSI to as close as 1 dB at high

SNRs. Note that the MMSE detector with NSI is practically infeasible since

the NSI is unavailable at the receiver and cannot be estimated by training.

In the coded system, the proposed estimator using null tones can achieve

up to 10 dB SNR gain over conventional OFDM receivers. The estimator us-

ing all tones provides an additional 2–5 dB gains. Furthermore, using decision

feedback from the convolutional decoder, I obtain an extra 2 dB gain. Again,

the proposed estimators using all tones and decision feedback outperform the

MMSE detector without NSI at moderate to high SNRs.

In all experiments, the compressed sensing based algorithm performs

worse than the proposed estimators. As mentioned previously in Section 3.2,

this is because the compressed sensing algorithm can only recover the impulsive

noise with high sparsity, i.e. typically less than 5 impulses per OFDM symbol

in the system settings.
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3.6.2 Performance in Periodic Impulsive Noise

I generate periodic impulsive noise using the LPTV system model in

[62]. I divide one period of the noise into three intervals, each assuming an

individual spectral shape (Figure 2.4). The spectral shapes are fitted to noise

measurement collected at an outdoor low-voltage site as shown in [62]. I vary

the duration of noise bursts (i.e., the total duration of the second and the third

intervals) from 10% to 30% of a period.

In periodic impulsive noise, I simulate the proposed algorithms in a

coded TDI-OFDM system, and compare their BER performance with both

TDI-OFDM and FDI-OFDM systems without noise mitigation. The para-

metric MMSE detectors in [38] cannot be applied in this case since the noise,

either before or after the deinterleaver, does not follow Gaussian mixture dis-

tributions. In both TDI and FDI OFDM systems, I use two interleaver sizes,

one spanning approximately half an AC cycle (i.e., one period of the noise),

and the other about an entire AC cycle. Both interleaver sizes are smaller than

the maximum interleaver size in G3, which according to Section 3.3 spans 2.3

AC cycles.

With the interleaver size fixed at approximately an AC cycle, I increase

the noise burst duration from 10% to 30% of a period. The BER performance

of all algorithms are plotted in Figure 3.7. Without any noise mitigation, the

TDI-OFDM system performs worse than the conventional FDI-OFDM system

until the SNR reaches 9 dB in the 10% burst case. This corresponds well to

the results in [9] that the BER improvement of TDI-OFDM over FDI-OFDM
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can only be achieved above certain SNR threshold. By embedding the three

SBL-based denoising algorithms into the TDI-OFDM framework, I am able to

lower such SNR threshold to 6 dB, 0 dB and -3 dB, respectively. As the length

of noise bursts increases to 30% of a period, the TDI-OFDM system without

noise mitigation starts to show BER improvement over the FDI-OFDM system

earlier at 7 dB. Embedding the SBL-based estimators into the TDI-OFDM

system, especially the ones using all tones and decision feedback, further lowers

the SNR threshold to about -1.5 dB and -4 dB, respectively. I notice that the

SNR gains obtained by the proposed algorithms over the TDI-OFDM system

itself are smaller than in the previous 10% burst case. The SBL algorithm

using null tones even performs slightly worse than the TDI-OFDM system

without noise mitigation as the SNR grows above 6.5 dB. The reason is that

in the 30% burst case, after deinterleaving, the number of impulses per OFDM

symbol increases to a level where the performance of the SBL technique begins

to saturate.

To demonstrate the robustness of the proposed algorithms to different

interleaver sizes, I simulate the algorithms with a shorter interleaver spanning

about half an AC cycle, while fixing the noise burst duration to 30% of a

period. Since both interleaver sizes are an integer multiple of the noise period,

in theory, after the deinterleaving, the noise within an OFDM symbol should

have the same average sparseness. Therefore the same BER performance can

be expected from the proposed algorithms. In Figure 3.7, comparing the BER

performance in the bottom right plot to that in the top right plot, I observe
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System Noise
SBL SBL SBL

w/ null tones w/ all tones w/ DF

Uncoded
GM 8 dB 10 dB -

MCA 6 dB 7 dB -

Coded
GM 2 dB 7 dB 9 dB

MCA 1.5 dB 6.3 dB 9.3 dB
Periodic 0.8 dB 4.8 dB 6.8 dB

Table 3.3: SNR gains (measured at BER=10−4) of the proposed impulsive
noise mitigation algorithms over the conventional OFDM system without in-
terleaving in GM and MCA modeled asynchronous impulsive noise, and over
the FDI-OFDM system in periodic impulsive noise with 30% burst.

that decreasing the interleaver size leads to negligible effects on all BER curves,

except for the marginal BER loss for the TDI-OFDM system without noise

mitigation at SNRs above 6dB. This is because the TDI-OFDM system itself

assumes AWGN, and a larger interleaver is useful to make noise samples within

an OFDM symbol less correlated, i.e., closer to AWGN in statistics.

In all simulated noise scenarios, the proposed algorithms achieve sig-

nificant BER improvement over conventional OFDM systems without noise

mitigation in various SNR regions. For clarity purposes, I measured the ap-

proximate SNR gains of the proposed algorithms over the conventional OFDM

system without any interleaving (in asynchronous impulsive noise), and with

frequency-domain interleaving (in periodic impulsive noise) at a target BER

of 10−4, as listed in Table 3.3.
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3.7 Conclusion

In this part of the dissertation, I propose three methods for improv-

ing communication performance of OFDM PLC systems in the presence of

asynchronous impulsive noise and periodic impulsive noise. To mitigate asyn-

chronous impulsive noise, I apply sparse Bayesian learning (SBL) techniques

to estimate the impulsive noise from the received signal by observing informa-

tion either on the null and pilot subcarriers or on all subcarriers. In periodic

impulsive noise, I adopt a time-domain interleaving OFDM transceiver struc-

ture to break long noise bursts that span multiple OFDM symbols into short

bursts, and then apply the SBL techniques. All the methods are nonparamet-

ric; i.e. they do not require prior knowledge on the statistical noise model or

model parameters. I validate the proposed algorithms based on asynchronous

impulsive noise and periodic impulsive noise simulated from various statistical

models.
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Algorithm 4 Impulsive noise estimation using decision feedback

1: Initialize parameters γ(0) = 1, σ(0) = 0, a(0) = 0,b(0) = 0.
2: for k = 1, · · · , K do
3: Compute the posterior mean and variance of e (E-Step):

µ(k)
e = (σ(k))−2Σe

(k)F∗Iy, (3.18)

Σe
(k) = Γ(k) − Γ(k)F∗I

(
(σ(k))2IM + FIΓ

(k)F∗I

)−1

FIΓ
(k). (3.19)

4: Update the parameters (M-Step):

γ
(k+1)
i =

Σe
(k)
,ii + (µe

(k)
,i )2 + 2b

(k)
i

1 + 2a
(k)
i

, ∀i = 1, · · · , Nc, (3.20)

(σ(k+1))2 =
1

N0

{||y − FIµ
(k)
e ||2 + (σ(k))2

Nc∑
i=1

[1− (γ
(k)
i )−1Σe

(k)
,ii ]}.(3.21)

5: Denoise the received signal: ŷ(k) = y − Fµ
(k)
e , equalize and decode

ŷ(k).
6: Estimate slicing error ê′, and update parameters:

a
(k+1)
i = a

(k)
i +

1

2
,

b
(k+1)
i = b

(k)
i +

|ê′i|2

2
, ∀i = 1, · · · , Nc. (3.22)

7: end for
8: Return the decoder output b̂.
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Figure 3.4: Uncoded (top) and coded (bottom) BER performance of the pro-
posed algorithms in Gaussian mixture modeled asynchronous impulsive noise,
in comparison with the conventional OFDM system without noise mitigation,
the compressed sensing based algorithm, and two parametric MMSE detectors
with and without noise state information.
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Figure 3.5: Uncoded (top) and coded (bottom) BER performance of the pro-
posed algorithms in Middleton Class A modeled asynchronous impulsive noise,
in comparison with the conventional OFDM system without noise mitigation,
the compressed sensing based algorithm, and two parametric MMSE detectors
with and without noise state information.
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Figure 3.6: Coded BER performance of the proposed algorithms in periodic
impulsive noise, in comparison with the TDI-OFDM and FDI-OFDM systems
without noise mitigation. The interleaving is done over an entire AC cycle.
The burst interval varies from 10% (top) to 30% (bottom) of a period.
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Figure 3.7: Coded BER performance of the proposed algorithms in periodic
impulsive noise, in comparison with the TDI-OFDM and FDI-OFDM systems
without noise mitigation. The interleaving is done over half the AC cycle. The
burst interval is 30% of a period.
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Chapter 4

Time-Frequency Modulation Diversity to

Combat Periodic Impulsive Noise

Periodic impulsive noise synchronous to the main powerline frequency

severely limits the communication performance of narrowband PLC systems.

The periodic impulsive noise statistics deviate significantly from that of ad-

ditive white Gaussian noise (AWGN), thereby causing dramatic performance

degradation in conventional narrowband PLC systems. In this part of the dis-

sertation, I propose a robust transmission scheme and corresponding receiver

methods to combat periodic impulsive noise in OFDM-based narrowband PLC.

Towards that end, I propose (1) a time-frequency modulation diversity scheme

at the transmitter and a diversity demodulator at the receiver to improve com-

munication reliability without decreasing data rates; and (2) a semi-online

algorithm that exploits the sparsity of the noise in the frequency domain to

estimate the noise power spectrum for reliable decoding at the diversity de-

modulator. In the simulations, our proposed transceiver methods reduce the

bit error rates in conventional OFDM systems by more than 1000x at typical

SNRs in narrowband PLC.
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4.1 Introduction

In this part of the dissertation, I aim to improve the reliability of

OFDM-based narrowband PLC systems in periodic impulsive noise by joint

transmitter and receiver design. At the transmitter, I propose a time-frequency

modulation diversity technique that can be embedded into existing narrow-

band PLC standards to improve the robustness of transmission in periodi-

cally varying and spectrally shaped noise. On the receiver side, I present a

diversity combining demodulator that reliably decodes the signal based on

the periodically varying noise power spectrum. To estimate the noise power

spectrum, I discuss an offline algorithm based on noise measurements dur-

ing no-transmission intervals. Furthermore, I apply sparse Bayesian learning

(SBL) techniques and develop a semi-online algorithm that estimates the noise

power spectrum primarily during data transmission, by exploiting its sparsity

in frequency domain.

The rest of this chapter is organized as follows. Section 4.2 gives an

overview of existing transmitter and receiver methods to combat periodic im-

pulsive noise. In Section 4.3, I briefly review the principle of modulation

diversity, and introduce the time-frequency modulation diversity technique. I

present in Section 4.4 the diversity combining demodulator for non-coherent

(differential) and coherent systems, respectively. I then discuss the offline

training based estimator for the noise power spectrum, and derive an online

alternative based on SBL in Section 4.5. Finally, the performance of the pro-

posed transceiver methods is evaluated and discussed in Section 4.6.
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4.2 Prior Work

Prior work on combating periodic impulsive noise in OFDM systems

involves efforts from both the transmitter and receiver’s perspectives. In [70],

it was demonstrated that non-uniform bit loading based on the periodically-

varying and frequency-selective sub-channel SNRs provides significant im-

provement in reliability for a given throughput. On the other hand, assum-

ing no knowledge of channel/noise information at transmitter, transmitters

specified in existing narrowband PLC standards rely on forward error cor-

rection coding and frequency-domain block interleaving to cope with impul-

sive noise. In particular, it was suggested to use concatenated forward error

correction codes (i.e., convolutional, Reed-Solomon and repetition codes) to

enhance the error correction capability in harsh channel and noise environ-

ments. Heavy coding, however, sacrifices throughput (or equivalently, requires

bandwidth expansion) for improved reliability. Most narrowband PLC stan-

dards adopt frequency-domain interleaving, i.e., bit-level interleaving prior to

the IFFT. Alternatively, sample-level time-domain and time-frequency-domain

interleaving were proposed in [9] and [69] due to their superior performance

over frequency-domain interleaving at high SNRs. However, in order to store

the continuous-valued time-domain signal, these interleavers require consider-

ably larger memory than the bit-level frequency-domain interleavers, while the

performance improvement is not as significant at low to moderate SNRs.

On the receiver side, pre-processing methods have been developed to

mitigate the impact of periodic impulsive noise. These methods exploited var-
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ious statistical properties of the noise, according to which they can be divided

into three categories. The first type of approach is based on the cyclostation-

ary noise model [62]. These methods parameterized the second-order noise

statistics in each stationary interval by either a correlation matrix [89] or filter

coefficients [29, 51, 52], and estimated the parameters by training. Based on the

estimated parameters, equalizers [52, 89] or prediction filters [29, 51] were de-

signed to essentially transform the spectrally shaped noise into AWGN. These

parametric approaches are sensitive to parameter estimation errors. Accurate

parameter estimation generally requires large training overhead and a huge

memory that might not exist at narrowband PLC receivers.

A second class of receiver methods utilize the impulsive nature of the

noise to estimate and subtract the noise impulses from the received signal.

A common approach among these methods is to observe the impulsive noise

on the null and pilot subcarriers of the received OFDM symbols, and apply

compressed sensing techniques to recover the noise, assuming its sparse struc-

ture in time domain. For example, to estimate noise bursts shorter than an

OFDM symbol, a block compressed sensing algorithm was applied in [50] to

estimate the locations and amplitudes of the bursts. To estimate longer noise

bursts that span more than one OFDM symbol, the previous chapter of this

dissertation adopts time-domain block interleaving to spread the bursts into

short impulses over multiple OFDM symbols, and estimated the deinterleaved

noise by sparse Bayesian learning.

Recognizing the harmonic structure of the noise, another type of re-
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ceiver methods reuses existing techniques for narrowband interference miti-

gation. Simple techniques include time-domain Nyquist windowing applied

to the received signal to suppress the spectral leakage from the narrowband

interference [26]. Given a model of the power spectral density of the narrow-

band interference, linear minimum mean square error estimators were used to

estimate the spectral leakage of the narrowband interference by observing a

number of subcarriers in an OFDM symbol [71]. Assuming that the narrow-

band interference consists of a single frequency sinusoid, subspace methods

were used to extract the sinusoid from the received OFDM symbol [23]. More

recently, by exploiting sparsity of narrowband interference in the frequency

domain, compressed sensing algorithms were proposed to estimate the nar-

rowband interference from the time-domain guard intervals in a zero-padded

OFDM system [32]. However, most existing algorithms were designed to com-

bat narrowband interference with limited number (e.g. one or two) of peaks,

and may not be able to handle the rich harmonic components in the periodic

impulsive noise (as shown in Figure 2.4).

My work distinguishes from previous studies in two aspects. First of

all, unlike concatenated coding, the proposed diversity modulation scheme im-

proves communication reliability without decreasing data rates. On the other

hand, while most existing receiver techniques attempt to whiten or remove

the noise in the pre-processing stage, the proposed receiver design alters the

demodulator as well to incorporate knowledge on the periodic impulsive noise

statistics. Furthermore, I will demonstrate that the proposed receiver methods
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(1) do not require the memory-consuming time-domain interleaving as in the

second contribution; and (2) are able to mitigate noise that has a low sparsity

level in time or frequency domain.

4.3 Time-Frequency Diversity Modulation

In general, modulation diversity (MD) refers to modulation schemes

that jointly map a number of bits to a multi-dimensional constellation point

(a.k.a. an MD codeword), each dimension of which is a real or complex sym-

bol. The goal is to improve communication reliability without throughput

reduction or bandwidth expansion. This is achieved by spreading information

over multiple symbols that are transmitted over independent channels, thereby

exploiting channel diversity.

Several categories of MD codes have been investigated in the literature

[15, 81], among which the Hochwald/Sweldens codes have attracted a lot of

attention [41, 42]. A Hochwald/Sweldens codebook defines a one-to-one map-

ping from any group of NdR bits to a length-Nd vector of phase shift keying

(PSK) symbols:

f : c ∈ {0, 1}NdR → s ∈ CNd . (4.1)

Here R denotes the data rate in bits per symbol, and C denotes a 2NdR-PSK

constellation. The n-th component of a particular codeword s(m) has the form

s(m)
n = exp(j2πunm/2

NdR), (4.2)

∀m = 1, · · · , 2NdR, ∀n = 1, · · · , Nd. When un = 1,∀n, the Hochwald/Sweldens
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code reduces to a PSK repetition code [81]. In general, u , [u1 · · ·uNd
] need to

be optimized to minimize the symbol error rate in specific channel conditions.

Assuming that all components of a codeword are transmitted over static flat

channels or i.i.d. flat Rayleigh fading channels and corrupted by AWGN, the

optimal values of u for R = 1 and Nd = 2 to 4 have been found by exhaustive

search [42] and are summarized in Table 4.1.

A second type of MD codes defines a multi-dimensional rotated cubic

lattice constellation [15, 81]. The constellation can be viewed as carved from

a translated and scaled version of the cubic lattice ZNd (Z is the integer set),

and rotated by a certain linear transform. The rotation increases the minimum

number of distinct components between any two constellation points, i.e., the

diversity order. Suppose that some dimensions of the received signal are atten-

uated by the channel, the compressed constellation in the subspace spanned by

other dimensions offers more protection, since no or very few points collapse

together as would happen in unrotated constellations.

MD has demonstrated significant communication performance improve-

ment in multi-antenna communications [41] and in OFDM systems [12]. In

[41], a unitary space-time modulation scheme was derived based on the MD

codes. In [12], dual carrier modulation was proposed to exploit channel di-

Table 4.1: Optimal parameters for the Hochwald/Sweldens code in i.i.d. flat
Rayleigh fading and AWGN [42]. Nd is the length of a codeword.

Nd 2 3 4
[u1 · · ·uNd

] [1 1] [1 1 3] [1 3 5 7]
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versity in frequency domain in ultra-wideband wireless communications. Dual

carrier modulation adopts a special MD codebook that maps every four bits to

two different 16-QAM symbols. The symbols are transmitted on two subcarri-

ers that are separated apart in the spectrum, and are supposed to experience

independent sub-channels.

In OFDM-based narrowband PLC systems, recognizing the periodically

varying spectrally shaped statistics of periodic impulsive noise, I propose to

apply modulation diversity across time and frequency, which leads to the time-

frequency modulation diversity (TFMD). In TFMD, components of an MD

codeword are allocated to various subcarriers in multiple OFDM symbols.

Locations of the subcarriers are chosen so that narrowband interference or a

deep fade in frequency domain impacts as few symbols of the same codeword as

possible. Likewise, the designated OFDM symbols are separated apart in time

to prevent being simultaneously contaminated by noise bursts or impulses. An

example of the time-frequency mapping is depicted in Figure 4.1, assuming

Nd = 2.

I adopt a Hochwald/Sweldens codebook since it produces PSK symbols

(PSK is a mandatory modulation scheme in PRIME, G3 and IEEE P1901.2

narrowband PLC standards). Ideally, the parameters u need to be optimized

taking into account the PLC channel models. In particular, amplitude of

PLC channels is typically characterized by log-normal distributions rather than

Rayleigh fading [27, 67]. Furthermore, for a given PLC link, the channel fre-

quency response is fairly static and can be determined from the topology and
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OFDM symbols

…

…
...

ΔT

subcarriersΔK

Figure 4.1: An example of time-frequency modulation diversity for length-
two MD codes. Components of an MD codeword (marked in the same color)
are allocated to subcarriers i and

(
(i + ∆K) mod Nc

)
in OFDM symbols j

and (j + ∆T ), respectively, ∀i, j, where Nc is the number of subcarriers in an
OFDM symbol.

impedance properties of the cable [22, 67]. Since this chapter is focused on

combating periodic impulsive noise, I leave the design of optimal codebooks

based on PLC channel models for future work. The receiver methods presented

in the following can be applied to arbitrary values of u.

The TFMD scheme can be integrated into existing narrowband PLC

standards as a robust transmission mode in harsh channel and noise environ-

ments. The block diagram for an OFDM-based narrowband PLC transmitter

using TFMD is shown in Figure 4.2. The binary data is protected by a convo-

lutional code followed by a bit-level block interleaver. The diversity modulator

maps every Nd bits to Nd PSK symbols, which are then allocated to desig-

nated time-frequency slots by the time-frequency (TF) mapper. An optional

differential encoder follows to differentially encode the OFDM symbols. With-

out loss of generality, I assume that the differential encoding is performed in

the frequency domain (i.e., each subcarrier is differentially encoded upon the
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Figure 4.2: The block diagram of a narrowband PLC transmitter using time-
frequency modulation diversity. The proposed time-frequency (TF) mapper
allocates components of every Hochwald/Sweldens codeword to different sub-
carriers in various OFDM symbols. Π denotes the bit-level block interleaver.

previous subcarrier in the same OFDM symbol). The OFDM symbols are con-

verted to the time domain via IFFT. Finally a cyclic prefix (CP) is inserted

to the beginning of each OFDM symbol to prevent inter-symbol interference.

4.4 Soft-Output Diversity Demodulator

In this section, I present a diversity demodulator that generates soft

decisions on the modulated bits based on the periodically varying spectrally

shaped statistics of periodic impulsive noise. I consider both non-coherent and

coherent systems. As will be shown by the end of the section, the non-coherent

and coherent demodulators essentially take the same parametric form.

Let us focus on a particular group of bits, c ∈ {0, 1}Nd , that is jointly

mapped to an MD codeword. Suppose that the n-th component of the code-

word is mapped to subcarrier in in the jn-th OFDM symbol, ∀n = 1, · · · , Nd,

which is denoted by vinjn . To simplify notations, define index sets I , {in}Nd
n=1

and J , {jn}Nd
n=1, and a column vector vIJ , {vinjn}

Nd
n=1. In non-coherent sys-

tems, a differential encoder follows the time-frequency mapping, which results
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in

sIJ = vIJ � sI−1,J , (4.3)

where sI−1,J , {sin−1,jn}
Nd
n=1, and � denotes the pointwise product between

two vectors. After that, the OFDM symbols are converted to the time domain,

with the CP inserted.

Upon receiving an OFDM symbol, the receiver discards the CP and

transforms the rest of the symbol to the frequency domain by taking an FFT.

One of the most important properties of OFDM is that it divides a frequency-

selective channel to multiple narrowband flat sub-channels, each of which is

centered at a subcarrier frequency. More specifically, assuming that the CP is

longer than the channel delay spread, the output of FFT can be expressed as

rIJ = hIJ � sIJ + eIJ . (4.4)

Effectively, the DPSK (or PSK) symbol on the in-th subcarrier of the jn-th

OFDM symbol is transmitted over a flat sub-channel, whose complex ampli-

tude is denoted by hinjn . The received signal on the subcarrier is corrupted

by an additive noise einjn in frequency domain.

In non-coherent systems, a soft-output diversity demodulator computes

a log-likelihood ratio (LLR) for each bit in c, given rIJ and the reference signal
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rI−1,J . The conditional LLR for cn (∀n ∈ {1, · · · , Nd}) can be written as

L(cn) = ln
p(cn = 0|rIJ , rI−1,J)

p(cn = 1|rIJ , rI−1,J)

= ln

∑
vIJ :cn=0

p(rIJ |vIJ , rI−1,J)∑
vIJ :cn=1

p(rIJ |vIJ , rI−1,J)
(4.5)

≈ ln
max

vIJ :cn=0
p(rIJ |vIJ , rI−1,J)

max
vIJ :cn=1

p(rIJ |vIJ , rI−1,J)
. (4.6)

In (4.5), it is assumed that after the bit-level interleaver, cn = 0 or 1 with

equal probability and hence vIJ is uniformly distributed over the codebook.

In (4.6), the max-sum approximation of the exact LLR is applied to reduce the

computational complexity as in [74]. To evaluate the likelihood expressions in

(4.6), notice from (4.3) and (4.4) that

rIJ = hIJ � sI−1,J � vIJ + eIJ

≈ (rI−1,J − eI−1,J)� vIJ + eIJ (4.7)

= rI−1,J � vIJ + ẽIJ , (4.8)

where ẽIJ , −eI−1,J � vIJ + eIJ . In (4.7), I make the approximation that

the channel frequency response does not vary significantly between adjacent

sub-channels, and hence hIJ ≈ hI−1,J . In addition, I assume that the additive

noise samples on different subcarriers are mutually uncorrelated, and that

components of an MD codeword are mapped to different subcarriers. Given

these assumptions, and the fact that |vinjn| = 1, it can be verified that

E[ẽIJ ẽ
∗
IJ ] = diag{σ̃IJ}, (4.9)

σ̃IJ = σI−1,J + σIJ , (4.10)
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where σinjn , E[|einjn|2],∀n, are the amplitudes of the periodically varying

noise power spectrum. Furthermore, according to the LPTV model for pe-

riodic impulsive noise [62], the noise samples are spectrally shaped Gaussian

random variables, and therefore ẽIJ ∼ CN(0, σ̃IJ). From (4.8) and (4.9), the

likelihoods in (4.6) can be written as

p(rIJ |vIJ , rI−1,J) = CN(rI−1,J � vIJ , σ̃IJ). (4.11)

Substituting (4.11) into (4.6) results in the LLR expression

LMRC(cn) = max
vIJ :cn=0

Nd∑
k=1

Re{rikjkv∗ikjkr
∗
ik−1,jk

}
σ̃ikjk

−

max
vIJ :cn=1

Nd∑
k=1

Re{rikjkv∗ikjkr
∗
ik−1,jk

}
σ̃ikjk

. (4.12)

Compared to conventional DPSK detection [25], the diversity demodulator

(4.12) combines the decision metrics from Nd time-frequency slots, with the

weights inversely proportional to the sub-channel noise variances. Due to its

similarity to maximum ratio combining (MRC) reception in multi-antenna

communications [92], I will refer to (4.12) as the MRC diversity demodulator.

For low complexity implementation, one could also consider the sub-optimal

selection combining (SC) diversity demodulator

LSC(cn) = max
vIJ :cn=0

max
k

Re{rikjkv∗ikjkr
∗
ik−1,jk

}
σ̃ikjk

−

max
vIJ :cn=1

max
k

Re{rikjkv∗ikjkr
∗
ik−1,jk

}
σ̃ikjk

. (4.13)

The diversity demodulators (4.12) and (4.13) use two-symbol obser-

vation windows for differential detection. They can also be generalized to
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use multiple-symbol differential detection, given that increasing the window

size generally leads to better performance [25, 74, 80]. The generalized diver-

sity demodulator computes LLRs conditioned on {rIJ , rI−1,J , · · · , rI−Nw+1,J},

where Nw is the window size. However, multiple-symbol differential detection

requires much higher implementation complexity, and hence might be infea-

sible for low-power low-cost PLC systems. As such, throughout the rest of

the chapter, I will only use two-symbol observation windows for differential

detection.

In coherent systems, the received signal after the FFT can be written

as

rIJ ≈ ĥIJ � vIJ + eIJ , (4.14)

where ĥIJ denotes the estimated channel frequency response. Note the similar

mathematical forms in (4.14) and (4.8). The diversity demodulator for coher-

ent systems can be derived immediately from (4.12) or (4.13), by replacing

rik−1,jk with ĥikjk , and σ̃ikjk with σikjk .

The non-coherent OFDM receiver structure with the diversity demod-

ulator is depicted in Figure 4.3. In coherent systems, the differential detection

block is replaced by a frequency-domain channel equalizer. The LLRs gener-

ated by the diversity demodulator are first de-interleaved, and then decoded

by the convolutional decoder.
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Figure 4.3: The block diagram of a narrowband PLC receiver with non-
coherent diversity demodulation. The time-frequency (TF) demapper groups
subcarriers in OFDM symbols into MD codewords. The diversity demodula-
tor outputs soft information based on the noise power spectrum, which can be
estimated before or during transmission (as will be discussed in Section 4.5).
Π−1 denotes the bit-level block de-interleaver.

4.5 Noise Power Estimation

The soft-output diversity demodulators (4.12) and (4.13) assume knowl-

edge of the noise power spectrum. In this section, I will discuss two distinct

approaches to estimate the noise power spectrum, both of which exploit the

cyclostationarity of periodic impulsive noise.

PLC systems typically emit periodic bursty transmissions. Considering

a single PLC link, the silent (i.e., no-transmission) interval between consecutive

bursts typically takes several minutes. For example, a smart meter reports

customer load profile to a data concentrator every 15 minutes [13]. During a

silent interval, the receiver can collect a noise trace that extends multiple AC

cyles, and use that to estimate the periodically varying noise power spectrum.

In fact, since a period of noise can be partitioned into T stationary intervals

[62], noise in the t-th interval (∀t = 1, · · · , T ) has a time-invariant power
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spectrum

σ(t) , {σ(t)
i }

Nc
i=1, (4.15)

σ
(t)
i , σij,∀j ∈ S(t) (4.16)

where S(t) is the index set for all OFDM symbols received in the t-th stationary

interval. The receiver can estimate the T noise power spectrums individually,

by taking sliding FFTs over corresponding noise samples and averaging the

power of the FFT outputs. I will refer to such approach as offline noise power

estimation.

In order to obtain accurate estimates, a large number of noise sam-

ples need to be recorded, which entails a huge memory that might not exist

at typical narrowband PLC receivers. Furthermore, within a PLC network,

power lines are a shared medium, and hence PLC devices need to be scheduled

according to resource sharing protocols (e.g. carrier sense multiple access or

time division multiple access) to limit uncoordinated interference [28]. As the

number of PLC devices increases, due to the limited silent intervals between

transmissions from different PLC devices, a receiver might not be able to col-

lect enough noise samples to accurately estimate the noise power spectrum.

In light of the drawbacks of offline estimation, it is desirable to de-

velop algorithms to estimate the noise power spectrum primarily during data

transmission, with minor effort during silent intervals. Such semi-online noise

power estimators are also more adaptive to any fluctuation of noise statistics

in addition to the periodic variation.
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At coherent receivers, a heuristic semi-online estimator can be devel-

oped using decision feebdback from the convolutional decoder. During the

silent intervals, the receiver only needs to obtain a rough estimate of the

start/end instances of all stationary intervals within a period. In general, the

average noise power varies significantly among different stationary intervals.

Therefore, these intervals can be easily identified by amplitude thresholding in

time domain. As the transmission starts, the receiver computes the slicing er-

rors by subtracting, from the received signal, the signal that is reconstructed

based on the decoder output. The receiver can then update the estimated

noise power spectrum in a stationary interval with the average slicing errors

over all OFDM symbols received during that stationary interval. An iterative

receiver can thus be formulated, which starts with the AWGN assumption and

keeps updating the noise power spectrum through iterations. Note that such

semi-online heuristics cannot be used at non-coherent receivers, since it re-

quires channel estimation to reconstruct the received signal from the decoder

output.

As will be demonstrated by simulation results, the heuristic semi-online

estimator is prone to error propagation, since it completely relies on decision

feedback. In the following, I will focus on coherent systems, and develop

a semi-online estimator that exploits sparsity of periodic impulsive noise in

frequency domain, and uses the CP and decision feedback to obtain more

accurate estimate of the noise power spectrum.
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4.5.1 Problem Formulation

Let Nc and Np denote the FFT size and CP length in an OFDM system,

and Lh the channel delay spread in samples. Most narrowband PLC standards

adopt a CP that is much longer than typical channel delay spreads (i.e., Np �

Lh). For example, the root-mean-square delay spreads encountered in the field

measurements are 2 − 6µs, while the effective CP duration for narrowband

PLC in the CELENEC-A band is 55µs in IEEE P1901.2 and up to 120µs in

G.hnem [67]. The first Lh samples inside the CP are affected by inter-symbol-

interference. Removing these samples from the j-th received OFDM symbol

in time domain results in

ṙj = HjSF∗Nc
sj + ėj. (4.17)

Here FNc is the Nc-point FFT matrix, S ,

[
0Nc−Np+Lh

INp−Lh
INc

]
, Hj is a

Toeplitz matrix consisting of a time shifted channel impulse response in each

row, ṙj and ėj denote the time-domain received signal and additive noise,

respectively.

Define a matrix W as

W ,
[
A 0(Np−Lh)×(Nc−Np+Lh) −A

]
, (4.18)

where A is an arbitrary (Np − Lh) × (Np − Lh) unitary matrix. It can be

easily proved that WHjS = 0,∀A, as long as Hj is Toeplitz. Therefore pre-

multiplying ṙj by W removes the information bearing portion of the received

signal

yj , Wṙj = Wėj. (4.19)
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As previously mentioned, the power of periodic impulsive noise is concentrated

around a few frequencies due to narrowband interference. The noise can there-

fore be decomposed in frequency domain as

ėj = F∗N(xj + gj), (4.20)

where N = Nc+Np−Lh, xj and gj represent the narrowband interference and

background noise in frequency domain, respectively. Although in reality the

background noise gj is spectrally shaped, I model it as AWGN for simplicity.

Such approximation will not cause significant estimation error for the overall

noise power spectrum, since the background noise has much lower power com-

pared to the narrowband interference. Defining Φ , WF∗N and vj , WF∗Ngj,

(4.19) can be succinctly rewritten as

yj = Φxj + vj. (4.21)

Note that vj is still AWGN since A and FN are both unitary.

Suppose that during the silent intervals, the receiver has estimated the

start/end instances of all stationary intervals within a period of the noise. We

can collect the measurements yj,∀j ∈ S(t), and expand (4.21) into

Y(t) = ΦX(t) + V(t), (4.22)

where Y(t) is a matrix formed by column vectors {yj,∀j ∈ S(t)}, and similarly

for X(t) and V(t). Recall that {xj, ∀j ∈ S(t)} are instantaneous spectrums of

the narrowband interference in the t-th stationary interval. Mathematically, all
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columns of X(t) are sparse vectors that share an identical support. Considering

Y(t) as a measurement matrix, Φ as an (Np−Lh)×N known dictionary matrix,

X(t) as an unknown source matrix with each row representing a possible source,

and V(t) as an unknown noise matrix, (4.22) boils down to the standard MMV

problem in compressed sensing [91].

4.5.2 Noise Power Spectrum Estimation Using T-MSBL

While promoting sparsity, the prior (2.22) adopted by the T-MSBL al-

gorithm is also a close match to the statistical model for periodic impulsive

noise. The prior essentially assumes that the narrowband interference xj fol-

lows a Gaussian distribution with zero mean and covariance Γ. This is in

accordance with the LPTV model for periodic impulsive noise [62], except for

the additional approximation that the elements of xj are uncorrelated. The

uncorrelated assumption can be justified by the fact that the correlation be-

tween different frequency components of the narrowband interference is much

lower in amplitude compared to the interference peaks; i.e., E[xjx
∗
j ] can be

approximated by a diagonal matrix.

However, applying T-MSBL directly to our problem may lead to inac-

curate estimation of γ. This is because to ensure a unique global solution,

the number of non-zero rows in X has to be below a certain threshold. Un-

fortunately, given typical system settings of narrowband PLC, such threshold

is in general too restrictive compared to the actual number of peaks in the in-

terference spectrum. To overcome this challenge, I propose a T-MSBL based
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estimator that incorporates decision feedback from the convolutional decoder

into the prior to improve the recovery performance.

The key idea is to use a more informative prior that effectively guides

the Bayesian inference to converge to the actual values of γ, despite of the low

sparsity level. Such prior can be constructed by imposing a hierarchical prior

on γ and B, respectively. I adopt conjugate priors since they generally lead

to computationally tractable solutions:

p(γ; a,b) =
N∏
i=1

IG(γi; ai, bi), (4.23)

p(B;µ,Ψ) = IW(B;µ,Ψ). (4.24)

Here IG(γi; ai, bi) is the inverse Gamma distribution with the shape param-

eter ai and scale parameter bi, both of which assume non-negative values;

IW(B;µ,Ψ) denotes the inverse Wishart distribution, where µ > L is the

degree of freedom and the scale parameter Ψ is a positive definite matrix.

Particular values of the hyperparameters a,b, µ and Ψ reflect certain prior

knowledge, or side information, on X.

Consider the vectorized MMV model (2.23). To find the hyperparam-

eters θ = {γ,B, λ} that maximize p(θ|ȳ, a,b, µ,Ψ), we can employ the EM

algorithm. The EM algorithm treats x̄ as latent variables, and seeks to maxi-
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mize

Q(θ) = Ex̄|ȳ;θ(old)

{
log
[
p(ȳ, x̄|θ)p(θ)

]}
= Ex̄|ȳ;θ(old)

[
log p(ȳ|x̄,θ)

]
+

Ex̄|ȳ;θ(old) [log p(x̄|γ,B)] +

log p(γ) + log p(B), (4.25)

where θ(old) denotes the estimate of unknown parameters in the previous iter-

ation.

Since the only term in (4.25) that depends on λ is the first term, the

update rule for λ remains the same as in the original T-SBL algorithm [91].

Note that this term is independent of γ and B. Therefore to estimate γ and

B, the cost function (4.25) can be simplified to

Q(γ,B) = Ex̄|ȳ;θ(old) [log p(x̄|γ,B)] +

log p(γ) + log p(B). (4.26)

It can be shown that [91]

Ex̄|ȳ;θ(old) [log p(x̄|γ,B)] ∝ −L
2

log(|Γ|)− N

2
log(|B|)

−1

2
Tr
[
(Γ−1 ⊗B−1)

(Σx̄ + µx̄µ
∗
x̄)
]
, (4.27)

where Σx̄ and µx̄ are evaluated as in the original T-SBL algorithm [91].

Replacing p(γ) and p(B) by the probability density function of the inverse

101



Gamma distribution and inverse Wishart distribution, respectively, we have

log p(γ) ∝
N∑
i=1

[
− ai log γi − bi/γi

]
(4.28)

log p(B) ∝ −µ+ L

2
log |B| − 1

2
Tr(ΨB−1) (4.29)

The derivative of (4.26) with respect to γi(i = 1, · · · , N) is

∂Q

∂γi
∝ − L

2γi
+

1

2γ2
i

Tr
[
B−1(Σx̄,i + µx̄,iµ

∗
x̄,i)
]

−ai + 1

γi
+
bi
γ2
i

. (4.30)

Setting the derivative to zero, we obtain the update rule for γi in an EM

iteration:

γi ←
Tr
[
B−1(Σx̄,i + µx̄,iµ

∗
x̄,i)
]

+ 2bi

L+ 2ai
. (4.31)

Similarly, we take the derivative of (4.26) over B

∂Q

∂B
= −N + µ+ L

2
B−1 +

1

2
B−1[

N∑
i=1

1

γi
(Σx̄,i + µx̄,iµ

∗
x̄,i) + Ψ∗

]
B−1. (4.32)

Setting the derivative to zero gives the update rule for B:

B← 1

N + µ+ L

[
N∑
i=1

1

γi
(Σx̄,i + µx̄,iµ

∗
x̄,i) + Ψ∗

]
. (4.33)

Following the same approximation as in [91], we can back-map the

update rules in (4.31) and (4.33) to the original space, resulting in the update
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rules for γ and B

γ
(k+1)
i =

X̂
(k)
i· (B(k))−1X̂

(k)∗
i· + LΞ

(k)
ii + 2b

(k)
i

L+ 2a
(t)
i

,

∀i = 1, · · · , N, (4.34)

B̃(k+1) =
N∑
i=1

X̂
(k)∗
i· X̂

(k)
i·

γ
(k)
i

+ Ψ(t)∗,

B(k+1) = B̃(k+1)/||B̃(k+1)||F, (4.35)

where X̂(k) and Ξ(k) are evaluated as in (2.28). Compared to (2.29), the prior

information contained in a,b, µ and Ψ does affect the estimation of γ and B.

In coherent systems, we can extract side information on X from the

output of the convolutional decoder. Using the hard decision output from the

decoder, the receiver can reconstruct an estimate of the transmit signal by

repeating the entire transmitter chain. The reconstructed transmit signal is

then filtered by the estimated channel, and subtracted from the real received

signal. The residual in the frequency domain provides a second estimate of X,

denoted by X̂′.

The side information in X̂′ can be fused into the hierarchical prior

formed by (2.22), (4.23) and (4.24) via the hyperparameters. More specifically,

the posterior of γ (or B) given X̂′ is an inverse Gamma (or inverse Wishart)
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distribution:

p(B|X̂′;µ,Ψ,γ) = IW(B; µ̃, Ψ̃),

µ̃ = µ+N,

Ψ̃ = Ψ +
N∑
i=1

X̂
′∗
i· X̂

′
i·

γi
(4.36)

p(γ|X̂′; a,b,B) =
N∏
i=1

IG(γi; ãi, b̃i),

ãi = ai +
L

2
,

b̃i = bi +
1

2
||X̂′∗

i·Q
√

Λ
−1
||22, (4.37)

where the unitary matrix Q and the diagonal matrix Λ satisfy that B =

QΛQ∗. The hierarchical prior with the updated hyperparameters ã, b̃, µ̃, and

Ψ̃ can then be used in the Bayesian inference (4.34) and (4.35) to incorporate

the side information provided by the decision feedback.

Upon convergence of the algorithm, we can compute the desired Nc-

point noise power spectrum σ(t) from Γ(t), since

σ(t) = diag
{

PΓ(t)P∗
}
, (4.38)

where P = FNc

[
0Np−Lh

INc

]
F∗N . The estimated σ(t) is sent to the diversity

demodulator to improve its reliability. The soft output from the demodulator

is then decoded by the convolutional decoder, the decision from which is used

to further update the hyperparameters. As such, I form a decision feedback

estimator that transfers information back-and-forth between the noise power

spectrum estimator and the convolutional decoder.
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4.6 Simulation Results

To evaluate the communication performance of the proposed transceiver

methods in periodic impulsive noise, I simulate an OFDM system with param-

eters in Table 4.2. Values assumed by these parameters are typical in narrow-

band PLC standards (c.f. [67]). I inject to the received signal a representative

noise trace collected at an outdoor low-voltage power line (Figure 2.4) [62].

From the spectrogram of this particular noise trace, it can be visually identi-

fied that each period can be approximately partitioned into three stationary

intervals: a low-power interval, a moderate-power bursty interval, and a high-

power impulsive interval. For simplicity, I assume static flat channel in all the

experiments.

At the transmitter, I adopt the length-two and length-three Hochwald

/Sweldens codes with parameters specified in Table 4.1. The time-frequency

mapping is implemented as follows. Let us start by dividing the transmission

band into Nd subbands (Nd = 2 or 3), each of which contains the same num-

Parameters Values
Sampling Frequency 400 kHz

FFT Size Nc 256
CP Length Np 30

Number of Subcarriers 128
Data Subcarriers 33 : 104

Convolutional code rate 1/2, length 7
Packet Size 256 Bytes

Interleaver Size 72 bits (1 OFDM symbol)

Table 4.2: Parameters of the simulated OFDM system.
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ber of data subcarriers. Components of an MD codeword are assigned to Nd

subcarriers that are located in different subbands and are equally-spaced in

frequency. Furthermore, the Nd subcarriers are allocated to multiple noncon-

secutive OFDM symbols. The separation between these OFDM symbols in

time domain is determined based on the duration of noise bursts, which spans

approximately three consecutive OFDM symbols in the selected noise trace

(Figure 2.4). As such, the two subcarriers that are used to carry a length-two

codeword are located in two OFDM symbols separated by two other symbols.

This ensures that at most one component of the codeword is contaminated by

a noise burst. Similarly, for Nd = 3, the first two components of a codeword

are allocated to the j-th and the (j + 3)-th OFDM symbols. The third com-

ponent, however, is assigned to the j-th OFDM symbol as well. In fact, the

noise power spectrum has a low-pass feature; i.e., the third subband located at

the high-frequency end of the spectrum experiences low-power noise through-

out the period. Therefore, location of the third component in time might not

pose significant impact on communication performance. Constraining an MD

codeword within a small number of OFDM symbols also helps to reduce buffer

size and processing latency at the receiver.

At the receiver, I implement the MRC diversity demodulator (4.12),

due to its optimality and manageable complexity considering the small sized

codebooks. The three noise power spectrums (one for each stationary interval)

are estimated offline in both coherent and non-coherent systems, or using semi-

online methods in coherent systems. The bit error rate (BER) performance
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is measured over 104 packets, within the SNR range of -8 dB to 2 dB, which

covers low to moderate SNR values in typical narrowband PLC systems [67].

4.6.1 Performance with Offline Noise Power Estimation

I first evaluate communication performance of the TFMD transceiver

with offline noise power estimation. The noise power spectrum for each of

the three stationary intervals is estimated by taking Nc-point sliding FFTs

over 104 noise samples within the same stationary interval and averaging the

instantaneous power spectrums.

I compare the proposed transceiver methods with several reference de-

signs in terms of BER performance. A baseline reference is a conventional

OFDM system using BPSK (or DBPSK) modulation and bit-level interleav-

ing over one OFDM symbol. Since the proposed time-frequency mapping

permutes signal in both time and frequency domains across four OFDM sym-

bols, for fair comparison I also simulate the conventional BPSK OFDM system

with interleaving over four OFDM symbols (i.e., 288 bits). In addition, a de-

generate case of the TFMD scheme, which maps components of a codeword

to different subcarriers within the same OFDM symbol, is implemented, and

will be referred to as frequency modulation diversity (FMD) in the following.

The BER performance of various transceiver designs in non-coherent

and coherent systems, respectively, is plotted in Figure 4.4. In non-coherent

systems, the SNR required for the proposed transceiver to achieve a BER of

10−4 is 0.4 dB for the length-two code and -3.5 dB for the length-three code.
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Figure 4.4: Coded BER performance of proposed TFMD transceiver in both
non-coherent (left) and coherent (right) systems, using offline noise power
estimation. Performance is compared with conventional DBPSK (or BPSK)
OFDM systems with bit-level interleaving over 1 or 4 OFDM symbols, and with
the frequency modulation diversity (FMD) system. Nd denotes the length of
MD codewords.

Compared to conventional OFDM systems operating at these SNRs, the pro-

posed transceiver reduces the BER by more than 100x and 1000x, respectively.

In coherent systems, the SNR required for the proposed transceiver to achieve

a BER of 10−4 is about -2 dB for the length-two code and -4 dB for the length-

three code. In both cases, the reduction in BER compared with the conven-

tional OFDM systems at corresponding SNRs is more than 100x. Notice that

increasing the interleaver size in conventional OFDM systems only achieves

marginal performance gains in the tested SNR range. Furthermore, compar-

ing TFMD with FMD, we can see that spreading components of a codeword
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in different OFDM symbols leads to additional 10x reduction in BER.

4.6.2 Performance with Semi-Online Noise Power Estimation

I now evaluate communication performance of the coherent TFMD

transceiver using the proposed semi-online noise power estimator. The it-

erative receiver is set to run 10 iterations for each packet. For additional

comparison, I also simulate the heuristic method for semi-online noise power

estimation, as discussed at the beginning of Section 4.5.

The BER performance of the conventional BPSK OFDM system and

the TFMD system with various noise power estimation methods is plotted

in Figure 4.5. For both the length-two and length-three codes, the heuristic

semi-online estimator encounters about 1-2dB loss in SNR compared to the

offline estimator, due to error propagation. The performance of the proposed

semi-online estimator, however, converges to that of the offline estimator for

the length-three code, and is even superior for the length-two code. The

latter is primarily because the semi-online estimator, compared to the offline

estimator, takes into account any non-periodical fluctuation of noise statistics.

Such performance gain is diminishing for longer MD codes, since the diversity

demodulator is more robust against inaccurate noise power estimation as the

number of diversity branches increases.
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4.7 Conclusion

In this part of the dissertation, I propose a time-frequency diversity

modulation scheme to enhance the communication reliability of narrowband

PLC systems in periodic impulsive noise. The time-frequency modulation di-

versity transmitter jointly encodes multiple bits to multiple PSK symbols, and

allocates them to different subcarriers in various OFDM symbols. The receiver

linearly combines signals received from corresponding sub-channels / OFDM

symbols with weights inversely proportional to the sub-channel SNRs. The

periodically varying noise power spectrum can be estimated before or during

data transmission using sparse Bayesian learning techniques. I validate the

proposed transceiver methods based on noise data collected from narrowband

PLC field measurements.
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Figure 4.5: Coded BER performance of proposed TFMD transceiver in coher-
ent systems, using semi-online noise power estimation. Both length-two (left)
and length-three (right) MD codes are tested. Performance is compared with
conventional BPSK OFDM system with bit-level interleaving over 1 OFDM
symbol, the TFMD system using offline noise power estimation, and the TFMD
system with heuristic semi-online noise power estimation.
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Chapter 5

Conclusion

In this dissertation, I focus on designing OFDM transmitters and re-

ceivers to combat impulsive noise and interference in powerline communica-

tions. I propose the following thesis statement:

Reliability of smart grid communications over power lines can be dra-

matically improved without sacrificing throughput by exploiting sparsity and

cyclostationarity of the impulsive noise in both time and frequency domains.

5.1 Summary of Contributions

I defend this thesis statement via two distinctive perspectives.

5.1.1 Nonparametric mitigation of impulsive noise

In Chapter 3, I develop various receiver algorithms that estimate and

subtract impulsive noise from received signal, without prior knowledge on the

statistical noise model or model parameters. In coded systems, compared to

conventional OFDM receivers without noise mitigation, the proposed receivers

provide up to 9 dB and 6.8 dB SNR gains (or alternatively more than 1000x

and 100x BER reductions) in asynchronous impusive noise and periodic im-
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pulsive noise, respectively. As such, the proposed receivers enables significant

power savings at PLC modems, or alternatively dramatic enhancement of com-

munication reliability. In addition, the algorithms do not impose any training

overhead and therefore do not decrease throughput. To achieve these goals, I

propose two closely related contributions that tackle asynchronous impulsive

noise and periodic impulsive noise, respectively.

1. To mitigate asynchronous impulsive noise, I exploit the sparsity structure

of the noise in time domain, and apply sparse Bayesian learning tech-

niques to estimate the noise impulses from (1) null and pilot subcarriers

of received OFDM symbols; (2) all subcarriers including data tones; and

(3) all subcarriers and decision feedback from the convolutional decoder.

2. For periodic impulsive noise, I observe the cyclostationary property and

bursty structure of the noise in time domain, and use a time-domain

interleaver that spans about one or two periods of the noise to break long

noise bursts into short impulses. I then apply the SBL based methods

developed in the previous contribution to estimate the noise impulses

after interleaving.

5.1.2 Time-frequency modulation diversity to combat periodic im-
pulsive noise.

In Chapter 4, I propose to use time-frequency diversity modulation

to enhance the communication reliability of narrowband PLC systems in peri-

odic impulsive noise. In coded systems, the proposed transceivers achieve more
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than 1000x BER reductions compared to conventional OFDM systems, while

maintaining the same data rate. Towards that end, my third contribution

in this dissertation is comprised of (1) a time-frequency diversity modulation

transmitter that jointly encodes multiple bits to a multi-dimensional constel-

lation point, whose components are allocated to time-frequency slots that are

separated apart; (2) a linear diversity combining receiver that combines sig-

nals received from corresponding time-frequency units with weights inversely

proportional to the sub-channel SNRs; and (3) an online algorithm that ex-

ploits the frequency-domain sparsity and cyclostationary property of the noise

to estimate the noise power spectrum during data transmission.

5.2 Suggestions for Future Work

I conclude the dissertation by discussing a variety of open research di-

rections in improving reliability, throughput and energy efficiency of smart

grid communications. I will first point out a few potential improvements

or extensions based on my current approaches to combat impulsive noise in

OFDM-based PLC systems. Finally, I will discuss a novel research direction on

PLC-wireless diversity in heterogeneous smart grid communication networks.

• Nonparametric mitigation of asynchronous bursty impulsive noise.

The nonparametric methods proposed in Chapter 3 assume i.i.d. impulsive

noise samples. In bursty impulsive noise, BER performance of these methods

will likely be degraded. This is because in some OFDM symbols, the num-
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ber of noise impulses might exceed the threshold that guarantees accurate

estimation by the SBL algorithms, while in others there is no impulsive noise

and hence the SBL algorithms do not provide any performance gain over

conventional receivers. To improve the performance of SBL algorithms to

recover temporally correlated sparse vectors, one could use impose a Markov

random field prior, in addition to the parameterized Gaussian prior, to the

sparse vectors. The Markov random field prior is used to capture the tem-

poral correlation between adjacent noise samples.

• Nonparametric mitigation of asynchronous impulsive noise in non-

coherent systems.

Although derived and evaluated in coherent systems, some of the SBL-based

asynchronous impulsive noise mitigation algorithms in Chapter 3 can be

extended to work in non-coherent systems as well. In fact, all the methods

except for the one using decision feedback can be directly integrated as

a pre-processing block into non-coherent systems. The decision feedback

estimator does not work in this case since it requires channel estimation,

which is unavailable at the non-coherent receivers. It will be interesting to

simulate the BER performance of the SBL algorithms using null tones and

using all tones in DPSK OFDM receivers, and compare it against that of

conventional DPSK OFDM receiver without noise mitigation. One would

expect that the SNR gains achieved by the noise mitigation methods be

larger than those in coherent systems. As mentioned in Section 2.2, the

SNR gap between DPSK and PSK systems is about 3 dB in AWGN, and is
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larger than that in impulsive noise [44]. As such, in asynchronous impulsive

noise, the SNR gap between conventional OFDM systems with DPSK and

PSK modulation schemes is larger than 3 dB. On the other hand, if the

noise impulses have been successfully removed, the gap between the SBL

receivers with DPSK and PSK modulation schemes should be around 3 dB

since the residual background noise is approximately AWGN.

• Nonparametric mitigation of periodic impulsive noise in non-coherent

systems.

In periodic impulsive noise, the proposed algorithms in Chapter 3 may not

be directly applied to non-coherent systems. This is because in non-coherent

systems, the use of time-domain block interleaving makes non-coherent de-

modulation extremely difficult. Instead, one could use a compressed sensing

approach similarly to the online noise power spectrum estimator proposed in

Chapter 4, which exploits the frequency-domain sparsity of periodic impus-

lvie noise to estimate the harmonic peaks from the CP of received OFDM

symbols. Although such approach is able to accurately estimate the noise

power spectrum, the estimation of the exact noise samples in frequency do-

main is difficult, primarily because (1) the number of ISI-free samples in

CP is limited; (2) the dictionary matrix involved is highly coherent; and (3)

the noise in the frequency domain consists of many harmonic peaks; i.e., it

is not very sparse. A possible way to resolve these difficulties is to impose

more informative priors on the frequency-domain noise samples. For exam-

ple, one might use a Markov random field prior to capture the correlation
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between the noise amplitudes on adjacent subcarriers.

• Properties of periodic impulsive noise in other transform domains.

As mentioned in the previous point, periodic impulsive noise exhibits certain

sparsity structure in frequency domain, but is not sparse enough to allow

successful recovery by compressed sensing. It will be interesting to trans-

form such noise into other domains, e.g. wavelet domains, and explore the

statistical distribution and/or sparsity of the noise in those domains. This

could potentially lead to novel statistical models of periodic impulsive noise

and corresponding receiver methods that exploit the statistical models or

sparsity of the noise in the transform domain.

• Modulation diversity code design in periodic impulsive noise.

In Chapter 4, for simplicity, I adopt an MD code that is optimized for

Rayleigh fading channel and AWGN. Assuming perfect channel estimation

and prior knowledge of the cyclostationary noise statistics, it is possible

to design an MD code with minimum symbol error rate (in the average

sense) under the specific channel and noise condition. It is very likely that

the optimal solution cannot be obtained exactly, and hence sub-optimal

methods that allow practical implementation will be interesting.

• PLC-Wireless Diversity

As mentioned in Section 1.1, smart grid communications will likely be sup-

ported by a variety of network technologies, including wireless and powerline
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communications. Wireless and PLC systems were primarily considered as

competing candidates for enabling neighborhood area networks and home

area networks. Nonetheless, recent study has suggested combining PLC and

wireless links to form a multiple-input multiple-output (MIMO) system that

exploit the diversity of PLC and wireless channels [37, 48, 49]. In particular,

narrowband PLC in the 3–500 kHz band and wireless communications in

the unlicensed 920–928 MHz band can be used simultaneously for enabling

neighborhood area networks. In [37], the authors assumed flat-fading PLC

and wireless channels and made the questionable assumption of a single

SNR metric for both the PLC and wireless channels although the noise dis-

tributions on those channels are different. This assumption was not made

in [49]; however, their investigation assumed in-home PLC transmissions in

the 2-30 MHz and wireless transmissions in the 2.4 GHz band which have

different channel and interference characteristics from the frequency bands

used in neighborhood area networks. Moreover, in [49] the PLC and wireless

channel responses were assumed to be deterministic and perfectly known at

the receiver and no performance analysis results were presented.

A key observation on PLC-wireless diversity is the independent

and non-identical nature of the frequency-selective fading and interference

characteristics experienced on both links. One may exploit this observation

to enhance transmission reliability and/or increase the coverage range for

the smart meter infrastructure using receiver diversity combining schemes.

The novelty here, compared to conventional receiver diversity combining

118



schemes widely used in wireless systems, is due to : (1) different types

of non-Gaussian noise dominant in PLC and wireless links (i.e., periodic

impulsive noise in PLC vs. asynchronous impulsive noise in wireless); (2)

the possibly different modulation schemes used by PLC (e.g. DPSK, PSK,

QAM) and wireless (e.g. PSK, QAM or FSK) systems; and (3) the distinct

statistical characteristics (e.g. root mean square delay spread, power delay

profile, etc.) and fading distributions (e.g. log-normal vs. Rayleigh) of PLC

and wireless channels.

One could derive the optimal PLC-wireless receiver combining scheme

in the presence of periodic impulsive noise. It will then be interesting to

compare its performance and complexity, both analytically and by simula-

tions, with several sub-optimum PLC-wireless receiver diversity combining

schemes including maximum-ratio combining, equal-gain combining, selec-

tion combining, switch-and-stay combining, and possibly others [92]. The

performance comparison might consider practical effects including: (1) er-

rors in estimating the PLC and wireless channels and the noise correlation,

and (2) the effects of synchronization errors and data payload size mis-

matches between the PLC and wireless transmissions.
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