
Copyright

by

Jinseok Choi

2019



The Dissertation Committee for Jinseok Choi
certifies that this is the approved version of the following dissertation:

Optimizing Communication Performance of

Low-Resolution ADC Systems with Hybrid Beamforming

Committee:

Brian L. Evans, Supervisor

Jeffrey G. Andrews

Ross Baldick

Constantine Caramanis

Hazem Hajj



Optimizing Communication Performance of

Low-Resolution ADC Systems with Hybrid Beamforming

by

Jinseok Choi

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2019



Dedicated to my parents.



Acknowledgments

First and foremost, I would like to express my sincere gratitude to my

research supervisor at the University of Texas at Austin, Professor Brian L.

Evans, for his invaluable advice and support for my research projects. His gen-

erosity and academic insights have remained the biggest motives throughout

my 5-year journey in the Ph.D. program. I consider myself to be tremendously

fortunate to have worked with him and as a member of his research group,

Embedded Signal Processing Laboratory (ESPL).

I would also like to thank the rest of my dissertation committee mem-

bers. Professor Jeffery Andrews’ broad spectrum of knowledge on wireless

communications helped me set the fundamental groundwork for the research

area of interest. Optimization theories and skills from Professors Ross Baldick

and Constantine Caramanis have provided me with better opportunities to

explore and navigate through challenging issues. Professor Hazem Hajj, espe-

cially his deep understandings in data mining, has broadened my perspectives

to step further to crossing the boundaries between academic fields.

Special thanks to Dr. Alan Gatherer for giving me many inspirations.

Many thanks to my colleagues from ESPL—Junmo Sung, Yunseong

Cho, Debarati Kundu, Ghadi Sebaali, Faris Mismar, Hugo Andrade, Scott

Johnston—and, more broadly, Wireless Networking Communications Group

v



(WNCG): Sungwoo Park, Junil Choi, Namyoon Lee, Junse Lee, Gilwon Lee,

Changsik Choi, Jeonghun Park, Taewan Kim, among many others. They have

continuously inspired my academic envisions that undoubtedly contributed to

my research. I extend my thanks to Kyung Woo Min, Wanki Cho, and friends

in Korea who have been mentally supportive. It would be hard to imagine my

graduate life without my colleagues and friends.

Finally, I would like to express my gratitude to my family: Jiuk Choi,

my father, Kyunglim Cho, my mother, and Eun Young Choi, my younger

sister. My parents continue to inspire me to be a better person and to share

what I have with others. I am grateful for their unconditional love and support

throughout my life. And, most importantly, to my beloved half, who has

entered my life in the mid-stages of my graduate career. From the bottom of

my heart, I am indebted to her for her wise support in maintaining balance

and discovering true happiness in life.

Jinseok Choi

vi



Optimizing Communication Performance of

Low-Resolution ADC Systems with Hybrid Beamforming

Publication No.

Jinseok Choi, Ph.D.
The University of Texas at Austin, 2019

Supervisor: Brian L. Evans

Low-resolution analog-to-digital converter (ADC) systems and hybrid

analog-and-digital beamforming systems have drawn extensive attention as a

promising receiver architecture for millimeter wave (mmWave) communica-

tions by reducing hardware cost and power consumption. In this dissertation,

hybrid beamforming systems that employ low-resolution ADCs are considered

to achieve a better trade-off between communication performance and power

consumption. Due to non-negligible quantization errors, however, existing

state-of-the-art hybrid beamforming techniques cannot be directly applied to

such systems as they ignore the impact of the quantization error. In this

regard, I propose new receiver architectures and algorithms for hybrid beam-

forming with low-resolution ADC systems to enhance spectral efficiency under

coarse quantization in different layers of the network stack, and provide sub-

sequent analyses.
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First, problems of optimizing the number of ADC bits and designing

analog combiners with fixed-resolution ADCs are tackled to design an energy-

efficient receiver architecture with phase shifter-based hybrid beamforming. A

hybrid receiver architecture with resolution-adaptive ADCs for mmWave com-

munications is proposed to optimize the power distribution over ADCs. For

the proposed architecture, a near-optimal bit-allocation solution is derived in

closed form. In addition, the performance lower bound of the proposed receiver

architecture is derived in ergodic rate. For a fixed-resolution ADC system, a

new analog combining architecture is proposed for mmWave communications.

The proposed analog combiner consists of two consecutive analog combiners

that maximize channel gain and minimize effective quantization error. An ap-

proximated ergodic rate of the proposed receiver is also derived in closed form.

Next, considering switch-based analog beamforming, antenna selection at a

base station is investigated for low-resolution ADC systems. Unlike downlink

transmit antenna selection problems, a quantization-aware antenna selection

criterion is necessary and derived to incorporate quantization error for uplink

receive antenna selection problems. Leveraging the criterion, a quantization-

aware antenna selection algorithm is proposed and analyzed for uplink. Last,

in a higher layer of the network stack, a user scheduling problem is investigated

for hybrid beamforming systems with low-resolution ADCs. New user schedul-

ing criteria are derived to maximize scheduling gain under coarse quantization

and efficient scheduling algorithms are proposed accordingly. Subsequent anal-

ysis for the proposed algorithm provides closed-form ergodic rates.
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Chapter 1

Introduction

This introductory chapter briefly overviews the background and moti-

vation in this dissertation, followed by the brief summary of expected contribu-

tions. Section 1.1 presents the background regarding the systems with a large

number of antennas and power-efficient system designs such as low-resolution

analog-to-digital converter (ADC) and hybrid analog-and-digital beamforming

architectures. Section 1.2 provides the motivation of the proposed research.

Section 1.3 summarizes the contributions of the proposed research. The nota-

tions and abbreviations are summarized in Section 1.4.

1.1 Background
1.1.1 Wireless Communication Systems

Cellular networks are composed of a large number of users who use

cellular devices such as mobile phones and tablets and a large number of base

stations (BSs) that are fixed and arranged to provide coverage to the users.

The physical area that a BS covers is called a cell. Mobile users in each cell

are connected with an associated BS. Since a BS cannot in general serve all

of the users in the cell, user scheduling is necessary to select users to serve
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by maximizing the cell throughput while maintaining fairness among users.

The wireless link from a BS to mobile users is called downlink, and the BS

transmits data to the users on the downlink. On the other hand, the wireless

link from the mobile users to the BS is called uplink, and the users transmit

data to the BS on the uplink.

Unlike wireline communications, fading and interference are the two key

impairments of wireless communications, which makes the problem even more

challenging. Fading is the time variation of channel strengths that is induced

by the small-scale effect of multi-path fading and the large-scale effects known

as path loss and shadowing. Being different from thermal noise, interference

is generated by other signals. The different delays on the multiple paths from

the transmitter to the receiver cause interference at the receiver for subsequent

transmissions, which is known as inter-symbol-interference. When multiple

users communicate with the BS in the same time and frequency resource (co-

channel), there is significant interference between them, which is called inter-

user-interference. In the multi-cell environment, the incoming signals from

other cells are interfering with the co-channel signals of the associated cell,

and it is called inter-cell-interference. How to deal with such interference is

one of the most important issues in the design of wireless communications.

When the channel is in deep fade, i.e., the channel strength is very low,

it is almost impossible to achieve reliable communications. Many diversity

techniques have been developed to overcome such problem. There are many

ways to obtain diversity. Via coding and interleaving, diversity can be obtained
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over time since the coded symbols are transmitted over time so that different

parts of the codeword experience different fading channels. If a channel is

frequency selective, similar diversity can be obtained over frequency. When

multiple antennas are spaced sufficiently at the transmitter and/or receivers,

diversity can also be achieved over space.

In addition to the diversity techniques, many interference mitigation

techniques have been developed to deal with several kinds of interference. Lin-

ear equalizers such as maximum ratio combining, zero-forcing combining, and

minimum mean squared error combining and nonlinear equalizers are widely

used, and they can be applied over time, frequency, and space. Multiple access

techniques such as code-division multiple access and orthogonal frequency-

division multiple access were also developed to serve multiple users without

interfering with each other. Cell sectorization is used to reduce interference

among co-channel cell. Sectorization divides each cell spatially by employing

directional antennas at the BS and provides substantial reduction of interfer-

ence without requiring the acquisition of new BS sites.

As discussed above, using multiple antennas offers diversity gain. In

addition to the diversity gain, it also provides power gain when a receiver

is equipped with multiple antennas or a transmitter equipped with multiple

antennas knows the channel state information. Having both multiple trans-

mit and receive antennas, which is known as a multiple-input multiple-output

(MIMO) system, gives a new way to use multiple antennas. The MIMO sys-

tems provide an additional spatial dimension and yields a degree-of-freedom
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gain which can be exploited by spatially multiplexing several data streams

onto the MIMO channel [1]. This leads to an increase in the channel capacity

that is proportional to the degree-of-freedom. Thus, MIMO techniques have

been the primary tool in the wireless communications to increase both the

capacity and reliability.

Recently, using a large number of antennas at the BS has been widely

investigated. The extra antennas can dramatically increase the capacity and

improve the radiated energy efficiency by taking aggressive multiplexing and

focusing energy into ever smaller regions of space [2]. It is also known that

the multiple access layer can be simplified with the use of a large number

of antennas [3]. Millimeter wave (mmWave) communication that operates at

very high frequencies is likely to employ a large number of antennas to over-

come its large path loss by accomplishing large beamforming gain. Since huge

bandwidth available at mmWave frequencies can realize the rates of multiple

gigabits per second per uses, mmWave communications have been considered

as a potential future wireless communication technology to meet ever increas-

ing demand for data rate.

1.1.2 Millimeter Wave Communications

Moving to a millimeter wave (mmWave) spectrum in range of 30–300

GHz enables the utilization of multi-gigahertz bandwidth and offers an or-

der of magnitude increase in achievable rate [4–6]. Consequently, mmWave

communication has drawn extensive attention as a promising technology for
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(a) (b)

Figure 1.1: (a) A low-resolution ADC receiver and (b) hybrid beamforming
receiver.

next-generation cellular systems [7–9], and evinced its feasibility [10]. Unlike

the traditional MIMO communication that operates sub-3 GHz with a small

number of antennas, the small wavelength of the mmWave spectrum allows

a large number of antennas to be packed into transceivers with very small

antenna spacing. Leveraging the large antenna arrays, mmWave systems can

manipulate directional beamforming to produce high beamforming gain, which

helps overcome large free-space pathloss of mmWave signals and maintains a

reasonable level of received signal-to-noise ratio (SNR).

Problems with hardware cost and power consumption, however, arise

from deploying large antenna arrays. Due to the large number of radio fre-

quency (RF) chains and power-demanding high-resolution ADCs coupled with

high sampling rates, the significant power consumption at the receivers be-

comes one of the primary challenges to resolve. To overcome these challenges,

receivers that employ low-resolution ADCs [11] to dramatically reduce the

5



power consumption at the ADCs and hybrid analog-and-digital beamforming

architectures [12] that attempt to reduce the burden of fully digital beamform-

ing have attracted the most interest in recent years as shown in Fig. 1.1.

1.1.3 Low-Resolution ADC Systems

The power consumption of ADCs, PADC, scales exponentially in the

number of quantization bits b, i.e., PADC ∝ 2b [13], leading high-speed and

high-resolution ADCs to be the primary power consumers in the receiver with

large antenna arrays. Although deploying low-resolution ADCs in mmWave

communication systems with large antenna arrays greatly reduces power con-

sumption at receivers, non-negligible quantization error due to coarse quanti-

zation degrades the performance of such system. Furthermore, the increased

quantization error prevents the existing state-of-the-art multiple-input multiple-

output (MIMO) techniques from achieving desirable performance.

As an effort to realize low-resolution ADC systems, essential wireless

communication techniques such as channel estimation and detection have been

developed in low-resolution ADC systems [14–19]. For the 1-bit ADC system

which is the extreme case of low-resolution ADCs, compressive sensing [14],

maximum-likelihood [15], and Bussgang decomposition-based techniques [16]

were employed for channel estimation. Compressive sensing-based channel es-

timators were also developed for the systems with low-resolution ADCs [17],

and achieved comparable estimation accuracy to that of infinite-bit ADC sys-

tems at low and medium signal-to-noise ratio (SNR). Unified frameworks for

6



channel estimation and symbol detection were developed for 1-bit ADC sys-

tems [15] and low-resolution ADC systems [17]. Achieving higher detection

accuracy than a minimum mean squared error (MMSE) estimator, message

passing de-quantization-based detectors were proposed in 1-bit ADC [18] and

low-resolution ADC systems [19]. For mmWave channels, the main considera-

tion in this dissertation, a generalized approximate message-passing (GAMP)

algorithm with 1-bit ADCs showed a similar channel estimation performance

as maximum-likelihood (ML) estimator with full-resolution ADCs in the low

and medium SNR regimes [14] by exploiting the sparsity of mmWave channels

in the angular domain. It was further proved in [20] that accurate estimation

is also possible in wideband mmWave channel estimation by combining GAMP

with the expectation-maximization algorithm.

1.1.4 Hybrid Beamforming Systems

In another line of research, hybrid beamforming architectures employ an

analog beamformer to reduce the number of RF chains less than the number of

antennas to reduce power consumption and system complexity [21,22]. phase

shifter-based analog beamforming and switch-based analog beamforming are

often considered for analog beamformer networks [23] by offering different

benefits and limitations. When the system uses the set of phase shifters for

analog beamforming [24, 25], the design of an analog precoder and combiner

is limited by its constant amplitude [21], which leads to separate analog and

digital beamformer design.
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State-of-the-art hybrid beamforming methods have been proposed with

the goal of achieving spectral efficiency close to that of the system with fully

digital beamformers [21, 26–31]. In [31], it was shown that the number of RF

chains are required to be at least twice the number of data streams to real-

ize the performance of fully digital beamforming. An analog beamformer is

often designed by selecting array response vectors corresponding to the dom-

inant channel eigenmodes [21, 26–30]. Indeed, it was shown that the optimal

RF precoder and combiner converge to array response vectors in dominant

eigenmodes [26]. Motivated by this, orthogonal matching pursuit (OMP) was

used to develop beamformer design algorithms [21,27,28], which composes RF

beamformer with the array response vectors by estimating the dominant eigen-

modes. In addition, low-complexity hybrid precoding algorithms in multi-user

MIMO downlink systems were proposed by considering zero-forcing precoding

[29] and limited feedback [30]. When the system uses a switch network for

analog beamforming, an analog beamforming problem becomes equivalent to

an antenna selection problem. Although adopting the switch network keeps

the system from using highly effective beamforming techniques, it requires

much less hardware cost and complexity compared to the analog processing

with phase shifters [23].
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1.2 Motivation
1.2.1 Hybrid Beamforming with Low-Resolution ADCs

Previous studies consider two major architectures: hybrid analog-and-

digital beamforming and low-resolution ADC systems. The former employs

analog beamforming to decrease the number of RF chains to be less than

that of antennas, thereby mitigating the burden on digital beamforming, and

the latter adopts a small number of quantization bits to reduce ADC power

consumption. In other words, the hybrid beamforming receivers consider a

small number of RF chains with full-resolution ADCs, while the low-resolution

ADC receivers assume no reduction on the number of RF chains. There is

prior work [32] that studied a general version of these two extreme points:

hybrid architecture with low-resolution ADCs as shown in Fig. 1.2. In [32],

the spectral efficiency was analyzed under a constant channel assumption, and

it was shown that hybrid architecture with low-resolution ADCs achieves high

energy efficiency. In this dissertation, I consider the hybrid architecture with

low-resolution ADCs to achieve the best trade-off between the performance

and power consumption [32]. Then, I develop advanced receiver designs and

algorithms that enhance spectral efficiency under coarse quantization for the

considered system in different layers of the network stack, and further provide

subsequent analyses. In the following three chapters, I focus on developing

novel receiver architectures to incorporate the effect of coarse quantization in

the receiver design. In the last two chapters, I investigate user scheduling

problems to provide new scheduling criteria under coarse quantization, and
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Figure 1.2: A hybrid beamforming receiver with low-resolution ADCs.

then I provide the summary of the dissertation and possible future research

directions.

Adopting uplink hybrid analog-and-digital beamforming architecture,

I propose a new receiver design with resolution-adaptive ADCs for mmWave

communications. Although previous works consider hybrid beamforming ar-

chitectures with low-resolution ADCs [32] or mixed-ADC architectures [33,34],

they either assume predetermined ADC resolutions regardless of channel gain

on each RF chain or force antennas to select between 1-bit ADC and ∞-

bit ADC, which is far from an energy-efficient architecture. In this regard,

employing resolution-adaptive ADCs at the hybrid receiver can provide sig-

nificant flexibility in distributing energy over the ADCs with different channel

gains, which leads to highly energy-efficient receiver architectures. To this

end, I solve ADC bit-allocation problems to find an optimal bit distribution

that minimizes total quantization error subject to limited power consumption,

and further show its relevance to a generalized mutual information. To pro-
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vide a performance lower bound of the proposed architecture, I also derive an

approximated ergodic rate in closed form.

Moving the focus onto the analog beamformer design rather than the

ADC design, I investigate an advanced hybrid combining technique for large-

scale MIMO receivers with low-resolution ADCs. Conventional hybrid com-

biners were limited to high-resolution ADC cases and thus, a new hybrid com-

bining architecture is required to achieve optimality in communication per-

formance for hybrid MIMO systems with low-resolution ADCs. Although the

analysis in [32,35,36] provided useful insights for the hybrid architecture with

low-resolution ADCs such as the achievable rate and power trade-off, the quan-

tization error was not explicitly taken into account in the hybrid beamformer

design. Thus, I propose a new analog combining architecture and develop a

two-stage analog combining algorithm which effectively reduces quantization

error while maintaining large channel gains in the reduced signal dimension.

The resolution-adaptive ADC and new analog combining architectures

consider phase shifter-based analog beamforming architectures. Avoiding the

burden of implementing large phase shifter arrays for hybrid MIMO systems,

employing switch-based analog beamforming is another power-efficient solu-

tion. In this regard, I also investigate antenna selection problems for systems

with low-resolution ADCs, thereby providing more flexibility in resolution and

number of ADCs without the necessity for implementing large phase-shifter

arrays. Indeed, for channels measured at 2.6 GHz, a great number of RF

chains could be turned off by using antenna selection without a substantial
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performance loss [37]. Previously proposed antenna selection methods [38–43],

however, focused on MIMO systems without any quantization errors. Conse-

quently, for low-resolution ADC receivers, a new antenna selection method

that incorporates coarse quantization effect needs to be developed. There-

fore, I develop a quantization-aware antenna selection algorithm for uplink

communications and also study the antenna selection problem for downlink

communications.

Focusing on the higher layer of the network stack than the receiver

design, user scheduling problems are investigated in a single cell environment

and user scheduling algorithms are developed for hybrid receivers with low-

resolution ADCs. Many user scheduling methods were developed under the

no quantization system in which the number of quantization bits is considered

to be infinite [44–49]. The quantization error from employing low-resolution

ADCs, however, is a function of user channels and non-negligible. Existing user

scheduling criteria mostly focus on channel orthogonality and channel ampli-

tude, which does not incorporate the increase of the quantization error when

scheduling users. Accordingly, the proposed user scheduling algorithm in this

dissertation exploits new findings that are effective under coarse quantization.

1.3 Dissertation Summary

To summarize, I have contributed to advanced receiver designs and

algorithm development for hybrid beamforming systems with low-resolution

ADCs to improve their communication performance.
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1.3.1 Thesis Statement

In this dissertation, I defend the following statement:

Advanced mixed-domain signal processing techniques can unlock gamechang-

ing system-level tradeoffs in communication performance vs. power consump-

tion in millimeter wave cellular base station designs.

1.3.2 Overview of Contributions

The main contributions of this dissertation are summarized as follows:

1. Bit Allocation for Hybrid Receivers with Resolution-Adaptive

ADCs: A new hybrid receiver architecture with resolution-adaptive ADCs

for mmWave communications is proposed to achieve power-efficient com-

munications. A near-optimal bit-allocation solution that minimizes the

total mean squared quantization error is derived in closed form. Exploit-

ing the solution, a bit-allocation algorithm is developed for a total ADC

power constraint case, outperforming conventional low-resolution ADC re-

ceivers in both in spectral and energy efficiencies. Finally, a closed-form

performance lower bound of the proposed receiver architecture is derived in

ergodic rate when the receiver employs maximum ratio combining (MRC).

2. Two-Stage Analog Combining for Low-Resolution ADC Systems:

A new hybrid receiver architecture with low-resolution ADC is proposed for

mmWave communications by splitting the analog combiner into two consec-

utive analog combiners. The main function of the first analog combiner is
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to collect most channel gains into the lower dimension. The second analog

combiner focuses on reducing quantization errors from the low-resolution

ADCs by evenly spreading the collected signal over all available RF chains.

It is shown that the proposed two-stage analog combiner achieves an opti-

mal scaling law of the channel capacity with respect to the number of RF

chains under the presence of quantization error and maximizes the capacity

for channels with homogeneous singular values. An approximated ergodic

rate with MRC is derived in closed form, showing that it also achieves the

optimal scaling law.

3. Base Station Antenna Selection for Low-Resolution ADC Sys-

tems: Antenna selection at a base station with large antenna arrays and

low-resolution ADCs is investigated for both downlink and uplink. For

downlink transmit antenna selection, it is shown that although a selection

criterion that maximizes sum rate with ZF precoding is equivalent to that

of a perfect quantization system, sum rate loss decreases to zero as total

transmit power increases unlike the perfect quantization system. For uplink

receive antenna selection, a greedy antenna selection criterion is generalized

to capture trade-offs between channel gain and quantization error. Lever-

aging the criterion, a quantization-aware fast antenna selection algorithm

is developed and analyzed.

4. Uplink User Scheduling for Hybrid Receivers with Low-Resolution

ADCs: Channel structure-based user scheduling criteria are derived to
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maximize scheduling gain for low-resolution ADC systems. Using the de-

rived criteria, user scheduling algorithms that maximizes the uplink sum

rate in the low-resolution ADC system for full and partial channel state

information are developed, showing improvement in communication per-

formance compared to the conventional scheduling methods. Subsequent

analysis for the proposed algorithm provides closed-form ergodic rates for

different channel scenarios.

The main takeaway messages of the dissertation are summarized as:

• Employing low-resolution ADCs is one of the solutions to reduce power

consumption of receivers with a large number of antennas.

• Non-negligible quantization error requires conventional wireless tech-

niques to be modified to improve communication performance.

• Hybrid beamforming techniques that further decrease power consump-

tion by reducing the number of RF chains need to consider the quanti-

zation error in their design.

• User scheduling also requires additional scheduling criteria to incorporate

the effect of the coarse quantization when scheduling users.

• Adopting variable-resolution ADCs can be the other form of the low-

resolution ADC receivers that achieves higher energy-efficient systems.

I believe that the contributions and key findings will pave the way for

future wireless communication systems.
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1.4 Notation and Abbreviations

This dissertation uses the following notation: A is a matrix and a

is a column vector. AH and AT denote conjugate transpose and transpose.

[A]i,: and ai indicate the ith row and column vector of A. We denote ai,j

or [A]i,j as the {i, j}th element of A and ai as the ith element of a. λi{A}

denotes the i-th largest singular value of A. CN(µ, σ2) is the complex Gaus-

sian distribution with mean µ and variance σ2. E[·] and V[·] represent an

expectation and variance operators, respectively. The correlation matrix is

denoted as Rxy = E[xyH ]. The diagonal matrix diag{A} has {ai,i} at its

ith diagonal entry, and diag{a} or diag{aT} has {ai} at its ith diagonal en-

try. BlkDiag{A1, . . . ,AN} is a block diagonal matrix with block diagonal

entries A1, · · · ,AN . BlkCirc{A0,A1, · · · ,AN} is a block circulant matrix

with [A0,A1, · · · ,AN ] at its first block row.I denotes the identity matrix with

a proper dimension and we indicate the dimension N by IN if necessary. 0

denotes a matrix that has all zeros in its elements with a proper dimension.

‖A‖ represents L2 norm. | · | indicates an absolute value, cardinality, and

determinant for a scalar value a, a set A, and a matrix A, respectively. Tr{·}

is a trace operator and x(N) ∼ y(N) means limN→∞
x
y

= 1.
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Chapter 2

Resolution-Adaptive Hybrid MIMO
Architectures for Millimeter Wave

Communications

In this chapter1, a hybrid analog-digital beamforming architecture with

resolution-adaptive ADCs is proposed for millimeter wave (mmWave) receivers

with large antenna arrays. Array response vectors are adopted for the analog

combiners and derive ADC bit-allocation (BA) solutions in closed form. The

BA solutions reveal that the optimal number of ADC bits is logarithmically

proportional to the RF chain’s signal-to-noise ratio raised to the 1/3 power.

Using the solutions, two proposed BA algorithms minimize the mean square

quantization error of received analog signals under a total ADC power con-

straint. Contributions include 1) ADC bit-allocation algorithms to improve

communication performance of a hybrid MIMO receiver, 2) approximation

1This chapter is based on the work published in the journal paper: J. Choi, B. L.
Evans, and A. Gatherer, "Resolution-Adaptive Hybrid MIMO Architectures for Millimeter
Wave Communications," in IEEE Transactions on Signal Processing, vol. 65, no. 23, pp.
6201-6216, Dec. 2017. Part of the work was also published in the conference paper: J.
Choi, B. L. Evans, and A. Gatherer, "ADC Bit Allocation under a Power Constraint for
MmWave Massive MIMO Communication Receivers," in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 5-9, 2017, New
Orleans, LA, USA. This work was supervised by Prof. Brian L. Evans. The useful feedback
from Dr. Alan Gatherer improved the quality of the work.
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of the capacity with the BA algorithm as a function of channels, and 3) a

worst-case analysis of the ergodic rate of the proposed MIMO receiver that

quantifies system tradeoffs and serves as the lower bound. Simulation results

demonstrate that the BA algorithms outperform a fixed-ADC approach in

both spectral and energy efficiency, and validate the capacity and ergodic rate

formula. For a power constraint equivalent to that of fixed 4-bit ADCs, the

revised BA algorithm makes the quantization error negligible while achieving

22% better energy efficiency. Having negligible quantization error allows exist-

ing state-of-the-art digital beamformers to be readily applied to the proposed

system.

2.1 Introduction

In this chapter, I first investigate an advanced receiver design for phase

shifter-based hybrid beamforming with low-resolution ADCs. Hybrid architec-

tures employ fewer RF chains than the number of antennas to reduce power

consumption and system complexity. An analog beamformer is the pivotal

component that enables the hybrid structure to reduce the number of RF

chains [21,22]. An analog beamformer is often designed by selecting array re-

sponse vectors corresponding to the dominant channel eigenmodes [21,26–30].

Indeed, it was shown that the optimal RF precoder and combiner converge

to array response vectors in dominant eigenmodes [26]. Motivated by this,

orthogonal matching pursuit (OMP) was used to develop beamformer de-

sign algorithms [21, 27, 28]. Although the hybrid beamforming approaches in
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[21,22,24–30] delivered remarkable achievements in the development of the low-

power and low-complexity architecture with large antenna arrays, the hybrid

architectures still assume high-resolution ADCs that consume a high power at

receivers.

Since power consumption of ADCs scales exponentially in terms of the

number of quantization bits [50], employing low-resolution ADCs can be indis-

pensable to reduce hardware cost and power consumption in the large antenna

array regime. Consequently, low-resolution ADC architectures have been in-

vestigated [14,17,18,20,51–58]. It was revealed that least-squares channel esti-

mation and maximum-ratio combining (MRC) with 1-bit ADCs are sufficient

to support multi-user operation with quadrature-phase-shift-keying [52], which

is known to be optimal for 1-bit ADC systems [11, 51]. Deploying large an-

tenna arrays provided an opportunity to use message-passing and expectation-

maximization algorithms for symbol detection and channel estimation with low

complexity [14,17,18,20]. To examine the effect of quantization in achievable

rate, the Bussgang decomposition [54, 55] was utilized for linear expressions

of quantization operation. The analysis in [54] revealed that noise correlation

can reduce the capacity loss to less than 2
π
at low signal-to-noise ratio (SNR).

A lower bound for the achievable rate of the 1-bit ADC massive MIMO system

was derived [55], using MRC detection with a linear minimum mean square

error (MMSE) channel estimator. Offering an analytical tractability, the ad-

ditive quantization noise model (AQNM) [56–59] were adopted to derive the

achievable rate of massive MIMO systems with low-resolution ADCs using
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MRC in Rayleigh [57] and Rician fading channels [58].

The considered architectures in the previous studies, however, present

two extreme points: (1) fewer number of RF chains with high-resolution ADCs

and (2) low-resolution ADCs with full number of RF chains. One prior study

with less extremity [60] focused on a generalized system consisting of fewer

number of RF chains with low-resolution ADCs. In [60], the spectral efficiency

was analyzed under a constant channel assumption. It is also assumed that

each ADC’s resolution is predetermined regardless of channel gain on each RF

chain. In another line of research, mixed-ADC architectures were proposed [33,

34, 59]. In [59], performance analysis of mixed-ADC systems where receivers

use a combination of low-resolution and high-resolution ADCs showed that

the architecture can achieve a better energy-rate tradeoff compared to systems

either with infinite-resolution ADCs or low-resolution ADCs. In [33, 34] each

antenna uses different ADC resolution depending on its channel gain. This

system has explicit benefits compared to fixed low-resolution ADC systems

such as increase of channel estimation accuracy and spectral efficiency. In

[33, 34], however, they force antennas to select between 1-bit ADC and ∞-

bit ADC, which is far from an energy-efficient architecture mainly because

the total ADC power consumption can be dominated by only a few high-

resolution ADCs. Moreover, it assumes full number of RF chains, which leads

to dissipation of energy. For these reasons, an adaptive ADC design for a

hybrid beamforming architecture is still questionable.
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2.1.1 Contributions

The main contribution of this chapter is the proposition of a hybrid

beamforming MIMO architecture with resolution-adaptive ADCs to offer a

potential energy-efficient mmWave receiver architecture. Under this architec-

ture proposition, I investigate the architecture as follows: (i) two bit-allocation

(BA) algorithms are first developed to exploit the flexible ADC architecture

and derive a capacity expression for a given channel realization. (ii) Due to the

intractable ergodic rate analysis with BA, I then perform the analysis without

BA, offering the baseline performance of the proposed receiver architecture.

The proposed architecture is distinguishable from many other systems because

it not only consists of a lower number RF chains and low-resolution ADCs [60]

but also adapts the ADCs resolutions [33,34]. In the context of mmWave com-

munications, I design the analog combiner to be a set of array response vectors

to aggregate channel gains in the angular domain. Such design approach is

beneficial as the sparse nature of mmWave channels in the angular domain

allows the number of RF chains to be less than the number of antennas. Leav-

ing the design issue of digital combiners, this chapter primarily focuses on the

quantization problem for the proposed system.

Given the different channel gains on RF chains, the system performance

can be improved by leveraging the flexible ADC architecture. To this end,

as an extension of the work [61], I derive a closed-form BA solution for a

minimum mean square quantization error (MMSQE) problem subject to a

constraint on the total ADC power. Using the solution, a BA algorithm is
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developed, and it determines ADC resolutions depending on angular domain

channel gains. The derived solution provides an explicit relationship between

the number of quantization bits and channel environment. One major finding

from the solution is that the optimal number of ADC bits is logarithmically

proportional to the corresponding RF chain’s SNR raised to the 1/3 power.

This result quantifies the conclusion made in [33] that allocating more bits to

the RF chain with stronger channel gain is beneficial. I also derive a solution

for a revised MMSQE problem to modify the proposed BA method to be

robust to noise. The revised MMSQE problem is equivalent to maximizing

generalized mutual information (GMI) in the low SNR regime. Applying the

solution to a capacity, I approximate the capacity with the revised MMSQE-

BA algorithm as a function of channels. Simulation results disclose that the

BA algorithms achieve a higher capacity and sum rate than the conventional

fixed-ADC system where all ADCs have same resolution. In particular, the

revised BA algorithm provides the sum rate close to the infinite-resolution

ADC system while achieving higher energy efficiency than using fixed ADCs

in the low-resolution regime.

Regarding the implementation issue of the BA algorithms, the best sce-

nario is to operate the resolution switching at the time-scale of the channel

coherence time. This is because the proposed BA algorithms allocate different

quantization bits to each ADC depending on the channel gain on each RF

chain. Accordingly, if the switch is able to operate at the channel coherence

time, the proposed architecture is able to adapt to channel fluctuations. Such
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coherence time switching in mmWave channels, however, may not be feasible

due to the very short coherence time of mmWave channels [62]. Consequently,

the switching period may need to be the multiples of the coherence time. In

this case, switching at the time-scale of slowly changing channel characteristics

such as large-scale fading and angle of arrival (AoA) marginally degrades the

performance of the BA algorithms. Then, the worst-case scenario is not to ex-

ploit the flexibility of ADC resolutions, which is equivalent to have an infinitely

long switching period, and indeed converges to fixed-ADC architectures.

To provide deeper insight for the proposed system, I further perform an

ergodic rate analysis. As mentioned, due to the intractability of the analysis

with the BA algorithms, we derive an approximation of the ergodic rate for

the considered architecture without applying BA—the worst-case analysis—

for analytical tractability. Although the analysis focuses on the worst-case

scenario, the importance of the derived rate can be given as follows:

• The obtained achievable rate can serve as the lower bound of the proposed

architecture. Hence, it is expected that the proposed system can achieve a

higher ergodic rate than the derived rate by leveraging the flexible ADCs.

• As a function of system parameters, the tractable rate provides a broad

insight for the considered system. It can be shown that the achievable

rates for the BA algorithms and for the fixed ADC show similar trends.

In this regard, the derived rate provides general tradeoffs of the proposed

architecture in terms of system parameters including quantization effect.
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Figure 2.1: A hybrid beamforming receiver with resolution-adaptive ADCs.

• The analysis in [60] considered a quasi-static channel. This setting, however,

ignores the transmission of a coded packet over different fading realizations

so that rate adaptation cannot be applied over multiple fading realization.

Especially, the quasi-static setting is not adequate in mmWave channels with

the short coherence time [62]. Arguably, the ergodic rate analysis in this

chapter offers more realistic evaluation in contemporary wireless systems

that transmit a coded packet over multiple fading realizations [63].

2.2 System and Channel Model
2.2.1 Network and Signal Models

Single-cell MIMO uplink network is considered and Nu users with a

single transmit antenna are served by a base station (BS) with Nr antennas.

It is assumed that the BS is equipped with large antenna arrays (Nr � Nu).

The hybrid architecture with low-resolution ADCs is employed at the BS. I
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focus on uniform linear array (ULA) and assume that there are NRF RF chains

connected to NRF pairs of ADCs. Employing adaptive ADCs such as flash

ADCs, the proposed system is considered to be able to switch quantization

resolution. Indeed, many power and resolution adaptive flash ADCs have been

fabricated [64–66], and flash ADCs are the most suitable ADCs for applications

requiring very large bandwidth with moderate resolution [67].

Assuming a narrowband channel, the received baseband analog signal

r ∈ CNr at the BS is expressed as

r =
√
puHs + ñ (2.1)

where pu is the average transmit power of users, H represents the Nr × Nu

channel matrix between the BS and users, s indicates the Nu × 1 vector of

symbols transmitted by Nu users and ñ ∈ CNr is the additive white Gaus-

sian noise which follows complex Gaussian distribution ñ ∼ CN(0, INr). I

further consider that the transmitted signal vector s ∼ CN(0, INr) is Gaussian

distributed with a zero mean and unit variance. It is also assumed that the

channel H is perfectly known at the BS.

An analog beamformer WRF ∈ CNr×NRF is applied to r and constrained

to satisfy [WRFW
H
RF]i,i = 1/Nr, i.e., all element of WRF have equal norm of

1/
√
Nr.

y = WH
RF r =

√
puW

H
RF Hs + WH

RF ñ. (2.2)

I consider that the number of RF chains is less than the number of antennas

(NRF < Nr), alleviating the power consumption and complexity at the BS.
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Each beamforming output yi is connected to an ADC pair as shown in Fig. 2.1.

At each ADC, either a real or imaginary component of the complex signal yi

is quantized.

2.2.2 Channel Model

In this chapter, we consider mmWave channels. Since mmWave chan-

nels are expected to have limited scattering [21, 68, 69], each user channel is

the sum of contributions of L scatterings and L� Nr. Adopting a geometric

channel model, the kth user channel with Lk scatterers that contribute to Lk

propagation paths is expressed as

hk =
√
γk

Lk∑
`=1

gk` a(θk` ) ∈ CNr (2.3)

where γk denotes the large-scale fading gain that includes geometric attenua-

tion, shadow fading and noise power between the BS and kth user, gk` is the

complex gain of the `th path for the kth user and a(θk` ) is the BS antenna array

response vector corresponding to the azimuth AoA of the `th path for the kth

user θk` ∈ [−π/2, π/2]. Each complex path gain gk` ∼ CN(0, 1) is assumed to

be an independent and identically distributed (IID) complex Gaussian random

variable. It is also assumed that the number of propagation paths Lk is dis-

tributed as Lk ∼ max
{
Poisson(λp), 1

}
[70] for k = 1, · · · , Nu. I call λp ∈ R

as the near average number of propagation paths.

Under the ULA assumption, the array response vector is expressed as

a(θ) =
1√
Nr

[
1, e−j2πϑ, e−j4πϑ, . . . , e−j2(Nr−1)πϑ

]ᵀ
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where ϑ is the normalized spatial angle that is ϑ = d
λ

sin(θ), λ is a signal

wave length, and d is the distance between antenna elements. Considering

the uniformly-spaced spatial angle, i.e., ϑi = d
λ

sin(θi) = (i − 1)/Nr, the ma-

trix of the array response vectors A =
[
a(θ1), · · · , a(θNr)

]
becomes a unitary

discrete Fourier transform matrix; AHA = AAH = I. Then, adopting the

virtual channel representation [23, 69, 71], the channel vector hk in (2.3) can

be modeled as

hk = Ah̃b,k =
Nr∑
i=1

h̃b,(i,k) a(θi)

where h̃b,k ∈ CNr is the beamspace channel of the kth user, i.e., h̃b,k has

Lk nonzero elements that contain the complex gains ∼ CN(0, 1) and the

large-scale fading gain √γk. The beamspace channel matrix is denoted as

H̃b = [h̃b,1, · · · , h̃b,Nu ] and it can be decomposed into H̃b = G̃D
1/2
γ where G̃ ∈

CNr×Nu is the sparse matrix of complex path gains andDγ = diag(γ1, · · · , γNu).

Accordingly, the beamspace channel of the kth user is expressed as h̃b,k =

√
γkg̃k. Finally, the channel matrix H is expressed as

H = AH̃b = AG̃D1/2
γ . (2.4)

It is assumed that the analog beamformer is composed of the array

response vectors corresponding to theNRF largest channel eigenmodes [26], i.e.,

WRF = ARF where ARF is a Nr ×NRF sub-matrix of A. It is further assumed

that the array response vectors in ARF capture all channel propagation paths

from Nu users [72]. Then, the received signal after the analog beamforming in
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Table 2.1: The Values of β for Different Quantization Bits b
b 1 2 3 4 5
β 0.3634 0.1175 0.03454 0.009497 0.002499

(2.2) reduces to

y =
√
puA

H
RFHs + AH

RFñ =
√
puHbs + n (2.5)

where n = AH
RFñ ∼ CN(0, INRF

) asA is unitary. Note thatHb is theNRF ×Nu

sub-matrix of the beamspace channel matrix H̃b and contains
∑Nu

k=1 Lk prop-

agation path gains:

Hb = GD1/2
γ (2.6)

where G is the NRF ×Nu sub-matrix of the complex gain matrix G̃, corre-

sponding to ARF.

2.2.3 Quantization Model

I consider that each of the ith ADC pair has bi quantization bits and

adopt the AQNM [56, 73] as the quantization model to obtain a linearized

quantization expression. The AQNM is accurate enough in low and medium

SNR ranges [56]. After quantizing y, we have the quantized signal vector

yq = Q(y) = Dα y + nq

=
√
puDαHbs + Dαn + nq (2.7)

where Q(·) is an element-wise quantizer function separately applied to the

real and imaginary parts and Dα is a diagonal matrix with quantization
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gains Dα = diag(α1, · · · , αNRF
). The quantization gain αi is a function of

the number of quantization bits and defined as αi = 1 − βi where βi is a

normalized quantization error. Assuming the non-linear scalar MMSE quan-

tizer and Gaussian transmit symbols, it can be approximated for bi > 5 as

βi =
E[|yi−yqi|2]

E[|yi|2]
≈ π

√
3

2
2−2bi . The values of βi are listed in Table 2.1 for bi ≤ 5.

Note that bi is the number of quantization bits for each real and imaginary

part of yi. The quantization noise nq is an additive noise which is uncorrelated

with y and follows the complex Gaussian distribution with zero mean. For a

fixed channel realization Hb, the covariance matrix of nq is

Rnqnq = DαDβ diag(puHbH
H
b + INRF

)

where Dβ = diag(β1, · · · , βNRF
).

Assuming sampling at the Nyquist rate, the ADC power consumption

is modeled as [56]

PADC(b) = c fs 2b (2.8)

where c is the energy consumption per conversion step (conv-step), called

Walden’s figure-of-merit, fs is the sampling rate and b is the number of quan-

tization bits. This model illustrates that the ADC power consumption scales

exponentially in the number of quantization bits b.

2.3 ADC Bit Allocation Algorithms

In this section, BA algorithms are developed to improve the perfor-

mance of the proposed system by leveraging the flexibility of ADC resolu-

29



tions. It is assumed that perfect knowledge of the channel state information

(CSI) is available at the BS. The rationale behind this is that efficient algo-

rithms have been proposed for mmWave channel estimation [14, 20, 22, 74, 75]

by exploiting the sparse nature of mmWave channels. In the hybrid receiver

structure with NRF < Nr, state-of-the-art mmWave channel estimators such

as bisectional approach [22], modified OMP [74], and distributed grid message

passing [75] validated the estimation performance. Assuming the use of high-

resolution ADCs for a channel estimation phase, such estimation algorithms

can be adopted in the considered system.

2.3.1 MMSQE Bit Allocation

I adopt the MSQE E(b) = E
[
|y−yq|2

]
for y in (2.5) as a distortion

measure. Assuming the MMSE quantizer and Gaussian transmit symbols, the

MSQE of yi with bi quantization bits for bi > 5 is modeled as [56]

Eyi(bi) =
π
√

3

2
σ2
yi

2−2bi (2.9)

where σ2
yi

= pu‖[Hb]i,:‖2 + 1. Using (2.9) for any quantization bits,2 I for-

mulate the MMSQE problem through some relaxations. Then, the solution

of the MMSQE problem minimizes the total quantization error by adapting

quantization bits under constrained total ADC power consumption.

To avoid integer programming, the integer variables b ∈ ZNRF
+ are re-

2Although (2.9) holds for bi > 5, it can be validated by the performance of the proposed
algorithms that (2.9) can provide a good approximation when formulating optimization
problem even for a small number of quantization bits.
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laxed to the real numbers b ∈ RNRF to find a closed-form solution. I also

consider (2.9) to hold for bi ∈ R. Despite the fact that the ADC power con-

sumption with b bits PADC(b) = 0 for b ≤ 0, I assume PADC(b) = cfs2
b in

(2.8) to hold for b ∈ R. Under the constraint of the total ADC power of the

conventional fixed-ADC system in which all NRF ADCs are equipped with b̄

bits, the relaxed MMSQE problem is formulated as

b̂ = argmin
b=[b1,··· ,bNRF

]ᵀ

NRF∑
i=1

Eyi(bi) (2.10)

s.t.
NRF∑
i=1

PADC(bi) ≤ NRFPADC(b̄), b ∈ RNRF .

Here, b̄ is the number of ADC bits for a fixed-ADC system, which is used to

give a reference total ADC power in the constraint for the above MMSQE

optimization problem. Proposition 1 provides the MMSQE-BA solution in a

closed form by solving the Karush-Kuhn-Tucker (KKT) conditions for (2.10),

which is different from the previously proposed greedy BA approach under a

bit constraint in [76].

Proposition 1. For the relaxed MMSQE problem in (2.10), the optimal num-

ber of quantization bits which minimizes the total MSQE is derived as

b̂i = b̄+ log2

 NRF

(
1 + SNRrf

i

) 1
3∑NRF

j=1

(
1 + SNRrf

j

) 1
3

 , i = 1, · · · , NRF (2.11)

where SNRrf
i = pu‖[Hb]i,:‖2.

Proof. See Section 2.7. �
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In Proposition 1, SNRrf
i indicates the SNR of the ith received signal

after analog beamforming yi, which illustrates that the MMSQE-BA (2.11)

depends on the channel gain of y. The MMSQE-BA has the power of 1/3

which comes from the relationship between the MSQE Eyi(bi) and the ADC

power PADC(bi) in terms of bi. Proposition 1 indicates that the optimal num-

ber of the ith ADC bits b̂i increases logarithmically with
(
1 + SNRRF

i

)1/3 and

decreases logarithmically with the sum of
(
1 + SNRRF

j

)1/3 for j = 1, · · · , NRF.

Accordingly, the ADC pair with the relatively larger aggregated channel gain

‖[Hb]i,:‖2 needs to have more quantization bits to minimize the total quanti-

zation distortion. Note that since the slowly changing channel characteristics

such as large-scale fading and AoA mostly determines the channel gains and

sparsity, they are the dominant factors for the BA solution in Proposition 1.

Since b̂i in (2.11) is a real number solution, it is necessary to map

it back to non-negative integers. Although the nearest integer mapping can

be applied to the solution, it ignores the tradeoff between power consumption

and quantization error and can violate the power constraint after the mapping.

As an alternative, I propose a greedy-based tradeoff mapping method that is

power efficient. First, the negative quantization bits (b̂i < 0) are mapped

to zero, i.e., the ADC pairs with b̂i ≤ 0 are deactivated. Note that this

mapping does not violate the actual power constraint as PADC(b) = 0 for b ≤ 0.

Next, I map positive non-integer quantization bits (b̂i > 0, b̂i /∈ Z) to db̂ie. If

the power constraint is violated, i.e.,
∑

i∈S+
PADC(db̂ie) > NRFPADC(b̄) where

S+ = {i | b̂i > 0}, it is necessary to map the subset of the positive non-
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Algorithm 1: MMSQE-BA Algorithm
1 Set power constraint Pmax = NRFPADC(b̄) using (2.8) Set

S = {1 . . . NRF} and Ptotal = 0
2 for i = 1 . . . NRF do

(a) Compute b̂i using (2.11) and bi = max(0, db̂ie)

(b) if (bi = 0), S = S− {i}

(c) else pi = PADC(bi) and Ptotal = Ptotal + pi

◦ if (b̂i ∈ Z), S = S− {i}

3 if Ptotal ≤ Pmax then
4 return b
5 for i ∈ S do
6 compute Ti = T (i) using (2.12)
7 while Ptotal > Pmax do

(a) i∗ = argmini∈STi

(b) bi∗ = bi∗ − 1 and S = S− {i∗}

(c) Ptotal = Ptotal − pi∗ + PADC(bi∗)

8 return b

integer quantization bits to bb̂ic instead of db̂ie. Notice that the bb̂ic-mapping

reduces the power consumption while increasing the MSQE. In this regard, it

is necessary to find the best subset to perform power-efficient bb̂ic-mapping.

To determine the best subset of the positive non-integer quantization

bits for db̂ie, I propose a tradeoff function

T (i) =

∣∣∣∣∣ Ei(b̂i)− Ei(bb̂ic)
PADC(b̂i)− PADC(bb̂ic)

∣∣∣∣∣→ 2−2bb̂ic − 2−2b̂i

2b̂i − 2bb̂ic
σ2
yi
. (2.12)
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The proposed function in (2.12) represents the MSQE increase per unit power

savings after mapping b̂i to bb̂ic. For the bb̂ic-mapping, b̂i with the smallest T (i)

is re-mapped to bb̂ic from db̂ie to achieve the best tradeoff of quantization error

vs. power consumption. This repeats for b̂i with the next smallest T (i) until

the power constraint is satisfied. Algorithm 1 shows the proposed MMSQE-BA

algorithm. The while-loop at line 7 will always end as this mapping algorithm

can always satisfy the power constraint from the following reasons: (i) for b̂i <

0, the 0-bit mapping does not increase power, and (ii) for b̂i > 0, the total ADC

power consumption always becomes
∑

i∈S+
PADC(bb̂ic) ≤

∑
i∈S+

PADC(b̂i).

Note that the constant term in 1 + SNRrf
i of (2.11) comes from the

additive noise n in (2.5). Due to this noise term, the MMSQE-BA b̂i would

be almost the same for all ADCs when the transmit power pu is small. In

other words, in the low SNR regime, the noise term in b̂i becomes dominant

(1 � SNRrf
i , i = 1, · · · , NRF). This leads to b̂i ≈ b̄ for i = 1, · · · , NRF.

The intuition behind this is that since we minimize the total MSQE of y,

which always includes the noise, the MMSQE-BA b̂i minimizes mostly the

quantization error of the noise in the low SNR regime, not the desired signal.

Consequently, uniform bit allocation (b̂i = b̄) across all the ADCs is likely to

appear in the low SNR regime. In this perspective, the MMSQE-BA becomes

more effective as the SNR increases while providing similar performance as

fixed-ADCs in the low SNR regime. In Section 2.3.2, the MMSQE-BA is

revised to overcome such noise-dependency.
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2.3.2 Revised MMSQE Bit Allocation

The MMSQE-BA (2.11) is dependent to the additive noise as it mini-

mizes the quantization error of yi, not solely the desired signal. Accordingly,

the MMSQE-BA is less effective in the low SNR regime. To address this prob-

lem, I modify the previous MMSQE problem (2.10) by considering to minimize

the quantization error of only the desired signal. I ignore the additive noise n

in y and consider the quantization of the desired signal x =
√
puHbs at the

ADCs. According to the AQNM, the quantization of x can be modeled as

xq =
√
puDαHbs + n̂q

where n̂q is the additive quantization noise uncorrelated with xq. The corre-

sponding MSQE for the ith signal xi becomes

Exi(bi) = E
[
|xi − xqi|2

]
=
π
√

3

2
σ2
xi

2−2bi (2.13)

where σ2
xi

= pu‖[Hb]i,:‖2. Using (2.13), the revised MMSQE problem is for-

mulated as

b̂rev = argmin
b=[b1,··· ,bNRF

]ᵀ

NRF∑
i=1

Exi(bi) (2.14)

s.t.
NRF∑
i=1

PADC(bi) ≤ NRFPADC(b̄), b ∈ RNRF .

Note that while the MMSQE-BA algorithm in Section 2.3.1 is developed

with the proper AQNM quantization modeling (2.7), the revised MMSQE-

BA (revMMSQE-BA) algorithm will be developed based on the quantization
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modeling only for the desired signal term in (2.5). Consequently, this modeling

approach may be inaccurate since the actual quantization process involves

noise. Adopting the GMI which serves a lower bound on the channel capacity

[77, 78], however, I show that (2.14) is equivalent to maximizing the GMI

in the low SNR regime. Under the assumptions of IID Gaussian signaling

si ∼ CN(0, 1) and applying a linear combiner W to the quantized signal yq

with nearest-neighbor decoding, the GMI of user n [33] is expressed as

IGMI
n (wn,b) = log2

(
1 +

κ(wn, b)

1− κ(wn, b)

)
(2.15)

where

κ(wn, b) =

∣∣E[wH
n yq
√
pusn]

∣∣2
puE[|wH

n yq|2]
=

wH
n RyqsnR

H
yqsnwn

wH
n Ryqyqwn

(2.16)

Proposition 2. Using the IID Gaussian signaling and linear combiner W to

the quantized signal yq with nearest-neighbor decoding, the revised MMSQE

problem (2.14) is equivalent to (2.17) in the low SNR regime.

b̂GMI = argmax
wn, b

Nu∑
n=1

IGMI
n (wn,b) (2.17)

s.t.
NRF∑
i=1

PADC(bi) ≤ NRFPADC(b̄), b ∈ RNRF .

Proof. See Section 2.8. �

Now, I solve (2.14) and derive the revMMSQE-BA solution b̂rev in the

following proposition.
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Proposition 3. Assuming ‖[Hb]i,:‖ 6= 0 for i = 1, · · · , NRF, the optimal num-

ber of quantization bits which minimizes the total MSQE of desired signals x

for the revised MMSQE problem (2.14) is

b̂revi = b̄+ log2

(
NRF‖[Hb]i,:‖

2
3∑NRF

j=1 ‖[Hb]j,:‖
2
3

)
, i = 1, · · · , NRF. (2.18)

Proof. Replacing σ2
yi
with σ2

xi
(ci = σ2

xi
) in (2.37) and following the same steps

in the proof of Proposition 1 in Section 2.7, we obtain (2.43). Then, (2.18) is

obtained by putting zi = 2−2bi , z̄ = 2−2b̄ and ci = σ2
xi

into (2.43). �

Corollary 1. The revMMSQE-BA solution b̂rev maximizes the GMI in the

low SNR regime and minimizes the quantization error of the beam-domain

received signal y in the high SNR.

Proof. When the SNR is low, Proposition 2 holds. For the high SNR, the

MMSQE-BA solution reduces to the revMMSQE-BA solution, b̂ → b̂rev, as

SNRrf
i � 1. �

Accordingly, even in the low SNR regime, ADC bits can be selectively

assigned to maximize GMI, which can be considered as maximizing achievable

rate. In this regard, the revMMSQE-BA provides noise-robust BA perfor-

mance. Similar non-negative integer mapping can be performed by replacing

σ2
yi

in (2.12) with σ2
xi
.
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2.3.3 Capacity Analysis with Bit Allocation

In this subsection, the capacity of the proposed system is analyzed for

given (b,Hb) when the SNR is low. Let η = Dαn + nq, then the capacity is

expressed as

C
(
b,Hb

)
= log2

∣∣∣∣INRF
+ puR

−1
ηηDαHbH

H
b DH

α

∣∣∣∣ (2.19)

where Rηη = DαD
H
α + Rnqnq .

Lemma 1. For a given ADC bit allocation b, the capacity of (2.7) in the low

SNR regime is approximated as

Clow
(
b,Hb

)
= log2

(
1 +

NRF∑
i=1

puαi‖[Hb]i,:‖2

1 + pu(1− αi)‖[Hb]i,:‖2

)
. (2.20)

Proof. In the low SNR regime, the capacity (2.19) can be approximated as

C
(
b,Hb

)
≈ log2

(
1 + putr

(
R−1
ηηDαHbH

H
b DH

α

))
= log2

(
1 + putr

([
INRF

+ puDβdiag
(
HbH

H
b

)]−1

DαHbH
H
b

))
= log2

(
1 + pu

NRF∑
i=1

(
1 + puβi‖[Hb]i,:‖2

)−1

αi‖Hb]i,:‖2

)
.

This completes the proof for Lemma 1. �

Lemma 1 gives the same intuition as the BA solutions (2.11), (2.18) that

to maximize the capacity, it is necessary to assign more bits to the RF chain

with larger channel gains in the low SNR regime. I further derive an approx-

imation of the capacity with the proposed BA algorithms by applying a BA
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solution to (2.20). In particular, I consider the case in which the revMMSQE-

BA algorithm is applied to the resolution-adaptive ADC architecture since it

is more effective in the low SNR regime.

Proposition 4. For the low SNR, the capacity under the proposed resolution-

adaptive ADC architecture with the revMMSQE-BA algorithm, CRBA
low

(
b,Hb

)
,

can be approximated as

C̃RBA
low

(
Hb

)
= log2

(
1 + Φ(b̄)

)
(2.21)

where

Φ =

NRF∑
i=1

pu

(
1−π
√

3 2−(2b̄+1)
(
N−2

RF‖[Hb]i,:‖−
4
3

{∑NRF

j=1 ‖[Hb]j,:‖
2
3

}2)−
22b̄

)∥∥[Hb]i,:
∥∥2

1+puπ
√

3 2−(2b̄+1)
(
N−2

RF‖[Hb]i,:‖−
4
3

{∑NRF

j=1 ‖[Hb]j,:‖
2
3

}2)−
22b̄

∥∥[Hb]i,:
∥∥2

.

Proof. Forcing non-negativity to the revMMSQE-BA solution (2.18) as bi =

(b̂revi )+ where (a)+ = max(a, 0), we apply bi = (b̂revi )+ to (2.20). Then, the

capacity CRBA
low

(
b,Hb

)
can be approximated as

CRBA
low

(
b,Hb

)
≈ Clow

(
(b̂rev)+,Hb

)
(a)
≈ log2

(
1 +

NRF∑
i=1

pu

(
1− π

√
3

2
2−2(b̂revi )+

)+

‖[Hb]i,:‖2

1 + pu
π
√

3
2

2−2(b̂revi )+‖[Hb]i,:‖2

)

(b)
≈ log2

(
1 +

NRF∑
i=1

pu

(
1− π

√
3

2
2−2(b̂revi )+

)
‖[Hb]i,:‖2

1 + pu
π
√

3
2

2−2(b̂revi )+‖[Hb]i,:‖2

)
(2.22)

where (a) is from the approximation of αi and (b) comes from removing the

non-negativity condition of αi. Since pu and ‖[Hb]i,:‖, which corresponds to

αi < 0 are small, the error from the approximation (b) can be negligible.

Rearranging (2.22), we derive (2.21). �
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Since the revMMSQE-BA solution b̂rev is the function of Hb, C̃RBA
low

in (2.21) is only a function of channels and captures the capacity that the

proposed flexible ADC architecture can achieve adaptively for a given channel

by using the revMMSQE-BA algorithm.

Now, regarding the implementation issue of the algorithm, I remark the

following ADC resolution switching scenarios.

Remark 1. Resolution switching at every channel coherence time allows the

proposed architecture to adapt to different channel fading realizations, imply-

ing that it is the best switching scenario. Such coherence time switching in

mmWave channels, however, may not be feasible due to the very short co-

herence time of mmWave channels [62]. Consequently, the switching period

needs to be the multiples of the coherence time. In this case, switching at the

time-scale of slowly changing channel characteristics marginally degrades the

performance of the algorithms. Then, the worst-case scenario is not to exploit

the flexibility of ADC resolutions, which is equivalent to have a infinitely long

switching period, and converges to the fixed-ADC system with analog beam-

forming.

In the next section, using a practical receiver, e.g., MRC, I analyze

the worst-case scenario in terms of an ergodic achievable rate due to the in-

tractability of the analysis with the BA solutions. The derived ergodic rate of

the proposed system for the worst-case scenario offers the insight of the system

performance as a function of the system parameters.
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2.4 Worst-Case Analysis

I derive the ergodic achievable rate of user n for the hybrid beamform-

ing architecture with fixed-ADCs over mmWave channels. The number of

quantization bits in (2.7) is considered to be the same, i.e., bi = b, and thus,

αi = α for i = 1, · · · , NRF. Using MRC, the quantized signal vector is

ymrc
q = HH

b yq = α
√
puH

H
b Hbs + αHH

b n + HH
b nq

and the nth element of ymrc
q for the user n is expressed as

ymrc
q,n = α

√
puh

H
b,nhb,nsn + α

√
pu

Nu∑
k=1
k 6=n

hHb,nhb,ksk + αhHb,nn + hHb,nnq. (2.23)

Since hb,n =
√
γngn from (2.6), the desired signal power in (2.23) becomes

puα
2γ2
n‖gn‖4 and the noise-plus-interference power is given by

ΨG = puα
2γn

Nu∑
k=1
k 6=n

γk|gHn gk|2 + α2γn‖gn‖2 + αβγng
H
n diag(puGDγG

H + INRF
)gn.

Simplifying the ratio of the two power terms, the achievable rate of the nth

user is expressed as

Rn = E

[
log2

(
1 +

puαγn‖gn‖4

Ψ̃G

)]
(2.24)

where

Ψ̃G = puα

Nu∑
k=1
k 6=n

γk
∣∣gHn gk∣∣2 + α‖gn‖2 + (1− α)gHn diag

(
puGDγG

H + INRF

)
gn.

Considering large antenna arrays at the receiver, I use Lemma 2 to characterize

the achievable rate (2.24).
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Lemma 2. Considering large antenna arrays at the BS, the uplink ergodic

achievable rate (2.24) for the user n can be approximated as

R̃n = log2

(
1 +

puαγnE
[
‖gn‖4

]
E
[
Ψ̃G

] )
(2.25)

where

E
[
Ψ̃G

]
= E

[
puα

Nu∑
k=1
k 6=n

γk
∣∣gHn gk∣∣2 + α‖gn‖2 + βgHn diag

(
puGDγG

H + INRF

)
gn

]
.

(2.26)

Proof. Lemma 1 in [79] is used for (2.24). �

According to Lemma 2 in [79], the approximation in (2.25) becomes

more accurate as the number of the BS antennas increases. Thus, this ap-

proximation will be particularly accurate in systems with the large number of

antennas. Using Lemma 2, we derive the closed-form approximation of (2.24)

as a function of system parameters: the transmit power, the number of BS an-

tennas, RF chains, users and quantization bits, and the near average number

of propagation paths.

Theorem 1. The uplink ergodic achievable rate of the user n in the considered

system with fixed ADCs is derived in a closed-form approximation as

R̃n = log2

(
1 +

puγnα
(
λ2

p + 2λp + 2e−λp
)

η

)
(2.27)

where

η =
(
λp + e−λp

)(
1 + 2puγn(1− α) +

(
λp + e−λp

) pu
NRF

Nu∑
k=1
k 6=n

γk

)
.
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Proof. See Section 2.9 �

Note that since the obtained ergodic rate in Theorem 1 is from the

worst-case scenario, it can serve as the lower bound of the proposed archi-

tecture. This further implies that the proposed system can achieve higher

ergodic rate than the derived rate by leveraging the flexibility of ADC reso-

lutions. In addition, the derived ergodic rate explains general tradeoffs of the

proposed system thanks to its tractability as a function of the system parame-

ters. In contrast to the prior work [60] which assumes the quasi-static setting,

the achievable rate in Theorem 1 considers mmWave fading channels in the

ergodic sense. Accordingly, the derived ergodic rate measures the achievable

rates by adopting the rate to the different fading realizations and thus of-

fers more realistic evaluation than the quasi-static analysis in contemporary

wireless systems.

Corollary 2 is derived for simplifying the ergodic rate in (2.27) when the

near average number of propagation paths λp is moderate or large, and further

provide remarks on the derived rate in behalf of profound understanding.

Corollary 2. When the near average number of propagation paths λp is mod-

erate or large, (2.27) can be approximated as

R̃†n = log2

1 +
puγnα(λp + 2)

1 + pu

(
2γn(1− α) + λp

NRF

∑Nu
k=1
k 6=n

γk

)
 . (2.28)

Proof. When λp is moderate or large enough, we can approximate λp +e−λp ≈
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λp. Hence, we have the approximation (2.28) by replacing λp + e−λp with λp

in (2.27). �

Remark 2. For fixed λp, (2.27) with b→∞ reduces to

R̃n → log2

1 +
puγn(λ2

p + 2λp + 2e−λp)

1 + (λp + e−λp) pu
NRF

∑Nu
k=1
k 6=n

γk

 . (2.29)

It is clear from (2.29) that the uplink rate can be improved by using more RF

chains (larger NRF), which reduces the user interference. Let NRF = τNr with

0 < τ < 1, then for the fixed λp, the full-resolution rate (2.29) increases to

R̃n → log2

(
1 + puγn

(
λ2

p + 2λp + 2e−λp
))
, as Nr →∞.

Remark 3. When using MRC, the uplink user rate transfers to the interference-

limited regime from the noise-limited regime as pu increases. Consequently, for

fixed λp, (2.27) with the infinite transmit power (pu →∞), converges to R̃n →

log2

1 +
γnα(λ2

p + 2λp + 2e−λp)(
λp + e−λp

)(
2γn(1− α) + (λp+e−λp )

NRF

∑Nu
k=1
k 6=n

γk

)
 . (2.30)

The interference power can be eliminated by using an infinite number of an-

tennas with NRF = τNr where 0 < τ < 1. Then, (2.30) approaches to

R̃n → log2

(
1 +

α(λ2
p + 2λp + 2e−λp)

2(1− α)
(
λp + e−λp

)) , as Nr →∞. (2.31)

The result (2.31) shows that even the infinite transmit power (pu → ∞) and

the infinite number of BS antennas (Nr → ∞) cannot fully compensate for

the degradation caused by the quantization distortion when mmWave channels

have a fixed number of propagation paths independent to Nr.
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Now it is considered that λp is an increasing function of Nr [80] since

larger antenna arrays with a fixed antenna spacing capture more physical paths

due to larger array aperture. Then, Corollary 2 holds in the large antenna array

regime.

Remark 4. Without loss of generality, we assume λp = εNr where 0 < ε < 1.

Considering large antenna arrays with NRF = τNr, (2.28) becomes

R̃†n = log2

1 +
puγnα(εNr + 2)

1 + pu

(
2γn(1− α) + ε/τ

∑Nu
k=1
k 6=n

γk

)
 . (2.32)

The achievable rate (2.32) increases to infinity as Nr → ∞ for any quanti-

zation bits b, which is not the case for the fixed λp as previously shown in

Remark 2 and 3. With finite Nr, however, (2.32) cannot increase to infinity

but converges to

R̃†n → log2

1 +
γnα(εNr + 2)

2γn(1− α) + ε
τ

∑Nu
k=1
k 6=n

γk

 , as pu →∞. (2.33)

It is observed that the convergence in (2.33) is from the limited number of

propagation paths.

Remark 5. Assuming that the transmit power inversely scales with the number

of RF chains that is proportional to the number of BS antennas, i.e., pu =

Es/NRF = Es/(τNr), the rate in (2.28) with fixed Es and λp = εNr reduces to

R̃†n → log2

(
1 + Esγnαε/τ

)
, as Nr →∞. (2.34)
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Thus, (2.34) shows that we can scale down the user transmit power pu pro-

portionally to 1/Nr maintaining a desirable rate. In addition, (2.34) can be

improved by using more quantization bits (larger α). This result is similar to

that of the uplink rate of low-resolution massive MIMO systems with Rayleigh

channels [57] but different in that (2.34) includes the factor of ε/τ due to the

analog beamforming and the sparse nature of mmWave channels.

In the following section, the performance of the proposed BA algorithms

is evaluated through simulations. I also validate Theorem 1 and Corollary 2,

and confirm the observations made in this section.

2.5 Simulation Results

A single cell with a radius of 200 m is considered and Nu = 8 users are

distributed randomly over the cell. The minimum distance between the BS

and users is 30 m, i.e., 30 ≤ dn ≤ 200 for n = 1, · · · , Nu where dn [m] is the

distance between the BS and user n. Considering that the system operates

at a 28 GHz carrier frequency, I adopt the mmWave pathloss model in [70]

given as PL(dn) [dB] = αpl + βpl10 log10 dn + χ where χ ∼ N(0, σ2
s) is the

lognormal shadowing with σ2
s = 8.7 dB. The least square fits are αpl = 72 dB

and βpl = 2.92 dB [70]. Noise power is calculated as Pnoise [dBm] = −174 +

10 log10W + nf where W and nf are the transmission bandwidth and noise

figure at the BS, respectively. I assume W = 1 GHz so as fs = 1 GHz

in (2.8), and nf = 5 dB. Since I assume the normalized noise variance in the

system model (2.1), the large-scale fading gain incorporating the normalization

46



is γn,dB [dB] = −(PL(dn) + Pnoise). I consider the near average number of

propagation paths λp = εNr and the number of RF chains NRF = τNr with

ε = 0.1 and τ = 0.5. It is assumed that the slowly changing characteristics of

mmWave channels are consistent over 100× the channel coherence time, i.e.,

large-scale fading gains γn and the sparse structure of G in (2.6) are fixed over

100 channel realizations but the complex gains in G change at every channel

realization. This simulation environment holds for the rest of this chapter

unless mentioned otherwise.

The proposed algorithms are evaluated in terms of the capacity (2.19),

uplink sum rate with MRC, and energy efficiency. The uplink sum rate is

defined as R =
∑Nu

n=1 Rn. The ergodic rate of the nth user Rn is computed as

follows. Applying MRC DαHb to the quantized signal vector yq in (2.7), the

ergodic rate of user n with ADC bit allocation b is given as

Rn(b) = E

[
log2

(
1 +

puγn|αααHvn|2

ΨBA
G

)]
(2.35)

where

ΨBA
G = pu

Nu∑
m=1
m 6=n

γm|gHn D2
αgm|2 + gHn (D4

α + DH
αRnqnqWα)gn

with ααα = [α2
1, · · · , α2

NRF
]ᵀ and vn = [|g1,n|2, · · · , |gNRF,n|2]

ᵀ
. Note that when

quantization bits are same across ADCs, bi = bj, ∀i, j, (2.35) reduces to (2.24).

2.5.1 Average Capacity

We compare the proposed BA algorithms with the fixed-ADC case and

include the infinite-resolution ADC case to indicate an upper bound. In Fig.
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Figure 2.2: Simulation results of the average capacity for Nu = 8 users and
Nr = 256 BS antennas with b̄ = 1 constraint bit.

2.2, the BA algorithms are applied with b̄ = 1. Recall that b̄ is the number of

ADC bits for a fixed-ADC system, which is used to give a reference total ADC

power in the constraint for the MMSQE problem. This indicates that the total

ADC power consumption with the algorithms is equal or less than that of NRF

1-bit ADCs. In Fig. 2.2, the revMMSQE-BA improves the average capacity

compared to the fixed ADCs. Moreover, it nearly achieves the capacity similar

to the one with infinite-resolution ADCs in the low SNR regime, offering large

energy saving from ADCs. The MMSQE-BA, however, does not show capac-

ity improvement because the large pathloss makes the noise dominant over the

range of pu in Fig. 2.2. Consequently, the performance gap between the al-

gorithms demonstrates the noise-robustness of the revMMSQE-BA. Although
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Figure 2.3: Simulation results of uplink sum rate for b̄ ∈ {1, 2} constraint bits
and Nu = 8 users (a) with Nr = 256 BS antennas and (b) with pu = 20 dBm.

the gap between the capacity with the revMMSQE-BA and its approximation

C̃RBA
low in (2.21) increases as pu increases, C̃RBA

low provides a good approximation

of the capacity with the revMMSQE-BA algorithm in the low SNR regime.

2.5.2 Average Uplink Sum Rate

Fig. 2.3 shows the uplink sum rate of the MMSQE-BA, revMMSQE-

BA and fixed-ADC systems (a) over different transmit power pu with Nr =

256 antennas and Nu = 8 users and (b) over the different number of BS

antennas Nr with pu = 20 dBm transmit power and Nu = 8 users. In Fig.

2.3(a), the MMSQE-BA and revMMSQE-BA achieve the higher sum rate than

the fixed-ADC system for both cases of b̄ = 1 and b̄ = 2. In particular,

the revMMSQE-BA provides the best sum rate over the entire pu while the

MMSQE-BA shows a similar sum rate to the fixed-ADC case in the low SNR

regime due to additive noise. This demonstrates that the revMMSQE-BA is

49



Table 2.2: Average Ratio of ADCs after Bit Allocation (%)
Constraint ADC Resolutions (bits)

Bits 0 1 2 3 4 5 6
b̄ = 1 40.78 28.20 26.46 4.46 0.10 0 0
b̄ = 2 32.10 16.32 25.54 19.36 6.54 0.14 0
b̄ = 3 19.40 7.46 18.42 28.54 22.58 3.48 0.12

robust to the noise. Notably, the rate of the MMSQE-BA becomes close to

that of the revMMSQE-BA in the high SNR regime, which corresponds to the

intuition that the revMMSQE-BA performs similarly to the MMSQE-BA in

the high SNR regime.

In Fig. 2.3(b), the revMMSQE-BA also offers the best sum rate for all

cases over the entire Nr. Notice that the sum rate of the revMMSQE-BA with

b̄ = 1 shows similar rate to the fixed-ADC system with b̄ = 2, thus implying

that the revMMSQE-BA achieves about the 1-bit better sum rate than the

fixed-ADC system for the considered system. In contrast to the revMMSQE-

BA, the MMSQE-BA shows no improvement for pu = 20 dBm because the

noise power is dominant when allocating quantization bits due to the large

pathloss of mmWave channels. This, again, validates the noise-robustness of

the revMMSQE-BA. Table 2.2 shows the average ratio of ADCs for different

resolutions after applying the revMMSQE-BA algorithm for b̄ = 1, 2 and 3 with

pu = 20 dBm, Nu = 8, Nr = 256, and NRF = 128. Intuitively, the number

of ADCs with higher resolution increases while that with lower resolution

decreases as the constraint bits b̄ increases. For example, the average number

of 1-bit ADCs decreases from 36.10 (0.282 × 128) to 9.55 while that of 3-bit
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Figure 2.4: Simulation results of uplink sum rate for b̄ = 1 constraint bit and
Nu = 8 users (a) with Nr = 256 BS antennas and (b) with pu = 20 dBm,
including the case of switching at slowly changing channel characteristics.

ADCs increases from 5.89 to 36.53 as b̄ increases from 1 to 3.

In Fig. 2.4, to consider more realistic implementation of the proposed

BA algorithms, we evaluate the revMMSQE-BA with two different switching

periods: the channel coherence time and the time-scale of slowly changing

channel characteristics (slow switching). It is observed that the slow switch-

ing results in small decrease of the sum rate from the coherence-time switch-

ing, while still achieving higher sum rate than the fixed-ADCs. Accordingly,

the simulation results imply that the proposed hybrid architecture with slow

switching can achieve the sum rate in between the revMMSQE-BA with the

coherence-time switching and fixed-ADC systems. In addition, the general

trends of the ergodic rate for the proposed BA algorithm and the fixed-ADC

(worst-case scenario) are similar with the performance gap.
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Regarding the total power consumption of the receiver, there will be

an additional benefit of using the BA algorithms. The power saving from

turning off the RF process associated with 0-bit ADCs (deactivated ADCs)

as a consequence of BA can be accomplished. In Section 2.5.3, I provide

energy efficiency for different ADC configurations to incorporate the additional

advantage of the BA algorithms in performance evaluation.

2.5.3 Energy Efficiency

In this subsection, the revMMSQE-BA is evaluated in terms of energy

efficiency. Energy efficiency can be defined as [32]

ηeff =
RW

Ptot

bits/Joule

where Ptot is the receiver power consumption. Recall that R is the sum rate

over a single cell, W is the transmission bandwidth. Let PLNA, PPS, PRFchain,

and PBB represent power consumption in the low-noise amplifier, phase shifter,

RF chain, and baseband processor, respectively. Applying an additional power

consumption term due to the ADC resolution switching PSW(bi), the receiver

power consumption of the considered system in Fig. 2.1 is given as

Ptot = NrPLNA +Nact(NrPPS + PRFchain) + 2

NRF∑
i=1

(
PADC(bi) + PSW(bi)

)
+ PBB

where Nact is the number of activated ADC pairs (bi 6= 0). I assume PLNA = 20

mW, PPS = 10 mW, PRFchain = 40 mW, and PBB = 200 mW [23,32]. I consider

c = 494 fJ/conv-step [56,81] for PADC(bi) in (2.8). According to the measures
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in [65], the switching power consumption PSW(bi) when switching from bp
i bits

to bi bits can be modeled as

PSW(bi) = csw

∣∣2bi − 2b
p
i

∣∣, i = 1, · · · , NRF (2.36)

where csw = 3.47 (or 0.94) mW/conv-step if the resolution increases, bi > bp
i

(or decreases, bi < bp
i ). Notice that (2.36) becomes zero when there is no

change in resolution (bi = bp
i ).

In the simulation, the following cases are compared: 1) fixed-ADC,

2) revMMSQE-BA with coherence-time switching, 3) reMMSQE-BA with

slow switching, and 4) mixed-ADC systems [33]. I also simulate the infinite-

resolution ADC case for benchmarking, assuming b∞ = 12 quantization bits

for the case. For the mixed-ADC system, we employ 1-bit and 7-bit ADCs,

and assigns 7-bit ADCs to the RF chains with the strongest channel gains

by satisfying the total ADC power constraint NRFPADC(b̄). Consequently, the

number of 1-bit and 7-bit ADCs varies depending on the power constraint.

Note that, except for the revMMSQE-BA, the number of activated ADC pairs

is equal to that of RF chains Nact = NRF. In addition, I impose two harsh

simulation constraints on the algorithm. First, I apply the switching power

consumption PSW(bi) only to the revMMSQE-BA despite the fact that the

mixed-ADC system also consumes ADC switching power. Second, it is as-

sumed that channel coherence time is equal to symbol duration, implying that

if the switching operates at the channel coherence time, it occurs at every

transmission.
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Figure 2.5: Uplink (a) sum rate and (b) energy efficiency simulation results
with Nr = 256 BS antennas, Nu = 8 users and pu = 20 dBm transmit power.

In Fig. 2.5, the sum rate and energy efficiency are simulated over differ-

ent constraint bits b̄. Note that the fixed-ADC, revMMSQE-BA, revMMSQE-

BA (slow) and mixed-ADC system consume the similar total ADC power while

the total power consumptions Ptot of the revMMSQE-BA and revMMSQE-

BA (slow) are not equal to the other cases due to the deactivated (0-bit)

ADCs and the switching power PSW(i). In Fig. 2.5(a), the revMMSQE-

BA shows the higher sum rate than the fixed-ADC and mixed-ADC cases

in the low-resolution regime (b̄ ≤ 4), and it converges to the sum rate of

the infinite-resolution case faster than the other two cases. Since the slow

switching cannot capture the channel fluctuations caused by small-scale fading,

the revMMSQE-BA (slow) shows a lower sum rate than the revMMSQE-BA

in the low-resolution regime. The revMMSQE-BA (slow), however, achieves

the higher sum rate than the fixed-ADC and mixed-ADC cases in the low-
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Figure 2.6: Uplink sum rate of the analytical approximations and the sim-
ulation results for Nu = 8 users with (a) b = 2 quantization bits and
Nr ∈ {128, 256, 512} BS antennas, and (b) Nr = 256 and b ∈ {1, 2,∞}.

resolution regime (b̄ ≤ 4). Given the same power constraint, the mixed-ADC

system discloses the lowest sum rate due to the dominant ADC power con-

sumption from the high-resolution ADCs.

In Fig. 2.5(b), the revMMSQE-BA provides the highest energy effi-

ciency in the low-resolution regime, achieving the highest rate. In the high-

resolution regime (b̄ ≥ 8), the energy efficiency of the revMMSQE-BA is

lower than that of the fixed-ADC and mixed-ADC systems due to the dissi-

pation of power consumption in resolution switching. Note that although the

revMMSQE-BA (slow) shows a lower energy efficiency than the revMMSQE-

BA when b̄ < 4, it achieves a higher energy efficiency as b̄ increases. This

is because the slow switching accomplishes a better tradeoff between the rate

and the switching power consumption than the coherence-time switching as

b̄ increases. Regarding the sum rate and energy efficiency, it is not worth-
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while to consider the number of constraint bits above b̄ = 6 because the sum

rate of the revMMSQE-BA is already comparable with the infinite-resolution

system around b̄ = 4 with 22% better energy efficiency than the fixed-ADC

case. Therefore, the simulation results demonstrate that the revMMSQE-

BA with coherence-time switching provides the best performance, and that

the slow switching approach offers performance improvement concerning the

implementation. Fig. 2.5 indeed, implies that the proposed BA algorithm

eliminates most of the quantization distortion requiring the minimum power

consumption. Accordingly, I can employ existing digital beamformers to the

power-constrained system when using the proposed BA algorithm in the low-

resolution regime.

2.5.4 Worst-Case Analysis Validation

In this subsection, I validate Theorem 1 and Corollary 2, and confirm

the observations in Section 2.4. For simulation, user locations are fixed once

they are dropped in the cell, which corresponds to the setting of the analytical

derivations in Section 2.4. Fig. 2.6 illustrates the sum rate for (a) Nr ∈

{128, 256, 512} BS antennas with b = 2 quantization bits and for (b) Nr = 256

with b ∈ {1, 2,∞} over different transmit power pu. The analytical results

show accurate alignments with the simulation results in Fig. 2.6(a) and Fig.

2.6(b), which validates Theorem 1 and Corollary 2. The sum rates show the

transition from the noise-limited regime to the interference-limited regime as

pu increases. This observation corresponds to the convergence of the achievable
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Figure 2.7: Uplink sum rate of the analytical and simulation results for b ∈
{1, 2} quantization bits with Nu = 8 users. Two different cases of the transmit
power are considered: i) pu = 20 dBm and ii) pu = Es/NRF with Es = 45
dBm.

rate with increasing transmit power in Remark 4. Notably, the sum rate with

b =∞ also tends to converge in Fig. 2.6(b) due to the interference in (2.33).

I also evaluate the analytical results over the different number of BS

antennas. The fixed transmit power of 20 dBm (pu = 20 dBm) and the power-

scaling law (pu = Es/NRF) with Es = 45 dBm are considered in Fig. 2.7. It

is observed that Fig. 2.7 validates the derived approximations of the achiev-

able rate for the different power assumptions and offers intuitions discussed in

Remark 4 and 5: the uplink sum rate with pu = 20 dBm keeps increasing as

Nr increases, and we can maintain the sum rate by decreasing the transmit
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power pu proportionally to 1/Nr (NRF = τNr). In addition, the sum rate with

the power-scaling law converges to (2.34) and can be improved by increasing

the number of quantization bits (larger α) as illustrated in Fig. 2.7. In Sec-

tion 2.5.2, the fixed-ADC approach serves the lower bound of the sum rate in

the proposed architecture showing the similar trend to the BA strategies with

performance gap. Therefore, the derived ergodic rate in Theorem 1 explains

general tradeoffs of the proposed system serving the lower bound of the sum

rate.

2.6 Conclusion

This chapter proposes the resolution-adaptive ADC network for the hy-

brid MIMO receiver for mmWave communications. Employing array response

vectors for analog beamforming, I investigate the ADC bit-allocation problem

to minimize the quantization distortion of received signals by leveraging the

flexibility of ADC resolutions. One key finding is that the optimal number of

ADC bits increases logarithmically proportional to the RF chain’s SNR raised

to the 1/3 power. The proposed algorithms outperform the conventional fixed

ADCs in the proposed architecture in the low-resolution regime. In particular,

the revised algorithm shows a higher capacity, sum rate and energy efficiency in

any communication environment. Furthermore, the revised algorithm makes

the quantization error of desired signals negligible while achieving higher en-

ergy efficiency than the fixed-ADC system. Having negligible quantization

distortion allows existing state-of-the-art digital beamforming techniques to
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be readily applied to the proposed system. The approximated capacity ex-

pression captures the capacity that the proposed flexible ADC architecture

can achieve adaptively for a given channel by using the revised algorithm.

The derived ergodic rate from the worst-case analysis explains the tradeoffs

of the proposed system in terms of system parameters, serving as the lower

performance bound of the proposed system. In the next chapter, I will also

propose another advanced receiver architecture by focusing on optimization of

analog combining rather than that of ADC resolutions so that quantization

errors can be mitigated in the analog preprocessing.

2.7 Proof of Proposition 1

By defining zi = 2−2bi , z̄ = 2−2b̄ and ci = σ2
yi
where σ2

yi
= pu‖[H]i,:‖2+1,

we can convert (2.10) into a simpler form given as

ẑ = argmin
z>0NRF

cᵀz s.t.
NRF∑
i=1

z
− 1

2
i ≤ NRFz̄

− 1
2 (2.37)

where 0NRF
is a NRF×1 zero vector. Note that (2.37) is the equivalent problem

to (2.10) and is a convex optimization problem. The global optimal solution

of (2.10) can be achieved by the KKT conditions for (2.37).

By relaxing z > 0NRF
to z ≥ 0NRF

and defining v as

v =

[∑NRF

i=1 z
− 1

2
i −NRFz̄

− 1
2

−z

]
, (2.38)
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KKT conditions become

c + Jv(z)ᵀµµµ = 0NRF
(2.39)

µi vi = 0, ∀ i (2.40)

v ≤ 0(NRF+1) (2.41)

µµµ ≥ 0(NRF+1) (2.42)

where the Jacobian matrix of v is defined as Jv(z) =
[
p −INRF

]ᵀ with p =[
−1

2
z
− 3

2
1 , · · · ,−1

2
z
− 3

2
NRF

]ᵀ
, and µµµ ∈ R(NRF+1) is the vector of the Lagrangian

multipliers. Since zi 6= 0, i = 1, · · · , NRF, the Lagrangian multipliers become

µj = 0, j = 2, · · · , NRF + 1, from (2.40). Hence, (2.39) guarantees µ1 6= 0 as

c 6= 0NRF
, and (2.40) gives v1 = 0 meaning that the equality holds for the power

constraint. From (2.39) and (2.40), I have ci = 1
2
z
− 3

2
i µ1 and

∑NRF

i=1 z
− 1

2
i =

NRFz̄
− 1

2 , which gives µ1 =
{

z̄
1
2

NRF

∑NRF

j=1 (2cj)
1
3

}3

> 0. Putting the Lagrangian

multipliers µ1 =
{

z̄
1
2

NRF

∑NRF

j=1 (2cj)
1
3

}3

into ci = 1
2
z
− 3

2
i µ1, I have

ẑi = z̄

{
1/NRF ·

NRF∑
j=1

(cj/ci)
1
3

}2

. (2.43)

Since ẑi > 0, the solution ẑ meets the KKT conditions. Using the definitions

of zi, z̄ and ci, (2.11) is obtained from (2.43). �

2.8 Proof of Proposition 2

With the optimal combiner wopt
n = R−1

yqyq
Ryqsn [33], (2.16) becomes

κ(wopt
n b) = RH

yqsnR
−1
yqyq

Ryqsn . (2.44)
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In the low SNR regime, RH
yqyq

is computed as

lim
pu→0

Ryqyq = lim
pu→0

(
puDαHbH

H
b DH

α + D2
α + Rnqnq

)
= lim

pu→0

(
Dα + DαDβ diag

(
puHbH

H
b

))
= Dα. (2.45)

The correlation vector Ryqsn is computed as

Ryqsn = E[yqsn] =
√
puDαhb,n. (2.46)

Using (2.45) and (2.46), κ(wopt
n b) (2.44) becomes

κ(wopt
n , b) = pu

NRF∑
i=1

(
1− π

√
3

2
2−2bi

)
|hb,n,i|2 (2.47)

where hb,n,i is the ith element of hb,n. Since we have log(1+x/(1−x)) = x+o(x)

as x→ 0, the GMI becomes IGMI
n (wopt

n ,b) = κ(wopt
n ,b) + o(κ(wopt

n ,b)) in the

low SNR regime, where o(·) is little-o. Thus, the objective function in the

GMI maximization problem (2.17) with the low SNR approximation becomes

b̂GMI ' argmax
b

Nu∑
n=1

κ(wopt
n ,b)

= argmin
b

Nu∑
n=1

NRF∑
i=1

pu
π
√

3

2
2−2bi |hb,n,i|2. (2.48)

Note that (2.48) is equal to the objective function in (2.14). This completes

the proof. �
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2.9 Proof of Theorem 1

Since the beamspace channels g are sparse, I use an indicator function

to characterize the sparsity. The indicator function 1{i∈A} is defined by

1{i∈A} =

{
1 if i ∈ A

0 else.

Utilizing the function 1{·}, I first model the ith complex path gain of the nth

user gi,n as

gi,n = 1{i∈Pn}ξi,n, n = 1, · · · , Nu (2.49)

where Pn =
{
i
∣∣ gi,n 6= 0, i = 1, · · · , NRF

}
and ξi,n is an IID complex Gaussian

random variable which follows CN(0, 1). I compute the expectation of the

number of propagation paths E[L]. Since I assume L ∼ max{Q, 1} with Q ∼

Poisson(λp), the expectation E[L] is derived as

E
[
L
]

= e−λp +
∞∑
`=1

`
λ`pe

−λp

`!
= e−λp + λp. (2.50)

Similarly, E
[
L2
]
can be given as

E
[
L2
]

= e−λp +
∞∑
`=1

`2
λ`pe

−λp

`!

(a)
= e−λp + λp + λ2

p (2.51)

where (a) comes from E
[
Q2
]

=
∑∞

`=1 `
2 λ`pe

−λp

`!
and E

[
Q2
]

= Var[Q]+
{
E[Q]

}2.

Now, I solve the expectations in Lemma 2. I have |gi,n|2 = 1{i∈Pn}|ξi,n|2

and |ξi,n|2 is distributed as exponential random variable with mean of the value

1, i.e., |ξi,n|2 ∼ exp(1). Despite the fact that the dimension of gi,n is NRF,

‖gi,n‖2 follows the chi-square distribution of 2Ln degrees of freedom ‖gn‖2 ∼
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χ2
2Ln

due to the channel sparsity, where Ln is the number of propagation paths

for the nth user. Then, I derive the expectation of ‖gn‖2 for the AWGN noise

power in (2.26) as

E
[
‖gn‖2

]
= E

[
E
[
‖gn‖2

∣∣Ln]] (a)
= e−λp + λp (2.52)

where (a) comes from ‖gn‖2 ∼ χ2
2Ln

and (2.50). Similarly, the expectation of

the desired signal power in (2.25) is

E
[
‖gn‖4

]
= E

[
E
[
‖gn‖4

∣∣Ln]]
= E

[
Var
[
‖gn‖2|Ln

]
+
{
E
[
‖gn‖2|Ln

]}2
]

(a)
= λ2

p + 2λp + 2e−λp (2.53)

where (a) comes from ‖gn‖2 ∼ χ2
2Ln

, (2.50) and (2.51).

To further derive E
[
Ψ̃G

]
in (2.26), I solve the inter-user interference

power E
[
|gHn gk|2

]
for k 6= n, which is given as

E
[
|gHn gk|2

]
= E

[(
NRF∑
i=1

g∗i,ngi,k

)(
NRF∑
j=1

gj,ng
∗
j,k

)]

=

NRF∑
i=1

E
[
|gi,n|2|gi,k|2

]
(a)
=

NRF∑
i=1

E
[
1{i∈Pn,i∈Pk}

]
. (2.54)

Note that (a) comes from gi,n = 1{i∈Pn}ξi,n defined in (2.49) and the indepen-

dence between ξi,n and ξi,k when k 6= n. Furthermore, E
[
1{i∈Pn,i∈Pk}

]
in (2.54)
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can be computed as

E
[
1{i∈Pn,i∈Pk}

]
(a)
=

{
E
[
E
[
1{i∈Pn}

∣∣Ln]]}2

=

(
E
[
Ln
]

NRF

)2

(b)
=

(
λp + e−λp

NRF

)2

(2.55)

where (a) is from the IID of Ln and the independence between the two events:

{i ∈ Pn} and {i ∈ Pk}, and (b) comes from (2.50). Putting (2.55) into (2.54),

E
[
|gHn gk|2

]
finally becomes

E
[
|gHn gk|2

]
=

(λp + e−λp)2

NRF

. (2.56)

Lastly, I compute the quantization noise power in (2.26) as

E
[
gHn diag

(
puGDγG

H + INRF

)
gn

]
= E

[
NRF∑
i=1

|gi,n|2
(
pu

Nu∑
k=1
k 6=n

γk|gi,k|2 + puγn|gi,n|2 + 1

)]

=

NRF∑
i=1

(
pu

Nu∑
k=1
k 6=n

γkE
[
|gi,k|2|gi,n|2

]
+ E

[
puγn|gi,n|4 + |gi,n|2

])

(a)
=

NRF∑
i=1

(
pu

Nu∑
k=1
k 6=n

γkE
[
1{i∈Pk,i∈Pn}

]
+
(
2puγn + 1

)
E
[
1{i∈Pn}

])

(b)
= pu

(λp + e−λp)2

NRF

Nu∑
k=1
k 6=n

γk + (λp + e−λp)(2puγn + 1) (2.57)

where (a) and (b) are from (2.49) and (2.55), respectively. Substituting (2.52),

(2.53), (2.56) and (2.57) into (2.25) and simplifying the equations, we derive

the final result (2.27). �
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Chapter 3

Two-Stage Analog Combining in Hybrid
Beamforming Systems with Low-Resolution

ADCs

In this chapter1, I investigate hybrid analog/digital beamforming for

multiple-input multiple-output (MIMO) systems with low-resolution analog-

to-digital converters (ADCs) for millimeter wave (mmWave) communications.

In the receiver, I propose to split the analog combining subsystem into a chan-

nel gain aggregation stage followed by a spreading stage. Both stages use

phase shifters. The goal is to design the two-stage analog combiner to opti-

mize mutual information (MI) between the transmitted and quantized signals

by effectively managing quantization error. To this end, I formulate an un-

constrained MI maximization problem without a constant modulus constraint

on analog combiners, and derive a two-stage analog combining solution. The

solution achieves the optimal scaling law with respect to the number of radio

1This chapter is based on the work published in the journal paper: J. Choi, G. Lee,
and B. L. Evans, "Two-Stage Analog Combining in Hybrid Beamforming Systems with
Low-Resolution ADCs," in IEEE Transactions on Signal Processing, vol. 67, no. 9, pp.
2410-2425, May 1, 2019. Part of the work was also published in the conference paper: J.
Choi, G. Lee, and B. L. Evans, "A Hybrid Beamforming Receiver with Two-Stage Analog
Combiner and Low-Resolution ADCs," in Proceedings of IEEE International Conference on
Communications (ICC), May 2019. This work was supervised by Prof. Brian L. Evans and
Dr. Gilwon Lee provided valuable feedback and contributions that improved the work.
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frequency chains and maximizes the MI for homogeneous singular values of a

MIMO channel. I further develop a two-stage analog combining algorithm to

implement the derived solution for mmWave channels. By decoupling channel

gain aggregation and spreading functions from the derived solution, the pro-

posed algorithm implements the two functions by using array response vectors

and a discrete Fourier transform matrix under the constant modulus constraint

on each matrix element. Therefore, the proposed algorithm provides a near

optimal solution for the unconstrained problem, whereas conventional hybrid

approaches offer a near optimal solution only for a constrained problem. The

closed-form approximation of the ergodic rate is derived for the algorithm,

showing that a practical digital combiner with two-stage analog combining

also achieves the optimal scaling law. Simulation results validate the algo-

rithm performance and the derived ergodic rate.

3.1 Introduction

Unlike the previous chapter, a new hybrid beamforming architecture

is proposed for homogeneous resolution ADCs to incorporate the impact of

quantization error in the analog preprocessing. Hybrid beamforming architec-

tures have been widely investigated to reduce the number of RF chains with

minimum communication performance degradation. Singular value decompo-

sition (SVD)-based analog combining designs were proposed [24,82,83] as the

SVD transceiver maximizes the channel capacity. In [24], hybrid precoder and

combiner design methods were developed by extracting the phases of the el-
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ements of the singular vectors. Considering correlated channels, the SVD of

the MIMO channel covariance matrix was used for analog combiner design to

maximize mutual information in [82]. The performance of hybrid precoding

systems was analyzed for MIMO downlink communications [84, 85]. It was

shown that hybrid beamforming systems with a small number of RF chains

can achieve the performance comparable to fully digital beamforming systems.

For MIMO uplink communications, the Gram-schmidt based analog combiner

design algorithm was developed in [86] to orthogonalize multiuser signals.

For mmWave channels, hybrid beamforming techniques were proposed

by exploiting the limited scattering of the channels [21–23,29,30,87–89]. Adopt-

ing array response vectors (ARVs) for analog beamformer design, orthogonal

matching pursuit (OMP)-based algorithms were developed in [21, 22, 87–89].

The proposed OMP-based algorithm in [21] approximates the minimum mean

squared error (MMSE) combiner with a fewer number of RF chains than the

number of antennas by using ARV-based analog combiners. The OMP-based

algorithm in [21] was further improved by combining OMP and local search

to reduce the computational complexity [88] and by iteratively updating the

phases of the phase shifters [89]. A channel estimation technique was also pro-

posed by using hierarchical multi-resolution codebook-based ARVs with low

training overhead in [22]. By leveraging the sparse nature of mmWave chan-

nels, the proposed algorithms with ARV-based analog beamformers achieved

the comparable performance with greatly reduced cost and power consumption

compared to fully digital systems.
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While the previous studies [21–24, 29, 30, 82–89] considered infinite-

resolution ADCs in hybrid MIMO systems, hybrid beamforming systems with

low-resolution ADCs were investigated in [25, 32, 35, 36, 90, 91] to take advan-

tage of both the hybrid beamforming and low-resolution ADC architectures.

The proposed algorithm in [25] attempted to design an analog combiner by

minimizing the MSE including the quantization error. The analog combiner,

however, is not constrained with a constant modulus, and the entire combining

matrix needs to be designed for each transmitted symbol separately. Without

considering the coarse quantization effect in combiner design, bit allocation

techniques [90] and user scheduling methods [91] were developed for a given

ARV-based analog combiner. In [32, 35], an alternating projection method

was adopted to implement SVD-based analog combiners. The performance

analysis of hybrid MIMO systems with low-resolution ADCs in [32] showed

the superior tradeoff between performance and power consumption compared

to fully digital systems and hybrid systems with infinite-resolution ADCs. In

[36], a subarray antenna structure was considered, and an ARV-based com-

bining algorithm was used to select the ARV that maximizes the aggregated

channel gain. Although the analysis in [32, 35, 36] provided useful insights for

the hybrid architecture with low-resolution ADCs such as the achievable rate

and power tradeoff, the quantization error was not explicitly taken into ac-

count in the hybrid beamformer design. Consequently, considering the coarse

quantization effect in the analog combiner design is still an open question.
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3.1.1 Contributions

In this chapter, I derive a near optimal analog combining solution for

an unconstrained MI maximization problem in hybrid MIMO systems with

low-resolution ADCs. I, then, propose a two-stage analog combining archi-

tecture to properly implement the derived solution under a constant modulus

constraint on each phase shifter. Splitting the solution into a channel gain ag-

gregation stage by using ARVs and a gain spreading stage by using a discrete

Fourier transform (DFT) matrix, the two-stage analog combining structure

realizes the derived near optimal combining solution with phase shifter-based

analog combiners for mmWave communications. The contributions of this

paper can be summarized as follows:

• Without imposing a constant modulus constraint on an analog combiner, I

formulate an unconstrained MI maximization problem for a hybrid MIMO

system with low-resolution ADCs. For a general channel, I derive a near

optimal analog combining solution which consists of (1) any semi-unitary

matrix that includes the singular vectors of the signal space in the chan-

nel matrix and (2) any unitary matrix with constant modulus. The first

and second parts in the derived solution can be considered as a channel

gain aggregation function that collects the entire channel gains into the

lower dimension and a spreading function that reduces quantization error

by spreading the aggregated gains over RF chains, respectively. I show that

the derived solution achieves the optimal scaling law with respect to the
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number of RF chains and maximizes the MI when the singular values of a

MIMO channel are the same.

• An ARV-based two-stage analog combining algorithm is further developed

to implement the derived solution for mmWave channels under the constant

modulus constraint on each phase shifter. Decoupling the channel gain

aggregation and spreading functions from the solution, the algorithm imple-

ments the aggregation and spreading functions by using ARVs and a DFT

matrix without losing the optimality of the solution in the large antenna

array regime. Therefore, the two-stage analog combiner obtained from the

proposed algorithm under the constant modulus constraint also provides

a near optimal solution for the unconstrained MI maximization problem,

whereas conventional hybrid approaches offer a near optimal solution only

for a constrained problem. Since the DFT matrix is independent of chan-

nels, only passive phase shifters need to be appended to a conventional hy-

brid MIMO architecture with marginal complexity and cost increase, while

achieving a large MI gain.

• A closed-form approximation of the ergodic rate with a maximum ratio

combining (MRC) digital combiner is derived for the proposed algorithm.

The derived rate characterizes the ergodic rate performance of the proposed

two-stage analog combining architecture in terms of the system parameters

including quantization resolution. The derived rate reveals that the ergodic

rate of the MRC combiner achieves the same optimal scaling law with the
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Figure 3.1: A receiver architecture with two-stage analog combining, low-
resolution ADCs and digital combining.

proposed two-stage analog combiner by reducing the quantization error as

the number of RF chains increases.

Simulation results demonstrate that the proposed two-stage analog combin-

ing algorithm outperforms conventional algorithms and validate the derived

ergodic rate.

3.2 System Model

A single-cell uplink wireless network is considered in which the BS is

equipped with Nr receive antennas and NRF RF chains with NRF < Nr. As

shown in Fig. 3.1, the antennas are uniform linear arrays (ULA), and each RF

chain is followed by a pair of low-resolution ADCs. It is assumed that the BS

serves Nu users each with a single transmit antenna with Nu ≤ NRF.
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3.2.1 Channel Model

The channel hγ,k of user k is assumed to be the sum of the contributions

of scatterers that contribute Lk propagation paths to the channel hγ,k [92]. For

mmWave channels, the number of channel paths Lk is expected to be small

due to the limited scattering [10]. Here, I assume a narrowband channel where

the components of each user signal propagating through Lk propagation paths

are arriving within the sampling time. The discrete-time narrowband channel

of user k can be modeled as

hγ,k =
1
√
γk

hk =

√
Nr

γkLk

Lk∑
`=1

g`,ka(φ`,k) (3.1)

where γk denotes the pathloss of user k, g`,k is the complex gain of the `th prop-

agation path of user k, and a(φ`,k) is the ARV of the receive antennas corre-

sponding to the azimuth AoA of the `th path of the kth user φ`,k ∈ [−π/2, π/2].

The complex channel gain g`,k follows an independent and identically dis-

tributed (i.i.d.) complex Gaussian distribution, g`,k
i.i.d∼ CN(0, 1). The ARV

a(θ) for the ULA antennas of the BS is given as

a(θ) =
1√
Nr

[
1, e−jπϑ, e−j2πϑ, . . . , e−j(Nr−1)πϑ

]T
where the spatial angle ϑ = 2d

λ
sin(θ) is related to the physical AoA θ, d is

the distance between antennas, and λ is the signal wave length. I use φ and

θ to denote the physical AoAs of a user channel and physical angles of analog

combiners, respectively. I also use ϕ and ϑ to denote the spatial angles for φ

and θ, respectively, where ϕ, ϑ ∈ [−1, 1].
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3.2.2 Signal and Quantization Model

For simplicity, a homogeneous long-term received SNR network2 is

considered, where a conventional uplink power control compensates for the

pathloss and shadowing effect to achieve the same long-term received SNR

target for all users in the cell [93,94]. Let x = Ps be the transmitted user sig-

nals where P = diag{√ρ γ1, . . . ,
√
ρ γNu} is the transmit power matrix and s

is the Nu×1 transmitted symbol vector from Nu users. Further, let Hγ = HB

represent the Nr×Nu channel matrix where Hγ = [hγ,1, . . . ,hγ,Nu ] is the chan-

nel matrix, H = [h1, . . . ,hNu ] is the channel matrix after the uplink power

control, and B = diag{
√

1/γ1, . . . ,
√

1/γNu}. The analog baseband received

signal vector is given as

r = Hγx + n = HBPs + n =
√
ρHs + n

where n indicates the Nr × 1 additive white noise vector. I assume zero mean

and unit variance for the user symbols s and noise n. The noise follows the

complex Gaussian distribution n ∼ CN(0, INr) and thus, ρ is considered to be

the SNR. Also, the channel state information of H is assumed to be available

at the BS. Note that the uplink power control offers homogeneous long-term

average SNR, which can relieve the problem of user signals with small power

being buried under the quantization error due to the limited dynamic range

of low-resolution ADCs. More investigation to resolve with problem, however,

is needed as a future work.

2We remark that the derived analysis in this chapter can also be applicable to a hetero-
geneous long-term received SNR network with minor modification.
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After the BS receives the signals from users, the signals are combined

via two analog combiners as shown in Fig. 3.1. Then, the received baseband

analog signal vector becomes

y =
√
ρWH

RF2
WH

RF1
Hs + WH

RF2
WH

RF1
n

=
√
ρWH

RFHs + WH
RFn (3.2)

where WRF = WRF1WRF2 denotes the two-stage analog combiner, WRF1 ∈

CNr×NRF is the first analog combiner, and WRF2 ∈ CNRF×NRF is the second

analog combiner. Each real and imaginary part of the combined signal (3.2)

are quantized at ADCs with b quantization bits. Assuming a MMSE scalar

quantizer and Gaussian signaling s ∼ CN(0, INu), I adopt an additive quanti-

zation noise model (AQNM) [73] which shows reasonable accuracy in the low

to medium SNR ranges [56]. The AQNM approximates the quantization pro-

cess in linear form, which is equivalent to the approximation with Bussgang

decomposition for low-resolution ADCs [54]. The quantized signal vector is

expressed as [54,73]

yq = Q(y) = αb
√
ρWH

RFHs + αbW
H
RFn + q (3.3)

where Q(·) is the element-wise quantizer, the scalar quantization gain is αb =

1 − βb where βb = E[|y − yq|2]/E[|y|2], and q denotes the quantization noise

vector. For b > 5 quantization bits, βb is approximated as βb ≈ π
√

3
2

2−2b. For

b ≤ 5, the values of βb are listed in Table 1 in [57]. The quantization noise

vector q is uncorrelated to the quantization input y and follows the complex
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Gaussian distribution q ∼ CN(0,Rqq), where the covariance matrix is given

as [73]

Rqq =αbβbdiag
{
ρWH

RFHHHWRF+WH
RFWRF

}
. (3.4)

Then, a digital combiner WBB ∈ CNRF×NRF is applied to the quantized signal

in (3.3) as

z = αb
√
ρWH

BBW
H
RFHs + αbW

H
BBW

H
RFn + WH

BBq. (3.5)

3.3 Optimality of Two-Stage Analog Combining

In this section, I provide a near optimal structure for the first and

second analog combiners WRF1 ,WRF2 in low-resolution ADC systems for a

general channel. To this end, I first formulate an unconstrained MI maximiza-

tion problem without a constant modulus condition on the analog combiner

WRF. Then, I derive a near optimal solution for the unconstrained problem,

which can be split into two different functions corresponding to the two-stage

analog combiner.

Let C(WRF) , I(s;yq). I consider the MI between the transmit symbols

s and quantized signals yq under the AQNM model as a measure to maximize.

The MI is given as

C(WRF)=log2

∣∣∣INRF
+ρα2

b

(
α2
bW

H
RFWRF+Rqq

)−1
WH

RFHHHWRF

∣∣∣. (3.6)

Using (3.6), I formulate the maximum MI problem by only assuming a semi-

unitary constraint on the analog combiner WH
RFWRF = INRF

as in [32] to
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keep the effective noise being white Gaussian noise. Note that the MI in (3.6)

incorporates the effect of inter-user interference and noise. Accordingly, the

relaxed MI maximization problem is formulated as 3

P1 : Wopt
RF = argmax

WRF

C(WRF), s.t. WH
RFWRF = I. (3.7)

From the data processing inequality given below, the MI between transmitted

signals s and quantized signals yq is larger or equal to the MI between trans-

mitted signals s and digitally combined signal z, i.e., I(s;yq) ≥ I(s; z) [97].

In this work, I maximize I(s;yq) so that a derived solution can maximize the

upper bound of I(s; z).

Under the perfect quantization system where the number of quantiza-

tion bits is assumed to be infinite, the unconstrained optimal analog combiner

for the problem P1 is given as the matrix U1:NRF
that consists of the first NRF

left singular vectors of H. The optimal solution Wopt
RF of the problem P1 with

a finite number of quantization bits, however, is still not known. I first derive

an optimal scaling law with respect to the number of RF chains NRF, and

provide a solution that achieves the scaling law.

Theorem 2 (Optimal scaling law). For fixed NRF/Nr = κ with κ ∈ (0, 1), the

MI with the optimal combiner Wopt
RF for the problem P1 scales with NRF as

C(Wopt
RF) ∼ Nu log2NRF (3.8)

3To take into account the fairness among users, solving the problem of maximizing the
minimum signal-to-interference-plus-noise ratio would be necessary [95, 96]. Since it is be-
yond the scope of this work, I only consider the MI maximization, leaving the fairness
problem as future work.
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and the optimal scaling law is achieved by using W?
RF = W?

RF1
W?

RF2
such that:

(i) W?
RF1

= [U1:Nu U⊥], and

(ii) W?
RF2

is any NRF ×NRF unitary matrix that satisfies the constant mod-

ulus condition on its elements,

where U1:Nu is the matrix of the left-singular vectors corresponding to the first

Nu largest singular values of H and U⊥ denotes the matrix of any orthonormal

vectors whose column space is orthogonal to that of U1:Nu.

Proof. Since the optimal solution for P1 is not known, I first derive an upper

bound of C(WRF) and its scaling law with respect to NRF. I, then, show that

adopting W?
RF = W?

RF1
W?

RF2
, which satisfies the conditions (i) and (ii) in

Theorem 2, achieves the same scaling law of the upper bound.

An arbitrary semi-unitary combiner WRF can be decomposed into

WRF = [U|| U⊥]W̄RF, (3.9)

where U|| is an Nr×m matrix composed of m orthonormal basis vectors whose

column space is in the subspace of Span(u1, · · · ,uNu) with 1 ≤ m ≤ Nu, U⊥ is

an Nr × (NRF−m) matrix composed of (NRF−m) orthonormal basis vectors

whose column space is in the subspace of Span⊥(u1, · · · ,uNu), and W̄RF is

an NRF × NRF unitary matrix. Here, ui is the i-th left-singular vector of H.
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Using (3.9), the term WH
RFHHHWRF in (3.6) can be re-written as

WH
RFHHHWRF = W̄H

RF[U|| U⊥]HUΛΛΛUH [U|| U⊥]W̄RF

= W̄H
RF

[
UH
|| U1:NuΛΛΛNuU

H
1:Nu

U|| 0

0 0

]
︸ ︷︷ ︸

,Q

W̄RF (3.10)

where ΛΛΛ = diag{λ1, · · · , λNu , 0, · · · , 0} ∈ CNr×Nr , ΛΛΛNu = diag{λ1, . . . , λNu},

λi is the ith largest singular value of HHH , and U1:Nr = [u1, · · · ,uNr ]. The

matrix Q has rank m and can be decomposed into Q = UQΛ̄ΛΛUH
Q, where UQ

is the NRF × NRF matrix consisting of NRF singular vectors of Q; and Λ̄ΛΛ =

diag{λ̄1, · · · , λ̄m, 0, · · · , 0} ∈ CNRF×NRF . Here, λ̄i is the ith largest singular

value of Q. Since UQ is unitary, W̄RF can be re-expressed as

W̄RF = UQWRF. (3.11)

andWRF is still unitary. Substituting (3.11) into (3.10), we haveWH
RFHHHWRF =

W
H

RFΛ̄ΛΛWRF and the MI in (3.6) becomes

C(WRF) =log2

∣∣∣∣I+
αb
βb

diag−1

{
W

H

RFΛ̄ΛΛWRF+
1

βbρ
I

}
W

H

RFΛ̄ΛΛWRF

∣∣∣∣ . (3.12)

Let G = W
H

RFΛ̄ΛΛ
1/2

= [Gsub 0], where Gsub is the NRF ×m submatrix of G.
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Then, the MI can be upper bounded as

C(WRF) = log2

∣∣∣∣INRF
+
αb
βb

GHdiag−1

{
‖[G]i,:‖2 +

1

βbρ

}
G

∣∣∣∣
= log2

∣∣∣∣Im +
αb
βb

GH
subdiag−1

{
‖[Gsub]i,:‖2 +

1

βbρ

}
Gsub

∣∣∣∣
(a)
= log2

∣∣∣∣Im +
αb
βb

G̃H
subG̃sub

∣∣∣∣
=

m∑
i=1

log2

(
1 +

αb
βb
λi{G̃H

subG̃sub}
)

(b)

≤ m log2

(
1 +

αb
βbm

m∑
i=1

λi{G̃H
subG̃sub}

)
(c)
= m log2

(
1 +

αb
βbm

NRF∑
i=1

‖[Gsub]i,:‖2

‖[Gsub]i,:‖2 + 1
βbρ

)
(3.13)

where (a) follows by letting G̃sub be the matrix whose each row i is given as

i-th row of Gsub normalized by
(
‖[Gsub]i,:‖2 + 1

βbρ

)1/2; (b) comes from Jensen’s

inequality and the concavity of log2(1 + x) for x > 0; and (c) is from

m∑
i=1

λi{G̃H
subG̃sub}=Tr{G̃H

subG̃sub}=

NRF∑
i=1

‖[Gsub]i,:‖2

‖[Gsub]i,:‖2+ 1
βbρ

.

The upper bound of C(WRF) in (3.13) can further be upper bounded by

m log2(1 + αbNRF

βbm
) because ‖[Gsub]i,:‖2

‖[Gsub]i,:‖2+ 1
βbρ

< 1. Since the derivative of this

bound with respect to m is positive for m > 0 with any given αb, NRF > 0, it

is maximized when m = Nu, and thus, it scales as Nu log2NRF, as NRF →∞.

Now, I prove that the scaling law can be achieved by the two-stage ana-

log combiner W?
RF = W?

RF1
W?

RF2
in Theorem 2. Let C ,W?H

RF2
ΛΛΛNRF

W?
RF2

.

From the relationshipW?H
RFHHHW?

RF = W?H
RF2

ΛΛΛNRF
W?

RF2
= C, whereΛΛΛNRF

=
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diag{λ1, · · · , λNu , 0, · · · , 0} ∈ CNRF×NRF and (3.12), I have

C(W?
RF) = log2

∣∣∣∣INRF
+
αb
βb

diag−1
{
C + 1

βbρ
INRF

}
C

∣∣∣∣ (3.14)

(a)
= log2

∣∣∣∣∣∣I+
αb
βb

(∑Nu
i=1 λi
NRF

+
1

βbρ

)−1

W?H
RF2

ΛΛΛNRF
W?

RF2

∣∣∣∣∣∣ (3.15)

=
Nu∑
k=1

log2

(
1 +

αbρNRFλk

NRF + (1− αb)ρ
∑Nu

i=1 λi

)

=
Nu∑
k=1

log2

(
1 +

αbρNRFλk/Nr

κ+ (1− αb)ρ
∑Nu

i=1 λi/Nr

)
(3.16)

(b)∼ Nu log2NRF, as NRF →∞.

Here, (a) is from that all diagonal entries of W?H
RF2

ΛΛΛNRF
W?

RF2
are the same as

dj =
∑Nu
i=1 λi
NRF

, for j = 1, · · · , NRF because of the constant modulus property of

W?
RF2

; (b) follows from the fact that as NRF → ∞, i.e., as Nr → ∞, I have
1
Nr

HHH → diag{ 1
L1

∑L1

`=1 |g`,1|2, · · · ,
1

LNu

∑LNu
`=1 |g`,Nu|2} [98] by the channel

model in (3.1) without the pathloss component and the law of large numbers,

which implies

λi
Nr

→ 1

Li

Li∑
`=1

|g`,i|2 <∞, for i = 1, · · · , Nu.

This completes the proof of Theorem 2. �

I note from (3.14) that W?
RF1

of the two-stage analog combining solu-

tion W?
RF aggregates all channel gains into the smaller dimension and provides

(NRF −Nu) extra dimensions. Then, as observed in (3.15), W?
RF2

spreads the

aggregated channels gains over all NRF dimensions, which reduces the quanti-

zation error by exploiting the extra dimensions. Accordingly, as the number of
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RF chains NRF increases, the proposed solution W?
RF = W?

RF1
W?

RF2
achieves

the optimal scaling law (3.8) by reducing the quantization error.

Corollary 3. The conventional optimal solution Wcv
RF = [U1:Nu U⊥] for per-

fect quantization systems cannot achieve the optimal scaling law (3.8) in coarse

quantization systems, and it is upper bounded by

C
(
Wcv

RF

)
< Cub

svd = Nu log2

(
1 +

αb
1− αb

)
. (3.17)

Proof. From (3.14), we have the following MI by setting WRF2 = I:

C
(
Wcv

RF

)
= log2

∣∣∣∣I +
αb
βb

diag−1
{

ΛΛΛNRF
+ 1

βbρ
I
}

ΛΛΛNRF

∣∣∣∣
=

Nu∑
i=1

log2

(
1 +

αbλi
βbλi + 1/ρ

)
(a)
< Nu log2

(
1 +

αb
βb

)
.

where (a) comes from ρ > 0. �

Corollary 3 shows that the conventional unconstrained optimal analog

combiner Wcv
RF can capture all channel gains but the MI does not scale as that

of W?
RF = W?

RF1
W?

RF2
. Since all channel gains after processed through Wcv

RF

are concentrated on only Nu RF chains out of NRF RF chains, using Wcv
RF

results in severe quantization errors at each of the Nu RF chains. Although

the channel gains {λi} increase as Nr increases, the quantization errors also

increase in proportion to the channel gains for C
(
Wcv

RF

)
, yielding only the

bounded MI in (3.17).

81



Again, unlike the conventional solution, the additional second stage

analog combiner W?
RF2

proposed in Theorem 2 spreads the channel gains cap-

tured by the first stage combiner W?
RF1

to all NRF RF chains evenly, leading

to achieving the optimal scaling law by greatly alleviating quantization er-

rors. Intuitively, adopting the second combiner W?
RF2

results in distributing

the burden of ADCs confined in few RF chains over all available ADCs of the

total RF chains. Later, I show that such performance gain from adopting the

two-stage analog combining structure can be significant even with a reasonable

number of RF chains.

Theorem 3. For the case of homogeneous singular values of HHH where

all singular values {λi} are equal, the two-stage analog combining solution

W?
RF = W?

RF1
W?

RF2
in Theorem 2 maximizes the MI in (3.7) with finite NRF,

i.e.,

W?
RF = arg max

WRF

C(WRF)

s.t. WH
RFWRF = INRF

and λ1 = · · · = λNu = λ,

and the corresponding optimal MI is given as

Copt,C(W?
RF)=Nulog2

(
1+

αbλNRF

λNu(1−αb)+NRF/ρ

)
. (3.18)

Proof. Recall G = W
H

RFΛ̄ΛΛ
1/2

= [Gsub 0] in the proof of Theorem 2, where

Gsub is the NRF × m submatrix of G and Λ̄ΛΛ = diag{λ̄1, · · · , λ̄m, 0, · · · , 0} is

the diagonal matrix composed of the singular values of Q, defined in (3.10).
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From the assumption of λ1 = · · · = λNu = λ, we have

max
x∈CNRF :‖x‖=1

xHQx = max
y∈Cm:‖y‖=1

λ‖UH
1:NuU||y‖

2

(a)

≤ max
y∈Cm:‖y‖=1

λ‖UH
1:Nu‖

2‖U||‖2‖y‖2

= λ,

where (a) comes from the sub-multiplicativity of the norm, and the last equal-

ity holds by ‖UH
1:Nu
‖ = 1 and ‖U||‖ = 1. This implies the singular values of

Q are bounded as λ̄i ≤ λ for i = 1, · · · ,m. Hence, ‖[Gsub]j,:‖2 is maximized

for any given WRF when λ̄i achieves λ for all i = 1, · · · ,m.

I consider the upper bound of C(WRF) in (3.13) and define

G?
sub = W

H

RF

[√
λIm
0

]
.

Then, (3.13) is further upper bounded as

C(WRF) ≤ m log2

(
1 +

αb
βbm

NRF∑
i=1

‖[G?
sub]i,:‖2

‖[G?
sub]i,:‖2 + 1

βbρ

)
(a)

≤ m log2

(
1 +

αbNRF

βbm

∑NRF

i=1 ‖[G?
sub]i,:‖2∑NRF

i=1 ‖[G?
sub]i,:‖2 + NRF

βbρ

)
(b)
= m log2

(
1 +

αbλNRF

λmβb +NRF/ρ

)
, (3.19)

where (a) holds by Jensen’s inequality and the concavity of x
x+1

for x > 0;

and (b) comes from
∑NRF

i=1 ‖[G?
sub]i,:‖2 = ‖G?

sub‖2
F = λm. Note that (3.19) is

maximized when m = Nu since the derivative of (3.19) with respect to m is

positive for m > 0 for any given αb, λ, ρ,NRF > 0. By substituting λ1 = · · · =
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λNu = λ into (3.16), it can be shown that the upper bound of C(WRF) in

(3.19) with m = Nu can be achieved by adopting W?
RF = W?

RF1
W?

RF2
. This

completes the proof of Theorem 3. �

Theorem 3 shows the optimality of the proposed two-stage analog com-

bining solution W?
RF = W?

RF1
W?

RF2
in maximizing the MI for any number of

RF chains NRF ≥ Nu with homogeneous singular values. Note that such opti-

mality of W?
RF can be nearly achieved for a fixed number of users in large-scale

MIMO systems as shown in Remark 6.

Remark 6. From Theorem 3, the two-stage analog combining solution W?
RF =

W?
RF1

W?
RF2

in Theorem 2 maximizes the MI for P1 as well as achieves the

optimal scaling law (3.8) in homogeneous massive MIMO networks with a large

number of antennas Nr, where each channel elemen hij
i.i.d.∼ CN(0, 1). This is

because as the number of receive antennas Nr increases, 1
Nr

HHH → INu, i.e,
1
Nr
λi → 1, ∀i [99].

Fig. 3.2 shows the simulation results of the MI of the proposed two-

stage analog combiner W?
RF = W?

RF1
W?

RF2
in Theorem 2 and the conventional

analog combiner Wcv
RF in Corollary 3 which is optimal for infinite-resolution

ADC systems. Here, I use W?
RF1

= Wcv
RF = U1:NRF

and W?
RF2

= WDFT,

where WDFT is an NRF×NRF normalized DFT matrix, and consider Rayleigh

MIMO channels described in Remark 6. As shown in Fig. 3.2(a), the MI

of the proposed two-stage analog combiner almost achieves the optimal MI

Copt (3.18) in Theorem 3 with λ/Nr = 1 even in the regime of a finite Nr. I
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further note that compared with the conventional one-stage combiner Wcv
RF

converging to the upper limit Cubsvd, the MI of the two-stage analog combiner

logarithmically increases without a limit as Nr increases with κ ≈ 1/3. This

follows the optimal scaling law in Theorem 2.

Fig. 3.2(b) shows the MI simulation results with respect to the SNR ρ.

The two-stage combiner W?
RF = W?

RF1
W?

RF2
yields superior MI performance

to that ofWcv
RF, and the MI ofW?

RF converges toNu log2

(
1 + αbNRF

(1−αb)Nu

)
, which

is obtained from Copt (3.18) with ρ→∞. Therefore, the MI gap between the

upper limits of the two combiners (W?
RF,W

cv
RF) is

∆=Nu

(
log2

(
1+

αbNRF

(1− αb)Nu

)
−log2

(
1+

αb
1− αb

))
. (3.20)

Since NRF ≥ Nu is considered in this chapter, the proposed two-stage combiner

W?
RF always yields the higher upper limit of the MI than the SVD-based one-

stage combiner Wcv
RF.

3.4 Two-Stage Analog Combining Algorithm

In the previous section, I derived the analog combining solution for the

unconstrained problem P1. However, the constant modulus constraint on each

matrix element should be taken into account in designing analog combiners

since it is implemented using phase shifters. I further consider a pre-defined

set of phases with a finite cardinality for phase shifters. Considering channels

known at the receiver, I propose a codebook-based two-stage analog combining

algorithm for mmWave communications.
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Figure 3.2: The simulation results of the MI with the proposed two-
stage analog combining solution W?

RF1
W?

RF2
and the conventional uncon-

strained optimal analog combiner Wcv
RF in the Rayleigh MIMO channels:

(a) for (ρ,NRF, Nu, b) = (5 dB, dNr
3
e, 8, 2) as Nr increases, and (b) for

(Nr, NRF, Nu, b) = (256, dNr
3
e, 8, 2) as ρ increases where b denotes the num-

ber of quantization bits.

3.4.1 Proposed Two-Stage Analog Combining Algorithm

Theorem 2 provides a practical analog combiner structure that is imple-

mentable with a two-stage analog combiner WRF = WRF1WRF2 : the first ana-

log combiner and the second analog combiner can be considered as a channel

gain aggregation matrix and spreading matrix, respectively. Leveraging such

insight and the finding in the following Corollary 4, I propose an ARV-based

two-stage analog combining (ARV-TSAC) algorithm for mmWave channels.

Corollary 4. When the sum of all channel paths from each user
∑Nu

k=1 Lk is

a finite value and the AoA of each path is different than that of other paths,

the optimal scaling in (3.8) can be achieved by using W̃?
RF = WAoAW

?
RF2

as Nr → ∞ for fixed κ ∈ (0, 1), where WAoA = [AAoA,A
⊥
AoA], AAoA =
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[a(φ1,1), a(φ2,1), · · · , a(φLNu ,Nu)], and A⊥AoA is an Nr×(NRF−
∑Nu

k=1 Lk) matrix

composed of orthonormal basis vectors whose column space is in Span⊥(AAoA).

Proof. See Section 3.7. �

Note that a conventional optimal solution can be obtained using W̃cv?
RF =

WAoA under perfect quantization [100, 101] as Nr → ∞, which does not re-

quire the second spreading combiner W?
RF2

but the sum rate will be bounded

as shown in Corollary 3. According to Corollary 4, using ARVs provides a fair

tradeoff between practicality in implementation and performance. To design

the first analog combiner WRF1 , I adopt an ARV-codebook based maximum

channel gain aggregation approach to collect most channel gains into the lower

signal dimension by exploiting the sparse nature of mmWave channels. I set

the codebook of the evenly spaced spatial angles V = {ϑ1, . . . , ϑ|V|}. Since

selecting NRF ARVs out of the total |V| ARVs in the codebook requires
( |V|
NRF

)
search complexity for the exhaustive method, I propose a greedy-based algo-

rithm to find the best NRF ARVs with greatly reduced complexity4.

Algorithm 2 describes the proposed ARV-TSAC method. In Step (a),

the ARV with the spatial angle ϑ? which captures the largest channel gain in

the remaining channel dimensions Hrm is selected and it composes a column

of the first analog combiner in Step (b). In Step (c), the channel matrix on

4Selecting NRF angles from the codebook V that are closest to the AoAs of channels can
be an alternative approach for implementing the first analog combiner with low complexity
in the ARV-TSAC algorithm when all AoAs of channels are available at the BS.
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the remaining dimensions Hrm is projected onto the subspace of Span⊥(a(ϑ?))

to remove the channel gain on the space of the selected ARV. Algorithm 2

repeats these steps until NRF ARVs are selected from the codebook V. Note

that Algorithm 2 nearly finds U1:Nu in the first Nu iterations and U⊥ in the

remaining (NRF−Nu) iterations for the first analog combiner. This is because

the algorithm sequentially searches for the array response vectors that have

the principal components of H with rank Nu.

Remark 7. The second-stage analog combiner that satisfies the condition (ii)

of Theorem 2 can be implemented by adopting a normalized NRF ×NRF DFT

matrix, i.e., W?
RF2

= WDFT.

Employing the DFT matrix for the second analog combiner WRF2 =

WDFT (or any unitary matrix with constant modulus) offers benefits in re-

ducing implementation complexity and power consumption since WDFT does

not depend on the channel H and can be constructed by using passive (or

fixed) analog phase shifters. Accordingly, although the additional N2
RF fully-

connected passive phase shifters for the second analog combiner add to the

complexity of the proposed architecture in physical area and power consump-

tion, it can be implemented with very low complexity and power consumption

in the practical system. Furthermore, if NRF is a power of two, the fast Fourier

transform version of the DFT calculation can be implemented, which reduces

the number of additional passive phase shifters to NRF log2NRF.

Passive phase shifters consume negligible power compared to active

phase shifters, and advanced passive phase shifters were designed to increase
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the accuracy and minimize the power attenuation [102–104]. To implement

the DFT matrix for the second analog combiner WRF2 , a Butler matrix can

be used, which can further reduce the cost and complexity [105]. When the

number of RF chains NRF is a power of two, a Hadamard matrix that is com-

posed of 1s and −1s can be adopted for the second combiner, which only

requires (N2
RF −NRF)/2 passive phase shifters with 180◦ phase shift. Accord-

ingly, deploying the Hadamard matrix for the second analog combiner WRF2

would require lower implementation cost and complexity than using the DFT

matrix, and it can also be implemented with passive phase shifters only.

Although the first stage analog combiner designed by the proposed

ARV-TSAC algorithm is similar to existing one-stage analog combiner designs,

the primary contributions of this work are threefold. The first is to propose a

new two-stage analog combining architecture for hybrid MIMO receivers with

a reduced number of RF chains having low-resolution ADCs. The second is to

derive a near optimal unconstrained two-stage analog combining solution for

the proposed architecture and show the theoretical performance gap between

the proposed two-stage architecture and the conventional SVD-based combin-

ing architecture in low-resolution ADC systems. Finally, I further provide the

theoretical performance analysis of the proposed two-stage analog combining

architecture with the developed ARV-TSAC algorithm in the next subsection.
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Algorithm 2: ARV-based TSAC
1 Initialization: set WRF1 = empty matrix, Hrm = H, and
V = {ϑ1, . . . , ϑ|V|} where ϑn = 2n

|V| − 1

2 for i = 1 : NRF do
3 Maximum channel gain aggregation

(a) a(ϑ?) = argmaxϑ∈V ‖a(ϑ)HHrm‖2

(b) WRF1 =
[
WRF1 | a(ϑ?)

]
(c) Hrm = P⊥a(ϑ?)Hrm, where P⊥a(ϑ) =I−a(ϑ)a(ϑ)H

(d) V = V \ {ϑ?}

4 Set WRF2 = WDFT where WDFT is a normalized NRF ×NRF DFT
matrix.

5 return WRF1 and WRF2 ;

3.4.2 Performance Analysis

The ergodic sum rate of the ARV-TSAC algorithm with an MRC base-

band combiner is analyzed. Once I derive the closed-form ergodic rate, I

compare the rate with the one without the second analog combiner WRF2 to

quantify the ergodic rate gain from employing WRF2 . To this end, a virtual

channel representation [71] is adopted for analytic tractability which captures

the sparse property of mmWave channels [23, 69]. Under the virtual channel

representation, the channel vector hk in (3.1) can be modeled as

hk =

√
Nr

Lk
Ag̃k = Ah̃b,k

where h̃b,k =
√

Nr
Lk
g̃k is the Lk-sparse beamspace channel of user k, i.e., g̃k has

Lk nonzero entries i.i.d.∼ CN(0, 1), and A = [a(ϕ1), . . . , a(ϕNr)] with uniformly
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spaced spatial angles ϕi.

Under this representation, I consider the case where the codebook size

of Algorithm 2 is equal to the number of antennas |V| = Nr. Accordingly, the

first analog combiner is the Nr×NRF submatrix of A which captures the most

channel gain, WRF1 = Asub. It is assumed that WRF1 captures all channel

propagation paths from Nu users [72,90], i.e., Lk channels paths for each user

fall within NRF RF chains. For simplicity, I further assume Lk = L, ∀k, in

the analysis5. Thus, after combining with WRF1 = Asub, the channel becomes

Hb = WH
RF1

H, and the channel vector of user k with the reduced dimension

hb,k ∈ CNRF is

hb,k =

√
Nr

L
gk. (3.21)

I consider L nonzero channel gains to be uniformly distributed within

each user channel hb,k and use an indicator function 1{i∈A} to characterize the

channel sparsity where 1{i∈A} = 1 if i ∈ A, and 1{i∈A} = 0 otherwise. Utilizing

1{·}, the `th complex path gain of user k is modeled as

g`,k = ξ`,k1{`∈Pk}, ` = 1, · · · , NRF, k = 1, · · · , Nu

where ξ`,k
i.i.d.∼ CN(0, 1), ∀`, k and Pk =

{
i
∣∣ gi,k 6= 0, i = 1, · · · , NRF

}
is the

nonzero index set.

I consider the MRC combiner WBB = H̄b where H̄b = WH
RF2

WH
RF1

H,

5The similar results can be derived with minor changes for general Lk.
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and the received signal k in (3.5) becomes

zk = αb
√
ρh̄Hb,kh̄b,ksk + αb

√
ρ
Nu∑
i 6=k

h̄Hb,kh̄b,isi+αbh̄
H
b,kW

H
RFn+h̄Hb,kq. (3.22)

From (3.22), the achievable rate of the proposed system for the MRC combiner

is given as [106,107]

rmrc
k =log2

(
1+

ραb‖h̄b,k‖4

ραb
∑Nu

i 6=k |h̄Hb,kh̄b,i|2 + ‖h̄b,k‖2 + ρβbΨk

)
(3.23)

where Ψk = h̄Hb,kdiag
{
H̄bH̄

H
b

}
h̄b,k, and the ergodic rate is

r̄mrc
k = E

[
rmrc
k

]
(3.24)

=E

[
log2

(
1+

ραb‖h̄b,k‖4

ραb
∑Nu

i 6=k |h̄Hb,kh̄b,i|2 + ‖h̄b,k‖2 + ρβbΨk

)]
.

Since WRF2 = WDFT is unitary, I have ‖h̄Hb,ih̄b,j‖ = ‖hHb,ihb,j‖, ∀i, j. The

ergodic rate (3.24) is approximated as

r̄mrc
k = E

[
log2

(
1 +

ραb‖hb,k‖4

ραb
∑Nu

i 6=k |hHb,khb,i|2 + ‖hb,k‖2 + ρβbΨk

)]
(a)
≈ log2

(
1+

ραbE
[
‖hb,k‖4

]
ραb
∑Nu

i 6=kE
[
|hHb,khb,i|2

]
+E
[
‖hb,k‖2

]
+ρβbE

[
Ψk

]) (3.25)

where (a) follows from Lemma 1 in [79]. Note that the approximation be-

comes more accurate as the number of receive antennas Nr increases for the

non-sparse channel environment [79]. However, this also holds for mmWave

channels. As the number of receive antennas Nr increases, the resolution of

beamformer also increases, thereby increasing the number of major channel

elements. Consequently, although the rate of increase of the number of the
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effective channel elements may be slower than O(Nr), I can consider the num-

ber of effective channel elements increases as the number of receive antennas

increases.

I first analyze the average quantization error with two-stage analog

combining and MRC E[Ψk] in (3.25). Noting that

Ψk = hHb,kWDFTdiag
{
WH

DFTHbH
H
b WDFT

}
WH

DFThb,k,

I decompose E[Ψk] as E[Ψk] = E[Ψauto
k ] + E[Ψcross

k ], and define the auto quan-

tization noise and cross quantization noise variances as

E
[
Ψauto
k

]
= E

[
hHb,kWDFTdiag

{
WH

DFThb,kh
H
b,kWDFT

}
WH

DFThb,k

]
, (3.26)

E
[
Ψcross
k

]
=E
[
hHb,kWDFTdiag

{
WH

DFTHb\kH
H
b\kWDFT

}
WH

DFThb,k

]
(3.27)

where Hb\k denotes the channel matrix Hb without its kth column. Then,

(3.26) and (3.27) represent the average quantization errors for the associated

user caused by the associated user itself and other users, respectively.

Lemma 3. For the considered mmWave channel, the auto quantization noise

variance for the two-stage analog combining of the ARV-TSAC algorithm with

MRC (3.26) is derived as

E
[
Ψauto
k

]
=

2N2
r

NRF

. (3.28)

Proof. See Section 3.8. �

Note that the quantization noise variance decreases as the number of

RF chains NRF increases, which corresponds to the following intuition: the
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second DFT analog combiner spreads the aggregated signal power at each RF

chain over the NRF chains and thus decreases the quantization error more as

NRF increases.

Lemma 4. For the considered mmWave channel, the cross quantization noise

variance for the two-stage analog combining of the ARV-TSAC algorithm with

MRC (3.27) is derived as

E
[
Ψcross
k

]
=
N2
r (Nu − 1)

NRF

. (3.29)

Proof. See Section 3.9. �

Since both E
[
Ψauto
k

]
and E

[
Ψcross
k

]
decrease with NRF, the quantization

error with the proposed two-stage analog combining and MRC combining is

expected to decrease as NRF increases, leading the ergodic rate to the same

scaling law as in (3.8). I derive the approximated ergodic sum rate of (3.23)

in closed form and validate the insight.

Theorem 4. For the considered mmWave channel with low-resolution ADCs,

the ergodic sum rate of the ARV-based TSAC method with MRC is approxi-

mated as

R̄
mrc≈Nulog2

(
1+

ραbNrNRF(1 + 1/L)

NRF+ρNr(Nu − 1)+2ρ(1− αb)Nr

)
. (3.30)

Proof. See Section 3.10. �
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Note that the derived ergodic rate in (3.30) is a function of system

parameters and provides insights how the ergodic rate is improved with the

proposed two-stage analog combining.

Remark 8. Let κ = NRF/Nr where κ ∈ (0, 1) is a constant value. Then,

(3.30) can reduce to

R̄
mrc≈Nu log2

(
1 +

ραbNRF(1 + 1/L)

κ+ ρ(Nu − 1) + 2ρ(1− αb)

)
. (3.31)

The ergodic sum rate in (3.31) achieves the optimal scaling law ∼ Nu logNRF

with respect to NRF as in (3.8).

Remark 8 shows that the optimal scaling law can be achieved by the

proposed two-stage analog combining algorithm even with the practical base-

band combiner. This result verifies that the two-stage analog combining archi-

tecture is effective to enhance the achievable rate in mmWave hybrid MIMO

systems with low-resolution ADCs. To specify the effect of employing the sec-

ond analog combiner WRF2 , I also derive the ergodic rate (3.24) without using

WRF2 .

Corollary 5. For the considered mmWave channel with low-resolution ADCs,

the MRC ergodic rate of the ARV-TSAC without the second analog combiner

is approximated as

R̄
mrc
one ≈ Nulog2

(
1+

ραbNrNRF(1 + 1/L)

NRF+ρNr(Nu−1)+2ρ(1−αb)NrNRF/L

)
. (3.32)

Proof. See Section 3.11. �
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Unlike the quantization noise term 2ρ(1− αb)Nr in (3.30), that 2ρ(1−

αb)NrNRF/L in (3.32) includes NRF/L, which prevents the optimal scaling of

the ergodic sum rate as in (3.8) with respect to NRF for fixed L.

Remark 9. Let κ = NRF/Nr where κ ∈ (0, 1) is a constant value. Then,

(3.32) can reduce to

R̄
mrc
one ≈ Nulog2

(
1+

ραbNRF(1 + 1/L)

κ+ρ(Nu−1)+2ρ(1−αb)NRF/L

)
. (3.33)

Note that unlike the ergodic rate of the two-stage analog combining R̄
mrc in

(3.31), that of the one-stage analog combining R̄
mrc
one in (3.33) cannot achieve

the optimal scaling law with respect to the number of RF chains NRF.

As we show throughout this chapter, using an additional analog com-

biner provides noticeable improvement in the mutual information, and we

could also use more analog combiners such as three stages or four stages.

Adding more stages, however, would require additional implementation cost

and complexity. The two-stage solution provides good results in both theory

and simulation. Therefore, the two-stage analog combiner is considered to be

the best when considering such penalty in increasing cost and complexity.

3.5 Simulation Results

In this section, the performance of the proposed two-stage analog comb-

ing algorithm is evaluated in the MI and ergodic sum rate. In the simulations,

the codebook size is set to be |V| = Nr, which guarantees WH
RFWRF = INRF

.
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Consequently, analog combiners used in the simulations are semi-unitary. To

provide a reference performance of a conventional one-stage analog combining

approach, I simulate a greedy-based MI maximization method which solves

the following problem for the given ARV codebook in a greedy way:

P2 : Wopt,c
RF = argmax

WRF

C(WRF)

s.t. WH
RFWRF = I, |[WRF]i,j| =

1√
Nr

,∀i, j.

At each iteration, the greedy method searches for a single ARV from the

codebook V which maximizes the MI with the previously selected ARVs and

thus can nearly provide the optimal MI performance of the one-stage analog

combining for the given codebook.

In the simulations, the following cases are evaluated:

1. ARV-TSAC: proposed two-stage analog combining.

2. ARV: one-stage analog combining with WRF = WRF1 selected from the

ARV-TSAC.

3. SVD+DFT: two-stage analog combining withWRF1 = U1:NRF
andWRF2 =

WDFT based on Theorem 2.

4. SVD: one-stage analog combining WRF = U1:NRF
,

5. Greedy-MI: one-stage analog combining with greedy-based MI maxi-

mization.
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Figure 3.3: The MI simulation results for Nr = 128 receive antennas, Nu = 8
users, λL = 3 average channel paths, b = 2 quantization bits, and NRF ∈
{43, 64} RF chains that are dNr/3e and dNr/2e, respectively.

The SVD+DFT and SVD cases are infeasible in practice due to violating the

constant modulus constraint, and SVD+DFT provides a tight upper bound

on MI for a homogeneous singular value case from Theorem 3. Here, Lk =

max{1,Poisson(λL)} [70] is adopted unless mentioned otherwise, where λL is

considered as the average number of channel paths.

3.5.1 Mutual Information

Fig. 3.3 shows the MI simulation results for Nr = 128, NRF ∈ {43, 64},

Nu = 8, λL = 3, and b = 2 with respect to the SNR ρ. The proposed ARV-

TSAC algorithm achieves a similar MI as does the SVD+DFT case, and they

show the best MI over the most SNR values. The Greedy-MI and ARV cases

provide similar MI to each other but show the MI gap from the ARV-TSAC.
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(a) Nr = 256 (b) κ = 1/3

Figure 3.4: The MI simulation results with Nu = 8 users, λL = 4 average
channel paths, b = 2 quantization bits, and ρ = 0 dB SNR for (a) Nr = 256
receive antennas and (b) κ = NRF/Nr = 1/3.

The gap decreases as ρ increases in the high SNR regime, and the Greedy-

MI and ARV cases with NRF = 43 show the higher MI than SVD+DFT and

ARV-TSAC in the very high SNR regime. Such phenomenon occurs as the

channel environment does not guarantee the optimality condition for the two-

stage analog combining solution in Theorem 3. As more RF chains are used,

however, the MI gap between ARV-TSAC/SVD+DFT and Greedy-MI/ARV

becomes larger and the performance reversal would happen in even the higher

SNR regime. This is because the proposed two-stage analog combining can

exploit more RF chains to further reduce quantization errors. The SVD case

results in the worst MI performance and it converges to the theoretic upper

bound Cub
svd due to the quantization error.

Fig. 3.4 shows the MI simulation results with Nu = 8, λL = 4, b = 2,

and ρ = 0 dB in terms of NRF. In Fig. 3.4(a), Nr is fixed to be Nr = 256.
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(a) MRC (b) ZF (c) MMSE

Figure 3.5: Perfect CSI simulation results of the ergodic sum rate with Nr =
128 receive antennas, NRF = 43 RF chains, Nu = 8 users, λL = 3 average
channel paths, and b = 2 quantization bits for (a) maximum ratio combining
(MRC), (b) zero-forcing (ZF), and (c) minimum mean squared error (MMSE)
digital combiners.

The two-stage combining cases, i.e., SVD+DFT and ARV-TSAC, show that

the MI increases logarithmically with NRF, and this corresponds to the scaling

law derived in Theorem 2. The one-stage combining cases such as the Greedy-

MI, ARV, and SVD cases, however, show a marginal increase of the MI as NRF

increases. In Fig. 3.4(b), the ratio between Nr and NRF is fixed to be κ = 1/3.

Here, the Greedy-MI and ARV cases also increase more slowly compared to

the SVD+DFT and ARV-TSAC cases. This is because more channel gains

can be collected as Nr increases for all cases, but the two-stage combining can

reduce more quantization error as NRF increases. Accordingly, the MI gap

between the two-stage combining and one-stage combining cases increases as

NRF increases.

100



3.5.2 Ergodic Sum Rate

Now, I evaluate the ergodic rate for linear digital combiners WBB such

as MRC, zero-forcing (ZF), and MMSE. Let Heq = WH
RFH. The MRC, ZF,

and MMSE combiners are given as: WBB,mrc = Heq,WBB,zf = Heq(HH
eqHeq)−1,

and WBB,mmse = R−1
yqyq

Ryqx, where Ryqx = αρHeq and Ryqyq =α2ρHeqH
H
eq+

α2WH
RFWRF+Rqq. For the given analog and digital combiners (WRF,WBB)

with WH
RFWRF = INRF

, the ergodic rate of user k is expressed as

r̄k(WRF,WBB) = E
[

log2

(
1 + α2

bρ|wH
BB,kheq,k|2/ηBB,k

) ]
where ηBB,k = α2

bρ
∑Nu

u6=k |wH
BB,kheq,u|2 + α2

b‖wBB,k‖2 + wH
BB,kRqqwBB,k.

In addition to the perfect CSI case, I also consider the imperfect CSI

case in which the estimated channel matrix at the receiver has channel esti-

mation error at path coefficients and AoAs to provide a numerical study of

the impact of the channel estimation error in the proposed system. I assume

the estimated channel matrix as [108]

h̃k =

√
Nr

Lk

Lk∑
`=1

(g`,k + ge`,k)a(φ`,k + φe`,k)

where g`,k
i.i.d∼ CN(0, 1) and ge`,k

i.i.d∼ CN(0, σ2
e) denote the channel path gain

and estimated error term for each path ` of each user k respectively. φ`,k and

φe`,k denote the channel AoA and estimated error term for each path ` of each

user k with φe`,k
i.i.d∼ U[−e, e] where e ∈ [0, π/2], respectively. Here U[−e, e]

represents the uniform distribution.
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Fig. 3.5 illustrates the ergodic sum rates with Nr = 128, NRF = 43,

Nu = 8, λL = 3, and b = 2 versus the SNR ρ for different digital combiners: (a)

MRC, (b) ZF, and (c) MMSE. Similarly to the MI results, ARV-TSAC shows

the comparable ergodic rate to that of SVD+DFT and outperforms the one-

stage combining such as the Greedy-MI and ARV cases in most cases. I note

that the SVD case also shows the worst sum rate performance in the consid-

ered systems. The gaps between the two-stage combining cases and one-stage

combining cases for the MRC and ZF combiners are much larger than the gap

for the MMSE combiner. In addition, SVD+DFT and ARV-TSAC with the

ZF combiner achieve the ergodic rates comparable to the MMSE combiner,

while the Greedy-MI and ARV cases with the ZF combiner show much lower

ergodic sum rates than that with the MMSE combiner. Since the MRC and

ZF combiners ignore the AWGN and quantization noise whereas the MMSE

combiner does not, using the MMSE combiner improves the ergodic rate of

the one-stage analog combining cases. The two-stage analog combining cases,

however, already reduced the quantization noise by using the second analog

combiner, and thus, they provide the MMSE-like ergodic rate performance

with the ZF combiner. Therefore, the proposed two-stage analog combining

with the ARV-TSAC algorithm can achieve significant rate improvement with

the MRC or ZF combiners compared to the one-stage analog combining ap-

proach.

Fig. 3.6 shows the ergodic rate simulation results of the proposed al-

gorithm with MRC, ZF, and MMSE combining for the imperfect CSI case.
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Figure 3.6: Imperfect CSI simulation results of the ergodic sum rate with
Nr = 128 receive antennas, NRF = 43 RF chains, Nu = 8 users, λL = 3
average channel paths, b = 2 quantization bits, σ2

e = 10−1, and φe`,k ∼
U
[

sin−1(− 1
Nr

), sin−1( 1
Nr

)
]
for (a) maximum ratio combining (MRC), (b) zero-

forcing (ZF), and (c) minimum mean squared error (MMSE) digital combiners.

Compared to the perfect CSI case in Fig. 3.5, the results show degradation

in ergodic rates while maintaining a similar trend. Although the proposed

ARV-TSAC shows a larger gap to the SVD-DFT case for imperfect CSI vs.

perfect CSI, the ARV-TSAC still achieves higher rates with large gap from

the one-stage analog combining case such as the ARV, Greedy-MI, and SVD

cases. Unlike the perfect CSI case, there is no performance reversal between

ARV-TSAC and the other one-stage analog combining cases for MMSE com-

bining, and ARV-TSAC with ZF achieves higher rate than with MMSE com-

bining. This shows that in the considered hybrid beamforming systems with

low-resolution ADCs, the MMSE combining is more vulnerable to channel es-

timation error. Since simulation results show that the proposed ARV-TSAC

with ZF combining achieves similar performance to the MMSE combining,

it is expected that the proposed two-stage analog combining with ZF digi-

tal combining can provide good performance in general and offer more robust
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Figure 3.7: Simulation results of the ergodic sum rate of the MRC combiner
with Nu = 8 users, λL = 3 average channel paths, and ρ = 0 dB SNR for
(a) b = 2 quantization bits and κ = NRF/Nr = 1/3 and (b) Nr = 128 receive
antennas and NRF = 43 RF chains.

performance to channel estimation error, thereby achieving higher ergodic rate

than the other linear digital combiners.

Fig. 3.7 provides the simulation results of the ergodic rate with the

MRC digital combiner for Nu = 8, λL = 3, and ρ = 0 dB in terms of the

number of (a) RF chains NRF and (b) quantization bits b. In Fig. 3.7(a), we

consider b = 2 and κ = NRF/Nr = 1/3. The ergodic rates of SVD+DFT and

ARV-TSAC are similar and both increase logarithmically with NRF, whereas

the ergodic rates of the Greedy-MI and ARV cases increase more slowly. Such

scaling results correspond to Remark 8 and 9. As Nr increases with a fixed

κ, SVD+DFT and ARV-TSAC effectively reduce the more quantization error

while obtaining larger channel gains, but the Greedy-MI and ARV cases only

obtain larger channel gains without mitigating the quantization error. In Fig.
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Figure 3.8: Simulation results of the ergodic sum rate with Nr = 128 receive
antennas, NRF = 32 RF chains, Nu = 8 users, λL = 3 average channel paths,
and b = 3 quantization bits for maximum ratio combining (MRC).

3.7(b), I consider Nr = 128 and NRF = 43. Note that in the low-resolution

ADC regime, the ARV-TSAC algorithm achieves the ergodic rate comparable

to that of SVD+DFT and shows a noticeable improvement compared to the

Greedy-MI, ARV, and SVD cases. As b increases, the ergodic rates of the

ARV-TSAC, Greedy-MI, and ARV algorithms converge to each other with

a small gap from the SVD+DFT case. The ergodic rate of the SVD case,

however, converges to that of SVD+DFT without any gap because the SVD

combining is optimal in maximizing the MI of infinite-resolution ADC systems.

The simulation results validate the effectiveness of the proposed two-stage

combining in low-resolution ADC systems.

Fig. 3.8 shows the simulation results for the MRC digital combiner,

including a DFT-based second analog combiner and a Hadamard-based sec-
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Figure 3.9: Comparison of the ergodic rate for the theoretical and simulation
results with Nr = 128 receive antennas, NRF = 43 RF chains, Nu = 8 users
each with L = 8 channel paths for the virtual channels.

ond analog combiner. The simulation results demonstrated that using the

Hadamard-based second analog combiner also achieves the sum rate that is

the same as the DFT case since the Hadamard matrix also satisfies the con-

dition (ii) in Theorem 2. Therefore, adding WRF2 can still maintain similar

power consumption to one-stage analog combining systems.

Finally, I validate the derived ergodic rates in Theorem 4 and Corollary

5. Nr = 128 receive antennas, NRF = 43 RF chains, Nu = 8 users each

with L = 8 channel paths for the virtual channels, and b = 2 quantization

bits are considered. In Fig. 3.9, the theoretical ergodic rates tightly align

with the simulation results in the medium to high SNR regime, and show

similar trend as the simulation results do. Thus, the derived ergodic rates

can characterize the ergodic rate performance of the proposed algorithm for
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the two-stage analog combining system in terms of the system parameters

including quantization resolution.

Overall, the two-stage analog combining structure with the ARV-TSAC

algorithm almost achieves the performance of SVD+DFT that is a near opti-

mal solution for the unconstrained problem P1, while the greedy-MI and ARV

algorithms provide a near optimal solution only for the constrained problem

P2. Since P1 has a larger feasible set than P2 to find an optimal solution for

the same objective function, this leads to C(Wopt
RF) ≥ C(Wopt,c

RF ). In this regard,

the ARV-TSAC algorithm achieves the higher performance than that of the

Greedy-MI and ARV algorithms in most cases. This shows that the proposed

two-stage analog combining architecture with the ARV-TSAC is a practical

solution suitable for the mmWave hybrid MIMO systems with low-resolution

ADCs.

3.6 Conclusion

In this chapter, I derived a near optimal analog combining solution for

an unconstrained MI maximization problem in hybrid MIMO systems with

low-resolution ADCs. I showed optimalities of the solution in the scaling law

and in maximizing the mutual information for a homogeneous channel sin-

gular value case. To implement the derived solution, I proposed a two-stage

analog combining architecture that decouples the channel gain aggregation

and spreading functions in the solution into two cascaded analog combiners.

Accordingly, the proposed two-stage analog combining also provides a near
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optimal solution for the unconstrained problem whereas conventional hybrid

algorithms offer a near optimal solution only for the constrained problem. In

addition, I derived a closed-form approximation to the ergodic rate, which

reveals that the two-stage analog combiner achieves the optimal scaling law

with a practical digital combiner. Simulation results validated the key insights

obtained in this chapter and the derived ergodic rate, and also demonstrated

that the proposed two-stage analog combining algorithm outperforms conven-

tional algorithms. In the next chapter, switch-based analog beamforming will

be considered as different power-efficient solution to avoid the burden of im-

plementing large phase shifter arrays.

3.7 Proof of Corollary 4

Let H be decomposed into H = AAoAHV, where the beamdomain

channel is HV = blkdiag{g̃1, · · · , g̃Nu} and g̃k =
√

Nr
Lk

[g1,k, · · · , gLk,k]T . Then,

it can be shown [98] that as Nr →∞,

WH
AoAWAoA→INRF

,
1√
Nr

WH
AoAH→

1√
Nr

[
HV

0

]
. (3.34)

Let H̃V = [HT
V,0

T ]T and CAoA = W?H
RF2

H̃VH̃
H
VW?

RF2
. Using (3.34), we show

C(WRF) in (3.12) with WRF = W̃?
RF converges as Nr →∞ to(

C(W̃?
RF)−log2

∣∣∣I+
αb
βb

diag−1
{
CAoA+ 1

βbρ
I
}
CAoA

∣∣∣)→ 0. (3.35)

Note that each diagonal of W?H
RF2

H̃VH̃
H
VW?

RF2
is 1

κ

∑Nu
k=1

1
Lk

(
∑Lk

`=1 |g`,k|)2 =

c1 < ∞. Let C∞(W̃?
RF) denote the second term in (3.35). Then, C∞(W̃?

RF)
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can be lower bounded as

C∞(W̃?
RF) > log2

∣∣∣∣INRF
+

αbρ

c1βbρ+ 1
W?H

RF2
H̃VH̃

H
VW?

RF2

∣∣∣∣
(a)∼ Nu log2NRF, as NRF →∞, (3.36)

where (a) follows from the same reason of (b) below (3.16). This implies that

C(W̃?
RF) follows the optimal scaling law. �

3.8 Proof of Lemma 3

The auto quantization noise variance term in (3.26) is expressed as

E
[
Ψauto
k

]
= E

[
NRF∑
i=1

∣∣hHb,kwi

∣∣4]

=

(
Nr

L

)2 NRF∑
i=1

E
[∣∣gHk wi

∣∣4]
=

(
Nr

L

)2 NRF∑
i=1

(
V
[∣∣gHk wi

∣∣2]+(E [∣∣gHk wi

∣∣2] )2
)

(3.37)

where wi is the ith column of WDFT. The expectation term E[|gHk wi|2] in

(3.37) is computed as

E
[∣∣gHk wi

∣∣2] =
1

NRF

E

[
NRF∑
`=1

|g`,k|2
]

=
L

NRF

. (3.38)
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Now, let ŵi =
√
NRFwi. Then, the variance term V[|gHk wi|2] in (3.37) can be

computed as

V
[∣∣gHk wi

∣∣2] =
1

N2
RF

V

[
NRF∑
`=1

|g`,k|2+

NRF∑
`1 6=`2

g∗`1,kg`2,kŵ
∗
`1,i
ŵ`2,i

]
(a)
=

1

N2
RF

(
V

[
NRF∑
`=1

|g`,k|2
]

+ V

[
NRF∑
`1 6=`2

g∗`1,kg`2,kŵ
∗
`1,i
ŵ`2,i

])
(b)
=

1

N2
RF

(
V
[
‖gk‖2

]
+

NRF∑
`1 6=`2

V
[
g∗`1,kg`2,k

])
(3.39)

where (a) and (b) hold as the associated terms are uncorrelated, which can

be shown from straight forward mathematics, and |ŵ`,i| = 1, ∀`, i. Since

‖gk‖2 ∼ χ2
2L, which is a chi-square distribution with 2L degrees of freedom, I

have V[‖gk‖2] = L, and V[g∗`1,kg`2,k] is computed as

V
[
g∗`1,kg`2,k

]
= V

[
ξ∗`1,kξ`2,k1{`1∈Pk}1{`2∈Pk}

]
(a)
= E

[
|ξ∗`1,kξ`2,k|

2
]
E
[
1{`1,`2∈Pk}

]
−
(
E
[
ξ∗`1,kξ`2,k

] )2(
E
[
1{`1,`2∈Pk}

])2

=
L(L− 1)

NRF(NRF − 1)
,

where (a) holds by V[XY ] = E[X2]E[Y 2]− (E[X])2(E[Y ])2 for independent X

and Y . Therefore, (3.39) is derived as

V
[∣∣gHk wi

∣∣2]=
1

N2
RF

(
L+

NRF∑
`1 6=`2

L(L−1)

NRF(NRF−1)

)
=

(
L

NRF

)2

. (3.40)

Putting (3.38) and (3.40) into (3.37), the auto quantizaiton noise variance

E
[
Ψauto
k

]
becomes (3.28). �
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3.9 Proof of Lemma 4

The cross quantization noise variance in (3.27) is derived as

E
[
Ψcross
k

]
=E
[ NRF∑
i=1

Nu∑
u6=1

hHb,kwiw
H
i hb,uh

H
b,uwiw

H
i hb,k

]

=

(
Nr

L

)2

Egk

[
NRF∑
i=1

Nu∑
u6=1

gHkwiw
H
i Egu

[
gug

H
u

]
wiw

H
i gk

]

=
N2
r (Nu − 1)

LNRF

NRF∑
i=1

Egk

[
gHk wiw

H
i gk

]
(a)
=
N2
r (Nu − 1)

NRF

where (a) follows from E
[
|gHk wi|2

]
= L

NRF
in (3.38). �

3.10 Proof of Theorem 4

To compute (3.25), I first derive E[‖hb,k‖2] as

E
[
‖hb,k‖2

]
=
Nr

L
E
[
‖gk‖2

] (a)
= Nr (3.41)

where (a) follows from ‖gk‖2 ∼ χ2
2L. Next, E[‖hb,k‖4] is computed as

E
[
‖hb,k‖4

]
= V

[
‖hb,k‖2

]
+
(
E
[
‖hb,k‖2

])2

=

(
Nr

L

)2(
V
[
‖gk‖2

]
+
(
E
[
‖gk‖2

])2
)

=
N2
r (1 + L)

L
. (3.42)
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The inter-user interference term E[|hHb,khb,i|2] is computed as

E
[
|hHb,khb,i|2

]
=

(
Nr

L

)2

E
[
|gHk gi|2

]
=

(
Nr

L

)2 NRF∑
`=1

E
[
|g∗`,kg`,i|2

]
=

(
Nr

L

)2 NRF∑
`=1

E
[
|ξ∗`,k1{`∈Pk}ξ`,i1{`∈Pi}|

2
]

=
N2
r

NRF

. (3.43)

Finally, we compute the quantization variance term E[Ψk] as

E
[
Ψk

]
= E

[
Ψauto
k

]
+ E

[
Ψcross
k

]
(a)
=

2N2
r

NRF

+
N2
r (Nu − 1)

NRF

, (3.44)

where E
[
Ψauto
k

]
and E

[
Ψcross
k

]
are in (3.26) and (3.27), respectively, and (a)

follows from Lemma 3 and Lemma 4.

Putting (3.41), (3.42), (3.43), and (3.44) into (3.25), I derive the ap-

proximated ergodic rate of (3.25) in closed form. The ergodic rate is equivalent

to Nu users, which leads to the ergodic sum rate in (3.30). This completes the

proof of Theorem 4. �

3.11 Proof of Corollary 5

Without the second analog combiner WRF, the approximated ergodic

rate of user k can be computed as (3.25) by substituting the average quantiza-

tion noise variance for the two-stage analog combining E[Ψk] with the following
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average quantization noise variance:

E
[
Ψ̂k

]
=E
[
hHb,kdiag

{
HbH

H
b

}
hb,k

]
=E

[(
Nr

L

)2 NRF∑
`=1

|g`,k|2
Nu∑
u=1

|g`,u|2
]

=

(
Nr

L

)2
(
NRF∑
`=1

E
[
|g`,k|4

]
+

NRF∑
`=1

Nu∑
u6=k

E
[
|g`,k|2|g`,u|2

])
. (3.45)

Here, E[|g`,k|4] in (3.45) is computed as

E
[
|g`,k|4

]
= E

[
1{`∈Pk}

]
E
[∣∣ξ`,k∣∣4]

=
L

NRF

(
V
[∣∣ξ`,k∣∣2]+

(
E
[∣∣ξ`,k∣∣2])2

)
=

2L

NRF

, (3.46)

and the second expectation term E[|g`,k|2|g`,u|2] is derived as

E
[
|g`,k|2|g`,u|2

]
= E

[
1{`∈Pk}1{`∈Pu}

]
E
[
|ξ`,k|2|ξ`,u|2

]
=

(
L

NRF

)2

. (3.47)

Putting (3.46) and (3.47) into (3.45), I derive the average quantization noise

variance for the one-stage analog combining as

E
[
Ψ̂k

]
= N2

r

(
2

L
+
Nu − 1

NRF

)
.

This completes the proof of Corollary 5. �
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Chapter 4

Base Station Antenna Selection for
Low-Resolution ADC Systems

In this chapter1, I investigate antenna selection at a base station with

large antenna arrays and low-resolution analog-to-digital converters. For down-

link transmit antenna selection for narrowband channels, I show (1) a selection

criterion that maximizes sum rate with zero-forcing precoding equivalent to

that of a perfect quantization system; (2) maximum sum rate increases with

number of selected antennas; (3) derivation of the sum rate loss function from

using a subset of antennas; and (4) unlike high-resolution converter systems,

sum rate loss reaches a maximum at a point of total transmit power and

decreases beyond that point to converge to zero. For wideband orthogonal-

frequency-division-multiplexing (OFDM) systems, the results hold when entire

subcarriers share a common subset of antennas. For uplink receive antenna

1This chapter is based on the work: J. Choi, J. Sung, N. Prasad, X. Qi, B. L. Evans, and
A. Gatherer, "Base Station Antenna Selection for Low-Resolution ADC Systems", submit-
ted to IEEE Transactions on Communications, 2019. Part of the work was also published
in the conference paper: J. Choi, J. Sung, B. L. Evans, and A. Gatherer, "Antenna Selec-
tion for Large-Scale MIMO Systems with Low-Resolution ADCs," in Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Apr. 15-
20, 2018. This work was supervised by Prof. Brian L. Evans, and valuable feedback from
Junmo Sung, Narayan Prasad, Xiao-Feng Qi, and Alan Gatherer improved the quality of
this work.
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selection for narrowband channels, I (1) generalize a greedy antenna selection

criterion to capture tradeoffs between channel gain and quantization error;

(2) propose a quantization-aware fast antenna selection algorithm using the

criterion; and (3) derive a lower bound on sum rate achieved by the proposed

algorithm based on submodular functions. For wideband OFDM systems,

I extend the proposed algorithm and derive a lower bound on its sum rate.

Simulation results validate theoretical analyses and show increases in sum rate

over conventional algorithms.

4.1 Introduction

Although phase shifter-based analog beamforming that was considered

the previous chapters can offer high flexibility in analog processing, the imple-

mentation of large phase shifter arrays requires additional cost and complex-

ity. Greatly reducing such implementation burden, switch-based analog beam-

forming that is equivalent to antenna selection is a different energy-efficient

architecture to reduce the number of RF chains and ADCs. Antenna selec-

tion problems have been widely studied without quantization error for high-

resolution ADC systems. For the transmit antenna selection, it was shown

that single antenna selection achieves full diversity gain which the transmitter

without antenna selection (the transmitter uses all antennas) achieves [109],

and it is optimal in the low signal-to-noise ratio (SNR) [110]. To find the best

transmit antenna subset, convex optimization techniques were adopted by re-

laxing a binary integer problem to a real number problem [111,112]. Transmit
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antenna selection was also jointly studied with other problems [113, 114]. An

outage probability was derived for single user selection and antenna selection

in [113], and a precoder was designed jointly with antenna selection [114].

Energy and spectral efficiency tradeoff was maximized in [115] by solving a

multi-objective antenna selection problem. For special systems such as spatial

modulation systems, a Euclidean distance-based antenna selection method was

developed [116].

Receive antenna selection methods were also developed for last decade

[38–43]. In [38], a greedy antenna selection method was developed by min-

imizing capacity loss. It was shown in [38] that the diversity order of the

receive antenna selection system is same as the full diversity order. In [39],

a correlation-based method and mutual information-based method were de-

veloped, showing that selecting receive antennas more than the number of

transmit antennas can nearly achieve the performance of full receive antenna

systems. Convex optimization approach was also taken in receive antenna se-

lection [40]. To provide a lower bound of greedy selection methods, modularity

and submodularity concepts were used in [41]. In [117] a sampling-based selec-

tion method was proposed by employing cross entropy optimization technique.

Antenna selection problems have been studied for various channels. For

correlated channels, selection algorithms were proposed by exploiting partial

channel state information (CSI) such as a channel covariance matrix [118]. An-

tenna selection problems were also solved for millimeter wave channels jointly

with precoder design [119,120]. In orthogonal frequency division multiplexing
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(OFDM) systems, both transmit antenna selection [121, 122] and receive an-

tenna selection algorithms [42,43] were developed. An adaptive Markov chain

Monte Carlo (MCMC) method was adopted for antenna selection [42], and

optimal power allocation between training and data symbols with antenna se-

lection was derived to minimize performance loss due to channel estimation

error [43]. An outage probability was analyzed for per-subcarrier antenna

selection in [121], and an adaptive antenna selection method that balances

between per-subcarrier and bulk selection was proposed in [122].

Most prior work on antenna selection, however, focused on MIMO sys-

tems without any quantization errors. Accordingly, antenna selection for low-

resolution ADC systems that incorporates coarse quantization effect needs to

be investigated. In [123], a cross entropy maximization approach in [117] was

extended for low-resolution ADC systems by jointly solving the user scheduling

problem. Transmit antenna selection was analyzed for single antenna selection

by utilizing Weibul distribution in low-resolution ADC systems [124]. In [124],

it was shown that although the TAS gain is limited when compared to the

gain for perfect quantization, the TAS gain can still provide a large increase

of ergodic rate. Although the proposed receive antenna selection algorithm

in [123] demonstrated its high performance, it can require high complexity

when the number of candidate antennas are large due to its parameters such

as the number of iterations and sampling. In addition, the transmit antenna

selection in [124] considers single antenna selection and thus, it is difficult to

be generalized to multiple antenna selection.
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4.1.1 Contributions

In this chapter, I investigate antenna selection at a BS with a large

number of antenna arrays in low-resolution ADC systems where both the BS

and mobile stations (MSs) are equipped with low-resolution ADCs. I inves-

tigate DL transmit antenna selection and UL receive antenna selection. The

contributions are summarized as follows:

• For narrowband channels, I show that the DL transmit antenna selection

problem with zero-forcing (ZF) precoding in low-resolution ADC systems is

equivalent to that in high-resolution ADC systems when antennas are se-

lected to maximize the DL sum rate. Observing the quantization effect in

the SNR, I further analyze the DL sum rate with antenna selection by incor-

porating quantization effects. I show that selecting more transmit antennas

provides larger maximum sum rate for low-resolution ADC systems as well

as high-resolution ADC systems. Unlike the rate loss in high-resolution

ADC systems, I prove that the rate loss decreases beyond a certain point of

transmit power and converges to zero in low-resolution ADC systems.

• For an UL receive antenna selection problem in the narrowband, an exist-

ing criterion for a greedy capacity-maximization antenna selection method

is generalized to incorporate quantization effects. The derived objective

function offers an opportunity to select an antenna with the best tradeoff

between the additional channel gain and increase in quantization error. A

lower bound of the sum rate achieved by the proposed greedy algorithm is
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also derived by using a concept of submodularity. In addition, I modify the

adaptive MCMC antenna selection [42] for the low-resolution ADC systems

to provide a numerical upper bound of the sum rate.

• The antenna selection problem is extended to the wideband OFDM sys-

tems. The wideband OFDM systems under coarse quantization for both

DL and UL communications is first derived. Then, I show that the derived

results in the DL narrowband communications also hold for the DL OFDM

communication when subcarriers share a common antenna subset. For the

UL OFDM communications, I modify the proposed received antenna selec-

tion algorithms and derive the lower bound of the capacity with the greedy

algorithm.

• Simulation results validate the theoretical results and demonstrate that the

proposed algorithm outperforms conventional algorithms in achievable rate.

The proposed receive antenna selection algorithm provides near optimal sum

rate performance in the large antenna array regime.

4.2 System Model

A single-cell multiuser network is considered, in which a BS serves

NMS MSs. As shown in Fig. 4.1, The BS is equipped with NBS antennas and

low-resolution ADCs. Each MS is equipped with a single antenna and low-

resolution ADCs. I assume that the number of the BS antennas is much larger

than the number of MSs, NBS � NMS. The CSI is assumed to be known at
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Figure 4.1: A multiuser communication system in which a base station (BS)
serves NMS mobile stations (MSs). The BS is equipped with NBS antennas
and low-resolution ADCs. Each MS is equipped with a single antenna and
low-resolution ADCs.

the BS.

4.2.1 Downlink Narrowband System

The BS selects Nt transmit antennas and employs a ZF precoding to

null multiuser interference signals by using the CSI. The vector of the precoded

transmit signals xdl ∈ CNt is given as

xdl = WBB(T)P1/2sdl

where WBB(T) ∈ CNt×NMS is the precoder with the selected antennas in the

subset of antenna indices T, P = diag{p1, . . . , pNMS
} is the matrix of transmit

power for sdl, and sdl ∈ CNMS is the user symbol vector. The transmit power

is constrained by the total power constraint P as

tr(E[xdlxdlH ]) = tr(WBB(T)PWH
BB(T)) ≤ P. (4.1)
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With ZF precoding, the precoderWBB(T) becomesWBB(T) = HdlH
T (Hdl

T H
dlH
T )−1.

Accordingly, the received analog baseband signals at the MSs is given as

rdl = Hdl
T x

dl + ndl = P1/2sdl + ndl (4.2)

where Hdl
T ∈ CNMS×Nt is the DL narrowband channel matrix, which consists of

Nt selected columns of the DL channelHdl ∈ CNMS×NBS , and ndl ∼ CN(0, INMS
)

is the additive white circularly complex Gaussian noise (AWGN) vector.

Using the additive quantization noise model (AQNM) [73], which pro-

vides a reasonable accuracy for low to medium SNR [56], the quantized DL

received signal vector is expressed as

ydl = Q
(
Re{rdl}

)
+ jQ

(
Im{rdl}

)
= αbP

1/2sdl + αbn
dl + qdl (4.3)

where Q(·) is the element-wise quantizer function. Here, αb is defined as αb =

1 − βb and considered to be the quantization gain (αb < 1), and βb is the

normalized mean squared quantization error βb = E[|ri−yi|2]
E[|ri|2]

. Assuming a scalar

minimum mean squared error (MMSE) quantizer and Gaussian signaling sdl ∼

CN(0, INMS
), βb is approximated as βb ≈ π

√
3

2
2−2b for b > 5 [125], where b is the

number of quantization bits for each real and imaginary part. The values of βb

for b ≤ 5 are shown in Table 1 in [57]. The vector qdl ∈ CNMS represents the

additive quantization noise that is uncorrelated with the quantization input rdl

[73]. It is assumed that the quantization noise follows the complex Gaussian

distribution with a zero mean qdl ∼ CN(0,Rqdlqdl) [57]. The covariance matrix
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of qdl is derived as [57]

Rqdlqdl = αb(1− αb)diag
{
E
[
rdlrdlH

]}
= αb(1− αb)(P + INMS

). (4.4)

4.2.2 Uplink Narrowband System

The BS selects Nr receive antennas and receives signals from NMS MSs.

The selected antennas are connected to RF chains followed by low-resolution

ADCs. The UL narrowband channel matrix between the BS and MSs is de-

noted as Hul ∈ CNBS×NMS . The received baseband analog signals at the Nr

selected antennas rul ∈ CNr can be expressed as

rul =
√
ρHul

Ks
ul + nul (4.5)

where ρ, Hul
K ∈ CNr×NMS , sul ∈ CNMS , and nul ∈ CNr denotes the transmit

power, the channel matrix for the selected antennas in the subset of antenna

indices K, the user symbol vector, and the AWGN vector, respectively. I

assume sul ∼ CN(0, INMS
) and nul ∼ CN(0, INr).

After the antenna selection, each real and imaginary component of

the complex output rul
i , where rul

i denotes the ith element of rul in (4.5), is

quantized at the pair of ADCs. Adopting the AQNM [73], the quantized UL

received baseband signals becomes

yul = Q
(
Re{rul}

)
+ jQ

(
Im{rul}

)
= αb

√
ρHul

Ks
ul + αbn

ul + qul (4.6)
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where qul represents the additive quantization noise that is uncorrelated with

rul. I assume qul ∼ CN(0,Rqulqul) [57]. The covariance matrix of qul is

Rqulqul = αb(1− αb) diag(ρHul
KH

ulH
K + INr). (4.7)

In the following sections, antenna selection is explored for the considered DL

and UL systems.

4.3 Downlink Transmit Antenna Selection

In this section, I first show that a transmit antenna selection problem

with ZF precoding for narrowband channels in low-resolution ADC systems is

equivalent to that in high-resolution ADC systems. The resulting achievable

rate, however, involves the quantization error and thus, the sum rate in low-

resolution ADC systems is also analyzed.

4.3.1 Sum Rate Maximization Problem

From the quantized signals ydl in (4.3) and quantization covariance

matrix Rqdlqdl in (4.4), the DL achievable rate for user i with selected transmit

antennas in T becomes

γdl
i (T) = log2

(
1 +

α2
bpi

α2
b + αb(1− αb)(1 + pi)

)
. (4.8)

Assuming equal power distribution, pi = pT, ∀i, and ZF precoding with maxi-

mum transmit power from (4.1), we have

pT =
P

tr
(
WH

BB(T)WBB(T)
) =

P

tr
(
(HTHH

T )−1
) . (4.9)
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Using (4.8) and (4.9), the DL achievable sum rate reduces to

Rdl(T) = NMS log2

(
1 +

αbpT
1 + (1− αb)pT

)
. (4.10)

The transmit antennas selection problem is formulated by adopting the achiev-

able sum rate in (4.10) as an objective function. Let S = {1, 2, . . . , NBS} be the

index set of the BS antennas. Then, the transmit antenna selection problem

for maximum sum rate is formulated as

P1 : T? = argmax
T⊆S:NMS≤|T|≤Nt

Rdl(T).

where Nt is the given maximal number of transmit antennas that can be se-

lected.

Remark 10. The transmit antenna selection problem P1 with ZF precoding

and equal power allocation for narrowband channels is equivalent to that in

high-resolution ADC systems.

Accordingly, I show that any state-of-the-art transmit antenna selec-

tion methods for multiuser communications with the ZF precoding [112, 126]

can be applicable in low-resolution ADC systems. The achievable rate Rdl(T),

however, includes the quantization effect as a noise that is proportional to the

transmit power, which differs from perfect quantization systems. In this re-

gards, I provide theoretical analysis for the transmit antenna selection problem

to characterize the sum rate and draw intuitions for the low-resolution ADC

regime in the following subsection.
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4.3.2 Sum Rate Analysis of Transmit Antenna Selection

Here, a property of the sum rate in the considered low-resolution ADC

system is first derived with respect to the number of selected antennas. To

this end, I introduce Lemma 5.

Lemma 5. For any matrix H ∈ Cm×n with rank(H) = m, the following

inequality holds:

tr
(
QH̃(I` − H̃HQH̃)−1H̃HQ

)
> 0

where Q = (τIm + HHH)−1 with τ ≥ 0 and H̃ is a m × ` sub-matrix of H

which consists of the columns of H for 1 ≤ ` ≤ (n−m).

Proof. See Lemma 2 in [126]. �

Theorem 5. The maximum sum rate of MSs with low-resolution ADCs in

(4.10) is monotonically increasing with the number of selected transmit anten-

nas in ZF precoding DL systems (4.2):

Rdl(Topt1) < Rdl(Topt2)

where Topt1 and Topt2 are the optimal antenna subsets with |Topt1| < |Topt2|.

Proof. Let T1 and T2 be antenna subsets with T1 ⊂ T2 ⊆ S, and T̄ be T̄ =

T2 − T1. The average sum rate difference between the sum rates with the two

antenna subsets, T1 and T2, is

Rdl
D(T̄)

NMS

=
Rdl(T2)− Rdl(T1)

NMS

= log2

(
1 +

αbpT2

1 + (1− αb)pT2

)
− log2

(
1 +

αbpT1

1 + (1− αb)pT1

)
. (4.11)
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Using pTi = P/tr((Hdl
Ti
HdlH

Ti
)−1) for i = 1, 2, (4.11) is rewritten as

Rdl
D(T̄)

NMS

= log2

(
(tr((Hdl

T2
HdlH

T2
)−1) + P )(tr((Hdl

T1
HdlH

T1
)−1) + (1− αb)P )

(tr((Hdl
T2
HdlH

T2
)−1) + (1− αb)P )(tr((Hdl

T1
HdlH

T1
)−1) + P )

)
.

Let Q = (Hdl
T2
HdlH

T2
)−1 and ΨΨΨT̄ = QHdl

T̄
(I|T̄| − HdlH

T̄
QHdl

T̄
)−1HdlH

T̄
Q. Then,

leveraging the matrix inversion lemma, the rate difference Rdl
D(T̄), which I also

call as the rate loss, becomes

Rdl
D(T̄) =NMS log2

(
(tr(Q) + P )(tr(Q) + tr(ΨΨΨT̄) + (1− αb)P )

(tr(Q) + (1− αb)P )(tr(Q) + tr(ΨΨΨT̄) + P )

)
=NMS log2

(
1+

αbtr(ΨΨΨT̄)P

tr(Q)2+
(
tr(ΨΨΨT̄)+P

)
tr(Q)+(1−αb)

(
P 2+P (tr(ΨΨΨT̄)+tr(Q))

))
(4.12)

(a)
> 0 (4.13)

where (a) holds from the following reasons: I have tr(Q) > 0, and from Lemma

5 with τ = 0, I have tr(ΨΨΨT̄) > 0 for any channel matrix Hdl
T2

with rank(Hdl
T2

) =

NMS and its NMS×|T̄| sub-matrixHdl
T̄
with 1 ≤ |T̄| ≤ (|T2|−NMS). In addition,

αb is always less than one (αb < 1) since it is the quantization gain defined as

αb = 1− E[|ri − yi|2]/E[|ri|2].

Now, let T2 be the antenna subset that satisfies Topt1 ⊂ T2 and |Topt1| <

|T2| = |Topt2|. Then, I obtain the following inequalities:

Rdl(Topt1) < Rdl(T2) ≤ Rdl(Topt2)

where Rdl(Topt1) < Rdl(T2) follows from leveraging Rdl
D(T̄) > 0 in (4.12) and

Rdl(T2) ≤ Rdl(Topt2) comes from the optimality definition of Topt2. This com-

pletes the proof. �
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Although adding more transmit antennas is not guaranteed to increase

the sum rate [41] in general because of a transmit power constraint, Theorem

5 shows that the maximum sum rate increases with the number of selected

transmit antennas Nt even with the coarse quantization at the user mobile.

This result was also shown to be true for high-resolution ADC systems [126].

Now I will show that the sum rate loss Rdl
D(T̄) has a different property compared

to the high-resolution ADC systems where the loss monotonically increases

with P and converges to an upper bound [126]. Having T2 = S, Rdl
D(T̄) can

be considered as the sum rate loss due to antennas selection and minimized to

zero by increasing the transmit power constraint P .

Corollary 6. Let T1 ⊂ T2 ⊆ S, then the achievable sum rate loss Rdl
D(T̄) =

Rdl(T2)−Rdl(T1) goes to zero under coarse quantization as the transmit power

constraint P increases

Rdl
D(T̄)→ 0 as P →∞.

In addition, the achievable rate converges to Rdl(T)→ NMS log2

(
1 + αb

1−αb

)
as

P →∞.

Proof. If P →∞, the achievable sum rate loss in (4.12) goes to zero and the

sum rate in (4.10) converges to NMS log2

(
1 + αb

1−αb

)
. �

Unlike the high-resolution ADC system, this result suggests that an-

tenna selection can have the marginal rate loss from the system using the

entire antennas by increasing P .
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Corollary 7. Let T1 ⊂ T2 ⊆ S. The transmit power constraint that leads to

the maximum sum rate loss from not using antennas in T̄ = T2 − T1 is

Pmax
D =

√
tr(Q)tr(K)

1− αb
(4.14)

where Q = (Hdl
T2
HdlH

T2
)−1 and K = (Hdl

T1
HdlH

T1
)−1, and the maximum sum rate

loss is

R
dl,max
D (T̄) = NMS log2

(
1 +

αb
(
tr(K)− tr(Q)

)
tr(Q) + (1− αb)tr(K) + 2

√
(1− αb)tr(Q)tr(K)

)
.

(4.15)

Proof. Let Q = (Hdl
T2
HdlH

T2
)−1 and ΨΨΨT̄ = QHdl

T̄
(I|T̄| − HdlH

T̄
QHdl

T̄
)−1HdlH

T̄
Q.

The derivative of (4.12) with respect to the transmit power constraint is de-

rived as

dRdl
D(T̄)

dP
=
αbNMStr(ΨΨΨT̄)

(
tr(Q)2 + tr(Q)tr(ΨΨΨT̄) + (αb − 1)P 2

)
ΓT̄

(4.16)

where ΓT̄ = ln 2(tr(Q) + P )(tr(Q) + tr(ΨΨΨT̄) + P )(tr(Q) + (1− αb)P )(tr(Q) +

tr(ΨΨΨT̄) + (1− αb)P ). Since 0 < αb < 1 and tr(ΨΨΨT̄) > 0, by setting (4.16) to be

zero, Pmax
D is derived as

Pmax
D =

√
tr(Q)2 + tr(Q)tr(ΨΨΨT̄)

1− αb
. (4.17)

Using tr
(
(Hdl

T1
HdlH

T1
)−1
)

= tr(Q)+tr(ΨΨΨT̄), the maximizer Pmax
D (4.17) is rewrit-

ten as (4.14). With respect to the transmit power constraint P , the maximum

sum rate loss for T1 and T2 can be determined by putting P = Pmax
D into

(4.13), which leads to (4.15). This completes the proof. �
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According to Corollary 7, the transmit antenna selection in low-resolution

ADC systems always achieves the sum rate with the rate loss less than R
dl,max
D (T̄)

in (4.15) for a selected antenna subset. Note that if there is no quantization

error, i.e., αb = 1, Pmax
D goes to infinity. Then, the sum rate loss cannot de-

crease with P in the perfect quantization system, which corresponds to the

upper bound of the sum rate loss in [126]. Since ΓT̄ and tr(ΨΨΨT̄) are positive,

∂Rdl
D(T̄)/∂P in (4.16) becomes positive when P < Pmax

D and negative when

P > Pmax
D , i.e., for P < Pmax

D , the sum rate loss increases as P increases, and

for P > Pmax
D , the loss decreases to zero as P increases. Therefore, (4.14) can

be considered as the reference power constraint that is required to reduce the

sum rate loss while achieving a reasonable sum rate.

Corollary 8. The maximum rate loss in low-resolution ADC systems is less

than that in high-resolution ADC systems, i.e., Rdl,max
D (T̄; b) ≤ R

dl,max
D (T̄;∞).

Proof. Since tr(ΨΨΨT̄) = tr(K)−tr(Q) > 0 from Lemma 5, whereQ = (Hdl
T2
HdlH

T2
)−1,

K = (Hdl
T1
HdlH

T1
)−1, and ΨΨΨT̄ = QHdl

T̄
(I|T̄|−HdlH

T̄
QHdl

T̄
)−1HdlH

T̄
Q, the maximum

rate loss in (4.15) is a monotonically increasing function with respect to αb with

0 < αb < 1. When αb → 1, the considered system becomes equivalent to the

high-resolution ADC system. �

Based on Corollary 8, the transmit antenna selection can be more ef-

fective in low-resolution ADC systems as the rate loss is smaller than that in

high-resolution ADC systems.
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4.4 Uplink Receive Antenna Selection

In this section, I examine the key difference of the receive antenna

selection problem at the BS with low-resolution ADCs from the conventional

problem and propose a quantization-aware receive antenna selection method.

4.4.1 Capacity Maximization Problem

For the considered UL narrowband system in (4.6), the capacity can be

expressed as

Rul(K) = log2

∣∣∣INr + ρα2
b

(
α2
bINr + Rqulqul

)−1
Hul

KH
ulH
K

∣∣∣ (4.18)

where Rqulqul is given in (4.7). Note from (4.18) that in the low-resolution

ADC system, the capacity involves the quantization noise covariance matrix

Rqulqul as a penalty term for each antenna. I use fHi to indicate the ith row of

Hul and K(i) to denote the ith selected antenna.

Remark 11. Since each diagonal entry of Rqulqul contains an aggregated chan-

nel gains at each selected antenna ‖fK(i)‖2, the tradeoff between the channel

gain from adding antennas and its influence on quantization error needs to be

considered in antenna selection.

Using the capacity in (4.18), we formulate the UL receive antenna se-

lection problem as follows:

P2 : K? = argmax
K⊆S:|K|=Nr≥NMS

Rul
(
K
)
, (4.19)
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where S = {1, . . . , NBS}. Notice that the large number of BS antennas NBS

makes it almost infeasible to perform an exhaustive search. Accordingly, to

avoid searching over all possible antenna subsets K, I propose two algorithms:

a quantization-aware antenna selection algorithm based on the greedy ap-

proach and a Markov chain Monte Carlo (MCMC)-based algorithm.

4.4.2 Greedy Approach

Now, let DK = diag{1 + ρ(1−αb)‖fK(i)‖2} be the diagonal matrix with

(1 + ρ(1 − αb)‖fK(i)‖2) for i = 1, . . . , Nr at its diagonal entries. Then, the

capacity in (4.18) can be rewritten as

Rul(K) = log2

∣∣∣INr + ραbD
−1
K Hul

KH
ulH
K

∣∣∣. (4.20)

Let Kt be the set of selected antennas during the first t greedy selections and

HKt∪{j} be the channel matrix of t selected antennas during the first t greedy

selections and a candidate antenna j ∈ S \ Kt at the next selection stage.

Then, I formulate the greedy selection problem as

J = argmax
j∈S\Kt

Rul(Kt ∪ {j}). (4.21)

To reduce the complexity of solving the problem in (4.21), I decompose the

capacity formula (4.20). At the (t + 1)th selection stage with a candidate

antenna j, I have

Rul(Kt ∪ {j}) = log2

∣∣∣INr + ραbD
−1
Kt∪{j}H

ul
Kt∪{j}H

ulH
Kt∪{j}

∣∣∣
= log2

∣∣∣∣INMS
+ ραb

(
HulH

Kt
D−1

Kt
Hul

Kt
+

1

dj
fjf

H
j

)∣∣∣∣. (4.22)
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Recall that fHj denotes the jth row of Hul and dj is the corresponding diagonal

entry of DKt∪{j}.

Using the matrix determinant lemma |A + uvH | = |A|(1 + vHA−1u),

we rewrite (4.22) as

Rul(Kt ∪ {j}) = Rul(Kt) + log2

(
1+

ραb
dj

ct(j)

)
(4.23)

where

ct(j) = fHj

(
INMS

+ραbH
ulH
Kt

D−1
Kt
Hul

Kt

)−1

fj. (4.24)

To maximize Rul(HKt∪{j}) given the t selected antennas, the next antenna j

which maximizes ct(j)/dj needs to be selected at the (t+ 1)th stage as

J = argmax
j∈S\Kt

ct(j)

dj
. (4.25)

Unlike the criterion with no quantization error in [127], the derived criterion

ct(j)/dj incorporates (i) the effect of the existing quantization error from the

previously selected t antennas to the next antenna j in ct(j), and (ii) the

additional quantization error from the antenna j as a penalty for selecting

the antenna j in the form of 1/dj. In this regard, solving the problem (4.25)

gives the antenna J which offers the best tradeoff between the channel gain

from selecting an antenna and its influence on the increase of the quantization

error. Note that (4.25) is the generalized antenna selection criterion of the one

in [127]; as the number of quantization bits b increases, the quantization gain

αb increases as αb → 1, which leads to dj → 1 and DKt → It.
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Algorithm 3: Quantization-aware Fast Antenna Selection
1 Initialization: S = {1, . . . , NBS}, K = ∅ and Q = INMS

.
2 Compute initial antenna gain and compute penalty:
3 c(j) = ‖fj‖2 and dj = 1 + ρ(1− αb)‖fj‖2 for j ∈ S.
4 for t = 1 : Nr do
5 Select antenna J using (4.25): J = argmaxj∈S c(j)/dj.
6 Update sets: S = S \ {J} and K = K ∪ {J}
7 Compute: a =

(
c(J) + dJ

ραb

)− 1
2QfJ and Q = Q− aaH .

8 Update c(j) = c(j)− |fHj a|2 for j ∈ S.
9 return K;

I now propose a quantization-aware fast antenna selection (QFAS) al-

gorithm by using the derived criterion in (4.25) and modifying the selection

algorithm in [127] without increasing the overall complexity. Unlike the perfect

quantization case, the quantization error term dj needs to be computed prior

to selection. At each selection stage, the proposed algorithm adopts (4.25).

To compute ct(j) in (4.24), we define Qt =
(
INMS

+ραbH
H
Kt
D−1

Kt
HKt

)−1

. Then,

ct(j) is updated as

ct+1(j) = fHj Qt+1fj
(a)
= ct(j)− |fHj a|2.

where (a) follows from that Qt can be efficiently updated by using the matrix

inversion lemma as Qt+1 = Qt − aaH with a =
(
ct(J) + dJ

ραb

)−1/2
QtfJ . The

proposed QFAS algorithm is described in Algorithm 3. Note that the com-

plexity for step 5 and 6 are O(NrN
2
MS) and O(NrNMSNBS), respectively. The

overall complexity becomes O(NrNMSNBS) because of (NBS � NMS). Thus,

the proposed algorithm does not increase the overall complexity from the con-

ventional algorithm [127], which provides the opportunity to be practically
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implemented.

Now, the performance of the proposed QFAS method is analyzed by

using submodularity.

Definition 1 (Submodularity). If V is a finite set, a submodular function

is a set function f : 2V → R which meets the following condition: for every

A,B ⊆ V with A ⊆ B and every element v ∈ V \ B, f satisfies that f(A ∪

{v})− f(A) ≥ f(B ∪ {v})− f(B).

Definition 2 (Monotone). A set function f : 2V → R is monotone if for every

A ⊆ B ⊆ V, we have that f(A) ≤ f(B). f is said to be normalized if f(φ) = 0,

where φ denotes the empty set.

From the definition of a submodular set function, it exhibits a dimin-

ishing return property. The following theorem provides a performance lower

bound of greedy methods for optimizing submodular objective functions.

Theorem 6 ([128]). For a normalized nonnegative and monotone submodular

function f : 2V → R+, let AG ⊆ V be a set with |AG| = k obtained by

selecting elements one at a time and choosing an element that provides the

largest marginal increase in the function value at each time. Let A? be the

optimal set that maximizes the value of f with |A?| = k. Then, f(AG) ≥

(1− 1
e
)f(A?).

Based on Theorem 6, it was shown in [41] that the achievable rate of a

point-to-point MIMO system is a submodular function, and hence, the greedy
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antenna selection algorithm for high-resolution ADC systems provides at least(
1− 1

e

)
Ropt, where Ropt the achievable rate with the optimal antenna subset

for high-resolution ADC systems. I extend this result to the capacity with the

quantization error in (4.18).

Corollary 9. The capacity achieved by the proposed QFAS method is lower

bounded by

Rul(Kqfas) ≥
(

1− 1

e

)
Rul(K?). (4.26)

Proof. I first need to show that the achievable rate with the quantization error

Rul(K) in (4.18) is submodular. I define a function ΓΓΓK as

ΓΓΓK = INr + ρα2
b

(
α2
bINr + Rqulqul

)−1/2
Hul

KH
ulH
K

(
α2
bINr + Rqulqul

)−1/2
. (4.27)

Let xK ∼ CN(0,ΓΓΓK). Since ΓΓΓK is nonsingular, the entropy of xK is given as

h(xK) = ln |πeΓΓΓK| = Nr ln(πe) +
1

log2 e
Rul(K).

Exploiting the form of Rqul,qul in (4.7), for any sets A ⊆ B ⊆ S and ele-

ment such that {s} /∈ B and {s} ∈ S, I have h(x{s}|xA) ≥ h(x{s}|xB), i.e.,

h(xA∪{s})−h(xA) ≥ h(xB∪{s})−h(xB). The entropy is submodular and Rul(K)

in (4.18) is also submodular. In addition, Rul(K) is normalized and monotone.

Since Rul(K) (4.18) is submodular, monotone, and nonnegative, the capacity

with the greedy maximization in (4.21) is lower bounded by (4.26) from The-

orem 6. Thus, the capacity with the proposed QFAS is also lower bounded by

(4.26). �
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4.4.3 Markov Chain Monte Carlo Approach

To find a numerical upper bound of the capacity for the antenna selec-

tion without exhaustive search, I provide an algorithm that finds an approxi-

mated optimal solution for the problem P2 in (4.19). The adaptive MCMC-

based selection method [42] is modified by adopting (4.18) for formulating an

original probability density function (PDF). To develop the MCMC-based al-

gorithm for low-resolution ADC systems, I define a binary vector ωωω ∈ {0, 1}NBS

with ‖ωωω‖0 = Nr where 1 indicates that the corresponding receive antenna is

selected and vice versa. Here, ωωω can be considered as a codeword of the code-

book V that contains all possible combinations of antenna subsets of size Nr,

i.e., |V| =
(
NBS

Nr

)
. Now, let the original PDF be

π(ωωω) , exp

(
1

τ
Rul(ωωω)

)
/Γ (4.28)

where τ is a rate constant and Γ is a normalizing factor. I reformulate P2 in

(4.19) as

ωωω? = argmax
ωωω∈V

π(ωωω). (4.29)

To solve (4.29), the proposed algorithm uses a Metropolized indepen-

dence sampler (MIS) [129] for the MCMC sampling, which is performed as

follows: for a given current sample ωωω(i), a new sample ωωωnew is selected ac-

cording to a proposal distribution q(ωωω). Based on a accepting probability

paccept(π, q) = min{1, π(ωωωnew)
π(ωωω(i))

q(ωωω(i))
q(ωωωnew)

}, a next sample is obtained as ωωω(i + 1) =

ωωωnew if accepted, or I have ωωω(i+1) = ωωω(i), otherwise. After NMCMC iterations,

136



I have a set of (1 + NMCMC) samples including an initial sample ωωω(0), i.e.,

{ωωω(0),ωωω(1), . . . ,ωωω(NMCMC)}.

For the proposal distribution, the product of Bernoulli distributions is

used, which is given as

q(ωωω;p) =
1

Γ′

NBS∏
j=1

p
[ωωωv ]j
j (1− pj)1−[ωωωv ]j (4.30)

where pj represents the probability of receive antenna j to be selected and

[ωωω]j denotes the jth element of ωωω. Since Γ′ is unnecessary for computing the

accepting probability paccept, q(ωωω;p) is used without Γ′. Similarly, π(ωωω) is also

used without the normalizing factor Γ for paccept.

The selection probabilities p will be adaptively updated at each itera-

tion in the algorithm to increase the similarity between π(ωωω) and q(ωωω;p). We

update the probability entries pj to update the proposal distribution q(ωωω;p)

by minimizing the Kullback-Leibler divergence between π(ωωω) and q(ωωω;p) [42].

Then, the update at (t+ 1)th iteration becomes

p
(t+1)
j = p

(t)
j + r(t+1)

(
1

NMCMC

NMCMC∑
i=1

[ωωω(i)]j − p
(t)
j

)
(4.31)

where r(t) is a sequence of decreasing step sizes that satisfies
∑∞

t=0 r
(t) = ∞

and
∑∞

t=0(r(t))2 < ∞ [130]. Finally, Algorithm 4 describes the quantization-

aware MCMC-based antenna selection (QMCMC-AS) algorithm. Algorithm

4 stops once it reaches a stopping criterion, which we set as the number of

maximum iterations τstop. The computational complexity of the QMCMC-AS

method is O(NrN
2
MSNMCMCτstop) [42]. Note that unlike the QFAS method, the
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Algorithm 4: Quantization-aware MCMC-Antenna Selection
1 Initialization: Set original distribution π(ωωω) as (4.28) and
proposal distribution q(ωωω;p) as (4.30) without normalizing factors.
Set ωωω(0) as selected antennas from Algorithm 3, and ω̂ωω∗C = ωωω(0).
Set p(0)

j = 1/2, ∀j.
2 for t = 1 : τstop do
3 Run the MIS to draw samples {ωωω(i)}NMCMC

i=1 with paccept(π, q)

4 If |ωωω(i)| > Nr, keep only first Nr entries with largest p(k)
j . If

|ωωω(i)| < Nr, randomly select (Nr − |ωωω(i)|) more antennas.
5 Update p(t)

j according to (4.31).
6 If π(ωωω(i)) > π(ω̂ωω∗C), for i = 1, . . . , NMCMC, set π(ω̂ωω∗C) = π(ωωω(i)).
7 return ω̂ωω∗C ;

complexity of the QMCMC-AS method involves additional parameters such

as the sample size NMCMC and the number of iterations τstop. When
(
NBS

Nr

)
is large, the QMCMC-AS method is required to have large NMCMC and τstop

to find a good subset of antennas [117]. Accordingly, the complexity of the

QMCMC-AS can be unnecessarily high. Thus, I use the QMCMC-AS method

only to provide an approximated optimal performance as a benchmark.

4.5 Extension to Wideband Channels

In this section, I derive the multiuser OFDM system models with quan-

tization error and extend the DL and UL antenna selection problems to the

wideband OFDM system.
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4.5.1 Downlink OFDM Communications

Let Nsc be the number of subcarriers for the OFDM system and un ∈

CNMS be the frequency domain symbol vector of NMS MSs at the nth subcarrier

after ZF precoding for the selected antennas in T. I consider bulk selection

where all subcarriers share a same antenna subset. Then, un ∈ CNMS is

un = WBB,n(T)P1/2
n sdl

n

where WBB,n(T) ∈ CNt×NMS is the ZF precoder, Pn = diag{pn,1, . . . , pn,NMS
} is

the power allocation matrix, and sn = [sn,1, sn,2, . . . , sn,NMS
]T is the frequency

symbol vector for the nth subcarrier. Let xdl
n be the DL OFDM symbol vectors

at time n. Assuming equal transmit power allocation pn,u = pT, ∀n, u, I stack

xdl
n for Nsc time duration x = [xdlT

1 ,xdlT
2 , . . . ,xdlT

Nsc
]T ∈ CNscNt , which is

xdl = (WH
DFT ⊗ INt)u

=
√
pT(WH

DFT ⊗ INt)BlkDiag{WBB,1(T),WBB,2(T), . . . ,WBB,Nsc(T)}sdl

=
√
pT(WH

DFT ⊗ INt)WBBs
dl

whereWDFT is the normalizedNsc-point DFTmatrix, u = [uT1 ,u
T
2 , . . . ,u

T
Nsc

]T ∈

CNscNt , sdl = [sdlT
1 , sdlT

2 , . . . , sdlT
Nsc

]T ∈ CNscNMS , and the block diagonal matrix

WBB = BlkDiag{WBB,1(T), . . . ,WBB,Nsc(T)}.

Let the analog received signals of NMS MSs after CP removal at time

n be rdl
n ∈ CNMS . The vectors of received signals rdl

n for Nsc time duration are
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stacked as

rdl = Hdl
T x

dl + ndl

=
√
pTH

dl
T (WH

DFT ⊗ INt)WBBs
dl + ndl (4.32)

where rdl = [rdlT
1 , rdlT

2 , . . . , rdlT
Nsc

]T ∈ CNscNMS , and the DL channel matrix for

Nt selected transmit antennas Hdl
T ∈ CNscNMS×NscNt is given as

Hdl
T = BlkCirc

{
Hdl

T,0,0, · · · ,0,Hdl
T,L−1, · · · ,Hdl

T,1

}
(4.33)

where Hdl
T,` ∈ CNMS×Nt is the channel matrix of the selected antennas in T

for the (` + 1)th channel tap, L is the number of channel taps, and ndl =

[ndlT
1 ,ndlT

2 , . . . ,ndlT
Nsc

]T ∈ CNscNMS denotes the vector of the AWGN noise vec-

tors stacked for Nsc time duration.

The received OFDM signals rdl are quantized at the ADCs. The quan-

tized signal are expressed with the AQNM as [73]

ydl = αb
√
pTH

dl
T (WH

DFT ⊗ INt)WBBs
dl + αbn

dl + qdl

where qdl = [qdlT
1 ,qdlT

2 , . . . ,qdlT
Nsc

]T ∈ CNscNMS is the additive quantization

noise vector and qdl ∼ CN(0,Rqdlqdl). Finally, the quantized signal is com-

bined through a DFT matrix as

zdl =(WDFT ⊗ INMS
)ydl

=αb
√
pT(WDFT⊗INMS

)Hdl
T (WH

DFT⊗INt)WBBs
dl+(WDFT⊗INMS

)(αbn
dl+qdl)

=αb
√
pTG

dl
T WBBs

dl + vdl

(a)
= αb
√
pTs

dl + vdl.
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Here, Gdl
T = (WDFT ⊗ INMS

)Hdl
T (WH

DFT ⊗ INt) = BlkDiag{Gdl
T,1, · · · ,Gdl

T,Nsc
}

whereGdl
T,n =

∑L−1
`=0 Hdl

T,` e
− j2π(n−1)`

Nsc is the frequency domain DL channel matrix

for subcarrier n, and vdl = (WDFT ⊗ INMS
)(αbn

dl + qdl) = [vdlT
1 , · · · ,vdlT

Nsc
]T .

The equality (a) follows from WBB = BlkDiag{WBB,1(T), · · · ,WBB,Nsc(T)} =

GdlH
T (Gdl

T G
dlH
T )−1, i.e.,

WBB,n(T) = GdlH
T,n (Gdl

T,nG
dlH
T,n )−1.

Under coarse quantization, the received digital signal after DFT for subcarrier

n becomes

zdl
n = αb

√
pTs

dl
n + vdl

n .

I compute the covariance matrix of vdl
n . Let WMS = (WDFT ⊗ INMS

)

and WBS = (WDFT⊗ INt). Then, the covariance matrix of vdl
n is expressed as

Rvdl
n vdl

n
= α2

bWMS,nE
[
ndlndlH

]
WH

MS,n + WMS,nE
[
qdlqdlH

]
WH

MS,n

= α2
bINMS

+ WMS,nRqdlqdlWH
MS,n

whereWMS,n = ([WDFT]n,:⊗INMS
), andRqdlqdl = E

[
qdlqdlH

]
is the covariance

matrix of qdl. To derive Rqdlqdl , I first simplify the precoding matrix WBB as

follows:

WBB = GdlH
T (Gdl

T G
dlH
T )−1

(a)
= WBSH

dlH
T WH

MS

(
WMSH

dl
T W

H
BSWBSH

dlH
T WH

MS

)−1

(b)
= WBSH

dlH
T

(
Hdl

T H
dlH
T

)−1
W−1

MS (4.34)
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where (a) comes from the definition of Gdl
T = WMSH

dl
T W

H
BS and (b) follows

from the fact that WMS, WBS, and Hdl
T H

dlH
T are invertible. Then, the covari-

ance matrix of qdl becomes [57,73]

Rqdlqdl = αb(1− αb)diag
{
E[rdlrdlH ]

}
= αb(1− αb)diag

{
pTH

dl
T W

H
BSWBBW

H
BBWBSH

dlH
T + INscNMS

}
(a)
= αb(1− αb)(pT + 1)INscNMS

(4.35)

where (a) follows from (4.34). Finally, using (4.35), the covariance matrix

Rvdl
n vdl

n
becomes Rvdl

n vdl
n

= (αb + αb(1− αb)pT)INMS
. Accordingly, the SINR of

user u for nth subcarrier is given as

SINRu,n(T) =
αbpT

1 + (1− αb)pT
. (4.36)

Using (4.36), the transmit antenna selection problem for the OFDM

system is formulated as

P3 : T?ofdm = argmax
T⊆S:|T|=Nt≥NMS

Rdl,ofdm(T)

where Rdl,ofdm(T) = 1
Nsc

∑Nsc

n=1

∑NMS

u=1 log2

(
1 + SINRu,n(T)

)
is the average sum

rate. From (4.36), it can be shown that the achievable rate is equal for all

u and n. Consequently, maximizing the sum rate is equivalent to maxi-

mizing the SINR in (4.36), and it is necessary need to select transmit an-

tennas that maximize the transmit power pT. It is considered that the to-

tal transmit power is constrained by P as tr{E[xdlxdlH ]} ≤ P . Assuming

equal power allocation for each user and subcarrier, I have tr
{
E[xdlxdlH ]

}
=
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pTtr
{
WH

BSWBBW
H
BBWBS

}
= pTtr

{
(Hdl

T H
dlH
T )−1

}
and thus, the power alloca-

tion pT with maximum transmit power is given as

pT =
P

tr
{

(Hdl
T H

dlH
T )−1

} . (4.37)

Remark 12. The transmit power in (4.37) shows that the transmit antenna

selection problem for DL OFDM communications in low-resolution ADC sys-

tems with ZF precoding and equal power allocation is equivalent to that in

high-resolution ADC systems.

Accordingly, any state-of-the-art transmit antenna selection methods

for high-resolution ADC OFDM systems with ZF-precoding can be employed

for low-resolution ADC OFDM systems, which was also true for narrowband

communications as shown in Section 4.3. In addition, the analysis derived in

Section 4.3.2 also holds for the DL OFDM systems.

Corollary 10. For the multiuser DL OFDM system with ZF precoding and

equal power distribution in (4.32), the maximum achievable sum rate of MSs

with low-resolution ADCs is monotonically increasing with the number of se-

lected transmit antennas:

Rdl,ofdm(Topt1) < Rdl,ofdm(Topt2)

where Topt1 and Topt2 are the optimal antenna subsets with |Topt1| < |Topt2|.

Proof. Replace Hdl
T in the proof of Theorem 5 with Hdl

T and follow the same

proof. �

143



According to Corollary 10, we need to use as many antennas at the BS

for DL OFDM systems with ZF-precoding to maximize the achievable rate

even with quantization error at the MSs.

4.5.2 Uplink ODFM Communications

Similarly to the DL OFDM system model with low-resolution ADCs

derived in the previous section, the UL ODFM system with low-resolution

ADCs can be modeled as follows [131]. Let xul
n ∈ CNMS be a vector of the

OFDM symbols of NMS MSs at time n. Let xul = [xulT
1 ,xulT

2 , . . . ,xulT
Nsc

]T ∈

CNscNMS , which is given as

xul =
√
ρ(WH

DFT ⊗ INMS
)sul

where sul = [sulT
1 , sulT

2 , . . . , sulT
Nsc

]T ∈ CNscNMS and sul
n = [sul

n,1, s
ul
n,2, . . . , s

ul
n,NMS

]T .

Let the analog received signals at the BS with Nr selected antennas in

K after CP removal at time n be rul
n ∈ CNr . The vectors of received signals

rul
n for Nsc time duration are stacked as

rul = Hul
Kx

ul + nul

=
√
ρHul

K(WH
DFT ⊗ INMS

)sul + nul

where rul = [rulT
1 , rulT

2 , . . . , rulT
Nsc

]T ∈ CNscNr , and the UL channel matrix in the

time domain for Nr selected antennas Hul
K ∈ CNscNr×NscNMS is given as

Hul
K = BlkCirc

{
Hul

K,0,0, · · · ,0,Hul
K,L−1, · · · ,Hul

K,1

}
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where Hul
K,` is the UL channel matrix of the selected antennas for the (`+ 1)th

channel tap, L is the number of channel taps, and nul = [nulT
1 ,nulT

2 , . . . ,nulT
Nsc

]T ∈

CNscNr denotes the vector of the AWGN noise vectors.

After quantization, the quantized OFDM signals are expressed by adopt-

ing the AQNM as [73]

yul = αb
√
ρHul

K(WH
DFT ⊗ INMS

)sul + αbn
ul + qul

where qul = [qulT
1 ,qulT

2 , . . . ,qulT
Nsc

]T ∈ CNscNr is the additive quantization noise

vector and qul
n ∼ CN(0,Rqul

n qul
n

). The covariance matrix Rqul
n qul

n
is [73]

Rqul
n qul

n
= αb(1− αb)diag{E[rul

n r
ulH
n ]}

= αb(1− αb)diag
{
ρBKB

H
K + INr

}
(4.38)

whereBK = [Hul
K,0,0, · · · ,0,Hul

K,L−1, · · · ,Hul
K,1]. We note thatRqul

n qul
n

= Rqul
mqul

m
,

∀n 6= m, i.e., Rqul
n qul

n
is independent to subcarriers. Finally, yul is combined

through a DFT matrix as

zul = (WDFT ⊗ INr)y
ul

= αb
√
ρ(WDFT ⊗ INr)H

ul
K(WH

DFT ⊗ INMS
)sul + (WDFT ⊗ INr)(αbn

ul + qul)

= αb
√
ρGul

Ks
ul + vul

where Gul
K = (WDFT ⊗ INr)H

ul
K(WH

DFT ⊗ INMS
) = BlkDiag{Gul

K,1, · · · ,Gul
K,Nsc
},

Gul
K,n =

∑L−1
`=0 Hul

K,`e
− j2π(n−1)`

Nsc , and the noise vul = (WDFT⊗INr)(αbnul +qul) =

[vulT
1 , · · · ,vulT

Nsc
]T . Accordingly, under coarse quantization, the received digital

signal after DFT for subcarrier n becomes

zul
n = αb

√
ρGul

K,ns
ul
n + vul

n . (4.39)
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The covariance matrix of vul
n is derived as Rvul

n vul
n

= α2
bINr + Rqul

n qul
n

where

Rqul
n qul

n
is defined in (4.38). Using (4.39), the UL capacity for subcarrier n is

derived as

Rul
n (K) = log2

∣∣∣INr + ρα2
b(α

2
bINr + Rqul

n qul
n

)−1Gul
K,nG

ulH
K,n

∣∣∣. (4.40)

Note that the capacity of the wideband OFDM system for each subcarrier in

(4.40) shows similar structure as that of the narrowband system in (4.18).

Since all subcarriers share a same subset of antennas, i.e., K is same

for all subcarriers, the maximization cannot be applied to each subcarrier

separately. Accordingly, it is necessary to find the best subset of antennas K

for the entire subcarriers, and the receive antenna selection problem for the

wideband UL OFDM system is formulated as

P4 : K?
ofdm = argmax

K⊆S:|K|=Nr≥NMS

Nsc∑
n=1

Rul
n (K). (4.41)

To solve (4.41), I extend the greedy approach for the narrowband commu-

nications in Section 4.4. It is also shown that the MCMC approach can be

naturally adopted with modification.

Similarly to (4.21), let Gul
Kt∪{j},n be the channel matrix of t selected

antennas during the first t greedy selections and a candidate antenna j ∈ S\Kt

at the next selection. The greedy maximization problem is formulated as

J = argmax
j∈S\Kt

Nsc∑
n=1

Rul
n (Kt ∪ {j}) . (4.42)
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Now, I decompose (4.40). Let D̄Kt∪{j} = It+1 +ρ(1−αb)diag{BKt∪{j}B
H
Kt∪{j}}.

At the (t+ 1)th selection stage, I have

Rul
n (Kt ∪ {j}) = log2

∣∣∣INMS
+ ραbG

ulH
Kt∪{j},nD̄

−1
Kt∪{j}G

ul
Kt∪{j},n

∣∣∣
= log2

∣∣∣∣INMS
+ ραb

(
GulH

Kt,nD̄
−1
Kt
Gul

Kt,n+
1

d̄j
fn,jf

H
n,j

)∣∣∣∣
= Rul

n (Kt) + log2

(
1+

ραb
dj

cn,t(j)

)
(4.43)

where fHn,j is jth row of Gul
n , d̄j is the corresponding diagonal entry of D̄Kt∪{j},

and cn,t(j) is

cn,t(j) = fHn,j

(
INMS

+ραbG
ulH
Kt,nD̄

−1
Kt
Gul

Kt,n

)−1

fn,j. (4.44)

With (4.43), the greedy maximization problem in (4.42) reduces to

J = argmax
j∈S\Kt

Nsc∑
n=1

log2

(
1 +

ραb
dj

cn,t(j)

)
. (4.45)

Therefore, a greedy algorithm that is similar to Algorithm 3 can be used for

(4.45). In addition, let Qn,t = (INMS
+ραbG

ulH
Kt,n

D̄−1
Kt
Gul

Kt,n
)−1. Then, cn,t(j)

in (4.44) can also be updated without matrix inversion for each subcarrier as

shown in Algorithm 3. Accordingly, the complexity of the proposed QFAS

algorithm for the UL OFDM system becomes O(NscNrNMSNBS).

Corollary 11. The capacity of the QFAS method for the UL OFDM system

is lower bounded by

Nsc∑
n=1

Rul
n (Kqfas) ≥

(
1− 1

e

) Nsc∑
n=1

Rul
n (K?

ofdm) (4.46)

where K?
ofdm is the optimal subset of receive antennas defined in (4.41).
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Proof. The class of submodular functions is closed under nonnegative linear

combinations, and I showed that the capacity with the quantization error is

submodular in the proof of Corollary 9. Consequently, the sum capacity for all

carrier frequencies in (4.41) is also submodular. Since the proposed QFAS for

the wideband OFDM system solves (4.45), which is equivalent to the greedy

maximization in (4.42), from Theorem 6, I derive (4.46). �

To find an approximated optimal solution, the adaptive MCMC ap-

proach described in Section 4.4.3 can be also used. To this end, the original

PDF π(ωωω) needs to be modified as

π(ωωω) , exp

(
1

τ

Nsc∑
n=1

Rul
n (ωωω)

)
/Γofdm (4.47)

where τ is a rate constant and Γofdm is a normalizing factor for the PDF. Then,

the adaptive MCMC-based antenna selection method for the OFDM system

can be performed similarly to the QMCMC-AS method in Section 4.4.3. The

complexity of the QMCMC-AS method for the OFDM system is computed as

O(NscNrN
2
MSNMCMCτstop).

4.6 Simulation Results

In this section, the theoretical results and proposed methods are vali-

dated through simulations. Rayleigh channels are assumed with a zero mean

and unit variance for small scale fading. The log-distance pathloss model [132]

is adopted for a large scale fading. I consider randomly distributed MSs over

a single cell with radius of 1km and the minimum distance between the BS

148



10 20 30 40 50 60

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

(a) (b)

Figure 4.2: Average sum rate Rdl,ofdm (a) with respect to the number of
selected antennas Nt for NBS = 64 BS antennas, NMS = 8 MSs, P = 30 dBm
total power constraint, and b ∈ {3, 4, 5} ADC bits, and (b) with respect to
the total transmit power constraint P for NBS = 128 BS antennas, NMS = 12
MSs, Nt = 16 selected antennas, and b = 3 ADC bits.

and MSs to be 100m. Considering a 2.4 GHz carrier frequency with 10 MHz

bandwidth, I use 8.7 dB lognormal shadowing variance and 12 dB noise figure

at receivers.

4.6.1 Downlink Transmit Antenna Selection

I consider the DL ODFM system with Nsc = 64 subcarriers for channels

with L = 4 taps. To validate the analysis, the norm-based selection (NBS)

method is used in simulations, which selects antennas in the order of channel

norm that corresponds to each antenna [42, 117]. Note that the NBS method

always provides T1 ⊆ T2 when |T1| ≤ |T2| for the same channel. In Fig. 4.2(a),

the average sum rate increases with the number of selected antennas, which

validates the derived Theorem 5 and Corollary 10. Fig. 4.2(b) shows the aver-
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Figure 4.3: Average capacity Rul with respect to transmit power ρ for (a)
NBS = 32 BS antennas, NMS = 8 MSs, Nr = 8 selected antennas, and b = 3
quantization bits, and for (b)NBS = 128 BS antennas, NMS = 12 MSs, Nr = 16
selected antennas, and b = 3 ADC bits.

age sum rate versus the total power constraint P . Unlike the high-resolution

ADC systems, there exists a point Pmax
D for the maximum rate loss from not

using all antennas, and the rate loss decreases after the point Pmax
D in (4.14) for

the OFDM channel Hdl. Theoretical Pmax
D for the NBS method with Nt = 32

and Nt = 16 are 33.1351 dBm and 37.2850, respectively. In addition, the the-

oretical maximum rate loss in (4.15) for the OFDM channel Hdl with Nt = 32

and Nt = 16 are 19.8034 bps/Hz and 37.5282 bps/Hz, respectively, which also

corresponds to the simulation results.

4.6.2 Uplink Receive Antenna Selection

The proposed algorithms for the UL antenna selection—QFAS and

QMCMC-AS methods are evaluated. I also simulate the NBS method [42,117]

and the fast antenna selection (FAS) algorithm in [127], which shows a com-
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Figure 4.4: Average capacity Rul with respect to the number of ADC bits b
for NBS = 128 BS antennas, NMS = 8 MSs, Nr = 16 selected antennas, and
ρ = 10 dBm transmit power.

parable performance to the optimal selection under perfect quantization. Al-

though the NBS method presents low performance improvement, because of

its low complexity O(NMSNr), it is considered as a reasonable antenna selec-

tion method for high-resolution ADC systems [117]. A random selection is

simulated to offer a reference performance.

4.6.2.1 Narrowband Communications

In Fig. 4.3(a) the QFAS shows higher capacity than FAS, NBS, and ran-

dom selection cases. Noting that the initial point of the QMCMC-AS method

is the antenna subset from the QFAS, the QMCMC-AS with (NMCMC =

6, τstop = 3) provides no capacity increase from the QFAS method. Although

the QMCMC-AS with (60, 30) shows capacity increase from the QFAS method,

it is marginal. Accordingly, the QFAS method achieves a near optimal per-
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Figure 4.5: Average capacity Rul (a) with respect to the number of BS anten-
nas NBS for NMS = 12 MSs, Nr = 16 selected antennas, ρ = 20 dBm transmit
power, and b = 3 ADC bits, and (b) with respect to the number of MSs NMS

for NBS = 128 BS antennas, Nr = 16 selected antennas, ρ = 20 dBm transmit
power, and b = 3 ADC bits.

formance in terms of capacity with low complexity. The FAS method offers

marginal improvement from the random selection case as it ignores quanti-

zation error associated with selected antennas. The NBS method shows the

worst performance in low-resolution ADC systems, which means that selecting

the subset of antennas that gives the largest channel gains not only increases

the inter-user interference but also increases quantization error.

With the increased number of receive antennas, selected antennas, and

MSs, the trend of the curves in Fig. 4.3(b) is similar to Fig. 4.3(a). The

QMCMC-AS with (60, 30), however, shows no improvement from the QFAS.

This shows that the QMCMC-AS is not scalable with the number of BS an-

tennas and selected antennas. In both Fig. 4.3(a) and (b), the capacity gap

between the QFAS algorithm and the conventional algorithms increases with
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the transmit power ρ because the quantization error becomes more dominant

than the AWGN as the transmit power increases. In addition, the results in

Fig. 4.3 demonstrate that the conventional UL antenna selection approaches

are not applicable to the low-resolution ADC receivers.

In Fig. 4.4, in the low-resolution ADC regime, the capacity of the QFAS

method is higher than the FAS, NBS, and random selection. This corresponds

to the intuition for the proposed method such that considering the quantization

error is critical when selecting antennas in low-resolution ADC systems. The

capacity of the QFAS and FAS methods converges as the number of ADC bits

b increases, thereby showing that the proposed QFAS method is generalized

version of the FAS in terms of quantization precision. The NBS method per-

forms better than the random selection in high-resolution ADC regime while

it still performs worse in the low-resolution ADC regime. Again, this validates

the intuition that the antenna selection approaches for high-resolution ADC

systems cannot directly be applied to the low-resolution ADC receivers.

In Fig. 4.5(a), it is observed that there is large improvement from the

random selection for the QFAS method as NBS increases whereas the FAS

and NBS cannot provide such improvement. Accordingly, the proposed QFAS

method can be effective in the large antenna array systems with low-resolution

ADCs by efficiently reducing the number of RF chains. The capacity with

the NBS method even decreases with the number of BS antennas since the

increased candidate antenna size worsens the resulting subset of antennas by

significantly increasing quantization error and interference. In Fig. 4.5(b), the
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Figure 4.6: Average sum capacity 1
Nsc

∑
nR

ul
n with respect to transmit power

ρ for NBS = 32 BS antennas, NMS = 8 MSs, Nr = 8 selected antennas, b = 3
quantization bits, and Nsc = 64 subcarriers with L = 4-tap channels.

capacity gap between the QFAS and FAS methods increases with NMS, which

is desirable in term of maximizing the sum rate. Overall, the performance

improvement with the proposed QFAS becomes larger as more users are served

and more antennas are deployed for the fixed number of selected antennas

(equivalently RF chains), which is desirable for future communication systems

that are likely to serve more users with more antennas.

4.6.2.2 Wideband OFDM Communications

I consider UL wideband ODFM communications with Nsc = 64 sub-

carriers for channels with L = 4 taps. Similarly to the simulation results for

the narrowband system, the proposed QFAS method in Fig. 4.6 shows higher

capacity than the FAS, NBS, and random selection. In addition, the QFAS

method almost achieves the capacity of the QMCMC-AS with the increased
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Figure 4.7: Average sum capacity 1
Nsc

∑
nR

ul
n with respect to the number of

selected antennas Nr for NBS = 128 BS antennas, NMS = 12 MSs, b = 3 ADC
bits, Nsc = 64 subcarriers with L = 4-tab channels, and ρ = 20 dBm.

number of sampling and iterations (NMCMC = 120, τstop = 60). Therefore, the

QFAS can also achieve near optimal selection performance in wideband OFDM

systems while the FAS method shows marginal improvement from the random

selection and the NBS method shows the worst performance in low-resolution

ADC systems.

In Fig. 4.7, the proposed QFAS performs better than the FAS, NBS,

and random selection for any size of antenna subset Nr. The QFAS provides

saving of about 10 RF chains on average compared to the FAS and random se-

lection, Such saving can be considered as large for receivers with the relatively

small number RF chains compared to the number of antennas. Overall, the

simulation results demonstrate that the conventional receive antenna selection

is not adequate under non-negligible quantization error and that the proposed
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QFAS can effectively incorporate the quantization error in antenna selection.

4.7 Conclusion

In this chapter, I investigated antenna selection at a BS in low-resolution

ADC systems to achieve power-efficient wireless communication systems. For

downlink narrowband and wideband OFDM systems, I showed that the ex-

isting state-of-the-art transmit antenna selection techniques can be applicable

to the low-resolution ADC systems when the BS employs the ZF precoding

with equal power distribution. In addition, I proved that it is beneficial to use

more antennas in terms of maximizing the sum rate. Unlike the high-resolution

ADC systems, I validated that the transmit antenna selection can achieve a

comparable sum rate to the system that uses all antennas by increasing the to-

tal transmit power constraint, which allows to reduce the number of RF chains

with marginal sum rate loss. For an uplink narrowband and wideband OFDM

systems, I showed that the conventional receive antenna selection criteria are

insufficient for the low-resolution ADC systems. The generalized greedy selec-

tion criterion provided that capturing the balance between the channel gain

and increase in quantization error is critical when there is non-negligible quan-

tization error at the receiver. The propose greedy selection algorithm showed

that it guarantees (1 − 1
e
) of the capacity with an optimal antenna subset. I

have proposed advanced receiver designs to mitigate quantization error in the

last three chapters. In the next chapter, however, I will focus on developing a

technique that is used in the higher network layer.
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Chapter 5

User Scheduling for Millimeter Wave Hybrid
Beamforming Systems with Low-Resolution

ADCs

In this chapter1, I investigate uplink user scheduling for millimeter wave

(mmWave) hybrid analog/digital beamforming systems with low-resolution

analog-to-digital converters (ADCs). Deriving new scheduling criteria for the

mmWave systems, I show that the channel structure in the beamspace, in

addition to the channel magnitude and orthogonality, plays a key role in max-

imizing the achievable rates of scheduled users due to quantization error. The

criteria show that to maximize the achievable rate for a given channel gain, the

channels of the scheduled users need to have (1) as many propagation paths

as possible with unique angle-of-arrivals (AoAs) and (2) even power distribu-

tion in the beamspace. Leveraging the derived criteria, an efficient scheduling

1This chapter is based on the work published in the journal paper: J. Choi, G. Lee, and
B. L. Evans, "User Scheduling for Millimeter Wave Hybrid Beamforming Systems with Low-
Resolution ADCs," in IEEE Transactions on Wireless Communications, vol. 18, no. 4, pp.
2401-2414, Apr. 2019. Part of the work was also published in the conference paper: J. Choi,
and B. L. Evans, "User Scheduling for Millimeter Wave MIMO Communications with Low-
Resolution ADCs," in Proceedings of IEEE International. Conference. on Communications
(ICC), May 20-24, 2018, Kansas City, MO, USA. This work was supervised by Prof. Brian
L. Evans and valuable feedback and contributions from Dr. Gilwon Lee improved the quality
of this work.
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algorithm is proposed for mmWave zero-forcing receivers with low-resolution

ADCs. I further propose a chordal distance-based scheduling algorithm that

exploits only the AoA knowledge and analyze the performance by deriving

ergodic rates in closed form. Based on the derived rates, I show that the

beamspace channel leakage resulting from phase offsets between AoAs and

quantized angles of analog combiners can lead to sum rate gain by reducing

quantization error compared to the channel without leakage. Simulation re-

sults validate the sum rate performance of the proposed algorithms and derived

ergodic rate expressions.

5.1 Introduction

Unlike the previous chapters, I focus on developing new user schedul-

ing criteria for hybrid beamforming with low-resolution ADC systems to re-

duce quantization error without changing the receiver architecture. In recent

years, low-resolution ADC systems with hybrid analog/digital beamforming

have been investigated to take advantage of both the reduced number of ADC

bits and radio frequency (RF) chains [32,90,133,134]. It was shown in [32] that

the hybrid beamforming systems with low-resolution ADCs achieve compara-

ble rate to that of infinite-bit ADC systems, providing better energy-rate trade-

off compared to conventional hybrid multiple-input multiple-output (MIMO)

systems and low-resolution ADC systems. To further increase spectral and

energy efficiency of mmWave receivers, deploying adaptive-resolution ADCs

in hybrid MIMO systems was proposed with ADC bit-allocation algorithms
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[90, 133]. Channel estimation techniques were also investigated for hybrid

MIMO systems with low-resolution ADCs [134]. Understanding the superior

spectral and energy efficiency of the architecture, this chapter focuses on the

hybrid MIMO receiver with low-resolution ADCs to solve a user scheduling

problem in mmWave communications.

Although user scheduling in multiuser MIMO systems has been ex-

tensively studied for more than a decade, it has not been investigated for

low-resolution ADC systems. One representative method of user scheduling

is the semi-orthogonal user selection (SUS) method [44]. This method selects

users in a greedy manner such that the channel vectors of the selected users

are nearly orthogonal and have large magnitudes based on the full channel

state information (CSI) knowledge of all users at the base station (BS). An-

other representative approach is the random beamforming (RBF) method [45]

that selects the user who has the maximum signal-to-interference-noise ratio

(SINR) for each beam when a set of orthogonal beams are determined a priori

at the BS before scheduling. Similarly, to capture the orthogonality between

channels of scheduled users, user scheduling algorithms that adopt chordal

distance as a selection measure were proposed in [135,136].

Unlike the user scheduling methods that have been studied under the

Rayleigh fading channel model by assuming rich scattering [44–46], different

approaches have investigated user scheduling under the channels with poor

scattering such as mmWave channels [47–49]. In [47], user scheduling algo-

rithms were proposed for mmWave communications by leveraging the knowl-
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edge of channel gain and angle of departure. In addition, the achievable sum

rate was quantified for the BS which employs an iterative matrix decomposi-

tion based hybrid beamforming scheme proposed in [137]. The RBF method

was analyzed in both the uniform random single path [48] and multi-path chan-

nel models [49]. By exploiting the sparse nature of mmWave channels, beam

aggregation-based scheduling and fairness-aware scheduling algorithms were

developed in [49]. Although the user scheduling algorithms were proposed

for mmWave communications, they still focused on user scheduling without

quantization error. Consequently, user scheduling in mmWave systems with

low-resolution ADCs remains questionable.

5.1.1 Contributions

In this chapter, I investigate uplink user scheduling for mmWave hy-

brid MIMO zero-forcing receivers with low-resolution ADCs. Noting that non-

negligible quantization error can be a primary bottleneck for attaining schedul-

ing gain in the low-resolution ADC system, I provide following contributions:

• User scheduling criteria is derived to maximize the scheduling gain by find-

ing the best tradeoff between channel gains and corresponding quantization

noise. Adopting the virtual channel model [71], the criteria can be inter-

preted as follows: for a given channel gain, (i) unique AoAs of each scheduled

user and (ii) equal power spread across the beamspace complex gains within

each user maximize sum rate. Accordingly, the derived scheduling criteria

reveal that the channel structure in the beamspace, in addition to the chan-
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nel magnitude and orthogonality, plays a key role in maximizing sum rate

under coarse quantization.

• Leveraging the derived criteria, an efficient scheduling algorithm is proposed

for hybrid low-resolution ADC systems. The proposed algorithm combines

semi-orthogonal user filtering [44] and non-overlap filtering of dominant

beams [49] to enforce orthogonality among scheduled users and to reduce

quantization error. Using an approximated SINR as a scheduling measure,

the algorithm captures the trade-off between channel gain and correspond-

ing quantization error, and reduces computational complexity by avoiding

matrix inversion.

• Considering the difficulty of acquiring instantaneous full CSI, I further pro-

pose a chordal distance-based scheduling algorithm which only requires

AoAs of mmWave channels, known as slowly-varying channel characteristics

[138]. Unlike the previously developed chordal distance-based algorithms

[135, 136] that use full CSI and adopt a simple greedy structure which re-

quires prohibitively high complexity, the proposed algorithm exploits only

the AoA information of mmWave channels and reduces the complexity by

filtering a user candidate set.

• To analyze the performance of the chordal distance-based algorithm, closed-

form sum rates are derived for two channel scenarios: (1) AoAs exactly align

with quantized angles of analog combiners and (2) arbitrary AoAs produce

phase offsets from the quantized angles, which results in channel leakage. For
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Figure 5.1: A receiver architecture with large antenna arrays and analog com-
biners WRF, followed by low-resolution ADCs.

the first scenario, an ergodic rate is derived as the sum of the ergodic rate

with no quantization and the rate loss due to quantization. Accordingly,

the derived rate provides the expected ergodic rate loss due to quantiza-

tion in closed form. For the second scenario, an approximated lower bound

of the ergodic rate is derived in closed form. It is observed that the two

channel scenarios result in different sum rates as a consequence of coarse

quantization, and the channel leakage provides sum rate gain by reducing

quantization error, which challenges the conventional negative understand-

ing towards channel leakage.

Simulation results demonstrate the superior ergodic sum rate performance of

the proposed algorithms and validate the analysis and intuition obtained in

this chapter.
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5.2 System Model
5.2.1 Signal and Channel Models

We consider a single-cell multiuser MIMO network for uplink commu-

nications. A BS employs a uniform linear array (ULA) of M receive antennas.

Analog combiners are applied at the BS, followed by N ≤M chains as shown

in Fig. 5.1. We assume that K single-antenna users are distributed in the cell

and the BS schedules S ≤ N users to serve among the K users in the cell. The

ADCs are considered to be low-resolution ADCs to reduce the receiver power

consumption.

Focusing on mmWave communications, the channel hk for user k is

assumed to be a sum of the contributions of limited scatterers that contribute

Lk propagation paths to the channel hk [139]. Therefore, the discrete-time

narrowband channel of user k can be modeled as [71]

hγ,k =

√
1

γk
hk =

√
M

γkLk

Lk∑
`=1

gk,`a(φk,`) (5.1)

where γk denotes the pathloss of user k, gk,` is the complex gain of the `th

propagation path of user k, and a(φk,`) is the array steering vector of the

BS receive antennas corresponding to the azimuth AoA of the `th path of

the kth user φk,` ∈ [−π/2, π/2]. It is considered that gk,` is an independent

and identically distributed (IID) complex Gaussian random variable as gk,`
i.i.d∼

CN(0, 1). The array steering vector a(θ) for the ULA antennas of the BS is

given as

a(θ) =
1√
M

[
1, e−jπϑ, e−j2πϑ, . . . , e−j(M−1)πϑ

]ᵀ
(5.2)
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where ϑ = 2d
λ

sin(θ) is the spatial angle that is related to the physical AoA θ,

d denotes the distance between antenna elements, and λ represents the signal

wave length. Throughout this chapter, θ and φ are used to denote the physical

angles of analog combiners and physical AoAs of a user channel, respectively.

I also use ϑ and ϕ to indicate the spatial angles for θ and φ, respectively. It is

assumed that ϑ is a constant value in the range of [−1, 1] and ϕ is a uniform

random variable ϕ ∼ Unif[−1, 1].

For simplicity, I consider a homogeneous long-term received SNR net-

work2 where a conventional uplink power control compensates for the pathloss

and shadowing effect to achieve the same long-term received SNR target for

all users in the cell [93, 94]. Let x = Ps be the transmitted user signals

where P = diag{√ρ γ1, . . . ,
√
ρ γS} is the transmit power matrix and s is the

S × 1 transmitted symbol vector from S users. Let Hγ = HB represent

the M × S channel matrix where Hγ = [hγ,1, . . . ,hγ,S] is the channel ma-

trix, H = [h1, . . . ,hS] is the channel matrix after the uplink power control,

and B = diag{
√

1/γ1, . . . ,
√

1/γS} is the pathloss matrix. Then, the received

baseband analog signal r ∈ CM is given as

r = Hγx + n = HBPs + n =
√
ρHs + n (5.3)

where I assume s ∼ CN(0, IS), and n indicates the additive white Gaussian

noise (AWGN) vector n ∼ CN(0, IM). Thus, ρ can be regarded as the SNR.

2The proposed scheduling criteria and the proposed algorithms in this chapter can also
be applicable to a heterogeneous long-term received SNR network.
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The received analog signals in (5.3) are combined via an M × N ana-

log combiner WRF. The combiner WRF is implemented using analog phase

shifters, and its elements are constrained to have the equal norm of 1/
√
M .

After analog combining, (5.3) becomes

y = WH
RFr =

√
ρWH

RFHs + WH
RFn. (5.4)

Assuming uniformly-spaced spatial angles, the matrix of array steering vectors

A =
[
a(θ1), . . . , a(θM)

]
becomes a unitary discrete Fourier transform (DFT)

matrix. Noting that the antenna space and beamspace are related through a

spatial Fourier transform, a sub-matrix of the DFT matrix is adopted as the

analog combiner WRF = Ã [22, 90] to project the received signals onto the

beamspace, where Ã consists of N columns of A. Through the projection,

the BS can exploit the sparsity of the mmWave channels to capture channel

gains with the reduced number of RF chains [21]. Using WRF = Ã, (5.4) is

rewritten as

y =
√
ρÃHHs + ÃHn =

√
ρHbs + v. (5.5)

I denote Hb = ÃHH, which is the projection of the channel matrix onto the

beamspace. Since A is a unitary matrix, the projected noise vector v = ÃHn

is distributed as CN(0, IN).

5.2.2 Quantization Model

In this subsection, I introduce an additive quantization noise model

[73] which approximates quantization process in a linear form for analytical
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tractability. Such linear approximation of quantization provides reasonable

accuracy in low and medium SNR ranges [56]. After processed through the

RF chains, each complex sample yi in (5.5) is quantized at the ith pair of

ADCs, and each ADC quantizes either a real or imaginary component of yi.

The quantized signal yq is [73]

yq = Q
(
Re{y}

)
+ jQ

(
Im{y}

)
= α
√
ρHbs + αv + q (5.6)

where Q(·) is the element-wise quantizer function. The quantization gain α is

defined as α = 1 − β, β = E[|y − yq|2]/E[|y|2] is a normalized mean squared

quantization error, and q is the additive quantization noise vector.

For a scalar MMSE quantizer of a Gaussian random variable, β can be

approximated as β ≈ π
√

3
2

2−2b for b > 5 [125] where b denotes the number of

quantization bits for each real and imaginary part of y. The values of β for

b ≤ 5 are shown in Table 1 in [90]. Although the quantization error is neither

Gaussian nor is its covariance matrix diagonal in an exact nonlinear quan-

tization model, approximations are provided based on [54, 56, 73] as follows:

considering a lower bound of achievable rate, I assume q ∼ CN(0,Rqq(Hb))

[54]. Since q is uncorrelated with y [73], the covariance matrix of q with Hb

is given as [54,73]

Rqq(Hb) = α(1− α) diag(ρHbH
H
b + IN). (5.7)

In the following section, I investigate a user scheduling problem based on the

considered system model.
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5.3 User Scheduling

In this section, I focus on ZF combining Wzf = Hb(HH
b Hb)−1 at the

BS and investigate user scheduling to derive scheduling criteria and propose

an algorithm by exploiting the obtained criteria. To this end, I first consider

the case where the effective CSI Hb is known at the BS and then extend

the problem to the case where only the partial CSI is available. For low-

resolution ADC systems, state-of-the-art channel estimation techniques have

been developed and have shown remarkable estimation accuracy with few-bit

ADCs [17,88] or even with one-bit ADCs [14–16]. With the ZF combiner Wzf ,

the quantized signal in (5.6) is given as

yzf
q = WH

zfyq = α
√
ρWH

zfHbs + αWH
zfv + WH

zfq.

Nulling out the inter-user interference, the achievable rate of user k is derived

as

rk(Hb) = log2

(
1 +

α2ρ

wH
zf,kRqq(Hb)wzf,k + α2‖wzf,k‖2

)
(5.8)

Using the achievable rate with quantization error (5.8), I formulate a user

scheduling problem5:

P1 : R(Hb(S?)) = max
S⊂{1,...,K}:|S|≤S

∑
k∈S

rk(Hb(S)) (5.9)

where S represents the set of scheduled users, Hb(S) is the beamspace channel

matrix of the users in S, and R(Hb(S)) is the sum rate of the scheduled users

in S. Unlike the user scheduling without quantization, which considers the
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channel orthogonality and the large channel gains, the user scheduling with

the coarse quantization needs to consider an additional condition.

Remark 13. To maximize the achievable rate (5.8), the aggregated beamspace

channel gain at each RF chain ‖[Hb]i,:‖2 needs to be minimized to reduce the

quantization noise variance Rqq in addition to forcing the channel orthogonal-

ity (hb,k⊥hb,k′ , k 6= k′) and maximizing the beamspace channel gain ‖hb,k‖2,

which reduces ‖wzf,k‖2.

5.3.1 Analysis of Scheduling Criteria

The scheduling criteria are derived for channels in the beamspace based

on the finding in Remark 13 to propose an efficient scheduling algorithm that

solves P1 in (5.9). To focus on key scheduling ingredients besides the channel

magnitude, I consider the case where the magnitude of each user channel is

given in the analysis, i.e., ‖hb,k‖ =
√
γk, ∀k with γk > 0. Given ‖hb,k‖ =

√
γk, ∀k, I reformulate P1 to the problem of finding the optimal channel

matrix that maximizes the uplink sum rate to characterize the channel matrix

that fully extracts scheduling gains.

P2 : R(H?
b) = max

Hb∈CN×S

S∑
k=1

rk(Hb), s.t. ‖hb,k‖ =
√
γk ∀k. (5.10)

To provide geometrical interpretation for the channel matrix analysis,

I further adopt the virtual channel representation [71], where each beamspace

channel hb,k contains (N − Lk) zeros and Lk complex gains of the Lk channel

paths. I first consider the single user scheduling (S = 1) and derive the channel
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characteristics required to maximize the achievable rate for P2. Then, the

result is utilized to derive the scheduling criteria for the multiuser scheduling

case.

Lemma 6. For a single user scheduling, scheduling a user who has the follow-

ing channel characteristics maximizes the uplink achievable rate in P2:

(i) the largest number of channel propagation paths and

(ii) equal power spread across the beamspace complex gains.

Proof. The ZF combiner for a single user becomes wzf = hb/‖hb‖2. Then,

(5.8) is given as

R(hb) = log2

1+
αρ

(1−α)
hHb
‖hb‖2

diag
(
ρhbhHb +IN

)
hb

‖hb‖2
+ α
‖hb‖2


= log2

(
1 +

αρ‖hb‖4

ρ(1− α)
∑

i∈L |hb,i|4 + ‖hb‖2

)
, (5.11)

where L is the set of indices of non-zero complex gains in hb with |L| = L.

With the constraint of ‖hb‖ =
√
γ, the problem of maximizing R(hb) in (5.11)

reduces to

min
hb

∑
i∈L

|hb,i|4 s.t. ‖hb‖2 = γ. (5.12)

The Karush-Kuhn-Tucker condition is used to solve the reduced problem in

(5.12). Let xi = |hb,i|2 for i = 1, 2, . . . , N . The Lagrangian of the problem

with a Lagrangian multiplier µ is given as

L(x, µ) = ‖x‖2 + µ

(∑
i∈L

xi − γ
)
.
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By taking a derivative of L(x, µ) with respect to xi for i ∈ L and setting it

to zero, I obtain xi = −µ/2. Putting it to
∑

i∈L xi = γ, I have µ = −2γ/L.

Finally, the solution becomes

xi = γ/L, i ∈ L. (5.13)

Under the virtual channel representation, xi indicates the power of the beamspace

complex gains and L is the number of propagation paths. Accordingly, the

physical meaning of (5.13) is that the achievable rate for the single user case

with the given channel power ‖hb‖2 = γ can be maximized when the channel

power γ is evenly spread to the L beamspace complex gains.

By applying the solution |h?b,i|2 = γ/L in (5.13) for i ∈ L, the achievable

rate in (5.11) becomes

R(h?b) = log2

(
1 +

αρ

ρ(1− α)/L+ 1/γ

)
. (5.14)

The quantization noise variance term in (5.14) decreases as L increases. There-

fore, the achievable rate R(h?b) can be further maximized if the scheduled user

channel h?b has the largest number of propagation paths with equal power

distribution across the beamspace complex gains. �

Unlike the conventional understanding that scheduling a user with the

largest channel gain achieves the maximum achievable rate for the single user

communication in the noise-limited environment, Lemma 6 shows that the

achievable rate is related not only to the channel magnitude ‖hb‖ but also

to the channel structure in the beamspace when received signals are coarsely
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quantized. I further show that if the number of propagation paths L is limited,

the maximum rate for the single user case converges to a finite value as the

channel magnitude increases.

Corollary 12. With the finite number of channel propagation paths L, the

maximum achievable rate with single user scheduling converges to

R(h?b)→ log2 (1 + αL/(1− α)) , as ‖hb‖ → ∞. (5.15)

Proof. The maximum achievable rate of the single user scheduling with the

given L and ‖hb‖2 = γ is derived in (5.14). Then, (5.14) converges to (5.15)

as increasing the channel gain (γ →∞). �

Corollary 12 shows that the quantization error (α < 1) limits the

achievable rate to remain finite because the quantization noise variance also

increases with the increase of the channel magnitude. This implies that the

conventional scaling law log logK [45] cannot be met in the low-resolution

ADCs regime. Accordingly, as the SNR increases, mitigation of the quantiza-

tion error becomes a more critical problem that needs to be considered in user

scheduling.

Now, the multiuser scheduling is investigated for the channel environ-

ment where
∑S

k=1 LS(k) ≤ N . Here, S(k) is the kth scheduled user. This

condition is relevant to mmWave channels where the number of channel paths

Lk is presumably very small [70]. The problem P2 is solved to characterize

the channel properties that maximize the scheduling gain. Theorem 7 shows
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the structural scheduling criteria of channels to maximize the sum rate in P2

for the considered case.

Theorem 7. For
∑S

k=1 LS(k) ≤ N , scheduling a set of users S that satisfies

the following channel characteristics maximizes the uplink sum rate in P2.

(i) Unique AoAs at the receiver for the channel propagation paths of each

scheduled user:

LS(k) ∩ LS(k′) = ∅ if k 6= k′, (5.16)

where LS(k) represents the set of indices of non-zero complex gains in

hb,S(k).

(ii) Equal power spread across the beamspace complex gains within each user

channel:

|hb,i,S(k)| =
√
γS(k)/LS(k) for i ∈ LS(k). (5.17)

Proof. I take a two-stage maximization approach and show the sufficient condi-

tions for maximizing the sum rate in P2 with the constraint of
∑S

k=1 LS(k) ≤ N .

Using the diagonal structure of Rqq as shown in (5.7), (5.8) is rewritten in a

simpler form as

rk(Hb) = log2

1+
αρ

ρ(1−α)wH
zf,kdiag

(
HbHH

b

)
wzf,k + ‖wzf,k‖2

 . (5.18)

In the first stage, I focus on minimizing ‖wzf,k‖2 in (5.18). When user channels

are orthogonal, hb,k ⊥ hb,k′ for k 6= k′, we have wzf,k = hb,k/‖hb,k‖2. Since
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wzf,k with minimum norm is known as wzf,k = hb,k/‖hb,k‖2, ‖wzf,k‖2 can be

minimized with the orthogonality condition.

In the second stage, I minimize the achievable rate of (5.18) by imposing

the orthogonality condition from the first stage as follows:

rk(Hb|hb,k⊥hb,k′)
(a)
= log2

(
1+

αρ‖hb,k‖4

ρ(1−α)hHb,kdiag
(
HbHH

b

)
hb,k+‖hb,k‖2

)
(5.19)

=log2

1+
αργ2

k

ρ(1−α)
∑
i∈Lk
|hb,i,k|2

(
|hb,i,k|2+

∑
u6=k
|hb,i,u|2

)
+γk


(b)

≤ log2

(
1 +

αργ2
k

ρ(1− α)
∑

i∈Lk |hb,i,k|4 + γk

)
(5.20)

(c)

≤ log2

(
1 +

αρ

ρ(1− α)/Lk + 1/γk

)
. (5.21)

The equality (a) is from wzf,k = hb,k/‖hb,k‖2. The equality in (b) holds if and

only if |hb,i,u| = 0, ∀u 6= k and i ∈ Lk. This implies that each user needs to

have channel paths with unique AoAs to maximize the achievable rate. Note

that (5.20) is equivalent to the achievable rate of the single user scheduling in

(5.11) due to the channel orthogonality and unique AoA conditions. Conse-

quently, applying Lemma 6, I have the inequality (c) which comes from the

fact that (5.20) is maximized when |hb,i,k| =
√
γk/Lk for i ∈ Lk, i.e., channel

power is spread evenly across the beamspace complex gains within each user

channel. The upper bound in (5.21) is equivalent to the maximum achievable

rate for the single user case in (5.14). Therefore, (5.21) is also the maximum

achievable rate of each user for the problem P2, which also maximizes the sum
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rate in P2.

Throughout the proof, it is shown that the derived conditions—the

orthogonality, the unique AoA, and the equal power spread conditions—are

sufficient to maximize the sum rate in P2 for the case of
∑S

k=1 LS(k) ≤ N . Since,

the unique AoA condition implies the orthogonality, only the unique AoA and

equal power spread conditions are required to be satisfied by the beamspace

channel matrix Hb for maximizing the uplink sum rate. This completes the

proof. �

Distinguished from conventional channels, there are channel orthogo-

nality cases related to mmWave massive MIMO communications: (a) asymp-

totic orthogonality of array steering vectors across different angles [98], (b)

orthogonality of beamspace channel sub-vectors having common AoAs, and

(c) orthogonality of array steering vectors in (5.2) with angle offsets of multi-

ples of 2/M [49]. Note that the first condition in (5.16) particularly emphasizes

the third case (c) which forces the beamspace channel orthogonality and fur-

ther minimizes the aggregated channel gain at each RF chain by avoiding

overlap between channel gains in the same AoA, which reduces the quantiza-

tion noise variance as discussed in Remark 13. The second condition in (5.17)

also minimizes the aggregated channel gain by evenly spreading the channel

power across the beamspace gains, and thus, reduces the quantization error.

Consequently, Theorem 7 emphasizes the importance of the channel structure

in maximizing the sum rate under coarse quantization, while conventional user

scheduling approaches ignore such criteria.
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Algorithm 5: Channel Structure-based Scheduling (CSS)

1 Initialization: K1 = {1, . . . , K}, S = φ, and i = 1.
2 for k = 1:K do
3 BS stores Nb ≥ Lk indices of dominant spatial angles of hb,k in

Bk .
4 Iteration: while i ≤ S and Ki 6= ∅ do
5 for k ∈ Ki do
6 BS computes approximated SINR of user k,

SINRk

(
Hb(S ∪ {k})

)
in (5.25).

7 BS schedules user who has the largest SINR as

S(i) = argmax
k∈Ki

SINRk

(
Hb(S ∪ {k})

)
(5.22)

and updates scheduled user set S = S ∪ {S(i)}.
8 Then, BS computes orthogonal component fS(i) for filtering as

in (5.23).
9 Using fS(i) and BS(i), BS filters candidate set Ki as in (5.24)

and sets i = i+ 1;
10 return Scheduled user set S;

Therefore, I propose a quantization-aware scheduling algorithm based

on the criteria in Theorem 7. Although the scheduling criteria in Theorem 7 is

derived under the condition of
∑S

k=1 LS(k) ≤ N , I show that the proposed al-

gorithm which exploits the criteria still achieves higher performance compared

to conventional algorithms for
∑S

k=1 LS(k) > N in Section 5.5.

5.3.2 Proposed Algorithm

In this subsection, a user scheduling algorithm with low complexity is

proposed by using the criteria in Theorem 7. Adopting a greedy manner, the

proposed algorithms make it possible to schedule users without examining all
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combinations of users. At each iteration, the proposed algorithm schedules

a user and reduces the size of a user candidate set K through filtering. To

extract user diversity, the algorithm filter the user set K by enforcing semi-

orthogonality between scheduled user channels, not perfect orthogonality. In

addition to the scheduling criteria in Theorem 7, the orthogonality condition

in (5.19) is also applied for the filtering to provide higher precision in the

semi-orthogonality.

Algorithm 5 describes the proposed scheduling method, called channel

structure-based scheduling (CSS). After each user selection, the proposed algo-

rithm filters the user candidate setK by leveraging the orthogonality condition

in (5.19) as in [44] by utilizing (5.23)

fS(i) = hb,S(i) −
i−1∑
j=1

fHS(j)hb,S(i)

‖fS(j)‖2
fS(j)

=

(
I−

i−1∑
j=1

fS(j)f
H
S(j)

‖fS(j)‖2

)
hb,S(i) (5.23)

where fS(i) is the component of hb,S(i) that is orthogonal to the subspace

span{fS(1), . . . , fS(i−1)}. Unlike the algorithm in [44] which computes the or-

thogonal component fk for the entire users in the candidate set, the proposed

CSS algorithm calculates fS(i) only for the currently scheduled user S(i). The

algorithm also enforces additional spatial orthogonality in the beamspace to

the filtered set as in [49] by modifying the unique AoA condition in (5.16).

Since there can exist phase offsets that lead to more than Lk dominant chan-

nel gains in hb,k due to the quantized angles of the analog combiner, the
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algorithm stores Nb ≥ Lk indices of dominant spatial angles in Bk and filters

the user set K by removing users whose angle indices in Bk show more than

NOL overlaps with those of the scheduled user in BS(i). The semi-orthogonality

filtering becomes

Ki+1 =

{
k ∈ Ki\{S(i)}

∣∣∣∣ |fHS(i)hb,k|
‖fS(i)‖‖hb,k‖

< ε, |BS(i) ∩Bk| ≤ NOL

}
. (5.24)

These filtering operations not only reduce the size of the user set K,

but also offer semi-orthogonality between the scheduled users in S and the

candidate users in K. As a result, the filtering leads the ZF combiner to be

approximated as wzf,k ≈ hb,k/‖hb,k‖2 for a user k ∈ K, and the SINR of user

k ∈ K with previously scheduled users in S is approximated as

SINRk

(
Hb(S ∪ {k})

)
≈ αρ‖hb,k‖4

(1− α)hHb,kD
(
Hb(S ∪ {k})

)
hb,k

(5.25)

where D
(
Hb(S ∪ {k})

)
= diag

(
ρHb(S ∪ {k})Hb(S ∪ {k})H + 1

1−αIN
)
. For a

scheduling measure, the proposed algorithm adopts the approximated SINR

(5.25) to incorporate the scheduling criteria in Theorem 7 with the channel

magnitude and orthogonality3. At each iteration, the algorithm schedules the

user who has the largest SINR among the users in K as shown in (5.22). Using

the approximated SINR (5.25) for the selection measure greatly reduces the

computational complexity by avoiding the matrix inversion for computing the

ZF combiner Wzf .

3By treating the approximate SINR as the true SINR and following the technique used
in [44] and [49], the proposed method can be incorporated with the proportional fairness
(PF) policy [140] for fairness-aware scheduling in a heterogeneous system.
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Algorithm 6: Greedy Max-Sum Rate Scheduling

1 Initialization: KG,1 = {1, . . . , K}, SG = ∅, and i = 1.
2 Iteration: while i ≤ SG do
3 for k ∈ KG,i do
4 Compute sum rate using rj in (5.8) for scheduled users and

each user k ∈ KG,i as

Rk =
∑

j∈SG∪{k}

rj
(
Hb(SG ∪ {k})

)
(5.26)

5 BS schedules user who maximizes sum rate as
SG(i) = argmaxk∈KG,i

Rk and
6 updates KG,i+1 = KG,i \ {SG(i)}, SG = SG ∪ {SG(i)}, and

i = i+ 1;
7 return Scheduled user set SG;

To provide a reference in sum rate performance, I also propose a high-

complexity and high-performance greedy algorithm which schedules the user

who achieves the highest sum rate at each iteration as shown in Algorithm 6.

At each iteration, the greedy algorithm computes sum rate in (5.8), i.e., the

algorithm computes the exact SINR for scheduled users in SG and a candidate

user k, ∀k ∈ KG,i. Thus, the algorithm carries the huge burden of computing

a matrix inversion |KG,i| times at each selection. At the ith stage, the greedy

algorithm computes the achievable rate in (5.8) |KG,i| × i times and compares

the derived |KG,i| sum rates, whereas the CSS algorithm only computes the

approximated SINR in (5.25) |Ki| times and compares |Ki| SINRs. Moreover,

unlike the greedy algorithm, the CSS algorithm reduces the size of the user

set Ki by filtering in (5.24) at each iteration. This leads to |Ki| � |KG,i|, and
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the gap |KG,i| − |Ki| will increase with iteration; the CSS algorithm becomes

more efficient with larger K and /or S.

Remark 14. The proposed algorithm can be applied to an orthogonal frequency

division multiplexing (OFDM) system for a wideband channel case. Since the

system with a given analog combiner is considered, the proposed algorithm can

be performed independently for each subcarrier index i. However, the structure

of the quantization noise q[i] in the wideband OFDM system becomes different

from that of the narrowband system so that the spatial filtering in the proposed

user scheduling algorithm may not be desirable. Nonetheless, the approximated

SINR can still be applicable with the semi-orthogonality filtering by computing

the quantization noise variance for each subcarrier i of the OFDM system

Rqq[i]. Thus, the BS can perform the proposed algorithms to schedule users

to be served on each subcarrier by relaxing the spatial filtering.

The proposed method schedules users with minimum overlap among

quantized AoAs of user channels to satisfy the derived scheduling criterion (i)

in Theorem 7. Accordingly, by using the proposed scheduling method, the

beamforming-based Doppler effect reduction techniques such as a per-beam

synchronization approach in [141] can be performed at the BS since the BS can

see each beam with a single dedicated user signal with large channel gains and

possibly with other user signals with negligible channel gains. Therefore, the

proposed scheduling method can provide potential benefit in reducing Doppler

effect when jointly used with Doppler effect mitigation techniques at the BS.
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5.3.3 Beam Training-Based Channel Acquisition

Assuming time-division duplex communications, I briefly provide an

example of extension of the proposed algorithm to a practical system where

the BS uses beam training and receives channel quality indicators (CQIs) from

users. A procedure of beam training and CQI feedback can be as follows:

1. The BS constructs a set of Ns ≥ N beam vectors {a(ϑ̄1), . . . , a(ϑ̄Ns)} with

the angles within the angles of the analog combiner Ã, i.e., there exists i

such that ϑ̄n ∈ [ϑi − 1/M, ϑi + 1/M ], ∀n, where ϑi is the spatial angle of

the ith analog beamformer. Then, the BS transmits each beam of the set

in time to all users in the cell during a training phase.

2. Each user k can estimate the channel gain corresponding to each beam

and have the estimate of hHk Ã = hHb,k at the end of the beam training.

From the sparsity of the mmWave channel, few elements of hb,k have non-

negligible beam gains and we can implement an efficient feedback method

that exploits the sparsity of the effective channel hb,k as described in [142].

For instance, each user can feed back the beam indices of the non-negligible

beam gains and their corresponding channel coefficients in a quantized form

to the BS.

3. After the feedback from all users is over, the BS can create an estimate ofHb

with the feedback information by simply padding zeros in the unreported

beam indices. Then, the BS can directly apply the proposed scheduling

algorithm by using the estimated channel.
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5.4 User Scheduling with Partial Channel Information

In this section, a user scheduling algorithm is proposed when only par-

tial CSI is known at the BS since it can be challenging to obtain reliable in-

stantaneous CSI estimates for entire users as the number of antennas or users

becomes large. A reasonable alternative is to use slowly-varying channel char-

acteristics, in particular, AoAs of mmWave channels [138]; AoAs persist over

longer than the coherence time of mmWave channels, and mmWave channels

have a limited number of AoAs. In this regard, by using the AoA knowledge,

the proposed algorithm can greatly reduce the burden of estimating instanta-

neous full CSI at each channel coherence time. After scheduling, it is assumed

that the BS acquires the effective CSI of the scheduled users for decoding.

5.4.1 Proposed Algorithm

According to (5.1), the channel hk lies in the subspace spanned by its

array response vectors, i.e., hk ∈ span{a(φk,1), . . . , a(φk,Lk)}. To measure the

separation between the subspaces, I adopt chordal distance which measures

the angle between the subspaces. In the initialization phase, the algorithm

removes users whose AoAs are not in the range of angles of RF chains (reduced

range of angles)4 from the initial candidate user set Kcd,1. In the scheduling

phase, a first user is scheduled by randomly selecting a user among the set of

users with the most AoAs in the reduced range of angles. To schedule a next

4The range of angles of RF chains indicates the set of angles corresponding to
⋃

i{ϑ :
|ϑ−ϑi| < 1

M }, i.e., the AoAs in the reduced range of angles are ϕk,` ∈
⋃

i{ϑ : |ϑ−ϑi| < 1
M }.
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user, the algorithm updates the candidate user setKcd,i by filtering users whose

chordal distance is shorter than the threshold dth to impose semi-orthogonality

among scheduled users. Due to the filtering, the remaining users in Kcd,i+1 are

guaranteed to have a certain level of orthogonality with the scheduled users

S(j) for j = 1, 2, . . . , i − 1. Then, the algorithm schedules the user with the

longest chordal distance among the remaining users with the most AoAs in

the reduced range of angles.

To this end, I generate the matrix of array response vectors for each

user by exploiting the AoA knowledge as Ak = [a(φk,Vk(1)), . . . , a(φk,Vk(Vk))]

where Vk is the set of AoAs indices within the reduced range of angles for

user k and Vk = |Vk|. Let Ak = span{Ak} is the subspace for user k. The

chordal distance between the two subspaces (Ak, Ak′) is defined as dcd(k, k′) =√∑Lmin
`=1 sin2 θ` where Lmin = min{Lk, Lk′} and θ` ≤ π/2 is the principal

angle between Ak and Ak′ . Let Qk be the unitary matrix whose columns are

orthonormal basis vectors of Ak. According to [143], dcd(k, k′) is rewritten

as dcd (k, k′) =
√
Lmin − tr (QH

k Qk′QH
k′Qk). The proposed chordal distance-

based user scheduling method is described in Algorithm 7.

Let h̃k =
√

M
Lk

∑
i∈Vk gk,ia(φk,i). Then, the algorithm provides an op-

portunity to schedule users with nearly h̃k ⊥ h̃k′ while the effective channel

that the BS sees is the beamspace channel hb,k = WH
RFhk. Since the AoAs

φk,i, i ∈ Vk are in the range of angles of RF chains, h̃k can be regarded to be
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Algorithm 7: Chordal Distance-based User Scheduling

1 Initialization: Kcd,1 = {1, . . . , K}, Scd = φ, and i = 1
2 for k = 1:K do
3 Let Vk be set of AoA indices in range of angles of steering

vectors for user k. If Vk = ∅, do Kcd,1 = Kcd,1 \ {k},
otherwise, set Ak = [a(φk,Vk(1)), . . . , a(φk,Vk(Vk))]. Generate
unitary matrix Qk = column basis of Ak.

4 Iteration: while i ≤ Scd and Kcd,i 6= ∅ do
5 if i = 1 then
6 Randomly schedule first user Scd(1) ∈ Kcd,1 among users

with largest |Vk|. Update candidate user set
Kcd,2 = Kcd,1 \ Scd(1) and Scd = Scd ∪ {Scd(1)}.

7 else
8 for k ∈ Kcd,i do
9 Let Lmin = min{LScd(i−1), Lk}, and compute

dcd (Scd(i− 1), k) =

√
Lmin−tr

(
QH

Scd(i−1)QkQH
k QScd(i−1)

)
.

(5.27)10

11 Filter candidate user set based on (5.27)

Kcd,i+1 =
{
k∈Kcd,i

∣∣dcd (Scd(i− 1), k)/
√
Lmin > dth

}
.

(5.28)

12 Let U be set of users with largest |Vk|, ∀k ∈ Kcd,i+1.
Schedule user in U as

Scd(i) = argmax
k∈U

dcd (Scd(i− 1), k) . (5.29)

13 Update Kcd,i+1 = Kcd,i+1 \ {Scd(i)}, Scd = Scd ∪ {Scd(i)}.
14 Set i = i+ 1;
15 return Scheduled user set Scd;
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in the subspace of WRF, i.e., almost h̃k ∈ span{WRF}5. Accordingly, using

WH
RFWRF = IN which comes from the definition i.e., a sub-matrix of the DFT

matrix WRF = Ã, h̃k can be rewritten as

h̃k ≈WRF(WH
RFWRF)−1WH

RFh̃k = WRFW
H
RFh̃k (5.30)

In addition, I have hb,k = WH
RFhk ≈WH

RFh̃k as the impact of a(φk,j), ∀j /∈ Vk

on the beam domain channel hb,k is relatively small compared to that of a(φk,i),

∀i ∈ Vk after analog combining. In this regard, as the algorithm gives h̃k ⊥ h̃k′ ,

I can nearly have hb,k ⊥ hb,k′ by

ε = h̃Hk h̃k′

(a)
≈ h̃Hk WRFW

H
RFWRFW

H
RFh̃k′

= h̃Hk WRFW
H
RFh̃k′

(b)
≈ hHb,khb,k′

where (a) is from (5.30) and (b) is from hb,k ≈WH
RFh̃k. Thus, the proposed

algorithm guarantees a certain level of orthogonality between the beamspace

channels of the scheduled users.

As discussed in Section 5.3.3, the beam indices for non-negligible chan-

nel gains can be obtained by using CQI feedback, i.e., AoAs can be estimated

for each user. When the capacity of amount of feedback is limited and small,

such beam index-only feedback which requires only few integer numbers can

be applied to faciliate the proposed chordal distance-based algorithm.

5If the AoAs of h̃k exactly align with the quantized angles of the analog combiner, h̃k

perfectly lies in the subspace of WRF.
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5.4.2 Ergodic Rate Analysis

Now, the performance of the chordal distance-based algorithm is an-

alyzed in ergodic rate. I focus on the case where each channel has a single

propagation path, which corresponds to the sparse nature of mmWave chan-

nels [48], and the number of RF chains are equal to the number of antennas

N = M in the analysis.

Remark 15. When there is a single path for each user channel, the filtering

in (5.28) reduces to Kcd,i+1 =
{
k ∈ Kcd,i

∣∣ |aH(φS(i−1))a(φk)| < εth
}

where

εth � 1, and the scheduling problem in (5.29) becomes

Scd(i) = argmin
k∈Kcd,i+1

|aH(φS(i−1))a(φk)|.

Based on Remark 15, I derive closed-form expressions of the ergodic

sum rate for two different cases: (1) AoAs of channels exactly align with the

quantized angles of the analog combiner, and (2) channels have arbitrary AoAs

regardless of the quantized angles of the analog combiner. For the first case,

there is no channel leakage in the beamspace and thus, it is often considered

as a more favorable channel condition since it improves communication perfor-

mance such as channel estimation accuracy [134] and achievable rate [21,144].

Proposition 5. When AoAs of channels exactly align with the quantized an-

gles of the analog combiner with a single propagation path, the ergodic sum

rate for |Scd| = S scheduled users with the proposed chordal distance-based
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scheduling algorithm is derived as

R̄1 =
S

ln 2

(
e

1
ρM Γ

(
0,

1

ρM

)
−e

1
ρ(1−α)M Γ

(
0,

1

ρ(1− α)M

))
(5.31)

where Γ(a, z) is an incomplete gamma function defined as Γ(a, z)=
∫∞
z
ta−1e−tdt.

Proof. See Section 5.7. �

Corollary 13. The derived ergodic rate (5.31) can be expressed as the sum of

the ergodic rate without quantization error R̄inf and the ergodic rate loss due

to quantization error R̄loss(α)

R̄1 = R̄inf + R̄loss(α)

where R̄inf = S
ln 2
e

1
ρM Γ(0, 1

ρM
) and R̄loss(α) = − S

ln 2
e

1
ρ(1−α)M Γ(0, 1

ρ(1−α)M
).

Proof. The quantization error term in (5.34) can be removed by having α = 1.

Then, I have

E
[
log2

(
1 + ρ‖hb,k‖2

)]
=

1

ln 2
e

1
ρM Γ

(
0,

1

ρM

)
as 1

M
‖hb,k‖2 = |gk|2 ∼ Exp(1), and the ergodic sum rate becomes R̄inf =

S
ln 2
e

1
ρM Γ(0, 1

ρM
). �

Note that as the number of quantization bits decreases to zero, R̄loss(α)

increases to R̄inf , which leads R̄1 → 0. On the other hand, as the number of

quantization bits increases to infinity, R̄loss(α) decreases to zero, which leads

R̄1 → R̄inf . This complies with intuition.
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Now, I focus on the second case where channels have arbitrary AoAs,

which leads to the channel leakage effect in the beam domain due to phase

offsets. The derived ergodic rate for the second case is shown in Proposition 6.

Proposition 6. When channels have a single path and arbitrary AoAs regard-

less of the quantized angles of the analog combiner, a lower bound of the ergodic

sum rate for |Scd| = S scheduled users with the proposed chordal distance-based

scheduling algorithm is approximated as

R̄
lb
2 =

S

ln 2

(
e

1+ρ(1−α)(S−1)M2F2(M)

ραM+ρ(1−α)M2F1(M) Γ

(
0,

1+ρ(1−α)(S−1)M2F2(M)

ραM+ρ(1−α)M2F1(M)

)

−e
1+ρ(1−α)(S−1)M2F2(M)

ρ(1−α)M2F1(M) Γ

(
0,

1+ρ(1−α)(S−1)M2F2(M)

ρ(1−α)M2F1(M)

))
(5.32)

where F1(M) =
∫ 1

0
F 4(δ,M) dδ, F2(M) =

(∫ 1

0
F 2(δ,M) dδ

)2

, and F (δ,M) is

the Fejér kernel.

Proof. See Section 5.8. �

Remark 16. The derived ergodic rate expressions in (5.31) and (5.32) both

converge to R̄inf as the number of quantization bits increases:

R̄1, R̄
lb
2 →

S

ln 2
e

1
ρM Γ

(
0,

1

ρM

)
, as α→ 1.

As the quantization precision increases, the lower bound in (5.38) be-

comes an exact expression, and (5.32) becomes an approximation of the ergodic

rate itself rather than its lower bound. Accordingly, it can be inferred from

Remark 16 that the two channel scenarios lead to different ergodic rates as a
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consequence of quantization. In this regard, although a single path channel is

considered, Propositions 5 and 6 still convey meaningful information as they

not only provide closed-form ergodic rates but also specify the channel leak-

age effect in terms of ergodic rate for low-resolution ADCs. In addition, the

single-path channel model is relevant to the case of unmanned aerial vehicle

systems [145], which is of interest in upcoming 5G wireless communication

systems. In Section 5.5, based on the intuition from Propositions 5 and 6, it

can be shown that the channel leakage, indeed, positively affects the ergodic

rate in the low-resolution ADC regime, and thus, makes the difference in the

ergodic rates of the two channel scenarios.

5.5 Simulation Results

In this section, the proposed algorithms are evaluated, the derived er-

godic rates are validated, and intuitions in this chapter are confirmed through

simulations. In simulations, the number of channel paths Lk is distributed as

Lk ∼ max{Poission(λL), 1} [70] where λL represents the near average number

of channel paths. I consider M = 128 BS antennas and K = 200 candi-

date users, and the BS schedules S = 12 users to serve at each transmission

[146, 147]. Without imposing the constraint of ‖hb,k‖ =
√
γk, the following

cases are evaluated through simulation: (1) CSS algorithm, (2) greedy algo-

rithm, (3) chordal distance-based algorithm, (4) mmWave beam aggregation-

based scheduling (mBAS) algorithm [49], and (5) SUS algorithm [44]. To

provide a reference for a performance lower bound, a random scheduling case
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Figure 5.2: Uplink sum rate simulation results for M = 128 BS antennas,
N = 40 RF chain, K = 200 candidate users, S = 12 scheduled users, and b = 3
quantization bits with (a) λL = 3 and (b) λL = 8 average channel paths,.

is also included. For the CSS and the mBAS algorithms, the BS stores Nb = Lk

indices of dominant elements in the effective channel hb,k. Parameters such as

εth, NOL, and dth are optimally chosen unless mentioned otherwise.

5.5.1 Performance Validation

I first focus on performance validation of the proposed algorithms in

sum rate. In Fig. 5.2, I consider N = 40 RF chains which is about 30% of

the number of antennas M = 128 and b = 3 quantization bits. Fig. 5.2(a)

shows the uplink sum rate with respect to the SNR ρ for λL = 3. The pro-

posed CSS algorithm achieves the higher sum rate compared to the SUS and

mBAS algorithms. In addition, the CSS algorithm attains the sum rate that is

comparable to that of the proposed greedy algorithm which achieves the sub-

optimal rate by requiring much higher complexity. The sum rate gap between
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Figure 5.3: Uplink sum rate forM = 128 antennas, K = 200 candidate users,
S = 12 scheduled users, λL = 3 average channel paths, and ρ = 6 dB SNR
with respect to the number of (a) RF chains N with b = 3 and (b) quantization
bits b with N = 128.

the CSS and the prior algorithms—the SUS and mBAS algorithms—increases

as ρ increases because the quantization noise becomes dominant compared to

the AWGN in the high SNR regime.

Fig. 5.2(b) plots simulation results with λL = 8 average channel paths

for
∑S

k=1 LS(k) > N where the condition in Theorem 1 does not hold. The

proposed CSS algorithm achieves a higher sum rate than conventional schedul-

ing methods, which shows that although the derived scheduling criteria may

not be optimal in a practical system, they can still be effective for mmWave

user scheduling as they capture a relationship between the sparse property of

mmWave channels and quantization error. In Fig. 5.2(a) and (b), the chordal

distance-based algorithm which only exploits the AoA knowledge improves the

sum rate compared to random scheduling, closing the gap between the SUS
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Figure 5.4: (a) The analytical and simulation results for the uplink sum rate of
the system with chordal distance-based scheduling, and (b) simulation results
for the uplink sum rate of the system with chordal distance-based scheduling
for M = 128 BS antennas, N = 128 RF chains, K = 200 candidate users,
S = 12 scheduled users, and Lk = 1 channel path ∀k,

and mBAS algorithms. Therefore, the simulation results validate the sum rate

performance of the proposed algorithms.

In Fig. 5.3(a), the sum rate results with respect to the number of RF

chains N are presented for ρ = 6 dB. The CCS algorithm shows its sum rate

that tightly aligns with that of the greedy algorithm, achieving the higher rate

than the SUS and mBAS. In addition, the chordal distance-based algorithm

shows a large improvement compared to the random scheduling for the low

to medium N . As N increases, the effective channels hb,k are more likely to

be orthogonal to each other for the fixed number of scheduled users, which

enhances the performance of random scheduling. In this regard, the sum

rates of the SUS and mBAS algorithms show the marginal sum rate increase

compared to the random scheduling asN increases, whereas the CSS algorithm

191



still provides the noticeable improvement by mitigating quantization error.

Fig. 5.3(b) shows the uplink sum rate with respect to the number

of quantization bits b. The CSS algorithm also attains the sum rate of the

greedy algorithm with lower complexity and outperforms the SUS and mBAS

algorithms. Note that the sum rate of the SUS and mBAS algorithms con-

verges to that of the CSS and greedy algorithms as the number of quantization

bits b increases; i.e., quantization error becomes negligible. This convergence

corresponds to the fact that the derived criteria is effective under coarse quan-

tization. Thus, in the low-resolution ADC regime, the CSS algorithm provides

the noticeable sum rate improvement compared to the other algorithms that

ignore quantization error.

5.5.2 Analysis Validation

The performance analysis and intuitions obtained from the analyses

are validated in this subsection. In Fig. 5.4, N = 128 and Lk = 1, ∀k are

considered. As shown in Fig. 5.4(a), the derived ergodic rate (5.31) in Propo-

sition 5 exactly matches the ergodic rate from the simulation. In addition,

the lower bound approximation of ergodic rate (5.32) in Proposition 6 shows

a small gap from the ergodic rate of the simulation, validating its analytical

accuracy. In this regard, the derived ergodic rates can provide a performance

guideline for the hybrid MIMO systems with the proposed chordal distance-

based algorithm. From Fig. 5.4(a), the two different channel scenarios—exact

AoA alignment and arbitrary AoAs—show difference in sum rate for the same
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system configuration, as discussed in Remark 16. In the following simulation

results, this phenomenon is numerically examined based on intuitions obtained

in this chapter.

The sum rate of the chordal distance-based scheduling algorithm is eval-

uated with respect to the number of quantization bits b to find the behavior

of the sum rate gap between the two channel scenarios: exact AoA alignment

and arbitrary AoAs. In Fig. 5.4(b), it is shown that the uplink sum rates con-

verges to R̄inf = S
ln 2
e

1
ρM Γ

(
0, 1

ρM

)
as b increases. As discussed in Remark 16,

such convergence of the sum rates implies that the two channel scenarios lead

to different effects on quantization error. Note that the convergence rates

are different for different ρ. When the SNR is low, the quantization noise is

less dominant compared to the AWGN, which results in faster convergence in

terms of the number of b, and vice versa. Therefore, it is concluded that coarse

quantization causes the different sum rates from the channel scenarios.

In Fig. 5.5, I simulate the sum rates for the two channel scenarios with

N = 40, λL = 3, and b = 3. Note that the sum rate for the arbitrary AoA

channel is higher than that for the exact AoA alignment channel in the medium

and high SNR regime in which the quantization noise is dominant over the

AWGN. The quantization noise variance at the ith ADC is computed as E[|yi−

yq,i|2] = π
√

3
2
σ2
i 2
−2b [56], where σ2

i = E[|yi|2] = pu‖[Hb]i,:‖2 + 1. Therefore,

without the phase offset, most σ2
i would be large whereas most σ2

i would be

moderate with the phase offsets as the phase offsets spread the channel path

gain at certain angles over the entire angles of RF chains. Consequently,
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Figure 5.5: Uplink sum rate simulation results for M = 128 BS antennas,
N = 40 RF chains, K = 200 candidate users, S = 12 scheduled users, λL = 3
average channel paths, and b = 3 quantization bits.

the phase offset reduces the overall quantization noise variance and this leads

to the performance gain. This corresponds to the results in Theorem 1-(ii),

i.e., it is more beneficial to have more spread beamspace gains than to have

concentrated beamspace gains.

5.6 Conclusion

This chapter investigated user scheduling for mmWave hybrid beam-

forming systems with low-resolution ADCs. I derived new user scheduling cri-

teria that are effective under coarse quantization. Leveraging the criteria, I de-

veloped the user scheduling algorithm which achieves the sub-optimal sum rate

with low complexity, outperforming the conventional scheduling algorithms. I

further proposed the chordal distance-based scheduling algorithm which only
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exploits the AoA knowledge of channels. The chordal distance-based schedul-

ing algorithm improved the sum rate compared to the random scheduling case,

closing the gap between the full CSI-based conventional scheduling methods as

the SNR increases. I also provided the performance analysis for the algorithm

in ergodic rate, and the derived rates are the functions of system parameters

including quantization bits. I obtained an intuition from the derived rates

that channel leakage due to the phase offsets between the arbitrary AoAs and

quantized angles of analog combiners offers the sum rate gain by reducing the

quantization error compared to the channel without leakage. Therefore, for

mmWave communications, this chapter provides not only new user scheduling

algorithms for low-resolution ADC systems, but also new scheduling criteria

and intuition for mmWave channels under coarse quantization. Concluding

this dissertation, I will provide the summary of the contributions in the pre-

vious chapters and discuss potential future research directions in Chapter 6.

5.7 Proof of Proposition 1

Let the ZF combiner Wzf = Hb(Scd)(Hb(Scd)HHb(Scd))−1. Using the

achievable rate (5.8), the ergodic rate of user k ∈ Scd is defined as

r̄k = E
[
rk
(
Hb(Scd)

)]
(5.33)

= E

[
log2

(
1+

α2ρ

wH
zf,kRqq(Hb(Scd))wzf,k+α2‖wzf,k‖2

)]
.

Based on Remark 15, the algorithm schedules a user j ∈ Kcd who pro-

vides the smallest value of |aH(φk)a(φj)|. Under the assumption of the ex-
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act AoA alignment, |aH(φk)a(φj)| is equivalent to zero when Lk ∩ Lj = ∅

for k 6= j, i.e., user channels are spatially orthogonal to each other. For the

exact AoA alignment scenario with L = 1, there is only one non-zero ele-

ment in hb,k. Accordingly, any scheduled users have to satisfy Lk ∩ Lj = ∅ to

avoid rank deficiency of a channel matrix, which can be guaranteed by setting

|aH(φk)a(φk′)| < εth � 1 in the filtering. Hence, the ZF combiner for user

k ∈ Scd becomes wzf,k = hb,k/‖hb,k‖2, and (5.33) is solved as

r̄k = E

[
log2

(
1 +

αρ‖hb,k‖4

ρ(1− α)hHb,kDHb
(Scd)hb,k + ‖hb,k‖2

)]
(5.34)

(a)
= E

[
log2

(
1 +

αρ

(1− α)ρ+ 1/(M |gk|2)

)]
(b)
=

1

ln 2

(
e

1
ρM Γ

(
0,

1

ρM

)
− e

1
ρ(1−α)M Γ

(
0,

1

ρ(1− α)M

))
(5.35)

where DHb
(Scd) = diag

(
Hb(Scd)Hb(Scd)H

)
, gk is the complex gain of the

propagation path of user k. Here, (a) is from L = 1 with Lk ∩ Lk′ = ∅ for

k, k′ ∈ Scd, and (b) comes from the fact that |gk|2 is an exponential random

variable with the rate parameter λ = 1, |gk|2 ∼ Exp(1). Due to the randomness

of gk, the ergodic rate of each user is equal, which leads to (5.31). This

completes the proof. �

5.8 Proof of Proposition 2

To find a lower bound of the ergodic sum rate achieved by the proposed

algorithm, I consider the random scheduling method and find its ergodic sum

rate for the lower bound. Since I focus on a large antenna array system at the
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BS, the array response vectors of the scheduled users are almost orthogonal

with large M [98], and thus I adopt wzf,k ≈ AHhk
‖hk‖2

. Then, the ergodic rate of

the scheduled user k can be approximated as

r̄k =E

[
log2

(
1+

α2ρ

wH
zf,kRqq

(
Hb(Scd)

)
wzf,k+α2‖wzf,k‖2

)]
(a)
≈E

[
log2

(
1+

αρ‖hk‖4

ρ(1−α)(AHhk)HDAHH(Scd)AHhk+‖hk‖2

)]
(5.36)

where DAHH(Scd) = diag
(
AHH(Scd)H(Scd)HA

)
, (a) comes from wzf,k ≈

AHhk
‖hk‖2

. Without loss of generality, let Scd = {1, 2, . . . , S}. The channel ma-

trix of scheduled users can be represented as H(Scd) =
√
MAuG where Au =

[a(ϕ1), . . . , a(ϕS)] and G = diag(g1, . . . , gS), and (5.36) becomes

E
[
log2

(
1+

M2αρ|gk|4

M2ρ(1−α)|gk|2aH(ϕk)AD̄AHa(ϕk)+M |gk|2

)]
= E

[
log2

(
1 +

Mαρ|gk|2

Ψk + 1

)]
= Egk

[
E
[
log2

(
1 +

Mαρ|gk|2

Ψk + 1

)∣∣∣∣gk]] . (5.37)

where D̄ = diag
(
AHAuGGHAH

u A
)
and

Ψk = Mρ(1− α)

M,S∑
m,s=1

|gs|2|aH(ϑm)a(ϕk)|2|aH(ϑm)a(ϕs)|2.

To compute the inner expectation in (5.37), I can use Lemma 1 in [148] as

gk is considered to be a constant given the condition, which makes the signal

power and the interference-plus-noise power independent to each other. Then
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the inner expectation in (5.37) becomes

E
[
log2

(
1 +

Mαρ|gk|2

Ψk + 1

)∣∣∣∣gk] (a)
=

1

ln 2

∫ ∞
0

e−z

z

(
1− e−zMαρ|gk|2

)
E
[
e−zΨk

∣∣∣gk] dz
(b)

≥ 1

ln 2

∫ ∞
0

e−z

z

(
1− e−zMαρ|gk|2

)
e−zE[Ψk|gk]dz

(5.38)

where (a) follows from Lemma 1 in [148] and (b) comes from Jensen’s inequal-

ity. To compute the expectation in (5.38), I rewrite it as

E
[
Ψk|gk

]
=Mρ(1−α)

(
E

[
M∑
m=1

|gk|2
∣∣aH(ϑm)a(ϕk)

∣∣4∣∣∣∣gk
]

+ E

[
M∑
m=1

S∑
s 6=k

|gs|2
∣∣aH(ϑm)a(ϕk)

∣∣2∣∣aH(ϑm)a(ϕs)
∣∣2]). (5.39)

The first expectation term in (5.39) can be computed as

E

[
M∑
m=1

|gk|2
∣∣aH(ϑm)a(ϕk)

∣∣4∣∣∣∣gk
]

= |gk|2
M∑
m=1

E
[
|aH(ϑm)a(ϕk)

∣∣4]
(a)
= |gk|2M

∫ 1

0

F 4 (δ;M) dδ (5.40)

where (a) comes from the fact that δm,k := ϑm−ϕk can be regarded as δm,k
i.i.d.∼

Unif
[
−1, 1

]
due to the symmetry of the Fejér kernel of orderM , F (ϑ;M) [149].
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Then, with E[|gs|2] = 1, the second expectation term can be expressed as

E

[
M∑
m=1

S∑
s 6=k

|aH(ϑm)a(ϕk)|2|aH(ϑm)a(ϕs)|2
]

=
M∑
m=1

S∑
s 6=k

E
[
|aH(ϑm)a(ϕk)|2

]
E
[
|aH(ϑm)a(ϕs)|2

]
=

M∑
m=1

S∑
s 6=k

E
[
F 2 (δm,k;M)

]
E
[
F 2 (δm,s;M)

]
= (S − 1)M

(∫ 1

0

F 2 (δ;M) dδ

)2

. (5.41)

Let c1 = Mαρ, c2 = M2ρ(1 − α)
∫ 1

0
F 4 (δ;M) dδ, and c3 = M2ρ(1 − α)(S −

1)
(∫ 1

0
F 2 (δ;M) dδ

)2

. From (5.37), (5.38),(5.40), and (5.41), the ergodic rate

r̄k is approximately lower bounded by

r̄k ≈ Egk

[
E
[
log2

(
1 +

c1|gk|2

Ψk + 1

)∣∣∣∣gk]]
≥ 1

ln 2
Egk

[∫ ∞
0

e−z

z

(
1− e−zc1|gk|2

)
e−zE[Ψk|gk]dz
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=

1

ln 2

∫ ∞
0
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2
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e−(c1+c2)z|gk|2
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dz

(a)
=

1

ln 2

∫ ∞
0

e−(1+c3)z

z

(
1

1 + c2z
− 1

1 + (c1 + c2)z

)
dz

=
1

ln 2

(
e

1+c3
c1+c2 Γ

(
0,

1 + c3

c1 + c2

)
− e

1+c3
c2 Γ

(
0,

1 + c3

c2

))
(5.42)

where (a) comes from the Laplace transform of the exponential distribution

|gk|2 ∼ exp(1). Without the fading information of channels, the ergodic rate

for each user after the user scheduling is equivalent to each other, which results

in (5.32). This completes the proof. �
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Chapter 6

Concluding Remarks

This chapter concludes the dissertation with a summary of contribu-

tions in Section 6.1 and potential future research directions in Section 6.2.

6.1 Summary

In this dissertation, I developed advanced receiver designs and derived

user scheduling criteria for hybrid analog-and-digital beamforming systems

with low-resolution ADCs. Due to the non-negligible quantization error, ex-

isting hybrid beamforming techniques cannot be directly applied to the consid-

ered systems as they ignore the change of the quantization error. Accordingly,

it is essential to consider advanced low-resolution ADC systems that can adopt

existing hybrid beamforming techniques without significant performance loss

and that can mitigate quantization error in the analog preprocessing while

maintaining large channel gains. In addition to the advanced receiver design,

it is also critical to develop techniques that are used in the higher stack of

network such as user scheduling for hybrid beamforming systems with low-

resolution ADCs by incorporating the effect of quantization error.

In the first part of this dissertation, I focused on optimizing the reso-
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lutions of ADCs under a power constraint and proposed resolution-adaptive

ADC networks for hybrid beamforming receivers for phase shifter-based hy-

brid beamforming systems. To find the optimal ADC bit distribution for a

given power constraint, I derived a near-optimal bit allocation solution that

minimizes the total mean squared quantization error. Since the solution is

derived in closed form, the ADC bit distribution can be determined with low-

complexity. In addition, existing hybrid beamforming techniques can be read-

ily applied to the proposed system as the solution minimizes quantization error

for the limited power consumption.

In the second part of this dissertation, I focused on optimizing an ana-

log combining architecture to mitigate quantization error for fixed-resolution

ADC receivers. By solving a mutual information (MI) maximization prob-

lem without a constant modulus constraint on analog combiners, I derived

an optimal two-stage combiner: a channel gain aggregation stage followed by

a spreading stage to maximize the MI by effectively managing quantization

error. I showed that the derived two-stage combiner achieves the optimal scal-

ing law with respect to the number of RF chains and maximizes the MI for

homogeneous singular values of a MIMO channel. Then, I developed a two-

stage analog combining algorithm to implement the derived solution under a

constant modulus constraint for mmWave channels.

Considering switch-based analog beamforming instead of phase shifter-

based beamforming for reducing implementation cost and complexity, I studied

antenna selection problems for low-resolution ADC systems in the third part of
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this dissertation. For the downlink transmit antenna selection with ZF precod-

ing case, I showed that the problem is same for both high- and low-resolution

ADC receivers. For the uplink receive antenna selection case, however, the

quantization error makes the problem different from that of high-resolution

ADC systems. In this regard, I derived a quantization-aware selection crite-

rion and developed a quantization-aware greedy antenna selection algorithm

with subsequent analysis.

In the fourth part of this dissertation, I derived user scheduling criteria

for hybrid beamforming receivers with low-resolution ADCs. Since existing

criteria ignore the impact of quantization error when scheduling users, the

derived scheduling criteria provides the two key ideas to reduce the quantiza-

tion error: i) unique AoAs for the channel paths of each scheduled user and

ii) equal power spread across the complex path gains within each user chan-

nel. Leveraging the derived criteria, I developed user scheduling algorithms

for coarse quantization systems for perfect and partial CSI cases. Simulation

results validated the performance of the proposed algorithms and analyses in

this dissertation.

6.2 Future work

In this dissertation, I addressed some of the main critical issues to

adopt hybrid analog-and-digital beamforming with low-resolution ADCs in

large antenna array systems. There are still issues left that need to be resolved

to successfully realize mmWave communication systems. Therefore, I present
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promising future research directions related to the topics in this dissertation.

• Channel estimation in the two-stage analog combining system:

The two-stage analog combining structure was proposed in Chapter 3.

Assuming the CSI at the receiver, the proposed two-stage analog combin-

ing achieved optimality in the scaling law and maximizing the mutual

information. Then, the next question would be how to estimate the

channel with the two-stage analog combining structure. Based on the

linear approximation model of the quantization process, existing channel

estimation techniques for hybrid beamforming systems can be applied to

the two-stage analog combining with low-resolution ADC systems after

multiplying the matrix inversion of the second analog combiner since it is

nonsingular. As the second analog combiner leads to relatively even dis-

tribution of quantization errors over ADCs while maintaining the total

quantization error, it is expected that the estimation of the quantization

variance would be easier than one-stage analog combining case. Due

to the approximation error, however, it is possible to obtain CSI with

undesirable amount of distortion if the existing techniques are applied

without modification. In addition, possible phase error of the cascaded

phase shifter networks can further make the channel estimation more

challenging. Therefore, it is necessary to thoroughly investigate channel

estimation for the two-stage combining systems with the exact quanti-

zation model under the potential error from phase shifter networks.
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• Extension of the receiver design work into wideband communi-

cations: The antenna selection problems studied in Chapter 4 showed

that similar intuitions and solutions hold for both narrowband and wide-

band OFDM communications. The other system designs—resolution-

adaptive ADCs in Chapter 2 and two-stage analog combining in Chap-

ter 3—considered narrowband communications only. It is also possible

for the systems to have similar results in both narrowband and wideband

channels as the antenna selection system. The resolution-adaptive ADC

system, however, results in different quantization resolutions for each

received signal, and thus, the different quantization distortion level can

significantly degrade the system performance in the wideband OFDM

system. In this respect, more rigorous and precise study would be desir-

able for the wideband OFDM communications. For the two-stage analog

combining, the proposed combining solution may not be near optimal in

the OFDM system since the entire subcarriers share the same analog

combining. Consequently, it is necessary to find the optimal analog

combining structure that works for all subcarriers.

• Cooperation of multiple base stations under limited total power

consumption: The bit allocation solution for the resolution-adaptive

ADC system was derived by considering the power constraint within a

single BS. To achieve higher energy-efficiency with higher sum spectral

efficiency over multiple cells, the optimization of the bit allocation needs

to be solved by considering the total power constraint for multiple BSs.
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In this case, BSs with different channel conditions and user distribu-

tions can be allowed to use more/less power so that the distribution

of the energy for the BSs can be more flexible and achieve higher effi-

ciency. To this end, the optimization can be performed in two steps for

low complexity. The amount of energy distribution can be first decided

assuming perfect quantization at each BSs. Then, the closed-form bit

allocation solution derived in Chapter 2 can be applied to each BSs with

minor modifications. However, this approach will only provide subopti-

mal solutions which may be far from the optimal solution. In addition, a

fairness issue needs to be considered in the multi-cell optimization prob-

lem. Accordingly, the more elaborate study is necessary to accomplish

highly spectrum- and energy-efficient future wireless systems.
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