
Copyright

by

Kapil Gulati

2011



The Dissertation Committee for Kapil Gulati
certifies that this is the approved version of the following dissertation:

Radio Frequency Interference Modeling and Mitigation

in Wireless Receivers

Committee:

Brian L. Evans, Supervisor

Jeffrey G. Andrews

Elmira Popova

Haris Vikalo

Sriram Vishwanath



Radio Frequency Interference Modeling and Mitigation

in Wireless Receivers

by

Kapil Gulati, B.Tech.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2011



Acknowledgments

I would like to thank, first of all, my closest friend and now lovely wife

Parul. Her unconditional love and encouragement is the greatest motivation

in my life. I also thank my family and friends for their constant support.

I am indebted to my advisor, Prof. Brian Evans, for his guidance and

financial support throughout my graduate studies. I have great reverence for

Prof. Evans, both as a researcher and as a person. I aspire to imbibe his

professional ethics, diligence, and discipline. He is the best advisor I could

have hoped for and has been a great influence in my life.

My graduate studies would not have been possible without the rec-

ommendations from Prof. Ratnajit Bhattacharjee, Prof. Prabin Bora, and

Prof. Marius Pesavento, and I thank them for their encouragement. I am

grateful to Prof. Vishal Monga, alumnus of IIT Guwahati and ESPL group,

for encouraging me to join the ESPL group under Prof. Evans.

I would like to thank my committee members, Prof. Jeff Andrews,

Prof. Elmira Popova, Prof. Haris Vikalo, and Prof. Sriram Vishwanath, for

their constructive feedback on this dissertation. I especially thank Prof. An-

drews for his in-depth feedback on the first two contributions of this disserta-

tion, and for co-authoring the papers on the same. He has been like a technical

co-advisor for this dissertation. I am greatly indebted to Dr. Radha Ganti for

iv



mentoring me through the second contribution of this dissertation.

The problem addressed in this dissertation was first introduced to our

research group by Mr. Keith Tinsley, when he was with Intel Labs, and I

am indebted to him for guiding my research. I worked in close collaboration

with Dr. Nageen Himayat, Mr. Kirk Skeba, Dr. Srikathyayani Srikanteswara,

and Mr. Keith Tinsley at Intel Labs, and I thank them for their guidance. I

am deeply grateful to Dr. David Bormann, Dr. Anthony Chun, and Mr. Kirk

Skeba from Intel Labs, who not only mentored me during my internships at

Intel, but have also guided me throughout my graduate studies.

Last, but not the least, I would like to thank the ESPL members:

Greg Allen, Hugo Andrade, Wael Barakat, Aditya Chopra, Marcus DeYoung,

Chao Jia, Jing Lin, Yousof Mortazavi, Marcel Nassar, Karl Nieman, Alex

Olson, Kenneth Perrine, Hamood Rehman, Rabih Saliba, Akshaya Srivatsa,

Kyle Wesson, and Ian Wong, for their camaraderie and feedback on my work.

I have benefited greatly by collaborating with Aditya, Marcel, Marcus, and

Yousof, on the early research that lead to this dissertation.

v



Radio Frequency Interference Modeling and Mitigation

in Wireless Receivers

Publication No.

Kapil Gulati, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Brian L. Evans

In wireless communication systems, receivers have generally been de-

signed under the assumption that the additive noise in system is Gaussian.

Wireless receivers, however, are affected by radio frequency interference (RFI)

generated from various sources such as other wireless users, switching electron-

ics, and computational platforms. RFI is well modeled using non-Gaussian

impulsive statistics and can severely degrade the communication performance

of wireless receivers designed under the assumption of additive Gaussian noise.

Methods to avoid, cancel, or reduce RFI have been an active area of

research over the past three decades. In practice, RFI cannot be completely

avoided or canceled at the receiver. Methods to reduce the intensity of RFI

at the receiver are acceptable as long as the degradation in communication

performance caused by the residual RFI is tolerable. Intensity of residual
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RFI, however, is rapidly increasing as the reuse of available radio spectrum

increases, sources of electromagnetic radiation increase, and the form factor of

computational platform decreases. To this end, this dissertation derives the

statistics of the residual RFI and utilizes them to analyze and improve the

communication performance of wireless receivers.

Prior work in statistical modeling of RFI is limited by the spatial distri-

bution of the sources of RFI considered. This dissertation derives closed-form

instantaneous statistics of RFI in a broad range of interferer topologies, with

applications to wireless ad hoc, cellular, local area, and femtocell networks.

This dissertation then extends the RFI statistics to include the tem-

poral dimension. The network model adopted in this dissertation spans the

extremes of temporal independence to long-term temporal dependence. The

joint temporal statistics of RFI are utilized to derive closed-form expressions

for various performance measures for single hop communications in decen-

tralized wireless networks, unveiling 2× potential improvement in network

throughput by optimizing certain medium access control layer parameters.

Finally, the knowledge of joint temporal statistics of RFI is used to

derive pre-filtering methods, amenable to real-time implementation, for miti-

gating the residual RFI. This dissertation uses a recently proposed non-linear

measure of distance that yields improved robustness and improves the link

spectral efficiency, for example, by an additional 1−6 bits/s/Hz per commu-

nication link in a decentralized wireless network.
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Chapter 1

Introduction

Performance of wired or wireless communication systems is limited by

the noise present in the system. The term noise has varied meaning, conno-

tation, and impact based on the physical phenomenon it is used to describe

– from proving the existence of atoms to denoting undesired effects in electri-

cal conductors [4, 5]. In wireless communication systems, noise is commonly

used to denote the unwanted additive distortions caused by the system in con-

junction to linear and other non-linear distortions to the transmitted signal.

Additive noise degrades the ability of the receiver to successfully detect the

information in the transmitted signal.

An unavoidable source of noise is due to the electronic circuitry at the

receiver, and is termed as circuit noise. Impact of circuit noise on communi-

cation systems was first studied by Schottky in 1918, where he considered the

impact due to two forms of circuit noise: thermal and shot noise [6]. These

are the dominant sources of circuit noise and are unavoidable in any electronic

circuit. Thermal noise is due to random motion of electrons inside an elec-

trical conductor and occurs regardless of the voltage applied. Shot noise, on

the other hand, is due to statistical variations in the electrical current in a
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conductor as the moving charges are randomly emitted (hence the name shot

noise) [7]. Schottky studied the impact of thermal and shot noise as they pass

through the receiver and perturb the desired signal. This helped in recognizing

that the fluctuations caused due to thermal noise and shot noise (under weak

assumption that the rate of shots is greater than receiver bandwidth) are spec-

trally flat and the amplitude statistics follow a Gaussian distribution [6–8]. In

this dissertation, circuit noise is loosely referred to as thermal noise and is

assumed to be spectrally flat and Gaussian distributed.

To date, wireless transceivers are generally designed, and their perfor-

mance analyzed, under the assumption of additive Gaussian thermal noise at

the receiver. While thermal noise was the dominant noise source in early com-

munication systems, it is no longer the case in many of the current wireless

communication systems. Wireless receivers are affected by radio frequency in-

terference (RFI) from various sources of electromagnetic radiation, including

other wireless communication sources [9], electronic devices such as microwave

ovens [10], and clocks and busses on the computational platform on which the

receiver is deployed [11]. Unlike thermal noise, RFI is typically well modeled

using non-Gaussian impulsive statistics. The non-Gaussian statistics of RFI

can severely degrade the communication performance of wireless transceivers

that are designed assuming additive Gaussian noise.
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1.1 Sources of RFI

Sources of RFI can be classified in numerous ways. Based on the

method in which RFI is introduced in the systems, sources are classified as

either radiated or conductive sources of RFI. Conductive RFI is caused by the

physical contact of conductors as opposed to radiated RFI that is picked up

by the radio. Radiated RFI is the dominant source that limits the perfor-

mance of typical commercial wireless communication systems [5,11]. Focusing

on radiated RFI, this dissertation adopts a broad classification introduced by

Middleton [12,13]. Middleton classifies the sources of RFI as either intelligent

or non-intelligent based on the presence or absence of information content in

source emissions, respectively [12,13].

1.1.1 Intelligent sources of RFI

Intelligent or information bearing sources of RFI primarily include other

wireless communication systems. The dominant form of such interference is

due to sources that transmit in the same frequency band as the signal of

interest, occupying partial or the complete band, are is commonly referred to

as co-channel interference [14]. Comparatively weaker, but still significant,

form of intelligent interference is due to transmissions that ideally lie adjacent

to the frequency band of desired transmission. Even though such sources

are designed to occupy adjacent, but non-overlapping frequencies, some of

the energy leaks into neighboring frequency band due to non-linearity in the

transmitter circuitry. This form of interference is commonly referred to as
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adjacent channel interference [14].

Co-channel interference: Communication performance of many of

the current wireless networks, such as cellular networks and wireless ad hoc

networks, is limited due to co-channel interference [9, 15]. Driven by the in-

creasing demand in user data rates, current wireless networks employ a dense

spatial reuse of the available radio spectrum [16]. This results in increased

co-channel interference from other active users in the network that occupy the

same radio spectrum.

In addition to interfering users associated with the same network, wire-

less transceivers are prone to co-channel interference from users in co-existing

wireless networks that occupy the same radio spectrum [17]. This is partic-

ularly true for wireless technologies, such as Wi-Fi [18], Bluetooth [19], and

ZigBee (built on IEEE 802.15.4 standard [20]) [21], that work in the globally

unlicensed 2.4 GHz Industrial, Scientific and Medical (ISM) radio frequency

band [17,22].

Let us consider the example of a Wi-Fi network (IEEE 802.11g) as

depicted in Fig. 1.1. One of the methods to reduce RFI in 802.11g networks

involves the use of the request-to-send/clear-to-send (RTS/CTS) protocol [18].

A user that wishes to transmit sends a RTS packet to the access point indicat-

ing the duration of the upcoming transmission. The access point responds by

sending a CTS packet, thereby reserving the wireless medium for the duration

indicated in the RTS packet. Other users in network refrain from using the

wireless medium if they receive either the RTS or CTS packet. Thus, under
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idealistic assumptions, users within some distance of either the access point

or the active user will not interfere. However, the users beyond that guarded

distance may interfere if they also wish to transmit. The aggregate RFI due to

all active users outside the guard distance can be significant. Further, the net-

work is prone to interference from users associated with other Wi-Fi networks

operating in close vicinity that use the same frequency band. Such interfer-

ence can be severe in dense Wi-Fi network deployments, such as universities,

office buildings, and apartment complexes. Further, other wireless devices on

co-existing technologies, such as a Bluetooth mouse or cordless phone, inter-

fere with the Wi-Fi transmissions. Even though the transmit power of such

devices may be relative small, close proximity to the Wi-Fi transceiver may

still cause significant degradation in communication performance [22].

Adjacent channel interference: Adjacent channel interference has

been a growing concern for co-located wireless transceivers working in adja-

cent channels, e.g., Wi-Fi and WiMAX [23] transceivers deployed on a laptop

computer [24]. The spurious power that leaks into adjacent channels is con-

trolled by strict regulations in the wireless standard by organizations such as

the Federal Communications Commission (FCC) in United States [25]. Even

with strict limitations, the spurious power leaking into the adjacent channel

can cause significant degradation in communication performance due to close

proximity – as is the case in co-located transceivers.

There is an increasing demand to integrate multiple wireless transceivers

on the same platform, e.g., to have Wi-Fi and cellular connectivity on a mo-
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Figure 1.1: Illustration of radio frequency interference (RFI) in dense Wi-Fi networks that
is common in apartment complexes, university, and market place. Wireless receivers are
affected by interference from various intelligent (co-channel and adjacent channel) and non-
intelligent sources (out-of-platform and in-platform).
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bile phone [17]. In addition, simultaneous use of these transceivers is desired,

e.g., downloading data via Wi-Fi during an ongoing voice call over the cellular

link. The impact of adjacent channel interference among co-located wireless

transceivers co-located on a platform, such as a laptop, is increasing as the de-

mand for simultaneous use of multiple data transmission technologies increases

and form factor of the platforms decreases.

1.1.2 Non-intelligent sources of RFI

Non-intelligent sources affect the communication performance of wire-

less communication systems due to unintentional electromagnetic emissions.

In contrast to intelligent sources of RFI, emissions from non-intelligent sources

do not bear any information. Non-intelligent sources interfering with a particu-

lar wireless transceiver embedded on a computational platform can be further

classified as in-platform or out-of-platform, based on their physical location

being either inside or outside of the platform, respectively.

Out-of-platform: Commercial electronic devices, such as microwave

ovens, emit electromagnetic radiations due to the electronic circuitry present

in them. Commercial electronic devices are required to abide by regulations

(from regulatory organizations such as FCC in United States) that limit the

electromagnetic interference that they can produce. FCC regulations for de-

vices causing unintended interference, for example, specifies the limit on radia-

tions when measured at a minimum distance of 3m [25]. The limit is generally

intended to provide some protection and may still cause significant degrada-
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tion in communication performance. For example, microwave ovens radiate

power as high as −50 dBm at 15m in the 2.4 GHz ISM band, which is compa-

rable to the transmit power of an access point of a Wi-Fi network [26]. Thus

RFI from microwave interference is a common concern for 802.11b/g networks

working in the 2.4 GHz ISM band [27].

In-platform: In-platform sources include clocks and busses in the

platform on which the wireless transceiver in embedded. Because of the close

proximity, RFI from in-platform sources may severely impair the wireless

transceivers on the same platform [11, 28]. Moreover, there are no regula-

tions by organization such as the FCC that limit the RFI inside the platform

itself [11, 25]. For example, while a laptop computer has to abide by the RFI

regulations as specified at a distance of 3m away, there is no limit on how

much RFI power the LCD clock circuitry inside the laptop can generate at a

distance of 3 cm where a Wi-Fi antenna is located [11]. In-platform RFI is

an increasing concern in computational platforms, such as laptops and smart

phones, as the number of electronic components integrated on the platform

increase and form factors decrease.

1.2 RFI in Wireless Receiver: Impact and Mitigation
Methods

The severity of impact caused by RFI on the communication perfor-

mance of wireless transceivers can be attributed to three factors: (i) strength of

the desired signal at the wireless receiver; (ii) non-impulsive statistics of RFI;
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and (iii) large number of RFI sources. Regarding (i), it is common in many

wireless networks for the strength of the desired signal at the receiver to be

comparable to the thermal noise power [14]. Let us consider the example of a

Wi-Fi network where the user is transmitting at the maximum allowable power

of around 23 dBm. Assuming a simple home propagation environment (power

pathloss model with an exponent of 3.5 and 40 dB loss at 1m at 2.4 GHz),

the received signal strength at a moderate distance of ≈ 235m is then around

−100 dBm [14]. Typical thermal noise power in commercial Wi-Fi receivers is

also around −100 dBm (generally higher) [11]. Thus the margin in wireless re-

ceivers to tolerate additional interference is low, particularly for receivers at a

moderate distance away from the source. Regarding (ii), even marginal power

levels of non-Gaussian interference have an adverse affect on the receiver that

is designed assuming Gaussian statistics for the additive noise [29]. Regarding

(iii), impact of the increasing intelligent and non-intelligent sources of RFI is

evident. Even centralized networks such as cellular networks are widely ac-

knowledged to be interference limited [30]. Further, for wireless transceivers

embedded on a laptop, recent studies have demonstrated that platform RFI

alone can cause up to 50% reduction in the range and throughput of the

transceiver [11].

If wireless networks were designed without considering interference from

other users, then a majority of the users will not be able to successfully com-

municate to their corresponding destinations due to network interference. In

centralized wireless networks, such as cellular networks, interference can be re-
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duced to a certain extent due to the ability to plan the network topology and

the presence of centralized control during regular operation of the network.

For example, in cellular networks, the frequency spectrum is split among var-

ious geographical cell sites such that two cells using the same fraction of the

spectrum are far apart. Further, users in the same cell site are often coor-

dinated by the basestation such that they are not active at the same time

(time division multiple access, a.k.a., TDMA) or use the same frequency band

(frequency division multiple access, a.k.a., FDMA or orthogonal frequency di-

vision modulation, a.k.a., OFDM). Such coordination, however, reduces the

aggregate throughput of the network since the limited wireless resources are

multiplexed among the users. Further, residual RFI from uncoordinated users

will still be present, e.g., out-of-cell users in cellular networks.

Radio frequency planning and centralized control in wireless networks

also have economic implications due to both network infrastructure layout

and network operation. These factors have motivated the emergence of de-

centralized wireless networks such as wireless ad hoc network and femtocell

network [31, 32]. In decentralized wireless networks, co-channel interference

is even more severe due to the lack of any infrastructure and control in the

network. At best, local coordination among the users can be enforced, for

example, using medium access control (MAC) layer protocols such as carrier

sense multiple access (CSMA) protocol. CSMA protocol entails the users to

sense the wireless medium for ongoing transmissions, and transmit only if

no ongoing transmissions are observed. This reduces the interference in the
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Table 1.1: Radio frequency interference (RFI) in wireless receivers: classification of sources,
impact, and common mitigation methods. Acronyms ALOHA, CSMA, LCD, MAC, Wi-Fi,
WiMAX are defined in Section 1.6.
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network, but residual RFI is still present in abundance.

Table 1.1 lists some of the common methods to avoid, cancel, and reduce

RFI classified according to the source of RFI. Residual RFI, however, is present

in all cases. The intensity of the residual RFI is rapidly increasing as the

reuse of available radio spectrum increases, the form factor of computational

platform decreases, and the number of wireless transceivers integrated on a

platform increases. To this end, this dissertation derives the statistics of the

residual RFI and utilizes them to analyze and improve the communication

performance of wireless receivers. A more detailed review of the common

methods to mitigate RFI in wireless receivers is presented in Chapter 2.

1.3 Statistical Modeling and Mitigation of Residual RFI

Residual RFI, henceforth referred to as RFI, is unavoidable as it is

caused by sources that cannot be coordinated with the desired transmissions.

Motivated by the increasing strength of RFI in current wireless networks, wire-

less receivers should be designed to be robust to the non-Gaussian statistics

of residual RFI.

Knowledge of RFI statistics can be used to design physical (PHY) layer

methods and MAC layer protocols to mitigate RFI. Deriving closed-form RFI

statistics that are applicable to a wide range of interference scenarios is cen-

tral to the approach adopted in this dissertation. PHY layer methods to

mitigate RFI include pre-filtering and detection methods which are robust to

the non-Gaussian statistics of RFI. This dissertation investigates design of
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pre-filtering methods based on the closed-form RFI statistics derived. Explicit

design of MAC protocols to improve the communication performance of the

network using the closed-form RFI statistics is not addressed in this disserta-

tion. Rather, the focus of the dissertation is to derive closed-form expressions

for various measures of communication performance using closed-form RFI

statistics. Closed-form expressions for communication performance measures

enable identifying the ways to improve the network performance and motivate

the design of MAC protocols to achieve the same.

Prior research on statistical modeling of RFI, communication perfor-

mance analysis of wireless networks, and receiver design to mitigate RFI is

limited due to the following reasons:

1. Statistical modeling of RFI: Closed-form statistics of RFI are known

only for certain spatial distributions and topologies of the interfering

sources. Further, prior research lacks a unified approach towards statisti-

cal modeling and hence results in different statistics for different wireless

networks. This limits the applicability of the RFI statistics when the in-

terference scenarios deviate from the assumption made during statistical

modeling.

2. Communication performance analysis of wireless networks: In

absence of closed-form RFI statistics, much of the prior work derives

bounds on the measures of communication performance. Based on the

approximations used, these bounds can be relatively loose and the worst-
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case performance might be significantly different from the expected per-

formance. Lack of closed-form expressions for performance measures also

limits insight into the effect of various network parameters on the per-

formance of the wireless network. Knowledge of the relation between

various network parameters and the network performance is integral to

the design of channel access protocols that mitigate RFI.

3. Receiver design to mitigate RFI: The literature on non-linear fil-

tering and detection methods to mitigate RFI for single carrier, single

antenna receivers is rich. The optimality (with respect to communication

performance measure such as bit-error-rate) of such methods, however, is

limited by the assumption on the RFI statistics. Much of the prior work

in receiver design is based on assumptions regarding RFI statistics that

are not entirely justified or physically valid. RFI statistics dictate the

optimal filter structure (such as linear or non-linear) and the distance

measure to use for designing the filter.

1.4 Dissertation Summary

1.4.1 Thesis Statement

In this dissertation, I defend the following thesis statement:

For interference-limited wireless networks, deriving closed-form

non-Gaussian statistics to model the tail probabilities of radio frequency

interference unlocks analysis of network throughput, delay, and reliability
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tradeoffs and designs of physical layer receivers to increase link spectral

efficiency by several bits/s/Hz, without requiring knowledge of the num-

ber, locations, or types of interference sources.

1.4.2 Summary of Contributions

Following is the summary of the contributions of this dissertation.

1. Statistical Modeling of RFI: Instantaneous statistics of co-channel

interference are derived using statistical-physical principles for a wide

range of interference scenarios. In particular, I consider co-channel in-

terference from an annular field of Poisson or Poisson-Poisson cluster

distributed interferers. Poisson and Poisson-Poisson cluster processes

are commonly used to model interferer distributions in large wireless

networks without and with interferer clustering, respectively. I develop

a unified framework for deriving RFI statistics for various wireless net-

work environments. The symmetric alpha stable and Gaussian mixture

distributions are shown to be applicable for modeling RFI in a wide range

of wireless networks, including wireless ad hoc, cellular, local area, and

femtocell networks. The applicability of these distributions for modeling

platform RFI is also established using measured RFI data from a laptop

computer.

2. Communication performance analysis of wireless networks: I

demonstrate the benefit of using closed-form statistics of RFI to analyze
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the communication performance of wireless networks. To illustrate this

novel approach, I analyze the throughput, delay, and reliability of decen-

tralized wireless networks with temporal correlation. Temporal correla-

tion in user locations results in temporal dependence in network inter-

ference, and increases as user mobility decreases and transmission time

increases. The network model adopted in this work spans the extremes

of temporal independence to long-term temporal dependence in network

interference. I first derive the joint temporal statistics of interference

(using the framework developed for deriving instantaneous statistics)

and show that they follow a multivariate symmetric alpha stable distri-

bution. The closed-form statistics are then used to derive closed-form

expressions for throughput, delay, and reliability of single hop transmis-

sions in the network. Simulation results demonstrate gains up to 2× in

network throughput and reliability by optimizing the closed-form per-

formance measures over certain parameters of the MAC layer protocol.

3. Receiver design to mitigate RFI: A key motivation of deriving in-

terference statistics that are applicable to a wide range of interference

scenarios is to use the statistics for designing methods to mitigate RFI

at the receiver. I focus on pre-filtering methods to mitigate temporally

dependent RFI in baseband. Pre-filtering methods require minimum re-

design of conventional receivers and hence are attractive for real-time

implementation. The temporal statistics of RFI, under more realistic

assumptions regarding propagation of RFI in the wireless medium, are
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shown to follow a multivariate Gaussian mixture distribution. The mul-

tivariate Gaussian mixture distribution motivates the use of a recently

proposed non-linear measure of distance as a design criterion for pre-

filtering methods. The pre-filters proposed have superior bit-error-rate

performance than existing prior work and are robust to deviations in the

interference statistics.

1.5 Organization

This dissertation is organized as follows. Chapter 2 presents a brief

survey of previous work with their relative strengths and limitations.

Chapter 3 derives the instantaneous statistics of RFI in a field of Poisson

and Poisson-Poisson cluster distributed interferers. The framework used to

derive the instantaneous statistics is utilized in the subsequent chapter to

extend the statistical modeling approach to include the temporal dependence

in interference.

Chapter 4 characterizes the single hop communication performance of

decentralized wireless networks with temporal correlation. Using the approach

introduced in the previous chapter, joint temporal statistics of interference are

first derived in closed-form. The temporal statistics of interference are then

used to derive closed-form expressions for the throughput, delay, and reliability

of single hop transmissions in the network.

Chapter 5 utilizes the RFI statistics to derive pre-filtering methods
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to mitigate RFI at the receiver. The temporal statistics derived in Chapter

4 are extended using the approach used in Chapter 3 for a more realistic

assumption on propagation of RFI in the wireless medium. The knowledge of

the temporal RFI statistics is then utilized to propose pre-filtering methods

that are amenable to implementation.

Finally, Chapter 6 summarizes the contributions of this dissertation

and outlines avenues for future research.

1.6 Nomenclature

3GPP Third Generation Partnership Project

3GPP2 : Third Generation Partnership Project 2

AWGN : Additive White Gaussian noise

BER : Bit-error-rate

CDMA : Code Division Multiple Access

CSMA : Carrier Sense Multiple Access

CSMA/CA : Carrier Sense Multiple Access with Collision Avoidance

EMI : Electromagnetic Interference

FDMA : Frequency Division Multiple Access

GMM : Gaussian mixture model

LCD : Liquid Crystal Display

LTE : Long Term Evolution

MAC : Medium Access Control

MCA : Middleton Class A
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MSE : Mean squared error

MUD : Multiuser Detection

OFDM : Orthogonal Frequency Division Multiplexing

OFDMA : Orthogonal Frequency Division Multiple Access

PHY : Physical

PPP : Poisson Point Process

QAM : Quadrature Amplitude Modulation

RFI : Radio Frequency Interference

SAS : Symmetric Alpha Stable

SC-FDMA : Single Carrier Frequency Division Multiple Access

SER : Symbol-error-rate

SIC : Successive Interference Cancellation

SINR : Signal-to-interference-plus-noise ratio

SIR : Signal-to-interference ratio

SNR : Signal-to-noise ratio

TDMA : Time Division Multiple Access

Wi-Fi : Wireless Fidelity (WLAN built on IEEE 802.11a/b/g/n standards)

WiMAX : Worldwide Interoperability for Microwave Access

(built on IEEE 802.16 standards)

WLAN : Wireless Local Area Networks
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1.7 Notation

Throughout this dissertation, random variables are represented using

boldface notation and deterministic parameters are represented using non-

boldface type. Following are the mathematical notations used throughout this

dissertation. Further notations are introduced in the chapters as the need

arises and are kept consistent between chapters.

CN(0, σ2) : Zero-mean complex normal distribution with variance σ2

=(·) : Imaginary part

<(·) : Real part

EX {f(X)} : Expectation of the function f(X) with respect to X

P(·) : Probability of a random event⊗
,
⊕

: Kronecker product, sum

p
=,

p

6= : Equality, non-equality in probability

| · |, ‖ · ‖ : Euclidean norm

δ(·) : Dirac delta functional

j :
√
−1

(·)T : Vector transpose
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Chapter 2

Background

2.1 Introduction

This chapter provides a literature survey of the commonly used tech-

niques to mitigate RFI in wireless receivers. In particular, Section 2.2 discusses

various RFI management techniques used in wireless networks, without which

multi-user interference would severely limit the communication performance of

the network. Residual RFI is always present despite of the RFI management

techniques. To this end, Section 2.3.1 provides a review of the prior work

on statistical modeling of residual RFI. Closed-form RFI statistics have been

primarily used to design filtering and detection methods to mitigate RFI at

the receiver. This dissertation also shows the benefit of using closed-form RFI

statistics for communication performance analysis of wireless networks. Sur-

vey of prior work on communication performance analysis of wireless networks

and using the RFI statistics for receiver design is presented in Sections 2.3.2

and 2.3.3, respectively.
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2.2 RFI Mitigation in Wireless Receivers

This section reviews some of the common methods of RFI mitigation

and their limitations that result in residual RFI to be present. For simplic-

ity of exposition, methods of RFI mitigation are classified as either static or

dynamic methods. Static methods encompass techniques that attempt to re-

duce RFI using prior knowledge of the network topology and sources of RFI.

In context of wireless networks, prior knowledge of network topology restricts

the applicability of these methods to centralized networks. Dynamic methods,

on the contrary, encompass techniques that avoid or cancel RFI by adapt-

ing to the current state of the network, but may require coordination among

users. Summary of the various static and dynamic methods of RFI mitigation

is presented in Fig. 2.1.

2.2.1 Static Methods

Static methods of RFI mitigation are applied during network planning

and transceiver deployment phase. In regard to isolated sources of RFI, these

methods require the knowledge of the location of the RFI sources. In regard

to network interference, these methods require prior knowledge of the network

topology. Following are some of the commonly used static methods of RFI

mitigation.

Shielding: Shielding is a common industry practice used to mitigate

platform noise in wireless transceivers embedded on a platform [11]. In-

platform RFI in commercial laptops, for example, is measured at various loca-
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RFI Mitigation
Methods

Static

Dynamic

Sectored Antennas [33,34]

Fractional Frequency Reuse [33,35,36]

Shielding [11,28]

Robust Transceivers [29,37–41]

Interference Alignment [42–50]

Interference Cancellation [14,30,51–54]
e.g., MUD, SIC

MAC Layer Channel Access Protocols [18,55–57]
e.g., ALOHA, CSMA

Orthogonal Multiple Access Schemes [14,58–60]
e.g., TDMA, FDMA, CDMA, OFDMA

Figure 2.1: Summary of commonly used techniques to mitigate RFI in wireless receivers.
Under dynamic RFI mitigation methods, this dissertation proposes direct contributions in
robust transceiver design and identifies potential improvement in network throughput via
optimization of MAC layer channel access protocols. The acronyms CDMA, CSMA, FDMA,
MAC, MUD, OFDMA, SIC, and TDMA are defined in Section 1.6.
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tions and sources of RFI are identified. Shielding from the identified sources,

while expensive, may become a necessity based on the location where the

transceiver is deployed [28]. Residual RFI is however always present due to

unshielded sources [11].

Fractional frequency reuse: Early deployments of cellular networks

reduced co-channel interference in the network through fractional frequency

reuse [33, 35, 36]. In fractional frequency reuse, the available spectrum is ge-

ographically split among the cells in the network with a spatially repeating

pattern. Since each cell is allocated only a fraction of the total spectrum, frac-

tional frequency reuse results in reduced peak data rates that can be achieved.

Distance between cells using the same fraction of the frequency spectrum in-

creases as the frequency reuse fraction increases. Thus residual RFI, however

restricted, will still be present.

Current and upcoming cellular standards, like the third generation

partnership program (3GPP) long term evolution (LTE) Advanced [16], aim

to increase the peak data rate by using the entire available spectrum in each

cell. This increases the co-channel interference present in cellular networks.

Sectored antennas: It is common for cellular networks to employ sec-

tored antennas at the basestation to reduce the interference within a cell [33].

It is common in current cellular deployments for a cell site to be partitioned

into 3 sectors [34]. Partitioning a cell site into sectors helps in fractional re-

duction of RFI, but residual RFI is still present.
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2.2.2 Dynamic Methods

Dynamic methods encompass PHY layer and MAC layer protocols to

mitigate RFI.

Orthogonal multiple access schemes: Such schemes allow mul-

tiple users to simultaneously access the wireless medium by making their

transmissions orthogonal to each other in some space - time, frequency, or

code space. Common orthogonal multiple access schemes include time divi-

sion multiple access (TDMA), frequency division multiple access (FDMA),

code division multiple access (CDMA), single carrier frequency division mul-

tiple access (SC-FDMA), and orthogonal frequency division multiple access

(OFDMA) [14]. Orthogonal multiple access schemes are a backbone of many

centralized wireless networks, such as a cellular network. 2G cellular standards

employed TDMA, the most popular 3G cellular standards employ CDMA

(CDMA/TDMA hybrid in 3GPP2 Evolution-Data Optimized, a.k.a. EVDO),

and the current and upcoming 4G cellular standards are using OFDMA (down-

link in 3GPP-LTE, IEEE 802.16e WiMAX) and SC-FDMA (uplink in 3GPP-

LTE) [58]. While TDMA, FDMA, and OFDMA require user coordination

and centralized control to distribute the time or frequency resource among the

users, use of CDMA physical layer has been proposed as a viable option in

decentralized wireless networks. [59,60]

Residual RFI will be present due to the following reasons. First, only

a finite number of user transmissions can be made orthogonal to each other.

For example, in cellular networks only a finite number of users are scheduled
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at any time, and their transmissions are made orthogonal to each using or-

thogonal multiple access schemes. Residual RFI is present, however, due to

out-of-cell users that use the same resources. Further, residual RFI may be

present when the transmissions are not perfectly orthogonal. For example,

CDMA physical layer with pseudo-random spreading codes do not make the

simultaneous transmissions perfectly orthogonal [14].

MAC layer channel access protocols: Decentralized wireless net-

works, such as wireless ad hoc networks and dense Wi-Fi networks, rely on

MAC layer channel access protocols such as ALOHA and carrier sense multi-

ple access (CSMA) to reduce RFI [18, 55–57]. Schemes such as ALOHA and

time/frequency hopping attempt to reduce the simultaneous user transmis-

sions that use the same frequency spectrum and have been widely applied to

reduce RFI in wireless ad hoc networks [55]. CSMA involves listening to the

wireless medium and schedule a user transmission only if no ongoing transmis-

sions are observed. Variants of CSMA, such as CSMA with collision avoidance

(CSMA/CA) and CSMA/CA with RTS/CTS are used in IEEE 802.11a/b/g/n

Wi-Fi networks [18].

Because the primary aim of such schemes is to reduce and not elimi-

nate RFI, residual RFI is always present. This dissertation identifies certain

parameters of the MAC protocol that can be optimized to reduce RFI in a

decentralized wireless network.

Interference cancellation: The basic idea behind interference can-

cellation schemes is that if the interference can be successfully decoded at the

26



receiver, then it can be subtracted from the received signal to improve the

detection performance of the desired signal [14]. Interference cancellation for

cellular networks has been an active area of research since the mid-1980s, peak-

ing in the 1990s [30]. Methods of interference cancellation include multiuser

detection (MUD), successive interference cancellation (SIC) and spatial inter-

ference cancellation schemes such as Bell Labs layered space-time (BLAST)

system for multi-antenna receivers [51, 52]. Interference cancellation schemes

in decentralized wireless networks are an active area of current research [53,54].

The goal of interference cancellation schemes is to cancel out dominant

interferers, and residual RFI will be present due to other users whose individ-

ual power is not that significant at the receiver. Cumulative RFI from users

that are not canceled at the receiver may still be strong to cause significant

degradation in communication performance.

Interference alignment: Interference alignment is a relatively new

technique that is a subject of current research. Interference alignment is a

linear precoding technique that attempts to align interfering signals in time,

frequency, or space. It was first introduced in [42] as a coding technique in

two-user multi-input multi-output (MIMO) interference channel where it was

shown to achieve rates higher than MIMO interference cancellation techniques.

Explicit formulation of interference alignment was later done in [43]. The key

idea of interference alignment is that users coordinate their transmissions, us-

ing linear precoding, such that the interference signal lies in a reduced dimen-

sional subspace at each receiver. The importance of this technique is the result
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that in a network with K transmit-receiver pairs, an interference alignment

strategy will result in a sum throughput of K
2

log(SNR) + o(K log(SNR)).

This is a significant improvement (K times) over orthogonal multiple access

techniques where the sum throughput is 1
2

log(SNR) + o(K log(SNR)), and

is somewhat surprising at first [43]. The assumption in achieving these gains

is that each transmitter and receiver has a global knowledge of all interfering

links in the network [43]. Thus a lot of feedback and coordination is required

among the users to achieve these gains.

Interference alignment has received a lot of attention in the last couple

of years. Methods for interference alignment in cellular network [44], wireless

ad hoc networks [45,46], cognitive networks [47], and MIMO wireless networks

[48] have been studied in recent past. The feasibility of interference alignment

techniques in practice, due to limited capacity and accuracy in the feedback

channels, has also been studied [49, 50]. Delay introduced in the system for

exchanging the global channel states is also an important concern.

Interference alignment methods require coordination among user pairs.

Thus such methods can be used in practice to align only certain users, e.g.,

a limited number of neighboring basestations in cellular networks to reduce

inter-cell interference [44]. Residual interference will still be present due to

uncoordinated users and imperfect interference alignment due to limited accu-

racy in the global channel state information available at the transmitter and

receivers.

Robust Transceivers: Treating interference as noise at the receiver,
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communication performance of wireless transceivers in the presence of RFI

can be improved by using better modulation schemes, error-correction-codes,

and receiver pre-filtering methods [29, 37–41]. Such methods do not attempt

to avoid, reduce, or cancel RFI, but rather try to improve the communication

performance given that RFI is present. Motivated by the increasing RFI in

wireless networks, designing robust transceivers in conjunction to other meth-

ods to avoid, reduce, or cancel RFI are being investigated to suppress the

residual RFI. Using the accurate statistics of residual RFI to analyze and

design wireless receivers overlaps directly with the approach adopted in this

dissertation.

2.3 Statistical Modeling and Mitigation of RFI

Communication performance of point-to-point communication links,

and wireless networks as a whole, is affected by the residual RFI present due

to various sources. Knowledge of closed-form RFI statistics can be used to

design both PHY layer and MAC layer techniques with improved communi-

cation performance. Closed-form statistics of RFI are however known in only

a few interference scenarios. This is the key limitation in prior work that is

addressed in this dissertation. Further, this dissertation shows the benefit of

using closed-form RFI statistics for communication performance analysis of

wireless networks and designing receivers to mitigate RFI. The following sub-

sections review the prior work on statistical modeling of RFI, communication

performance analysis of wireless networks, and receiver design to mitigate RFI.
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2.3.1 Statistical Modeling of RFI

Statistical techniques used in modeling RFI include empirical and

statistical-physical methods. Empirical approaches fit a mathematical model

to received signals, without regard to the physical generation mechanisms be-

hind the interference. Statistical-physical models, on the other hand, model

interference based on the physical principles that govern the generation and

propagation of the interference-causing emissions. Statistical-physical mod-

els are thus more widely applicable than empirical models [12, 13]. The key

statistical-physical models derived in prior work include symmetric alpha sta-

ble and Middleton Class A distributions. In this dissertation, the Gaussian

mixture distribution is also derived using statistical-physical principles. Table

2.1 presents a brief introduction to these distributions, including the distribu-

tion parameters, for a two-dimensional zero-centered isotropic random vector

{I(I), I(Q)}. A detailed discussion of the statistical properties of the symmet-

ric alpha stable, Gaussian mixture, and Middleton Class A distributions is

provided in Appendix A, B, and C, respectively.

Statistics of RFI are affected by the following key factors [12, 13,61]:

(i) Duration and frequency bandwidth of typical interferer emissions relative

to the receiver bandwidth.

(ii) Spatial or spatio-temporal distribution of interferers.

(iii) Spatial region over which the interferers are distributed.
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Table 2.1: Statistical properties of symmetric alpha stable (SAS), Middleton Class A (MCA),
and Gaussian mixture (GMM) distributions, for a two-dimensional zero-centered isotropic
random vector {I(I), I(Q)}. A detailed discussion of the statistical properties of the SAS,
GMM, and MCA distributions is provided in Appendix A, B, and C, respectively.

Statistical
Model

Distribution Characteristics

SAS

Characteristic function: ΦI(I),I(Q)(ωI , ωQ) = e−σ|
√
ω2
I+ω2

Q|
α

Closed-form PDF do not exist, except for α = 2 (Gaussian
and α = 1 (Cauchy).
Parameter Description Range

α Characteristic exponent (indicates [0, 2]
impulsiveness)

σ Dispersion (analogous to variance) (0,∞)

MCA

PDF:

fI(I),I(Q)

(
i(I), i(Q)

)
=e−Aδ(i(I), i(Q))+

∞∑
m=1

e−AAm

m!
e
−

(i(I))
2
+(i(Q))

2

2mΩ2A
A

Particular form of Gaussian mixture distribution
The above form is without the additive Gaussian component
Parameter Description Range

A Overlap index (indicates impulsiveness) (0,∞)
Ω2A Mean intensity (0,∞)

GMM

PDF:

fI(I),I(Q)

(
i(I), i(Q)

)
=p0δ(i

(I), i(Q)) +
∞∑
l=1

pl
1

σl
√

2π
e
−

(i(I))
2
+(i(Q))

2

2σ2
l

Parameter Description Range

pl Mixture probabilities such that
∞∑
l=0

pl = 1 [0, 1]

σ2
l Variance of individual Gaussian compo-

nents
(0,∞)
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(iv) Propagation characteristics of the wireless medium including pathloss

and fading.

Following is a review of prior work on statistical modeling of RFI with

respect to these factors.

Regarding (i), the duration and frequency bandwidth of the interferer

emissions, with respect to the receiver bandwidth, affects the response at the

receiver front end. Interferers with typical duration of emission much greater

than the reciprocal of the receiver bandwidth are referred to as narrowband

interferers, as they do not cause any transients (ringing effect) in the receiver

[12]. Much of the prior work assumes a field of narrowband interferers to model

both intelligent and non-intelligent sources of RFI in the environment. This is

a reasonable assumption since it precludes only certain non-intelligent sources

of RFI that have very short duration of electromagnetic emissions.

Regarding (ii) and (iii), much of the prior work on statistical mod-

eling of RFI assumes the interferers to be distributed according to a homoge-

neous Poisson point process over the entire plane [62–69]. The instantaneous

statistics of RFI in a homogeneous Poisson field of interferers distributed over

the entire plane have been shown to follow a symmetric alpha stable distribu-

tion [70–72]. When the interferers are distributed according to a homogeneous

Poisson point process over a finite area region with a guard zone around the

receiver, then the RFI has been shown to follow a Middleton Class A distribu-

tion [12,13]. Extensions for joint temporal statistics of RFI when the Poisson
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point process has temporal correlation have been limited [71–73].

The knowledge of closed-form RFI statistics, along with certain desir-

able properties of the Poisson point process, renders the assumption of Poisson

distributed interferers over the entire plane analytically tractable for modeling

interference in wireless networks [63, 67, 68]. The validity of Poisson assump-

tion has been argued for decentralized networks, such as wireless sensor and ad

hoc networks, where the user locations are spatially random to a great extent.

For example, in wireless mobile ad hoc networks, this assumption is justified

by arguing that the users move independently from each other resulting in

complete spatial randomness [31,74–76].

While the assumption of Poisson interferer filed may be accurate for

certain interferer environments (e.g., co-channel interference in wireless sensor

networks), it fails to capture certain important characteristics such as interferer

clustering and guard zone creation in wireless networks [32, 57, 60, 64, 66, 75,

77]. Other spatial distributions have also been studied in the literature to

some extent [68, 75, 78]. Closed form amplitude statistics of the interference,

however, are not known for most spatial distributions and topologies of the

interferers [64,66,75,79].

Regarding (iv), in addition to the assumption of spatially Poisson dis-

tributed user locations, deriving closed-form RFI statistics requires additional

assumptions on the fading and pathloss function. For example, the symmetric

alpha stable distribution is derived assuming an unbounded

pathloss function of the form r−
γ
2 , where r is the propagation distance and
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γ is the power pathloss exponent [70–72]. Unbounded pathloss function, how-

ever, is not realistic because it suggests that the received power is greater than

the transmitted power when r < 1 [61]. Further, the Middleton Class A model

is exact only under the assumption of Rayleigh distributed amplitude of the

received signal (that has experienced fading), and is a good approximation of

the tail probabilities otherwise [12,13].

To address the aforementioned limitations in prior work, Chapter 3

derives closed-form instantaneous statistics of RFI in a field of Poisson and

Poisson-Poisson clustered distributed interferers assuming an unbounded

pathloss model. Further, by considering the interferers distributed over a

parametric annular region, interference statistics are derived for finite- and

infinite area interference region with and without a guard zone around the

receiver. When exact statistics cannot be derived in closed-form, this disserta-

tion attempts to derive approximate closed-form expressions that accurately

model the tail probability of RFI. The motivation of accurately modeling tail

probability arises from the fact that the communication performance measures

(such as outage probability and bit-error-rates) depend on tail probability of

RFI, particularly in the low outage regime.

In addition to symmetric alpha stable and Middleton Class A distri-

butions derived in prior work, Chapter 3 establishes the applicability of the

Gaussian mixture distribution in accurately modeling the RFI statistics in a

wide range of interference scenarios. Further, the framework used to derive the

instantaneous statistics in Chapter 3 is exploited to derive closed-form joint
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interference statistics of RFI in temporally correlated Poisson field of inter-

ferers, for both unbounded and bounded pathloss function in Chapter 4 and

Chapter 5, respectively.

2.3.2 Communication Performance of Wireless Networks

Capacity is the fundamental limit on communication performance of

a network. The capacity of wireless networks is a cross layer design issue

and depends on varied factors such as the properties of the physical layer,

MAC layer protocol, and spatio-temporal traffic patterns. For a network of

n nodes, the unicast capacity region of the network has a dimensionality of

n(n − 1) since each node can potentially communicate with all other nodes.

Characterizing the multidimensional capacity region of ad hoc networks is

an open problem in information theory [31, 80]. In the seminal paper [9], the

authors proposed the capacity analysis of random and arbitrary networks with

asymptotically large number of nodes. With n nodes randomly located on a

unit-area disk, and grouped into source-destination pairs randomly, [9] shows

that the per-node throughput capacity is Θ
(

1√
n logn

)
. In [81], the authors

show using percolation theory that a per-node throughput capacity of Θ
(

1√
n

)
is achievable in networks with randomly located nodes - improving the result

in [9] by a factor of
√

log n. If the node locations and traffic patterns are chosen

optimally, then the transport capacity defined as the bit-meters that can be

achieved for each node over a given time interval was shown to be Θ
(

1√
n

)
[9].

While many publications suggest more optimistic throughput scaling [82,83] in
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special cases (such as with node mobility [83]), it is widely agreed that a per-

node throughput of Θ
(

1√
n

)
can be achieved using nearest-neighbor routing in

ad hoc networks [9, 81,84,85].

While transport capacity provides a high-level insight on how differ-

ent network scenarios (including routing and node placement) may affect the

scaling law, the results are typically asymptotic scaling laws with little [86]

or no information about the constant multiplier. This restricts comparing

different networks and studying capacity tradeoffs in network design choices

(such as physical layer properties and MAC protocols). This has motivated

computing the achievable rate regions for different network architectures in-

cluding assumptions on node distribution and MAC protocol [87, 88]. In [87],

the authors defined the transmission capacity of a network as the number of

successful transmissions taking place in the network per unit area, subject

to a constraint on the network outage probability [87]. Transmission capac-

ity framework has been widely used in the literature to characterize the ef-

fect of various physical layer techniques and MAC layer protocols in ad hoc

networks, such as successive interference cancellation [53], guard zone based

scheduling [56, 60], and multiple antennas [89, 90]. While much of the prior

work considers the nodes to be Poisson distributed, there has been notable

work done to characterize transmission capacity in networks with non-Poisson

distributed nodes [79]. While transmission capacity was initially defined for

single-hop communication in the networks, extensions for multi-hop commu-

nication performance have also been investigated [84,91].
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Exact closed-form expressions of single-hop communication measures

such as outage probability and transmission capacity have been derived in

closed-form only under the assumptions of unbounded pathloss model and

that the interferers are distributed according to Poisson point process over the

entire plane [63, 68, 76]. Exact expressions can be derived since RFI is known

to follow a symmetric alpha stable distribution in this case [76]. Further, even

though RFI statistics are known to follow a Middleton Class A distribution

in a Poisson field of interferers distributed over an annular region around the

receiver, Middleton Class A distribution has not been used for communication

performance analysis of wireless networks [74]. Poisson field of interferers

distributed over an annular region around the receiver serves as a good model

for local area networks, such as local Wi-Fi hotspots.

For network models where closed-form RFI statistics are not known,

much of the prior work resorts to deriving bounds on the measures of commu-

nication performance [76,91]. Further, single-hop communication performance

measures such as outage probability and transmission capacity have been de-

fined and analyzed under the assumption of temporal independence in user

locations [76]. User locations, however, may exhibit temporal correlation due

to limited user mobility and increased time duration of typical transmissions

in the network. Recently, the local delay of decentralized wireless networks

was derived for the extremes of temporal independence and complete tempo-

ral correlation in user locations [92–95]. Local delay is defined as the average

number of time slots required for a typical single-hop communication link to
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be successful in the network [92]. To address the aforementioned limitations

in prior work, Chapter 4 derives closed-form expressions for throughput, lo-

cal delay, and reliability (throughput outage probability) of single-hop trans-

missions in a decentralized wireless network with temporal correlation. The

definition of transmission capacity of single-hop transmissions is extended to

account for temporal correlation in user locations such that it captures the

throughput-delay-reliability tradeoff of single hop transmissions. Closed-form

communication performance measures and the extended definition of trans-

mission capacity enables identifying MAC parameters that can be optimized

to improve the throughput and reliability of the network.

2.3.3 Receiver Design to Mitigate RFI

Prior work has demonstrated significant gains in communication per-

formance by designing filtering and detection methods at the receiver to mit-

igate RFI [29, 37, 40, 96–99]. Two common approaches for designing filtering

or detection methods at the receiver to mitigate RFI are (a) exploiting the

exact statistics of the RFI and deriving bit-error-rate (BER) optimal filter-

ing and detection methods [29, 37, 40], and (b) designing the receivers based

on “robust statistics” which are resilient to the general impulsive nature of

RFI [100–103]. Exploiting exact statistics of the RFI is useful in deriving re-

ceiver structures that are optimal with respect to the chosen communication

performance measure (such as BER). The robustness of the receiver, however,

is not guaranteed if the statistics of observed RFI deviate from those assumed
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while designing the receiver [37]. Further, such methods require estimation

of parameters governing the RFI distribution at the receiver - which adds to

the computational complexity. On the other hand, designing receivers based

on the general impulsive nature of RFI may yield limited improvement in

communication performance. The improvement depends on the extent of the

knowledge of RFI statistics exploited. This motivates designing receivers that

are closely bound to RFI statistics and are yet robust to deviations in RFI

statistics, and do not require estimation of parameters that govern the RFI

distribution.

Designing receivers using interference statistics can be divided into pre-

filtering and detection techniques. Detection techniques refer to deriving the

optimum decision criterion based on Bayesian or maximum a posteriori infer-

ence, and may require significant redesign of the receiver [29,37]. Pre-filtering

methods, on the contrary, introduce a filtering stage prior to the conventional

receiver structure [29,97]. While pre-filtering methods may not be optimal with

respect to the communication performance measure considered, they present

a tradeoff in improvement of communication performance vs. implementation

complexity of the receiver structure. Motivated by the minimal redesign of

conventional receivers required, this dissertation focuses on developing pre-

filtering methods to mitigate RFI.

Statistics of RFI affects the design of per-filters with regard to the

following factors: (i) filter structure, and (ii) the distance measure used for

deriving filter parameters. Knowledge of the optimum filter structure and dis-
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tance measure for a certain RFI distribution (zero-centered and symmetric) is

related directly to the knowledge of closed-form maximum likelihood (ML) es-

timate of a constant signal in presence of RFI. For example, the ML estimate

of a constant signal in zero-mean Gaussian distributed RFI is the mean of

the observed samples, and minimizes the mean squared error (MSE) from the

observed samples [101]. This leads to the optimality of a linear filter structure

and MSE (L2-norm) as the distance measure in the presence of Gaussian dis-

tributed noise. Similarly, for Laplacian distributed RFI, the median pre-filter

and absolute deviation (L1-norm) distance measure is optimal [101].

As discussed in Section 2.3.1, prior work has shown the applicability

of symmetric alpha stable and Middleton Class A distributions for modeling

RFI in certain network environments. Further, this dissertation shows the

applicability of the Gaussian mixture distribution in modeling RFI in a wide

variety of wireless networks. Middleton Class A distribution is a particular

form of the Gaussian mixture distribution. Symmetric alpha stable model is

derived assuming an unbounded pathloss function, and is not realistic [70–72].

Further, inclusion of thermal noise in the design of receivers is difficult since

the sum of symmetric alpha stable and Gaussian random variables is no longer

symmetric alpha stable distributed [13]. Gaussian mixture models, on the

contrary, can be motivated by physical constraints and can easily be extended

to include the background thermal noise component [13, 104]. Following is a

summary of prior work in pre-filter design categorized based on the distribution

of RFI.
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Symmetric Alpha Stable: There is a rich literature on receiver de-

sign in the presence of symmetric alpha stable interference, including both

pre-filtering [101, 105–107] and detection methods [37, 108, 109]. Prior work

has shown the optimality of the Myriad pre-filter in the presence of symmetric

alpha stable distribution in the context of removing impulsive noise from im-

ages. The robustness of Myriad pre-filters to general impulsive nature of RFI

has also been argued [105–107].

Gaussian Mixture Model (includes Middleton Class A): Knowl-

edge of the optimum pre-filter structure or distance measure for Gaussian

mixture distribution (which includes Middleton Class A distribution) is not

known in prior work. Nonetheless, many pre-filters and detection methods

have been proposed for both Middleton Class A noise and Gaussian mixture

noise [38, 97, 100–102, 110–113]. Much of the prior work, however, use the

Gaussian mixture (or Middleton Class A) distribution to analyze the perfor-

mance of a receiver, rather than designing the pre-filter based on the Gaussian

mixture statistics. Minimum mean squared error (MMSE) based pre-filtering

methods in the presence of Gaussian mixture noise were studied in [112,113].

BER optimality of these pre-filtering methods [112,113], however, is not guar-

anteed since the MMSE criterion is BER optimal only if the noise is Gaussian

distributed. Extension of pre-filtering methods to the case when RFI is tem-

porally dependent have been limited.

In addition to symmetric alpha stable, Middleton Class A, and Gaus-

sian mixture distributions, many other distributions have been used to model
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the impulsive nature of RFI. Some of the common distributions used for analy-

sis and design RFI mitigation methods include Generalized Gaussian distribu-

tion [114], Laplacian distribution [115], and mixture of Laplacian and Gaussian

distribution [116].

Common pre-filtering structures assumed in prior work include mem-

oryless clipping and/or blanking non-linearities [97, 102], order statistics fil-

tering methods [101], and polynomial filters based on Volterra series [117].

Pre-filtering structures such as the memoryless clipping and/or blanking non-

linearity [97,114], myriad pre-filter [107], and median pre-filter [118] belong to

a general class of M-estimation based pre-filters [100]. Bit-error-rate optimal-

ity or the design of filter parameters (e.g., threshold for clipping or blanking)

using RFI statistics, however, is not accurately established [97].

Common distance measures used for design of pre-filters or other de-

tection methods in the presence of RFI include higher order statistical dis-

tance [119,120], fractional lower order norms [108], zero order statistics [3], er-

ror entropy [121], and correntropy [2]. Motivating the distance measure used,

along with the pre-filter structure, for the particular form of RFI statistics is

a limitation in prior work.

To address the aforementioned limitations in prior work, Chapter 5

first motivates the use of multivariate Gaussian mixture distribution to model

the temporal statistics of RFI. Order statistic filters are then proposed that

use correntropy as a distance measure and zero-order-statistics of RFI to scale

the correntropy induced metric space. The use of correntropy and zero-order-
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statistics is justified for the given RFI statistics.

2.4 Conclusions

In this chapter, a survey of prior work on RFI management in wireless

receivers was presented. No single technique of RFI management can com-

pletely eliminate RFI. The residual RFI is treated as noise at the receiver.

Limitations in prior work on statistical modeling and mitigation of the resid-

ual RFI in wireless receivers were identified. Table 2.2 summarizes the prior

work on statistical modeling and mitigation of the residual RFI in wireless re-

ceivers. This dissertation builds on the prior work on statistical modeling and

mitigation of the residual RFI. Chapter 3 derives closed-form RFI statistics

in a wide range of interference scenarios. Chapter 4 shows the benefit in the

novel approach of deriving communication performance measures using the

amplitude statistics of RFI. Throughput, delay, and reliability of decentral-

ized wireless networks are analyzed as an illustration of the approach. Results

demonstrate potential improvement in the throughput and reliability of the

networks - thereby motivating design of MAC layer protocols to achieve the

same. Chapter 5 designs pre-filters at the PHY layer using the knowledge

of RFI statistics for improved communication performance in the presence of

RFI.
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Table 2.2: Summary of prior work on (i) statistical modeling of RFI, (ii) use of RFI statistics
for communication performance analysis of wireless networks, and (iii) use of RFI statistics
for receiver design to mitigate RFI. Prior work has been categorized by the key statistical-
physical models of RFI derived in prior work. Here SAS, MCA, and GMM stand for sym-
metric alpha stable, Middleton Class A, and Gaussian mixture model, respectively.

RFI Statistics SAS MCA GMM

S
ta

ti
st

ic
a
l

M
o
d
-

e
li
n

g
o
f

R
F

I

Key Prior Work [70–72] [12,13] - a

Interferer distribution Poisson Poisson - a

Space containing interferers Entire
Plane

Finite
Area

- a

Bounded pathloss No Yes - a

N
e
tw

o
rk

P
e
rf

o
r-

m
a
n
ce

A
n

a
ly

si
s

Key Prior Work [63,68,76] - b - b

Networks with temporal
correlation

Limitedc No No

R
e
ce

iv
e
r

D
e
si

g
n

to
M

it
ig

a
te

R
F

I Key Prior Work [37, 101,
105–109]

[29,40,96] [38, 102,
110–113]

L2 norm exists No Yes Yes

Can include Thermal noise No Yes Yes

Optimal pre-filter structure Myriad d Unknown Unknown

Optimal distance measure LD d e Unknown Unknown

aApplicability of Gaussian mixture distribution to model RFI is not shown in prior work
using statistical-physical principles.

bNot used for communication performance analysis of wireless networks
cOnly extremes of full temporal correlation studied in [92–94]
dExact optimality in case of Cauchy distribution, i.e., when α = 1 [107].
eLogarithmic Deviation
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Chapter 3

Instantaneous Statistics of Co-Channel

Interference in Wireless Networks

3.1 Introduction

Current and future wireless communication systems require higher spec-

tral usage due to increasing demand in user data rates. One of the principal

techniques for efficient spectral usage is to implement a dense spatial reuse

of the available radio spectrum. This causes severe co-channel interference,

which limits the communication system performance. Chapter 2 highlighted

the benefit of using closed-form interference statistics to analyze and improve

the communication performance of wireless networks. As reviewed in Section

2.3.1, closed-form statistics of co-channel interference are known only in a few

interference scenarios. In this chapter, I derive the instantaneous statistics

of co-channel interference with applicability to a wide range of interference

scenarios that is common in many wireless networks. Applicability of statisti-

cal distributions derived in modeling in-platform RFI obtained from a laptop

embedded wireless receiver is also established using empirical methods. The

contents of this chapter are close to that of the papers [99,104,122,123].
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3.1.1 Motivation and Prior Work

Co-channel interference statistics in wireless networks are affected by

the following key factors: (i) the spatial distribution of interferers, (ii) the spa-

tial region over which the interferers are distributed, and (iii) propagation char-

acteristics including the power pathloss exponent and fading. Regarding (i),

the distribution of active interferers in large random wireless networks is gener-

ally assumed to be a homogeneous spatial Poisson point process [62–64,67,68].

While this assumption may be valid for certain wireless networks (e.g. wire-

less sensor and ad hoc networks), it may be common for interfering users to

cluster in space due to geographical factors (e.g. gathering places or femtocell

networks [32, 124]), or medium access control (MAC) layer protocols [68, 77].

Regarding (ii), the spatial region containing the interferers is commonly as-

sumed to be an infinite plane [62–64, 67]. Many wireless networks, however,

employ contention-based MAC protocols (e.g. carrier sense multiple access and

multiple access with collision avoidance) or other local coordination techniques

to limit the interference, thereby creating a guard zone around the receiver

(e.g. in wireless ad hoc networks [60] and in dense Wi-Fi networks [18, 68]).

Guard zones around the receiver can also occur due to scheduling-based MAC

protocols, such as in cellular networks in which the users in the same cell site

are orthogonal to each other and all interfering users are outside the cell site

in which the receiver is located. Further, receivers in many wireless networks

may experience interference from finite-area regions (e.g. interference from a

cell cite in cellular networks with reuse factor greater than one) [65]. This mo-
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tivates characterizing the interference statistics in Poisson and Poisson-Poisson

clustered interferers distributed over a parametric annular region. For each of

the interferer distributions, the finite- and infinite- area with and without a

guard zone around the receiver can then be studied as particular cases of the

parametric annular interference region.

Statistical-physical modeling of co-channel interference in random Pois-

son interference fields has been extensively studied in literature [65,70–72,122,

123]. In [70], it was shown that interference from a homogeneous Poisson

field of interferers distributed over the entire plane can be modeled using the

symmetric alpha stable distribution [125]. This result was later extended to

include channel randomness [71] and second-order statistics capturing the tem-

poral dependence [72]. Recently, the authors in [65] investigated extensions

for a finite-area field and derived the interference moments. Closed form ap-

proximations to the interference distribution, however, were not investigated.

Other key statistical-physical models for co-channel interference in ran-

dom Poisson interference fields include Middleton Class A, B, and C mod-

els [13]. Middleton models are useful because they characterize a wider range

of physical conditions, including narrowband and broadband interference emis-

sions, transients at the receiver, and background thermal noise [12, 13]. Mid-

dleton models, however, have not been widely used to characterize co-channel

interference in wireless network environments.

Statistical-physical modeling of co-channel interference in random Pois-

son clustered interference fields was recently studied in [75]. The focus of the
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work was to characterize the network performance (outage probability and

transmission capacity) and the interferer clusters were assumed to be dis-

tributed over the entire plane. Closed form interference statistics, however,

were not derived.

The problem considered in this chapter is also closely related to the

problem of deriving the amplitude distribution of shot noise processes [7]. Co-

channel interference in a planar network of nodes distributed according to

any point process can be modeled as a generalized shot noise process [7, 126].

The shot noise process is studied in detail in [7] and existence of generalized

shot noise process for any point process was shown in [126]. Properties of the

shot noise processes, such as characteristic function for power-law shot noise

process [127], are commonly used to evaluate bounds on outage probabilities

in wireless networks [124, 128]. To the best of my knowledge, closed form

expression of the amplitude distribution for shot noise process are not known

for the interferer topologies considered in this chapter.

3.1.2 Contribution, Organization, and Notation

In this chapter, I derive the interference statistics of co-channel interfer-

ence from a field of Poisson and Poisson-Poisson clustered distributed interfer-

ers. Further, for each of the interferer distributions, the statistics are derived

for interferers or interferer clusters distributed over (i) the entire plane, (ii)

finite-area annular region, and (iii) infinite-area annular region with a guard

zone around the desired receiver. One of the key contributions of this chapter
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is to develop a unified framework to derive the co-channel interference statis-

tics in different wireless network environments and establish the applicability

of the symmetric alpha stable and Gaussian mixture model (with Middleton

Class A model as a particular form). Analytical constraints on the system

model parameters for which these distributions accurately model the statisti-

cal properties of the interference are also derived. When exact statistics cannot

be derived in closed form, I focus on accurately modeling the tail probability

of the interference distribution.

The chapter is organized as follows. Section 3.2 discusses the system

model. Section 3.3 derives the interference statistics for interferers distributed

according to a homogeneous spatial Poisson point process. Section 3.4 derives

the interference statistics for a interferers distributed according to a homoge-

neous spatial Poisson-Poisson clustered process. Section 3.5 summarizes the

interference models derived in this chapter. Section 3.6 presents results from

numerical simulations. Section 3.7 presents results from empirical fitting of

measured in-platform RFI data to the statistical models derived. Appendices

A, B, and C contains a brief discussion on the statistical properties of the

interference models derived in the chapter. Table 3.1 summarizes the notation

used in this chapter.

3.2 System Model

At each sampling time instant n, the locations of the active interferers

are assumed to be distributed according to a homogeneous spatial point process
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Table 3.1: Summary of Notation used in Chapter 3

Symbol Description

Π = {Ri} point process of active interferers
K (random) number of active interferers
Γ region containing interferers
Rm receiver location

r = ‖R−Rm‖ (random) distance of interferer from receiver
X = Bejφ amplitude and phase of interferer emissions
γ > 2 power pathloss exponent

g = hejθ amplitude and phase of narrowband fading
I = I(I)+jI(Q) (complex) sum interference at receiver

I , {I(I), I(Q)} inphase and quadrature phase components
ω = [ω(I), ω(Q)]T frequency variables for characteristic function of I

|ω|, ωφ ,
√

(ω(I))
2

+ (ω(Q))
2
, , − tan−1(ω(Q)/ω(I))

ΦI(ω),ΨI(ω) joint characteristic, log-characteristic function of I
Λ(|ω|) = O(|ω|4) as |ω| → 0 correction term given by (3.20)
λ intensity of Π for a Poisson interferer field
λc intensity of Poisson process for cluster centers
λf intensity of Poisson process for interferers in a cluster
rl, rh inner, outer radii of annular interferer region
Rl, Rh inner, outer radii of annular region with cluster centers
α, σ parameters of symmetric alpha stable model
A,Ω2A parameters of Middleton Class A model
pl, σ

2
l parameters of Gaussian mixture model, l ≥ 0
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Π = {R1,R2, · · · } over the space Γ, where Ri are the random locations of the

interferers. This model is sufficient to capture both the emerging interferers,

whose contributions arrive at the receiver for the first time at the time instant

n, and interferers that first emerged at some prior sampling time instant m < n

but are still active until the sample time n [72].

The baseband model for the sum interference I at any time instant can

then be represented as

I =
K∑
i=1

r
− γ

2
i giXi (3.1)

where K is the random number of active interferers at that time instant, i is the

interferer index, ri = ‖Ri−Rm‖ are the random distances of active interferers

from the receiver, γ is the power pathloss exponent, gi is the independent

and identically distributed (i.i.d.) random fast fading experienced by each

interferer emission, and Xi are the random interferer emissions.

All potential interferers are assumed to have i.i.d. symmetric narrow-

band emissions of the form [12]

Xi = Bie
jφi = Bi cos(φi) + jBi sin(φi) (3.2)

where Bi is the i.i.d. envelope, and φi is the i.i.d. random phase of the emis-

sions. Further, emerging times of the interferers are assumed to be uniformly

distributed between the sampling times at the receiver. Thus the phase φi

of the emissions at the sampling instants can be assumed to be uniformly

distributed on [0, 2π]. The assumption of i.i.d. emissions is valid for wire-

less communication networks without power control and may not be true for
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modeling interference from diverse types of interferers with unequal transmit

power (e.g. base stations and mobile users).

The fast fading experienced by the interferer emissions is also assumed

to be narrowband of the form

gi = hie
jθi (3.3)

where hi is the random amplitude scaling and θi is the random phase variation

due to fading. The in-phase and quadrature-phase components of the emis-

sions are assumed to experience uncorrelated fading and thus θi is uniformly

distributed on [0, 2π]. The sum interference can be expressed as

I =
K∑
i=1

r
− γ

2
i hiBi cos(φi+θi) + j

K∑
i=1

r
− γ

2
i hiBi sin(φi+θi) (3.4)

3.3 Co-Channel Interference in a Poisson Field of In-
terferers

Consider a scenario, as shown in Fig. 3.1, in which the spatial point

process Π in (3.1) is a homogeneous spatial Poisson point process with intensity

λ and the interferers are distributed over the space Γ(rl, rh). The parametric

interference space is defined as

Γ(rl, rh) =
{
x ∈ R2 : rl ≤ ‖x‖ ≤ rh

}
. (3.5)

From (3.4), the joint characteristic function of the in-phase and quadrature-

phase components of the sum interference I = I(I) + jI(Q) can be expressed
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Figure 3.1: Interference space and receiver location for different network topologies in a field
of Poisson distributed interferers categorized by the region containing the interferers.

as

ΦI(I),I(Q)(ω(I), ω(Q))

= EI(I),I(Q)

{
ejω

(I)I(I)+jω(Q)I(Q)
}

(3.6)

= E
{
ej
∑K
i=1 r

− γ2
i hiBi(ω(I) cos(φi+θi)+ω

(Q) sin(φi+θi))
}

(3.7)

= E
{
ej|ω|

∑K
i=1 r

− γ2
i hiBi cos(φi+θi+ωφ)

}
(3.8)

=
∞∑
k=0

E
{
ej|ω|

∑k
i=1 r

− γ2
i hiBi cos(φi+θi+ωφ)

∣∣k in Γ(rl, rh)

}
P (k in Γ(rl, rh)) (3.9)

where ω = [ω(I), ω(Q)]T , |ω| =

√
(ω(I))

2
+ (ω(Q))

2
, and ωφ = − tan−1

(
ω(Q)

ω(I)

)
.

The expectation in (3.9) is with respect to the set of random variables

{ri,hi,Bi,φi,θi}.

Conditioned on the number of interferers present in the space Γ(rl, rh),

the interferer locations are mutually independent and uniformly distributed
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across this space [125]. Henceforth, the conditioning on the number of in-

terferers is removed from the expectation by noting that the interferers are

uniformly distributed over Γ(rl, rh). Further, in the absence of power con-

trol, the interferer emissions can be assumed to be i.i.d.. The characteristic

function can then be expressed as

ΦY(ω) =
∞∑
k=0

[
E
{
ej|ω|r

− γ2 hB cos(φ+θ+ωφ)
}]k [λπ (r2

h − r2
l )]

k
e−λπ(r

2
h−r

2
l )

k!
(3.10)

= e
λπ(r2

h−r
2
l )
(
E

{
e
j|ω|r−

γ
2 hB cos(φ+θ+ωφ)

}
−1

)
(3.11)

where Y is the set {I(I), I(Q)}. By taking the logarithm of ΦY(ω), the log-

characteristic function is

ψY(ω) , log ΦY(ω) = λπ
(
r2
h − r2

l

) (
E
{
ej|ω|r

− γ2 hB cos(φ+θ+ωφ)
}
− 1
)
. (3.12)

By using the identity

eja cos(φ) =
∞∑
k=0

jkεkJk(a) cos(kφ) (3.13)

where ε0 = 1, εk = 2 for k ≥ 1, and Jk(·) denotes the Bessel function of order

k, the log-characteristic function can be expressed as

ψY(ω)=λπ
(
r2
h−r2

l

)(
E

{
∞∑
k=0

jkεkJk

(
|ω|r−

γ
2 hB

)
cos (k(φ+ θ + ωφ))

}
−1

)
.

(3.14)

Since φ and θ are uniformly distributed on [0, 2π], Eφ,θ {cos (k(φ+ θ + ωφ))} =

0 for k ≥ 1, and (3.14) reduces to

ψY(ω) = λπ
(
r2
h − r2

l

) (
Er,h,B

{
J0

(
|ω|r−

γ
2 hB

)}
− 1
)
. (3.15)
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The log-characteristic function derived in (3.15) holds in general for narrow-

band interferers distributed over the parametric space Γ(rl, rh), governed by

the parameters rh and rl and the receiver location Rm. The receiver loca-

tion Rm affects the expectation in (3.15). The following three cases are now

considered and the log-characteristic function is further simplified.

3.3.1 Case I: Interferers distributed over the entire plane (rl =
0, rh →∞)

Consider a wireless network, as shown in Fig. 3.1, where the interfering

sources are distributed according to a spatial Poisson point process over the

entire plane. Note that ‖Rm‖ can be assumed to be zero without any loss in

generality of the result. This scenario corresponds to a decentralized network

in which nodes do not employ any contention-based MAC protocol, and has

been widely studied [63, 70–72, 108, 122, 123]. Lets consider the interference

space Γ(0, rh) and take the limit on the log-characteristic function as rh →∞

[63, 70]. Recall that the expectation in (3.15) is conditioned such that the

interferer locations are uniformly distributed over Γ(rl, rh). The distance of

each interferer from the receiver thus follows the distribution

fr|K(r|K) =

{
2r
r2
h

if 0 ≤ r ≤ rh,

0 otherwise.

Expanding the expectation in (3.15) gives

ψY(ω) = lim
rh→∞

λπr2
h

 rh∫
0

Eh,B

{
J0

(
|ω|r−

γ
2 hB

)} 2r

r2
h

dr − 1

 . (3.16)
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Integrating the above by parts, noting that lim
rh→∞

Eh,B

{
r2
h

(
J0

(
|ω|r−

γ
2

h hB
)
−1
)}

= 0 for γ > 2, and d
dx
J0(x) = −J1(x), gives

ψY(ω) = −|ω|
4
γ λπEh,B

{
h

4
γB

4
γ

} ∞∫
0

J1(x)

x
4
γ

dx. (3.17)

Equation (3.17) is the log-characteristic function of a two-dimensional isotropic

symmetric alpha stable distribution centered at zero such that

ψI(I),I(Q)(ω(I), ω(Q)) = −σ
∣∣∣∣√(ω(I))

2
+ (ω(Q))

2

∣∣∣∣α (3.18)

where α = 4
γ

is the characteristic exponent, and σ = λπEh,B {hαBα}
∞∫
0

J1(x)
xα

dx

is the dispersion parameter of the symmetric alpha stable distribution [125].

Here, 0 < α < 2 and σ > 0. Hence, the sum interference in a Poisson field of

interferers distributed over the entire plane follows a symmetric alpha stable

distribution.

3.3.2 Case II: Interferers distributed over a finite-area annular re-
gion (0 ≤ rl < rh <∞, Rm /∈ Γ(rl, rh))

Consider a wireless network, as shown in Fig. 3.1, where the interferers

are distributed over a finite-area annular region. When rl > 0 and ‖Rm‖ < rl,

this corresponds to a scenario where all the interferers are outside a guard

zone around the receiver and within a maximum distance (rh < ∞) beyond

which they do not generate significant interference. When ‖Rm‖ > rh, this

corresponds to a scenario where the interferers are distributed over a finite-

area circular or annular region with the receiver exterior to this region. The
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former scenario is applicable for wireless networks with contention-based or

scheduling-based MAC protocols creating a guard zone around the receiver

(e.g. cellular networks with reuse factor of one and ad hoc networks with guard

zones [60]). The latter scenario is useful in characterizing the interference from

a hotspot (e.g. interferers localized in space around a cafe) and in cellular

networks with reuse factor greater than one. In cellular networks with reuse

factor greater than one, the interferers are distributed within a regular pattern

of isolated cell sites and the sum interference is thus a sum of the interference

from these isolated finite-area cell sites.

In [12], Middleton proposed an approximation of the log-characteristic

function for |ω| in the neighborhood of zero. From Fourier analysis, the behav-

ior of the characteristic function for |ω| in the neighborhood of zero governs

the tail probability of the random envelope. The proposed approximation is

based on the following identity [12]:

Er,h,B

{
J0

(
|ω|r−

γ
2 hB

)}
= e−

|ω|2Er,h,B{r−γh2B2}
4 (1 + Λ(|ω|)) (3.19)

where Λ(|ω|)) indicates a correction term with the lowest exponent in |ω| of

four and is given by

Λ(|ω|)) =
∞∑
k=2

(EZ {Z})k |ω|2k

22kk!
EZ

{
1F1

(
−k; 1;

Z

EZ {Z}

)}
(3.20)

where the random variable Z = r−γh2B2, and 1F1 (a; b;x) is the confluent

hypergeometric function of the first kind, such that Λ(|ω|) = O(|ω|4) as |ω| →

0.
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Using this identity, and approximating Λ (|ω|)� 1 for |ω| in the neigh-

borhood of zero, the log-characteristic function in (3.15) can be expressed as

ψY(ω) ≈ λπ
(
r2
h − r2

l

)(
e−
|ω|2Er,h,B{r−γh2B2}

4 − 1

)
. (3.21)

Equation (3.21) is the log-characteristic function of a Middleton Class A dis-

tribution such that

ψI(I),I(Q)(ω(I), ω(Q)) = A

(
e−

(
(ω(I))

2
+(ω(Q))

2
)

Ω2A

2A − 1

)
(3.22)

where A = λπ (r2
h − r2

l ) is the overlap index that indicates the amount of

impulsiveness of the interference, and Ω2A =
A×Er,h,B{r−γh2B2}

2
is the mean

intensity of the interference [13]. Hence, the co-channel interference from a field

of Poisson distributed interferers over the finite-area space Γ(rl, rh) with Rm /∈

Γ(rl, rh) follows the Middleton Class A distribution. It should be emphasized

that the correspondence to the Middleton Class A distribution is particularly

valid for modeling the tail probabilities.

The approximation in (3.19) and the subsequent interference model

in (3.22) is valid for Rm /∈ Γ(rl, rh), since Ω2A → ∞ as ‖Rm‖ → rl or as

‖Rm‖ → rh. This is unlike Case I in Section 3.3.1 where the interference was

modeled for rl = 0. This is the key difference between the symmetric alpha

stable and Middleton Class A models for interference.

Next, I quantify the range of the system model parameters over which

the Middleton Class A model provides an accurate approximation to the co-

channel interference in this scenario. From (3.19), a first-order measure of the
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accuracy of the approximation can be expressed by comparing the coefficient of

|ω|4 term in e−
|ω|2Er,h,B{r−γh2B2}

4 against the coefficient of |ω|4 in the correction

term Λ(|ω|). Using the fact that

1F1 (−2; 1;x) =
1

2
(x2 − 4x+ 2), (3.23)

the coefficient of |ω|4 in the correction term (i.e., c4) can be expressed as

c4 =
EZ {Z2} − 2 [EZ {Z}]2

128
. (3.24)

Thus, the Middleton Class A model provides a good approximation when the

system parameters, such as rh, rl, Rm, and γ, satisfy∣∣∣∣∣EZ {Z2} − 2 [EZ {Z}]2

128

∣∣∣∣∣ � [EZ {Z}]2

32
(3.25)

⇒

∣∣∣∣∣ Er,h,B {r−2γh4B4}
4× [Er,h,B {r−γh2B2}]2

− 1

2

∣∣∣∣∣ � 1. (3.26)

To provide some intuition about the above result, for a non-random h and B,

the condition is satisfied when ‖Rm‖ � rl and rl
rh

is greater than a fraction

that depends on γ and Rm, or when ‖Rm‖ � rh. The conditions ‖Rm‖ � rl

and ‖Rm‖ � rh ensure that the interferers are not close to the receiver and

a lower bound on rl
rh

ensures that rh is not very large compared to rl when

‖Rm‖ < rl.

3.3.3 Case III: Interferers distributed over infinite-area annular re-
gion with guard zone (rl > 0, rh →∞, and ‖Rm‖ < rl)

Consider a wireless network, as shown in Fig. 3.1, where the interfering

sources are distributed according to a spatial Poisson point process on the
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entire plane, except within a guard zone around the receiver. The applicability

of Case II for guard zone scenarios was limited to finite-area fields and does

provide a good approximation for a wide range of system parameters. In

this subsection, the interference region is allowed to have infinite area and is

thereby more applicable to large random wireless networks with guard zones

[60]. Lets consider the interference space Γ(rl, rh) and take the limit on the log-

characteristic function as rh → ∞. Conditioned on the number of interferers

in Γ(rl, rh), the interferer locations are mutually independent and uniformly

distributed in the space Γ(rl, rh). Thus as rh → ∞, with high probability,

the distance of an interferer from receiver located at Rm can be approximated

as r = ‖R − Rm‖ ≈ ‖R‖, particularly for ‖Rm‖ � rl. The distance of each

interferer from the receiver thus follows the distribution

fr|K(r|K) =

{
2r

r2
h−r

2
l

if rl ≤ r ≤ rh,

0 otherwise.

Expanding the expectation in (3.15) gives

ψY(ω) = lim
rh→∞

λπ(r2
h − r2

l )

 rh∫
rl

Eh,B

{
J0

(
|ω|r−

γ
2 hB

)} 2r

r2
h − r2

l

dr − 1

 .

(3.27)

Integrating the above by parts, reordering terms, and noting that

lim
rh→∞

λπr2
h

(
Eh,B

{
J0

(
|ω|r−

γ
2

h hB
)}
−1
)

= 0 for γ > 2, gives

ψY(ω) = −λπr2
l

(
Eh,B

{
J0

(
|ω|r−

γ
2

l hB
)}
−1
)

− lim
rh→∞

λπ

rh∫
rl

∂

∂r

(
Eh,B

{
J0

(
|ω|r−

γ
2 hB

)})
r2dr. (3.28)
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Invoking the identity (3.19), and approximating Λ (|ω|) � 1 for |ω| in the

neighborhood of zero, the log-characteristic function can be expressed as

ψY(ω) ≈ − λπr2
l

(
e−
|ω|2r−γ

l
Eh,B{h2B2}

4 − 1

)

− lim
rh→∞

λπ

∫ rh

rl

∂

∂r

(
e−
|ω|2r−γEh,B{h2B2}

4

)
r2dr. (3.29)

Note that unlike (3.19), the approximation in (3.29) involves a non-random r.

Using Taylor series expansion of ex, the log-characteristic function reduces to

ψY(ω) = λπr2
l

[
∞∑
k=1

(−1)k|ω|2k

4kk!

(
E
{
h2B2

})k
r−γkl

2

kγ − 2

]
(3.30)

valid for γ > 2. The 2
kγ−2

multiplicative factor inside the summation prevents

the log-characteristic function to be expressed in closed form. I thus approxi-

mate the function 2
kγ−2

as ηeβk for k ≥ 1. The parameters η and β are chosen

to minimize the weighted mean squared error (WMSE)

{η, β} = arg min
η,β

∞∑
k=1

(
2

kγ − 2
− ηeβk

)2

u(k) (3.31)

where u(k) are the weights. The weights should be chosen such that penalty of

error is large when k is small, since it affects the coefficients of terms with lower

order exponents of |ω|. Equation (3.31) is an unconstrained nonlinear opti-

mization problem and can be solved efficiently using numerical techniques such

as quasi-Newton methods [1]. Quasi-Newton methods have superlinear con-

vergence and require O(ln(| ln(ε)|)) number of iterations and O(d2 ln(| ln(ε)|))

algebraic computational effort, where d is the dimensionality of the problem

and ε is the maximum permissible error tolerance in the result. Table 3.2
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Table 3.2: Values for {η, β} and the associated weighted mean squared error (WMSE),
obtained by solving (3.31), for different values of the power pathloss exponent (γ) and using
the weighting function u(k) = e−k. Solution to (3.31) was obtained by using the fminunc
function in MATLAB, which uses the BFGS quasi-Newton method [1].

γ {η, β} WMSE

2.5 {22.818,−1.741} 4.32× 10−3

3.0 {7.484,−1.321} 1.84× 10−3

3.5 {4.132,−1.132} 9.81× 10−4

4.0 {2.781,−1.025} 5.96× 10−4

4.5 {2.073,−0.954} 3.96× 10−4

5.0 {1.645,−0.905} 2.80× 10−4

lists the values for {η, β} and the associated WMSE for certain values of γ,

using the weights u(k) = e−k. By approximating 2
kγ−2

as ηeβk for k ≥ 1, the

log-characteristic exponent can be expressed as

ψY(ω) ≈ λπr2
l η

(
e−
|ω|2r−γ

l
eβEh,B{h2B2}

4 − 1

)
. (3.32)

Equation (3.32) is the log-characteristic function of a Middleton Class A dis-

tribution such that

ψI(I),I(Q)(ω(I), ω(Q)) = A

(
e−

(
(ω(I))

2
+(ω(Q))

2
)

Ω2A

2A − 1

)
(3.33)

where A = λπr2
l η is the overlap index that indicates the impulsiveness of

the interference, and Ω2A =
A×r−γl eβEh,B{h2B2}

2
is the mean intensity of the

interference [13].

The functional form of ηeβk to approximate 2
kγ−2

for k ≥ 1 was chosen

since, a) it provides a good approximation and enables the log-characteristic

function to be expressed in closed form, and b) provides two parameters {η, β}
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such that η affects only the impulsive index A, while β affects only the vari-

ance σ2
m = m

A
Ω2A of individual components of the Gaussian mixture form of

Middleton Class A model.

Similar to Case II, a first-order measure of accuracy of the approxima-

tion can be expressed by comparing the coefficient of |ω|4 term in the true

log-characteristic function (3.28) against the the coefficient of |ω|4 term in

the approximated log-characteristic function (3.32). The two approximations

involved are using ηeβk to approximate the function 2
kγ−2

for k ≥ 1, and ap-

proximating Λ (|ω|) � 1 for |ω| close to zero. Note that the lowest order

term affected by the former approximation is the coefficient of |ω|2 term. The

approximation error is assumed to be negligible due to the optimization in

(3.31). Using (3.19) and (3.20), the coefficient of |ω|4 term in the true log-

characteristic function (3.32) is

λπr−2γ+2
l

(
E {Z2}+ 2 [E {Z}]2

128

)(
2

2γ − 2

)
where Z = h2B2. Comparing with the coefficient of |ω|4 term in (3.32), the

Middleton Class A distribution provides a good approximation to co-channel

interference statistics in this scenario when∣∣∣∣∣
(

[E {Z}]2

64

)(
2

2γ − 2
− 2ηe2β

)
+

(
E {Z2}

128

)(
2

2γ − 2

)∣∣∣∣∣�
∣∣∣∣∣ [E {Z}]232

ηe2β

∣∣∣∣∣ .
(3.34)

Note that if ηe2β = 2
2γ−2

, then the above condition is same as the one obtained

for Case II in (3.25), with the exception that Z = h2B2 in this case. The above
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Figure 3.2: Interference space and receiver location for different network topologies in a field
of Poisson-Poisson cluster distributed interferers categorized by the region containing the
cluster centers.

condition is independent of the parameter rl that governs the interference space

and is valid when the variance of h2B2 is low when compared to [E{h2B2}]2.

The above condition does not capture the error due to the approximation

r = ‖R − Rm‖ ≈ R, which is true with high probability in this scenario and

is particularly valid for ‖Rm‖ � rl.

3.4 Co-Channel Interference in a Poisson-Poisson Clus-
ter Field of Interferers

Consider a scenario, as shown in Fig. 3.2, where the interferers are clus-

tered in space. The center of the clusters are assumed to distributed according

to a spatial Poisson point process Πc with intensity λc over the space Γ(Rl, Rh).

For each cluster center Rc ∈ Πc, interferers are assumed to be distributed ac-

cording to an independent spatial Poisson process Πc,f with intensity λf over
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the space Γ(rl, rh) around the center Rc. The point process Π in (3.1) is then

a homogeneous spatial Poisson-Poisson cluster process such that

Π =
⋃

Rc∈Πc

⋃
Rc,f∈Πc,f

{Rc + Rc,f} . (3.35)

Note that the cluster centers are themselves not included. The parametric

interference space Γ(·, ·) is defined in (3.5). When rl = 0, Π is a Matern

cluster process [129].

The joint characteristic function of the in-phase and quadrature-phase

components of the sum interference I = I(I) + jI(Q) can be expressed as

ΦI(I),I(Q)(ω(I), ω(Q))

= EI(I),I(Q)

{
ejω

(I)I(I)+jω(Q)I(Q)
}

(3.36)

= E
{
ej|ω|

∑Kc
i=1

∑Kc,f
m=1 r

− γ2
i,mhi,mBi,m cos(φi,m+θi,m+ωφ)

}
(3.37)

=
∞∑
kc=0

E
{
ej|ω|

∑kc
i=1

∑Kc,f
m=1 r

− γ2
i,mhi,mBi,m cos(φi,m+θi,m+ωφ)

∣∣kc in Γ(Rl, Rh)

}
× P (kc in Γ(Rl, Rh)) (3.38)

where Kc is the random number of active clusters, Kc,f is the random number

of active interferers per cluster, ω = [ω(I), ω(Q)]T , |ω| =

√
(ω(I))

2
+ (ω(Q))

2
,

and ωφ = − tan−1
(
ω(Q)

ω(I)

)
. The expectation in (3.38) is with respect to the

set of random variables
{
Kc,f , ri,m,hi,m,Bi,m,φi,m,θi,m

}
. The indexing (·)i,m

denotes the mth active interferer in the ith cluster.

Conditioned on the number of clusters present in the space Γ(Rl, Rh),

location of the cluster centers (Rc) are mutually independent and uniformly
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distributed over this space [125]. Further, in the absence of power control, the

sum interference from each cluster can be assumed to be i.i.d., such that

ΦY(ω) =
∞∑
kc=0

[
E
{
ej|ω|

∑Kc,f
m=0 r

− γ2
m hmBm cos(φm+θm+ωφ)

}]kc
× [λcπ (R2

h −R2
l )]

kc e−λcπ(R
2
h−R

2
l )

kc!
(3.39)

= e
Ac

(
E

{
e
j|ω|

∑Kc,f
m=0 r

− γ2
m hmBm cos(φm+θm+ωφ)

}
−1

)
(3.40)

where Y is the set {I(I), I(Q)}, and Ac = λcπ (R2
h −R2

l ). The expectation in

(3.40) is with respect to the set of random variables {Rc,Kc,f ,Rc,m,hm,Bm,

φm,θm}. By taking the logarithm of ΦY(ω), the log-characteristic function is

ψY(ω) = Ac

(
E
{
ej|ω|

∑Kc,f
m=0 r

− γ2
m hmBm cos(φm+θm+ωφ)

}
− 1

)
. (3.41)

The above equation can be expressed in the form

ψY(ω) = Ac
(
ERc

{
EIc,f

{
ej|ω|Ic,f

}}
− 1
)

(3.42)

where Ic,f is the sum interference from an interferer cluster and is a function

of the set of random variables {Kc,f ,Rc,m,hm,Bm,φm,θm}, similar to (3.8).

Thus Ic,f is the sum interference from a field of Poisson distributed interferers

over the interference space Γ(rl, rh) around the cluster center Rc. Using (3.15),

the log-characteristic function can then be expressed as

ψY(ω) = Ac

[
ERc

{
e
Af

(
ERc,f ,h,B

{
J0

(
|ω|r−

γ
2 hB

)}
−1
)}
− 1

]
(3.43)

where Af = λfπ (r2
h − r2

l ), r = ‖Rc + Rc,f −Rm‖, Rc is uniformly distributed

in Γ(Rl, Rh), and Rc,f is uniformly distributed in Γ(rl, rh).
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The log-characteristic function derived in (3.43) holds in general for

a Poisson-Poisson clustered field of narrowband interferers, where the cluster

centers are distributed over the parametric space Γ(Rl, Rh) and the interferers

are distributed over the parametric space Γ(rl, rh) around each cluster center.

The receiver location Rm affects the inner expectation in (3.43). I now consider

the same three cases, categorized by the region containing the cluster centers,

and further simplify the log-characteristic function.

3.4.1 Case I: Cluster centers distributed over the entire plane (Rl =
0, Rh →∞)

Consider a wireless network scenario, as shown in Fig. 3.2, where the

center of interferer clusters are distributed according to a homogeneous spatial

Poisson point process over the entire plane. Similar to Case I for a Poisson field

of interferers, ‖Rm‖ can be assumed to be zero without any loss in generality

of the result. Conditioned on the number of clusters in Γ(0, Rh), the distance

of each cluster center from the origin follows the distribution

fRc|Kc(Rc|Kc) =

{
2Rc
R2
h

if 0 ≤ Rc ≤ Rh,

0 otherwise.

Thus as Rh → ∞, with high probability, the distance of an interferer from

the receiver can be approximated as r = ‖Rc + Rc,f‖ ≈ ‖Rc‖. Expanding the

expectation over Rc in (3.43) and using the Taylor series expansion of ex gives

ψY(ω) = lim
Rh→∞

Ac

 Rh∫
0

e
Af

(
E
{
J0

(
|ω|R

− γ2
c hB

)}
−1

)
2Rc

R2
h

dRc−1



67



= e−Af
∞∑
k=0

Akf
k!

 lim
Rh→∞

Ac

 Rh∫
0

(
E
{
J0

(
|ω|R−

γ
2

c hB
)})k 2Rc

R2
h

dRc − 1


= e−Af

∞∑
k=0

Akf
k!

Υ (3.44)

where

Υ = lim
Rh→∞

Ac

 Rh∫
0

(
E
{
J0

(
|ω|R−

γ
2

c hB
)})k 2Rc

R2
h

dRc − 1

 . (3.45)

Integrating the above by parts, reordering terms, and noting that

lim
Rh→∞

Ac

[(
E
{
J0

(
|ω|R−

γ
2

h hB
)})k

− 1

]
= 0 for γ > 2, gives

Υ = lim
Rh→∞

−λcπ
∫ Rh

0

∂

∂Rc

[(
E
{
J0

(
|ω|R−

γ
2

c hB
)})k]

R2
c dRc. (3.46)

Invoking the identity (3.19), and approximating Λ(|ω|)) � 1 for |ω| close to

zero, gives[
E
{
J0

(
|ω|R−

γ
2

c hB
)}]k

= e−
|ω|2kR−γc E{h2B2}

4 (1 + Λ(|ω|))k (3.47)

≈ E
{
J0

(
|ω|
√
kR
− γ

2
c hB

)}
. (3.48)

Substituting (3.48) in (3.46), and noting that d
dx
J0(x) = −J1(x), gives

Υ = −|ω|
4
γ λcπ

(√
k
) 4
γ Eh,B

{
h

4
γB

4
γ

} ∞∫
0

J1(x)

x
4
γ

dx. (3.49)

Using (3.49), the log-characteristic function in (3.44) reduces to

ψY(ω) = −|ω|
4
γ

(λcπEh,B

{
h

4
γB

4
γ

}∫ ∞
0

J1(x)

x
4
γ

dx

) ∞∑
k=0

e−AfAkf

(√
k
) 4
γ

k!

 .
(3.50)
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Equation (3.50) is the log-characteristic function of a two-dimensional isotropic

symmetric alpha stable distribution centered at zero such that

ψI(I),I(Q)(ω(I), ω(Q)) = −σ
∣∣∣∣√(ω(I))

2
+ (ω(Q))

2

∣∣∣∣α (3.51)

where α = 4
γ

is the characteristic exponent (0 < α < 2), and σ =
[(
λcπ

Eh,B {hαBα}
∫∞

0
J1(x)
xα

dx
)∑∞

k=0

e
−AfAkf(

√
k)
α

k!

]
is the dispersion parameter (σ >

0) of the symmetric alpha stable distribution [125]. Hence, when the center

of interferer clusters are distributed according to a spatial Poisson process on

the entire plane, the co-channel interference follows a symmetric alpha stable

distribution. Note that unlike Case I for a Poisson field of interferers, the sym-

metric alpha stable distribution is not an exact model due to approximation

in (3.48), but accurately models the tail probability of the interference.

3.4.2 Case II: Cluster centers distributed over finite-area annular
region (0 ≤ Rl < Rh <∞, and Rm /∈ Γ(Rl − rh, Rh + rh))

Consider a wireless network scenario, as shown in Fig. 3.2, where the

cluster centers are distributed over a finite-area annular region. The receiver

location is such that it does not belong to the space of active interferers (Rm /∈

Γ(Rl − rh, Rh + rh)). Similar to Case II for a Poisson field of interferers, this

scenario is useful in characterizing interference from a finite-area annular field

when the receiver is located interior to the region with a guard zone (when

‖Rm‖ < Rl − rh) or at a point exterior to the region (when ‖Rm‖ > Rh + rh).

Using the identity (3.19), the log-characteristic function in (3.43) can
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be expressed as

ψY(ω)=Ac

[
ERc

{
exp

(
Af

(
e
−|ω|2ERc,f ,h,B{r−γh2B2}

4 (1+Λ(|ω|))−1

))}
−1

]
(3.52)

where Λ(|ω|) is the correction term given by (3.20). For notational simplicity,

let F = ERc,f ,h,B {r−γh2B2}. F is then a function of the random variable Rc.

Approximating Λ(|ω|))� 1 for |ω| in the neighborhood of zero, and using the

Taylor series expansion of ex, the log-characteristic function reduces to

ψY(ω) ≈ Ac

[
ERc

{
e−Af

∞∑
k=0

Akf
k!
e
−k|ω|2F

4

}
− 1

]
(3.53)

= Ac

[
e−Af

∞∑
l=0

(−1)l|ω|2lERc

{
Fl
}

4ll!

∞∑
k=0

Akfk
l

k!
− 1

]
. (3.54)

To express the log-characteristic function in closed form, I approximate ERc

{
Fl
}

≈ (ERc {F})
l. This approximation holds with equality for l = 0, 1 and hence

does not affect the coefficient of |ω|2 term. The coefficient of the lowest

order term affected by this approximation is the |ω|4 term. Thus the log-

characteristic function is not severely affected by this approximation for |ω|

in the neighborhood of zero, which is desired for accurately modeling the tail

probability, and can be expressed as

ψY(ω) ≈ Ac

[
exp

(
Af

(
e
−|ω|2ERc

{F}
4 − 1

))
− 1

]
. (3.55)

Using the log-characteristic function, and using the Taylor series expansion

from ex, the characteristic function can be expressed as

ΦY(ω) = e−Ac
∞∑
l=0

Alf
l!

(
∞∑
k=0

Akck
le−kAf

k!

)
e
−l|ω|2ERc

{F}
4 . (3.56)
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Equation (3.56) is the characteristic function of a two-dimensional isotropic

Gaussian mixture model such that

ΦI(I),I(Q)(ω(I), ω(Q)) =
∞∑
l=0

ple
−
(
(ω(I))

2
+(ω(Q))

2
)
σ2
l

2 (3.57)

where pl =
e−AcAlf

l!

(∑∞
k=0

Akck
le
−kAf

k!

)
are the mixture probabilities, and σ2

l =

l×ERc,Rc,f ,h,B{r−γh2B2}
2

are the variance of the individual Gaussian components,

for l ≥ 0.

The two approximations involved in expressing the true log-characteristic

function (3.52) as (3.55) are approximating Λ (|ω|) � 1 for |ω| in the neigh-

borhood of zero, and expressing ERc

{
Fl
}

as (ERc {F})
l. Using (3.20), the

coefficient of |ω|4 term in the true log-characteristic function (3.52) can be

expressed as

Ace
−Af

[
ERc {F2}

32

∞∑
k=0

k2Akf
k!

+ ERc {c4}
∞∑
k=0

kAkf
k!

]

where c4=
ERc,f ,h,B{r−2γh4B4}−2

(
ERc,f ,h,B{r−γh2B2}

)2

128
, and F=ERc,f ,h,B {r−γh2B2}.

Comparing with the coefficient of the |ω|4 term in the approximated log-

characteristic function (3.55), the Gaussian mixture distribution provides a

good approximation to the interference statistics in this scenario when∣∣∣∣∣V ar(F)

32

∞∑
k=0

k2Akf
k!

+ ERc {c4}
∞∑
k=0

kAkf
k!

∣∣∣∣∣�
∣∣∣∣∣(ERc {F})

2

32

∞∑
k=0

k2Akf
k!

∣∣∣∣∣ (3.58)

where V ar(F) = ERc {F2}−(ERc {F})
2. Intuitively, the above condition is sat-

isfied when the interferers are not close to the receiver (i.e., ‖Rm‖ � Rl − rh

or ‖Rm‖ � Rh + rh) and Rh is not very high compared to Rl when ‖Rm‖ <

Rl − rh.
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3.4.3 Case III: Cluster centers distributed over infinite-area annu-
lar region with guard zone (Rl > 0, Rh →∞, and ‖Rm‖ < Rl−rh)

Consider a wireless network, as shown in Fig. 3.2, where the center of

interferer clusters are distributed according to a homogeneous spatial Poisson

point process over the entire plane, except within a guard zone around the

receiver. Analogous to Case III for a Poisson field of interferers, the distance

of each cluster center from the origin follows the distribution

fRc|Kc(Rc|Kc) =

{
2Rc

R2
h−R

2
l

if Rl ≤ Rc ≤ Rh,

0 otherwise.

Thus as Rh → ∞, with high probability, the distance of an interferer from

receiver located at Rm can be approximated as r = ‖Rc + Rc,f − Rm‖ ≈

‖Rc‖, particularly for Rm � Rl − rh. Analogous to Case I, on expanding the

expectation over Rc in (3.43) and using the Taylor series expansion for ex gives

ψY(ω) = lim
Rh→∞

Ac

 Rh∫
Rl

e
Af

(
E
{
J0

(
|ω|R

− γ2
c hB

)}
−1

)
2Rc

R2
h −R2

l

dRc − 1

 (3.59)

= e−Af
∞∑
k=0

Akf
k!

Υ (3.60)

where

Υ = lim
Rh→∞

Ac

 Rh∫
Rl

(
E
{
J0

(
|ω|R−

γ
2

c hB
)})k 2Rc

R2
h −R2

l

dRc − 1

 . (3.61)

Integrating the above by parts, reordering terms, and noting that

lim
Rh→∞

λcπR
2
h

[(
E
{
J0

(
|ω|R−

γ
2

h hB
)})k −1

]
= 0 for γ > 2, gives

Υ = −λcπR2
l

((
Eh,B

{
J0

(
|ω|R−

γ
2

l hB
)})k

− 1

)
−
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lim
Rh→∞

λcπ

Rh∫
Rl

∂

∂Rc

[(
Eh,B

{
J0

(
|ω|R−

γ
2

c hB
)})k]

R2
c dRc. (3.62)

Invoking the identity (3.19), approximating Λ (|ω|) � 1 for |ω| in the neigh-

borhood of zero, and using the Taylor series expansion of ex, gives

Υ ≈ λcπR
2
l

[
∞∑
m=1

(−1)m|ω|2mkm

4mm!

(
E
{
h2B2

})m
R−γml

2

γm− 2

]
. (3.63)

Similar to Case III for Poisson field of interferers, the 2
γm−2

multiplica-

tive factor inside the summation prevents Υ, and hence the log-characteristic

function, to be expressed in closed form. I thus approximate the function

2
γm−2

as ηeβm for m ≥ 1, where {η, β} are chosen to minimize a weighted

mean squared error (WMSE) criterion as discussed in Section 3.3.3. Using

this approximation, (3.63) reduces to

Υ ≈ λcπR
2
l η

(
e
−l|ω|2R−γ

l
eβE{h2B2}
4 − 1

)
(3.64)

Substituting the above equation in (3.60), the log-characteristic function can

be expressed as

ψY(ω) = λcπR
2
l η

[
exp

(
Af

(
e
−|ω|2R−γ

l
eβE{h2B2}
4 − 1

))
− 1

]
. (3.65)

Using the log-characteristic function, and the Taylor series expansion for ex,

the characteristic function can be expressed as

ΦY(ω) = e−λcπR
2
l η

∞∑
l=0

[
Alf
l!

(
∞∑
k=0

(λcπR
2
l η)

k
kle−kAf

k!

)
e
−l|ω|2R−γ

l
eβE{h2B2}
4

]
.

(3.66)
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Equation (3.66) is the characteristic function of a two-dimensional isotropic

Gaussian mixture model such that

ΦI(I),I(Q)(ω(I), ω(Q)) =
∞∑
l=0

ple
−
(
(ω(I))

2
+(ω(Q))

2
)
σ2
l

2 (3.67)

where pl =
e−λcπR

2
l ηAlf

l!

(∑∞
k=0

(λcπR2
l η)

k
kle
−kAf

k!

)
are the mixture probabilities,

and σ2
l =

l×R−γl eβEh,B{h2B2}
2

are the variance of the individual Gaussian com-

ponents, for l ≥ 0.

Using (3.62), (3.19), and (3.20), the coefficient of |ω|4 term in the true

log-characteristic function (3.60) can be expressed as

λcπR
−2γ+2
l e−Af

[
(E {Z})2

32

∞∑
k=0

k2Akf
k!

+ c4

∞∑
k=0

kAkf
k!

](
2

2γ − 2

)
. (3.68)

where Z = h2B2 and c4 =
E{Z2}−2(E{Z})2

128
. Comparing with the coefficient

of |ω|4 term in the approximated log-characteristic function (3.66), the Gaus-

sian mixture distribution provides a good approximation to the interference

statistics in this scenario when∣∣∣∣∣(E {Z})2

32

(
2

2γ − 2
− ηe2β

) ∞∑
k=0

k2Akf
k!

+
2c4

(2γ − 2)

∞∑
k=0

kAkf
k!

∣∣∣∣∣
�

∣∣∣∣∣(E {Z})2

32
ηe2β

∞∑
k=0

k2Akf
k!

∣∣∣∣∣ . (3.69)

Analogous to Case III for a Poisson field of interferers, the above condition

is independent of the parameter Rl that governs the interference space and is

satisfied when the variance of the random variable h2B2 is low when compared

to [E{h2B2}]2. Note that the above condition does not capture the error due
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to the approximation r = ‖Rc + Rc,f − Rm‖ ≈ Rc, which is true with high

probability and is particularly valid for ‖Rm‖ � Rl − rh.

3.5 Summary and Discussion

Tables 3.3 and 3.4 summarize the key results derived in this chapter for

a field of Poisson and Poisson-Poisson cluster distributed interferers, respec-

tively. The following observations are made.

1. Narrowband emissions from interferers: The narrowband form of

the interfering emissions is truly attributed to the narrowband filtering

done at the receiver. Hence the interferer emissions can have a higher

bandwidth than the receiver, as long as the transients caused due to

interferer emissions at the receiver can be ignored [13]. From [13], the

analysis and results presented in this chapter are valid as long as the

duration of the interfering emissions (TI) is much greater than the recip-

rocal of the receiver bandwidth (∆fR), i.e., TI � 1
∆fR

.

2. Extensions for finite-area interference fields with arbitrary shape:

The finite-area cases are studied for Poisson and Poisson-Poisson clus-

tered field of interferers in Sections 3.3.2 and 3.4.2, respectively. For a

finite-area interference Γ with arbitrary shape, P {k in Γ} = λ|Γ|, where

|Γ| denotes the area of the space Γ in (3.9) and (3.38). The remaining

analysis does not change since the expectation over the random variable

r is not expanded for finite-area cases. Hence it can be readily shown
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Table 3.3: Statistical-physical modeling of co-channel interference in a field of Poisson dis-
tributed interferers categorized by the region containing the interferers.

Poisson field of Interferers

Wireless Sce-
nario

Example Wireless
Network

Statistical Model

Case I: Entire
Plane
(rl = 0, rh →∞)

Sensor or Ad hoc
networks

Symmetric Alpha Stable
Parameters:
α= 4

γ

σ=λπEh,B {hαBα}
∞∫
0

J1(x)
xα

dx

Models exact statistics

Case II: Finite-area
Annular Region
(0 ≤ rl < rh <∞,
and
Rm /∈ Γ (rl, rh))

a. Cellular networks
(out-of-cell
interference)

b. Interference from a
hotspot (e.g. cafe)

Middleton Class A
Parameters:
A = λπ (r2

h − r2
l )

Ω2A =
A×Er,h,B{r−γh2.B2}

2

where r = ‖R−Rm‖.
Models tail probability
when (3.26) is met.

Case III:
Infinite-area with
Guard Zone
(rl > 0, rh →∞,
and ‖Rm‖ < rl)

a. Cellular networks
(out-of-cell
interference)

b. Decentralized
networks with
contention-based
MAC protocols

c. Dense WiFi
networks

Middleton Class A
Parameters:
A = λπr2

l η

Ω2A =
A×r−γl eβEh,B{h2.B2}

2

where {η, β} are obtained
from (3.31).
Models tail probability
when (3.34) is met.
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Table 3.4: Statistical-physical modeling of co-channel interference in a field of Poisson-
Poisson cluster distributed interferers categorized by the region containing the cluster cen-
ters.

Poisson-Poisson Cluster field of Interferers

Wireless Sce-
nario

Example Wireless
Network

Statistical Model

Case I: Entire
Plane
(Rl = 0, Rh →∞)

a. Two-tier femtocell
networks
(femtocell
interference)

b. Sensor or ad hoc
networks with
geographical or
MAC induced
clustering

Symmetric Alpha Stable
Parameters:
α= 4

γ

σ=

[
λcπEh,B {hαBα}

∞∫
0

J1(x)
xα

dx

]
×
∞∑
k=0

e
−AfAkf(

√
k)
α

k!

where Af = λfπ (r2
h − r2

l ).
Models tail probability.

Case II: Finite-area
Annular Region
(0≤Rl<Rh<∞,
and Rm /∈
Γ (Rl−rh, Rh+rh))

a. Cellular networks
(out-of-cell
interference) with
user clustering

b. Interference from
region with
multiple (random)
hotspots
(e.g. market place,
university)

Gaussian Mixture Model
Parameters:

pl =
e−AcAlf

l!

(
∞∑
k=0

Akck
le
−kAf

k!

)
σ2
l =

l×ERc,Rc,f ,h,B{r−γh2B2}
2

where Ac = λcπ (R2
h −R2

l ),
Af = λfπ (r2

h − r2
l ), and

r = ‖Rc + Rc,f −Rm‖.
Models tail probability when
(3.58) is met.

Case III:
Infinite-area with
Guard Zone
(Rl > 0, Rh →∞,
and
‖Rm‖ < Rl − rh)

a. Two-tier femtocell
networks
(out-of-cell
femtocell
interference)

b. Cellular networks
(out-of-cell
interference) with
user clustering

Gaussian Mixture Model
Parameters:

pl=
e−λcπR

2
l ηAlf

l!

∞∑
k=0

(λcπR2
l η)

k
kle
−kAf

k!

σ2
l =

l×R−γl eβEh,B{h2B2}
2

where Af = λfπ (r2
h − r2

l ),
{η, β} are obtained from
(3.31).
Models tail probability when
(3.69) is met.
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that Middleton Class A and the Gaussian mixture models are still ap-

plicable for interference spaces with arbitrary shape using the following

changes in the parameters. The overlap index for Middleton Class A

is expressed more generally as A = λ|Γ| for finite-area field of Poisson

distributed interferers. For finite-area field of Poisson-Poisson cluster

distributed interferers, the parameters Af = λf |Γf | and Ac = λc|Γc|,

where Γc is the space in which the cluster centers are distributed and Γf

is the space in which the interferers are distributed around each cluster

center.

3.6 Simulation Results

Using the physical model discussed in Section 3.2, I apply Monte-Carlo

numerical techniques to simulate the co-channel interference observed at the

receiver in various wireless network environments based on (3.1). At each sam-

ple instant, the location of the active interferers is generated as a realization of

a spatial Poisson or Poisson-Poisson cluster point process. Parameter values

governing the interference space and the receiver location change according

to the wireless network model under consideration. It should be noted that

parameters denoting distance are are treated as dimensionless quantities as

this does not influence the statistics of the resultant interference.

System model parameters used in the numerical simulations are

γ = 4, h ∼ Rayleigh

(
1√
2

)
, λ = 10−4, λc = 10−4, λf = 10−3.
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The amplitude of the interferer emissions, B, was chosen as a constant for a

particular wireless environment such that the tail probability, P(‖I‖ > y), at

an interference threshold of y = 7, is of the order of 10−4. The probability

distribution of co-channel interference is empirically estimated from 500000

time samples of the received interference using kernel smoothed density esti-

mators [130].

Accuracy of the statistical models is established by comparing the em-

pirical and interference model tail probabilities. I compare the asymptotic

decay rates of the tail probabilities given by

ρ (y) = − log (P(‖I‖ > y))

y
(3.70)

where ρ(y) is the asymptotic decay rate at interference amplitude y. The decay

rate is the rate at which the tail probability asymptotically approaches zero.

The decay rates are a useful measure to compare the extreme value statis-

tics of different statistical models with respect to the empirically estimated

distribution.

Accuracy of fit of the statistical models is also quantified using the

Kullback-Leibler divergence (KLD) measure [131], where a KLD of zero indi-

cates an exact match of the densities. Lower KLD, however, does not imply

correspondence in tail probabilities since the KLD is the relative error between

two distribution functions over their entire support. Thus, even though a sta-

tistical model has a low KLD with respect to the empirical distribution, it may

be an inaccurate model for modeling extreme statistics.
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Figure 3.3: Decay rates for tail probabilities of simulated co-channel interference and the
symmetric alpha stable (SAS) model for Case I (rl = 0, rh =∞,B = 5) of Poisson field of
interferers. The Middleton Class A and Gaussian models are not suitable in this scenario
as the mean intensity Ω2A →∞.
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Figure 3.4: Decay rates for tail probabilities of simulated co-channel interference and the
symmetric alpha stable (SAS), Middleton Class A (MCA), and Gaussian models for Case
II (rl = 20, rh = 40, ‖Rm‖ = 4,B = 1400) of Poisson field of interferers. MCA has the best
match to the empirical (simulated) co-channel interference.
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Figure 3.5: Decay rates for tail probabilities of simulated co-channel interference and the
symmetric alpha stable (SAS), Middleton Class A (MCA), and Gaussian models for Case
III (rl = 30, rh = ∞, ‖Rm‖ = 4,B = 2200) of Poisson field of interferers. {η, β} =
{2.781,−1.025} for γ = 4 and u(k) = e−k from Table 3.2. MCA has the best match to the
empirical (simulated) co-channel interference.

3.6.1 Co-channel interference in a Poisson field of interferers

Figs. 3.3, 3.4, and 3.5 show the decay rates of the empirical distribution

compared with the statistical models for Case I, Case II, and Case III (see

Fig. 3.1), respectively. In each scenario, the empirical distribution is compared

against the symmetric alpha stable and the Middleton Class A distribution

with appropriate parameters (see Table 3.3), and a Gaussian distribution with

equal variance.

For a Poisson field of interferers, the results demonstrate that the tail

probabilities of the co-channel interference in Case I are well modeled us-

ing a symmetric alpha distribution, while the Middleton Class A distribution

provides a good fit to the tail probabilities in Case II and Case III.
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Figure 3.6: Decay rates for tail probabilities of simulated co-channel interference and the
symmetric alpha stable (SAS) model for Case I (Rl = 0, Rh =∞, rl = 0, rh = 10,B = 100)
of Poisson-Poisson cluster field of interferers. The Gaussian mixture and Gaussian models
are not suitable in this scenario as the mean intensity Ω2A →∞.
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Figure 3.7: Decay rates for tail probabilities of simulated co-channel interference and the
symmetric alpha stable (SAS), Gaussian mixture (GMM), and Gaussian models for Case II
(Rl = 40, Rh = 80, rl = 0, rh = 10, ‖Rm‖ = 4,B = 6000) of Poisson-Poisson cluster field of
interferers. GMM has the best match to the empirical (simulated) co-channel interference.
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Figure 3.8: Decay rates for tail probabilities of simulated co-channel interference and the
symmetric alpha stable (SAS), Gaussian mixture (GMM), and Gaussian models for Case III
(Rl = 30, Rh →∞, rl = 0, rh = 10, ‖Rm‖ = 4,B = 4000) of Poisson-Poisson cluster field of
interferers. {η, β} = {2.781,−1.025} for γ = 4 and u(k) = e−k from Table 3.2. MCA has
the best match to the empirical (simulated) co-channel interference.

3.6.2 Co-channel interference in a Poisson-Poisson cluster field of
interferers

Figs. 3.6, 3.7, and 3.8 show the decay rates of the empirical distribution

compared with the statistical models for Case I, Case II, and Case III (see

Fig. 3.2), respectively. In each scenario, the empirical distribution is compared

against the symmetric alpha stable and the Gaussian mixture distribution with

appropriate parameters (see Table 3.4). Further, the empirical distribution

of co-channel interference is compared to a Gaussian distribution with equal

variance for all scenarios.

For a Poisson-Poisson clustered field of interferers, the results demon-

strate that the tail probabilities of the co-channel interference in Case I are
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Table 3.5: Kullback-Leibler divergence between empirical and statistical model distribution
(joint in-phase and quadrature-phase distribution) in Poisson and Poisson-Poisson cluster
field of interferers for different wireless network scenarios. Here SAS, MCA, and GMM stand
for symmetric alpha stable, Middleton Class A, and Gaussian mixture model, respectively.
Parameter values governing the interference space for each of the scenarios are listed in
caption to Figs. 3.3 through 3.8.

Poisson Field of Interferers
Wireless Scenario SAS MCA Gaussian

Case I 0.0154 − −
Case II 0.0953 0.0141 0.2275
Case III 0.1594 0.8869 0.2246

Poisson-Poisson Cluster Field of Interferers
Wireless Scenario SAS GMM Gaussian

Case I 0.1656 − −
Case II 0.1243 0.0182 0.2789
Case III 0.3309 3.2177 0.6234

well modeled using a symmetric alpha distribution, while the Gaussian mix-

ture distribution provides a good fit to the tail probabilities in Case II and

Case III.

3.6.3 Comments on simulation results

In all of the network models discussed above, the statistics of co-channel

interference are not modeled well by the Gaussian distribution. The Gaussian

distribution decays far too quickly to accurately model the impulsive nature

of co-channel interference.

For Case II of Poisson and Poisson-Poisson cluster distributed inter-

ferers, accuracy of the Middleton Class A and the Gaussian mixture models in

approximating the tail probability of co-channel interference depends on the
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interference space based on (3.26) and (3.58), respectively. The results shown

in Figs. 3.4 and 3.7 are when these conditions are met with moderate accu-

racy. For example, the Middleton Class A and the Gaussian mixture models

provides a much closer approximation to the simulated tail probabilities for

‖Rm‖ = 0, with the remaining parameters held constant.

For Case III, even though the Middleton Class A and the Gaussian

mixture models closely approximate the tail probability of the simulated in-

terference (see Figs. 3.5 and 3.8), Table 3.5 shows that the KL-divergence form

the empirical distribution is significantly higher than the other statistical mod-

els. This is because the approximations used for accurately modeling the tail

probabilities may introduce significant mismatch in approximated distribution

for near-zero amplitudes (discrete probability mass of e−A and e−Ac(1−e
−Af ) at

zero amplitude in this case for Poisson and Poisson-Poisson clustered interfer-

ers, respectively).

3.7 RFI in laptop embedded wireless transceiver

Measurements of RFI from a computation platform collected using a

20GSPS scope were obtained from Intel Corporation. Twenty-five sets of mea-

surement data were recorded in different configuration of the computation

platform (i.e., different subsystems active). No further information was pro-

vided. The first 50000 samples in each measurement dataset were fitted to the

Gaussian, symmetric alpha stable, Middleton Class A, and Gaussian mixture

models. For Gaussian mixture distribution, 10 mixture terms were assumed.

Fig. 3.9 shows the Kullback-Leibler (KL) divergence of the probability distri-
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Figure 3.9: Kullback-Leibler (KL) divergence of the measured distribution from the esti-
mated Gaussian, symmetric alpha stable, Middleton Class A, and Gaussian mixture distri-
butions. KL divergence for twenty-five measured RFI datasets is compared.

bution of the estimated statistical models from the empirical density of the

measured data. The empirical probability density of the measured data was

estimated using kernel smoothing density estimators [130]. The measurement

sets have been sorted to have increasing KL divergence from the estimated

Gaussian model, i.e. increasing impulsiveness of the noise samples.

Fig. 3.9 suggests that the Gaussian mixture model, symmetric alpha

stable model, and also the Middleton Class A model in some cases, provide

a good approximation to the empirical distribution in varying scenarios. KL

divergence, however, may not be an accurate measure to quantify the fit of

the statistical models to the measured data. Recall that the emphasis in this

chapter is to accurately model the tail probabilities of the RFI, as the tail

probabilities govern the BER performance of the wireless receivers. Since KL
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Figure 3.10: Tail probability of the measured and estimated Gaussian, symmetric alpha
stable, Middleton Class A, and Gaussian mixture models for measurement set number 23.
Gaussian mixture model provides closest fit to tail probability of measured data.

divergence finds the relative error between two distributions on their entire

support, a lower KL divergence does not imply a match in the tail probability

of distributions.

Consider the measurement set number 23 in Fig. 3.9. Comparing the

KL divergence, it seems that both Gaussian mixture and symmetric alpha

stable models provide a good fit to measured density. Fig. 3.10, however, shows

that the tail probability of the measured data closely matches the estimated

Gaussian mixture model tails and is significantly apart from the tails estimated

by the symmetric alpha stable model. Further, the Gaussian mixture model

was observed to be robust to the number of mixture terms and the number

of samples used for empirical fitting. This motivates the design of wireless

receivers under the assumption of Gaussian mixture distributed interference.
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3.8 Conclusions

The results presented in this chapter are applicable to a wide variety

of wireless network topologies, including user clustering, contention-based and

contention-free MAC protocols, and finite-area interference regions. Tables

3.3 and 3.4 list some of the example wireless networks for which the results

are applicable. Knowledge of closed form amplitude statistics of co-channel

interference can be used to analyze and improve the communication perfor-

mance of wireless networks, including both PHY layer algorithms and MAC

layer protocols. This is illustrated in Chapters 4 and 5 using the framework

introduced in this chapter.

Chapter 4 shows the benefit of closed-form interference statistics in

analyzing the communication performance of a decentralized wireless network.

The network model therein extends the Case I of Poisson field of interferers

to include temporal correlation in interferer locations. The joint statistics of

interference is then derived using the framework introduced in this chapter.

The joint interferer statistics are used to derive closed-form expressions for

various measures of communication performance of the network. The results

of Chapter 4 are used to motivate the design of MAC layer protocols to mitigate

interference in wireless networks.

Chapter 5 uses the knowledge of interference statistics to derive pre-

filtering techniques at the PHY layer to improve the BER performance of

wireless receivers in the presence of non-Gaussian interference. While this

chapter, and the next chapter, assumes an unbounded pathloss function to
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derive interference statistics, Chapter 5 assumes a bounded pathloss function

in addition to including temporal dependence in user locations. Using the

framework developed in this chapter, closed-form joint statistics of interference

are derived. The joint interference statistics are used to motivate the design

of pre-filtering methods.
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Chapter 4

Throughput, Delay, and Reliability of

Decentralized Wireless Networks with

Temporal Correlation

4.1 Introduction

As indicated in Chapter 2, prior work on communication performance

analysis of wireless networks has been limited by the knowledge of closed-

form statistics of interference in the network [63, 68, 76]. In the absence of

closed-form interference statistics, much of the prior work resorts to deriving

bounds on the measures of communication performance [76, 91]. In Chapter

3, I developed a framework to derive closed-form instantaneous statistics of

interference in a wide range of wireless networks. In this chapter, I utilize the

framework to first derive joint temporal statistics of interference in a decentral-

ized wireless network. The joint interference statistics are then used to study

the throughput, delay, and reliability of single hop transmissions in a decen-

tralized wireless network. Communication performance measures such as local

delay, throughput outage probability, and average network throughput are de-

rived in closed-form in the low outage regime. The closed-form expressions

of communication performance measure unveil 2× potential improvement in

network throughput by optimizing certain MAC layer parameters.
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4.1.1 Motivation and Prior Work

Characterizing the communication performance of single hop trans-

missions from a transmitter to its next hop receiver is a fundamental step

towards understanding the end-to-end performance of multihop wireless net-

works. Over the last decade, significant research has been done towards an-

alyzing the single hop communication performance in a decentralized wire-

less network, such as a wireless ad hoc network, under the assumption that

user locations at any given time instant follow a spatial Poisson point process

(PPP) [63, 68]. Key measures of communication performance include outage

probability [63], transmission capacity [76], and local delay [92,94]. Such mea-

sures are affected not only by the user locations at any given time instant, but

also the correlation in user locations over time [132]. Much of the prior work

assumes either no dependence or complete correlation in the user locations

over time [92, 94]. This captures only the extremes of either no mobility and

infinitely backlogged user queues (complete correlation), or highly mobile users

and/or short user queues (little or no correlation). In most realistic settings,

however, there is some mobility or traffic bursts that play out over a signif-

icantly slower time scale than contention and channel access. It is therefore

important to study the throughput, delay, and reliability of single hop trans-

missions when there is nontrivial correlation in the transmitter locations. The

network model adopted in this chapter spans the extremes of temporal inde-

pendence to long-term temporal dependence in interference, capturing random

mobility and random queue size of users in the network.
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Temporal correlation in user locations, and hence temporal dependence

in interference, depends on user mobility and the typical duration of user

transmissions. The effect of mobility on the local delay of wireless ad hoc

networks was recently studied in [92, 94] for static and highly mobile ad hoc

networks. Local delay was defined as the mean time required for a successful

transmission from a transmitter to its next hop receiver. In [92,94], the network

was assumed to have an infinite backlog and thus the users attempt to transmit

at all time instants. In static networks, the users are assumed to have no

mobility, and hence the user locations are fully correlated over time. In a highly

mobile network, on the other hand, the user mobility may be sufficient to

make the user locations nearly independent over adjacent contention time slots.

Static and highly mobile network models also have an equivalent interpretation

in terms of classification with respect to the duration of user transmissions.

Complete correlation in user locations over time is a result of no mobility and

when the users intend to transmit at all time instants. Temporal independence

in user locations, on the contrary, may occur when the typical user is highly

mobile and/or the duration of user transmissions is small. Thus static and

highly mobile network models are two extremes, in which user locations are

either independent or fully correlated over time.

In this chapter, I model a wider spectrum of temporal dependence in

interference that may exist in a decentralized wireless network. Although the

system model is described with respect to the duration of user transmissions,

it can also be interpreted with respect to the varying user mobility. A user
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may start a transmission at any time, termed as the emerging time, and the

transmissions lasts for a random duration, termed as the lifetime. Distribution

of the random lifetime of users can be deduced from typical data transfer

characteristics in the network. Thus at any given time, users that transmit

include those whose transmissions are ongoing from some time in the past,

and users that just started transmitting. Hence the temporal dependence in

the interference increases as the lifetime of a typical user increases. The static

and highly mobile network models are included as special cases in this network

model by appropriately choosing the lifetime distribution and constraints on

the emerging time of users. Although I assume a channel access probability of

one, the results can be readily extended to include a ALOHA type MAC layer

protocol in conjunction to the network model adopted in this chapter [55,68].

This chapter adopts a novel approach to derive the single hop com-

munication performance measures in closed-form. Much of the prior work

formulates the system model as an abstraction of transmit and receive power,

uses tools from stochastic geometry, and attempts to express the measures

of communication performance in terms of the Laplace transform of inter-

ference [63, 67, 68]. The performance measures can typically be derived in

closed-form only under the assumption of Rayleigh fading. Further, to the

best of my judgment, using prior methods to derive closed-form expressions

for the performance measures considered in this chapter is hard. In contrast,

I formulate the problem as an abstraction of amplitude and phase of the in-

terfering and desired signals, and express the performance measures in terms
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of the joint tail probability of the interference. The joint tail probabilities

are arrived at by first deriving the joint characteristic function of interference

in a known statistical form. Advantage of this approach is that closed-form

expressions can be derived with ease and do not require stringent assumptions

on the fading random variable [104]. The disadvantage of this approach is

that our results are mathematically exact only in the low outage probability

regime. Low outage regime is assumed to derive a closed-form expression for

the joint tail probability, and also the joint characteristic function for non-

Rayleigh fading. However, the results match closely in simulations even when

the outage probability is fairly high.

As shown in Chapter 3, interference at any given time instant follows

the symmetric alpha stable distribution under the assumptions of power-law

pathloss function and PPP distributed user locations [64,70–72,104,127]. Fur-

ther, the second-order joint temporal statistics of interference have been shown

to follow a two-dimensional symmetric alpha stable distribution [72]. To the

best of my knowledge, closed-form joint temporal statistics of interference of

higher order, required for deriving the single hop communication performance

measures, are not known in general [72].

The mathematical problem in hand closely resembles analyzing end-to-

end outages in multi-hop wireless ad hoc networks, where spatial and temporal

dependence in interference affects the performance of successive hops [91].

Relevant prior work includes [84, 91, 133]. To the best of my knowledge, the

results presented in this chapter cannot be derived directly from the prior work
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in multi-hop networks - key difference being the network model governing the

temporal dependence.

4.1.2 Contribution, Organization, and Notation

I derive the closed-form joint characteristic function of interference over

multiple time instants in a decentralized wireless network with temporally cor-

related user locations. The joint characteristic function of interference is shown

to follow the multivariate symmetric alpha stable distribution. The joint char-

acteristic function is exact when the amplitude of the faded interferer emis-

sions are Rayleigh distributed, and closely characterizes the tail probability

of interference otherwise in the low outage regime. Using properties of the

multivariate symmetric alpha stable distribution, I provide new theorems for

expressing the joint tail probability of interference in closed-form. The closed-

form expressions of tail probability enable us to derive the following single hop

communication performance measures: (i) local delay, (ii) throughput outage

probability, (iii) average network throughput, and (iv) transmission capac-

ity. Transmission capacity for single hop transmissions was first defined for

temporally independent user locations as the maximum allowable density of

transmitting users satisfying an outage probability constraint [76, 87]. In this

chapter, I extend the definition of transmission capacity to account for tem-

poral dependence and show that it captures the throughput-delay-reliability

tradeoff of single hop transmissions. Using the extended definition, I demon-

strate up to 2× gain in network throughput and reliability by optimizing over
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the lifetime distribution - which motivates designing MAC protocols to incor-

porate the effect of temporal correlation.

The chapter is organized as follows. Section 4.2 discusses the system

model. Section 4.3 derives joint interference statistics, including characteris-

tic function and tail probability, of interference for the two network models

discussed in the system model. Section 4.4 uses the results on tail probability

to derive various single hop communication performance measures. Section

4.5 presents the numerical simulation results. Appendix A contains a brief

overview of statistical properties of symmetric alpha stable vectors and proofs

for the new theorems used in the chapter. Table 4.1 summarizes the notation

used in this chapter.

4.2 System Model

Time is assumed to be slotted with respect to the duration required for

one physical packet transmission. The locations of transmitters, also referred

to as nodes, are modeled using a spatial point process. A node is said to

emerge at a particular time slot if it first starts to transmit at that time slot.

All nodes transmitting at a given time slot are referred to as active nodes at

that time slot. Thus at each time slot n, the set of active nodes is a union over

the sets of nodes that first emerged at a slot m ≤ n and are still active at the

time slot n. Emerging nodes at any time slot m are assumed to be spatially

distributed according to a homogeneous PPP Π(m) =
{(

R
(m)
i ,L

(m)
i

)
, i ≥ 1

}
with intensity λ(m). Here R

(m)
i is the random location of the node i that
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Table 4.1: Summary of Notation used in Chapter 4

Symbol Description

Π(m) Poisson point process of emerging nodes at time slot
m

λ(m) intensity of Π(m)

Ξn(Ξk,n)
point process of nodes active at time slot n (that
emerged at time slot k)

R,R(m) (random) location of a node in space
L,L(m) (random) time slots a node transmits (i.e., lifetime)
γ power pathloss exponent (γ > 2)
X = Bejφ amplitude and phase of interferer emissions
g = hejθ amplitude and phase of narrowband fading

In(Ik,n)
interference at time slot n (due to nodes that emerged
at time slot k)

Ik,1:n ,
{

I
(I)
k,1, I

(Q)
k,1 , · · · , I

(I)
k,n, I

(Q)
k,n

}
, Ik,m=I

(I)
k,m+jI

(Q)
k,m

ω1:n ,
{
ω

(I)
1 , ω

(Q)
1 , · · · , ω(I)

n , ω
(Q)
n

}
frequency variables

ΦI (ω1:n) characteristic function of I, where I = Ik,n or In
ψI (ω1:n) log-characteristic function of I, where I = Ik,n or In
∆ (random) number of consecutive failed transmissions
D distance between a transmitter-receiver pair

T
signal-to-interference ratio threshold for successful
detection

Sd unit sphere in d dimensions

α
characteristic exponent of symmetric alpha stable
vector, α = 4/γ

Γ spectral measure of symmetric alpha stable vector

σ
dispersion of an isotropic symmetric alpha stable vec-
tor

FL(n), K(α)
constants defined in (4.33) and (4.39), respectively

97



Figure 4.1: Network Model I: nodes emerge only at fixed time slots and transmit for a
random number of time slots (= L).

first emerged at time m, and L
(m)
i ≥ 1 is the random number of time slots

(lifetime) it intends to be active. The node i disappears after L
(m)
i time slots

after its emergence at time slot m. Each node of the point process represents

an active transmitter and is assumed to be associated with a distinct receiver

at a distance D in a random direction. Extension to include randomness in

D is straightforward [76]. A node may intend to transmit single or multiple

packets in its lifetime, and may not be successful due to packet errors. Two

network models are considered - network model I represents a synchronous

network where nodes emerge only at fixed time slots, while network model II

represents a asynchronous network where nodes may emerge at any time slot.

4.2.1 Network Model I: Synchronous

Consider a network, as depicted in Fig. 4.1, in which the nodes can start

transmitting only at fixed time slots, referred to as MAC scheduling instants.
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The MAC scheduling instants are spaced apart by Lmax + 1 time slots such

that all nodes complete their transmission prior to the next scheduling instant.

For analysis of such a network, just one MAC scheduling cycle is considered.

Thus the interference can be modeled by assuming that nodes emerge only at

the time slot k with λ(k) = λ, λ(m) = 0 for m 6= k, and P
(
L(k) ≤ Lmax

)
= 1

for all nodes. Further, without loss of generality, k = 1 could be chosen for

analysis of the network. However, k is kept as a variable so that it can be used

as a building block for network model II.

The point process of active nodes at any time slot n ≥ k is then a subset

of the point process Π(k), such that Ξk,n =
{

R : (R,L) ∈ Π(k),L ≥ n− k + 1
}

.

For n < k, Ξk,n is an empty set since no nodes have yet emerged. Since the

underlying node distribution follows a PPP, by Slivnyak’s theorem and the

random translation invariance property of PPP, a typical transmit node can

be added to the point process such that its associated receiver lies on the

origin without affecting the node distribution. Note that the active node

distribution at any given time instant n ≥ k is still a PPP with intensity

λP (L ≥ n− k + 1). The node distribution, however, is correlated across time

slots. Complete temporal correlation is a special case of network model I with

L
p→∞.

The sum interference Ik,n observed at the typical receiver located at

the origin at the time slot n due to the nodes that emerged at time slot k can
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then be represented as

Ik,n =
∑

Ri∈Ξk,n

r
− γ

2
i hi(n)Bi(n) (cos(φi(n)+θi(n)) + j sin(φi(n)+θi(n))) . (4.1)

where i is the interferer index, ri = ‖Ri‖ are the random distances of active

interferers from the receiver, γ is the power pathloss exponent, Bi(n)ejφi(n)

are the narrowband interferer emissions from interferer i at time slot n, and

hi(n)ejθi(n) is the narrowband fading experienced by the interferer emissions.

Random variables Bi(n),hi(n),φi(n),θi(n) are each assumed to be i.i.d. for

each interferer i and time slot n. Assuming the actual emerging time of the

interferers to be uniformly distributed between two time slots, φi(n) and θi(n)

can be assumed to be uniformly distributed on [0, 2π]. The rationale behind

the narrowband assumption of user emissions and fast fading is discussed is

Chapter 3.

The signal-to-interference ratio (SIR) at the typical receiver at time

slot n in the presence of interferers that first emerged at time slot k can be

expressed as

SIRk,n =

∥∥D− γ2 h0(n)B0(n)ej(φ0(n)+θ0(n))
∥∥2

‖Ik,n‖2 =
D−γh2

0(n)B2
0(n)

‖Ik,n‖2 (4.2)

where B0(n)ej(φ0(n)) is the random emission and h0(n)ej(θ0(n)) is random fading

at time slot n corresponding to the desired transmitter-receiver pair.

4.2.2 Network Model II: Asynchronous

Model II, as depicted in Fig. 4.2, extends the network model I by remov-

ing the assumption of globally synchronized MAC scheduling instants. This
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Figure 4.2: Network Model II: nodes can emerge at any time slot and are active for a random
number of time slots (= L).

represents a more dynamic and fully decentralized wireless network where the

nodes can emerge at any time slot and stay active for random number of slots.

The point process for the emerging nodes Π(m) is assumed to be independent

and identical over the time slots m with λ(m) = λ, ∀m. The point process of

active nodes Ξn is thus a stationary process.

The point process of active nodes at time slot n can then be represented

as union over the active node point process for network model I, given as

Ξn =
n⋃

k=−∞
Ξk,n. Using Slivnyak’s theorem, stationarity of the point process,

and the random translation invariance property of PPP, a typical node can

be added to the point process of active nodes such that its associated receiver

lies on the origin without affecting the node distribution. Note that the active

node distribution at any given time instant n is still a PPP with intensity

λ
n∑

k=−∞
P (L ≥ n− k + 1) = λE{L}. Similar to model I, the node distribution

is correlated across time slots unless P
(
L(k) = 1

)
= 1 for all nodes and time
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slots k.

Since Ξn =
n⋃

k=−∞
Ξk,n, the sum interference at the typical receiver

located at the origin from all active interfering nodes at time slot n can be

expressed as

In =
n∑

k=−∞

Ik,n (4.3)

=
n∑

k=−∞

 ∑
Ri∈Ξk,n

r
− γ

2
i hi(n)Bi(n) (cos(φi(n)+θi(n)) + j sin(φi(n)+θi(n)))

 .
(4.4)

The signal-to-interference ratio (SIR) at the typical receiver at time slot

n can be expressed as

SIRn =

∥∥D− γ2 h0(n)B0(n)ej(φ0(n)+θ0(n))
∥∥2

‖In‖2 =
D−γh2

0(n)B2
0(n)

‖In‖2 . (4.5)

4.3 Joint Statistics of Interference

In this section, I derive the joint temporal statistics of interference for

network models I and II. The properties of the joint temporal statistics of

interference are then used to derive closed-form expressions for the joint tail

probability of interference over time. The joint tail probability enable us to

derive closed-form expressions for various network performance measures.

4.3.1 Network Model I

Let Ik,1:n =
{

I
(I)
k,1, I

(Q)
k,1 , I

(I)
k,2, I

(Q)
k,2 , · · · , I

(I)
k,n, I

(Q)
k,n

}
denote the vector of in-

phase and quadrature phase components on the interference at time slots 1
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through n due to nodes that emerged at time instant k, where Ik,n is given

by (4.1). Further, let ω1:n =
{
ω

(I)
1 , ω

(Q)
1 , ω

(I)
2 , ω

(Q)
2 , · · · , ω(I)

n , ω
(Q)
n

}
denote the

vector of frequency variables. To derive the joint statistics, I first consider

the nodes distributed over disc of radius R, denoted as b(0, R), and take the

limit on the joint distribution as R→∞. Using (4.1), the joint characteristic

function of Ik,1:n can be expressed as

ΦIk,1:n
(ω1:n)

= E
{
e
j

n∑
m=1

(
ω

(I)
m I

(I)
k,m+ω

(Q)
m I

(Q)
k,m

)}
(4.6)

= E
{
e
j

n∑
m=1
|ωm|

∑
Ri∈Ξk,m

r
− γ2
i hi(m)Bi(m) cos(φi(m)+θi(m)+φωm)}

(4.7)

= E
{
e
j

n∑
m=1
|ωm|

∑
(Ri,Li)∈Π(k)

r
− γ2
i hi(m)Bi(m) cos(φi(m)+θi(m)+φωm)1(Li≥m−k+1>0)}

(4.8)

= e
λπR2

−1+E
{
e
j

n∑
m=1

|ωm|r
− γ2 h(m)B(m) cos(φ(m)+θ(m)+φωm )1(L≥m−k+1>0)}

. (4.9)

where |ωm| =

√(
ω

(I)
m

)2

+
(
ω

(Q)
m

)2

, φωm = tan−1
(
ω

(Q)
m

ω
(I)
m

)
, 1(·) is the indicator

function, and the expectation in (4.9) is with respect to the set of random

variables {r,L,h(m),B(m),φ(m),θ(m)}. Equation (4.8) holds since Ξk,m ={
R : (R,L) ∈ Π(k),L ≥ m− k + 1

}
for m ≥ k, and is an empty set for m < k.

Equation (4.9) is derived using the probability generating functional (PGFL)

of a homogeneous PPP [63] and holds since the node emissions, node lifetime,

and fading are each assumed to be i.i.d. across time slots and nodes. Note

that the expectation in (4.9) is conditioned such that the node locations are

uniformly distributed over b(0, R) [63, 104]. The distance of each node from
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the typical receiver at the origin thus follows the distribution

fr(r) =

{
2r
R2 if 0 ≤ r ≤ R,

0 otherwise.

Using the identity

eja cos(φ) =
∞∑
l=0

jlεlJl(a) cos(lφ) (4.10)

where ε0 = 1, εl = 2 for l ≥ 1, and Jl(·) denotes the Bessel function of order l,

the log-characteristic function ψIk,1:n
(ω1:n) , log ΦIk,1:n

(ω1:n) can be expressed

as

ψIk,1:n
(ω1:n)

= λπR2
[
−1+E

{ n∏
m=1

( ∞∑
l=0

jlεlJl

(
|ωm| r−

γ
2 h(m)B(m)1 (L ≥ m−k+1 > 0)

)
× cos

(
l
(
φ(m)+θ(m)+φωm

)) )}]
(4.11)

= λπR2

[
−1 + E

{
n∏

m=1

J0

(
|ωm| r−

γ
2 h(m)B(m)1 (L ≥ m− k + 1 > 0)

)}]
(4.12)

= λπR2

[
n∑
s=1

F
(k,n)

L (s)

−1 + E


s∏

m=max(1,k)

J0

(
|ωm| r−

γ
2 h(m)B(m)

)
]
(4.13)

where

F
(k,n)

L (s) =


0 s < k,

P(L = s− k + 1) k ≤ s < n,

P(L ≥ s− k + 1) s = n.

(4.14)

The expectation in (4.11) is with respect to the set of random variables

{r,L,h(m),B(m),φ(m),θ(m)}. Equation (4.12) involves expanding the ex-

pectation over φ(m) and θ(m), where φ(m),θ(m) are mutually independent
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and uniformly distributed in [0, 2π] and i.i.d. across time slots m, and noting

that Eφ(m),θ(m) {cos (l(φ(m) + θ(m) + φωm))} = 0 for l ≥ 1 for all time slots

m. Equation (4.13) is derived by expanding the expectation over lifetime ran-

dom variable L. The expectation in (4.13) is thus with respect to the set of

random variables {r,h(m),B(m)}. To further simplify (4.13), I express it as

ψIk,1:n
(ω1:n) = λπ

[
n∑
s=1

F
(k,n)

L (s)Υ(k,s) (ω1:n)

]
(4.15)

where for any parameters {k, s},

Υ(k,s) (ω1:n) = lim
R→∞

R2

−1 + E


s∏

m=max(1,k)

J0

(
|ωm| r−

γ
2 h(m)B(m)

)

(4.16)

= lim
R→∞

R2

−1 +

R∫
0

s∏
m=max(1,k)

Eh,B

{
J0

(
|ωm| r−

γ
2 hB

)} 2r

R2
dr


(4.17)

= −
∞∫

0

∂

∂r

 s∏
m=max(1,k)

Eh,B

{
J0

(
|ωm| r−

γ
2 hB

)} r2dr. (4.18)

Equation (4.17) is derived by expanding the expectation over r in (4.16) and

noting that h(m) and B(m) are each i.i.d. across time slotsm. Equation (4.18)

involves integrating (4.17) by parts and noting that

lim
R→∞

R2

(
−1 +

s∏
m=max(1,k)

Eh,B

{
J0

(
|ωm|R−

γ
2 hB

)})
= 0 for γ > 2.

Exact evaluation of (4.18) is possible for s = max(1, k), i.e., when

only one J0(·) term exists, which arises in deriving the instantaneous statistics

of interference and reduces to an isotropic alpha stable form
(
∝ |ωs|

4
γ

)
[70,
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104]. Similar reduction with exact equality, however, does not seem to be

possible for terms involving product of Bessel functions. I thus propose an

approximation of the log-characteristic function for |ωm| ,m = 1, · · · , n in the

neighborhood of zero based on an identity proposed by Middleton [12]. From

Fourier analysis, the behavior of the characteristic function for |ωm| ,m =

1, · · · , n in the neighborhood of zero governs the joint tail probability of the

random envelope at time instants 1 through n. The proposed approximation

is based on the following identity [12]:

Eh,B

{
J0

(
|ωm| r−

γ
2 hB

)}
= e−

|ωm|2r−γEh,B{h2B2}
4 (1 + Λ(|ωm|)) (4.19)

where Λ(|ωm|) indicates a correction term with the lowest exponent in |ωm| of

four and is given by

Λ(|ωm|) =
∞∑
k=2

(EZ {Z})k |ωm|2k r−kγ

22kk!
EZ

{
1F1

(
−k; 1;

Z

EZ {Z}

)}
(4.20)

where the random variable Z = h2B2, and 1F1 (a; b;x) is the confluent hyper-

geometric function of the first kind. Also Λ(|ωm|) = O
(
|ωm|4

)
as |ωm| → 0.

Using this identity, and approximating Λ(|ωm|) � 1 for |ωm| ,m =

1, · · · , n in the neighborhood of zero, (4.18) reduces to

Υ(k,s) (ω1:n) ≈ −
∞∫

0

∂

∂r

(
e−

 s∑
m=max(1,k)

|ωm|2
r−γEh,B{h2B2}
4

)
r2dr (4.21)

= −

 s∑
m=max(1,k)

|ωm|2
 Eh,B {h2B2}

4

 2
γ

Γ

(
1− 2

γ

)
(4.22)
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where Γ(·) denotes the Gamma function. When hB is Rayleigh distributed,

e.g., for constant amplitude modulated transmissions in Rayleigh fading envi-

ronment, then Λ(|ωm|) = 0 and the expression in (4.21) is exact. Substituting

(4.22) in (4.15), the log-characteristic function can be expressed as

ψIk,1:n
(ω1:n)=−σ

 n∑
s=1

F
(k,n)

L (s)

√√√√ s∑
m=max(1,k)

|ωm|2
 4

γ

 (4.23)

where σ=λπ

(
Eh,B{h2B2}

4

) 2
γ

Γ
(

1− 2
γ

)
and F

(k,n)

L (·) is defined in (4.14). Equa-

tion (4.23) is the log-characteristic function of a 2n-dimensional symmetric

alpha stable vector with characteristic exponent α = 4
γ

. To gain some intu-

ition in the form of the joint log-characteristic function, let us consider the

following example.

Example: Using (4.23), the joint log-characteristic function of inter-

ference at time slots 1 through 3 (n = 3) for cases when the interfering nodes

first emerged at time slots k = 0, 1, and 2 are

ψI0,1:3
=−σ

[
P(L=2)

(√
|ω1|2

)α
+P(L=3)

(√
|ω1|2 + |ω2|2

)α
+P(L≥4)

(√
|ω1|2 + |ω2|2 + |ω3|2

)α]
,

ψI1,1:3
=−σ

[
P(L=1)

(√
|ω1|2

)α
+P(L=2)

(√
|ω1|2 + |ω2|2

)α
+P(L≥3)

(√
|ω1|2 + |ω2|2 + |ω3|2

)α]
,

ψI2,1:3
=−σ

[
P(L=1)

(√
|ω2|2

)α
+P(L≥2)

(√
|ω2|2 + |ω3|2

)α]
.
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The parameter λ embedded inside σ along with the probability on the random

variable L forms a pre-multiplier to the terms

(√∑
m |ωm|

2

)α
representing

the density of users that affect the interference only at the time slots involved.

Thus the pre-multiplier to

(√
|ω1|2 + |ω2|2

)α
represents the density of users

that affect the interference at time slots 1 and 2 only, which is λP(L = 2) if

nodes emerged at time slot 1, λP(L = 3) if nodes emerged at time slot 0, and

0 if nodes emerged only at time slot 2.

4.3.2 Network Model II

Let I1:n =
{

I
(I)
1 , I

(Q)
1 , I

(I)
2 , I

(Q)
2 , · · · , I(I)

n , I
(Q)
n

}
denote the vector of in-

phase and quadrature phase components on the interference at time slots 1

through n due to nodes that emerged anytime until slot n. Using (4.4) and

noting that the underlying Poisson process of emerging nodes at any time slots

k are mutually independent for all k, the joint log-characteristic function of

I1:n can be expressed as

ψI1:n
(ω1:n) =

n∑
k=−∞

ψIk,1:n
(ω1:n) . (4.24)

Substituting (4.23) in (4.24), the log-characteristic function can be expanded

as

ψI1:n
(ω1:n) =

− σ
[
P (L ≥ 1)

((√
|ω1|2

)α
+

(√
|ωn|2

)α)
+ P (L = 1)

(
n−1∑
l=2

(√
|ωl|2

)α)

+ P (L ≥ 2)

((√
|ω1|2 + |ω2|2

)α
+

(√
|ωn−1|2 + |ωn|2

)α)

108



+P (L = 2)

(
n−2∑
l=2

(√
|ωl|2 + |ωl+1|2

)α)
+

...

+ P (L ≥ n− 1)

((√
|ω1|2 + · · ·+ |ωn−1|2

)α
+

(√
|ω2|2 + · · ·+ |ωn|2

)α)
+ (P (L ≥ n) + P (L ≥ n+ 1) + · · · )

(√
|ω1|2 + |ω2|2 + · · ·+ |ωn|2

)α ]
(4.25)

where σ = λπ

(
Eh,B{h2B2}

4

) 2
γ

Γ
(

1− 2
γ

)
. Equation (4.25) is the log-characteristic

function of a 2n-dimensional symmetric alpha stable vector with characteris-

tic exponent α = 4
γ
. Analogous to network model I, further intuition can be

gained by viewing the pre-multiplicative factor of each of

(√∑
m |ωm|

2

)α
as

the density of users that affect the interference only at the time slots involved.

4.3.3 Joint Tail Probability of Interference Amplitude

Closed-form expressions for the joint interference tails of the following

form are required:

P(∆ > n) = P (‖I1‖ > β1, ‖I2‖ > β2, · · · , ‖In‖ > βn) . (4.26)

For simplicity in exposition, non-random thresholds βi are assumed in this

subsection. Recall that for analysis of network model I, k = 1 can be assumed

without loss of generality. Hence, I use In to denote the interference at time

slot n for both the network models.

For both the network models, the joint characteristic function of inter-

ference at time slots 1 through n was shown to follow a 2n-dimensional sym-
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metric alpha stable distribution. Even though the joint characteristic function

of interference are derived in a known form, expressing the joint tail probabil-

ity in closed-form turns out to be nontrivial. Referring to (4.23) and (4.25),

the log-characteristic function is a sum of many

(√∑
m |ωm|

2

)α
terms. To

the best of my knowledge, no direct result is available in the literature to aid

the derivation of (4.26) in closed-form for this specific form of joint charac-

teristic function. To this end, I provide certain useful theorems regarding the

tail probability of symmetric alpha stable vectors with the same mathematical

form as (4.23) and (4.25).

I now briefly describe the steps required to derive the joint tail prob-

ability in closed-form using the results proved in Appendix A. Theorem A.5

is the key underlying theorem, and expresses the tail probability of the form

(4.26) in terms of the symmetric alpha stable spectral measure in an inte-

gral form. The spectral measure, along with the characteristic exponent α,

completely characterize the statistics of a symmetric alpha stable vector (see

Theorem A.1). Further, for the log-characteristic function of the form (4.23)

and (4.25), the spectral measure Γ on the 2n-dimensional unit sphere S2n can

be represented as a sum of independent measures

Γ = Γ0 +

|X|∑
k=1

Γkδ

 ⋃
j∈X(k)

{s2j−1, s2j}

 , (4.27)

where X is an arbitrary collection of non-empty proper subsets of {1, 2, · · · , n},

|X| denotes the cardinality of X, X(k) denotes the kth set contained in X,

δ(· · · ) denotes the multi-dimensional dirac delta functional, s ∈ S2n, Γ0 is a
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spectral measure distributed over the unit sphere S2n, and Γk is a spectral mea-

sure distributed over the unit sphere S2(n−|X(k)|) formed from the dimensions

∪j=1,··· ,2n;j /∈X(k){2j − 1, 2j}.

Example: From (4.25), the joint log-characteristic function for in-

terference at time slots 1 through 3 (n = 3) for network model II can be

represented as

ψI1:3
(ω1:3)

= −σ
[
P (L ≥ 1)

((√
|ω1|2

)α
+

(√
|ω3|2

)α)
+ P (L = 1)

(√
|ω2|2

)α
+ P (L ≥ 2)

((√
|ω1|2 + |ω2|2

)α
+

(√
|ω2|2 + |ω3|2

)α)
+ (P (L ≥ 3) + P (L ≥ 4) + · · · )

(√
|ω1|2 + |ω2|2 + |ω3|2

)α ]
. (4.28)

Using Theorem A.2, the spectral measure Γ of I1:3 on the unit sphere S6 can

then be expressed as

Γ = Γ0 + Γ1δ (s1, s2) + Γ2δ (s5, s6) + Γ3δ (s1, s2, s3, s4) + Γ4δ (s3, s4, s5, s6)

+ Γ5δ (s1, s2, s5, s6) (4.29)

where Γ0 is uniformly distributed over unit sphere S6. Γ1 and Γ2 are uniformly

distributed over S4 formed from the dimensions {3, 4, 5, 6} and {1, 2, 3, 4},

respectively. Γ3, Γ4, and Γ5 are uniformly distributed over S2 formed from the

dimensions {5, 6}, {1, 2}, and {3, 4}, respectively. Here Γ1δ (s1, s2) leads to

the term

(√
|ω2|2 + |ω3|2

)α
, Γ3δ (s1, s2, s3, s4) leads to the term

(√
|ω3|2

)α
,

and so on, in the log-characteristic function. Further, spectral measure (4.29)

corresponds to X = {{1}, {3}, {1, 2}, {2, 3}, {1, 3}} when expressed as (4.27).
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For symmetric alpha stable vectors with a spectral measure of the form

(4.27), Corollary A.6 proves that the joint tail probability of the form (4.26)

depends on the measure Γ0 alone. In other words, the joint tails depend only

on the

(√
|ω1|2 + · · ·+ |ωn|2

)α
term in the log-characteristic function when

β1, · · · , βn →∞ with the same rate. Further, since the spectral measure Γ0 is

uniformly distributed over unit sphere, it implies that the tails are equivalent to

the tails of an isotropic symmetric alpha stable vector with spectral measure Γ0

(see Theorem A.2). For an isotropic symmetric alpha stable vector, Corollary

A.3 derives the tail probability in closed-form.

Formalizing the aforementioned proof outline, if βi = βηi for 0 < ηi <

∞, then

lim
β→∞

√√√√ n∑
i=1

β2
i

α

P(∆ > n)

= lim
β→∞

√√√√ n∑
i=1

β2
i

α

P (‖I1‖ > β1, ‖I2‖ > β2, · · · , ‖In‖ > βn) (4.30)

= lim
β→∞

√√√√ n∑
i=1

β2
i

α

P
(√

Y2
1 + Y2

2 > β1, · · · ,
√

Y2
2n−1 + Y2

2n > βn

)
(4.31)

= 2ασFL(n)Cα
2

cos
(πα

4

)
Γ
(

1 +
α

2

)
(4.32)

where

FL(n) =


P (L ≥ n) for network model I,
∞∑
k=n

P (L ≥ k) for network model II,
(4.33)

Cα
2

is given by (A.5), and {Y1, · · · ,Y2n} is an isotropic symmetric alpha
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stable vector with characteristic exponent α and dispersion parameter σFL(n).

Equation (4.31) follows from Corollary A.6, Theorem A.2, and noting that the

spectral measure of I1:n for both the network models is of the form (4.29) with

Γ0 uniformly distributed over S2n. Equation (4.32) follows from Corollary A.3,

and the log-characteristic functions of network models I and II given by (4.23)

and (4.25), respectively. Thus for β1, · · · , βn large,

P(∆ > n) ≈

√√√√ n∑
i=1

β2
i

−α 2ασFL(n)Cα
2

cos
(πα

4

)
Γ
(

1 +
α

2

)
. (4.34)

Intuitively, the joint tail probability is dominated by the term(√
|ω1|2 +· · ·+ |ωn|2

)α
in the log-characteristic function since this term cor-

responds to the contribution by the nodes that are active at all time slots 1

through n. The event that the interference amplitude is high at all time slots

1 though n is more likely to be due to the nodes that were active at all time

slots, rather than due to nodes that were active in only some of those time

slots.

4.4 Single Hop Communication Performance Analysis

In this section, the closed-form expression for the joint tail probability of

interference is used to derive the following measures of communication perfor-

mance for single hop transmissions: local delay, throughput outage probability,

average network throughput, and transmission capacity. The closed-form tail

probability expressions yield simple algebraic form for these measures, provid-

ing insight into the effect of various network parameters on communication
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performance of the network. For both the network models, I assume the per-

formance of the network is interference limited and the thermal noise present

at the receiver can be ignored in comparison to interference.

4.4.1 Local Delay

Local delay (LD) of the network is defined as the expected number of

time slots a typical node requires for a successful transmission to its receiver.

In other words, the local delay is one more than the expected number of

successive failed transmission attempts (E{∆}) of a typical node. Noting that

a node is active for a maximum of Lmax time slots, the local delay of the

network can be expressed as

LD = 1 + E{∆} (4.35)

= 1 +
Lmax∑
n=1

P (SIR1 < T, SIR2 < T, · · · , SIRn < T ) (4.36)

= 1 +
Lmax∑
n=1

P (‖I1‖ > β1, ‖I2‖ > β2, · · · , ‖In‖ > βn) (4.37)

where β2
n = T−1D−γh2

0(n)B2
0(n), and T is the SIR threshold required for suc-

cessful detection. I assume that T � 1 which will be valid for spread spectrum

physical layer where T−1 is proportional to the spreading gain. Thus the local

delay can be expressed as the joint tail probability of interference. For T � 1,

βn is large and thus by using (4.34) gives

LD ≈ 1 + T
α
2D2λK(α)

(
E
{
h2B2

})α
2

Lmax∑
n=1

E

(

n∑
k=1

h2
0(k)B2

0(k)

)−α
2

FL(n)


(4.38)
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where

K(α) = πCα
2

cos
(πα

4

)
Γ
(

1− α

2

)
Γ
(

1 +
α

2

)
. (4.39)

Equation (4.38) expresses the local delay for network models I and II

in closed-form. The impact of various system parameters on the local delay

can now be studied.

User density: The intensity (λ) of the PPP has a linear effect on the

local delay of the network.

Power pathloss exponent: Recall that the power pathloss exponent

(γ) is related to the characteristic exponent as α = 4
γ
. To gain insight into

the effect of α on the local delay, let us consider E(∆) for a non-random

fading (h,h0(k)) and non-random emission amplitudes (B,B0(k)). The RHS

of (4.38) becomes T
α
2D2λK(α)

∑Lmax
n=1 n−

α
2 FL(n). The factor K(α) does not

vary significantly over the meaningful range of pathloss exponent (2 < γ ≤ 8).

Since this chapter considers T � 1, increasing γ (or equivalently decreasing α)

increases the local delay E(∆) exponentially. Intuitively, this happens because

an interferer close to the desired receiver becomes even more dominant as

compared to the desired signal if γ is large.

SIR threshold: Since α < 2, local delay scales sublinearly (T
α
2 ) with

the SIR threshold (T ).

Fading: To study the effect of fading, consider non-random emission

amplitudes (B,B0(k)). Exact evaluation of (4.38) can be done for Rayleigh
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fading with parameter 1/
√

2 (i.e. , h2
0(k) ∼ exp(1)), giving

LD = 1 + T
α
2D2λK(α)

Lmax∑
n=1

Γ
(
n− α

2

)
(n− 1)!

FL(n) (Rayleigh Fading) (4.40)

where the factor
Γ(n−α2 )
(n−1)!

is approximately equal to n−
α
2 . Further, for any

fading and interferer emission distributions, local delay can be lower bounded

by using the Jensen’s inequality and recalling that h2
0(k)B2

0(k) are mutually

i.i.d. for all k, given as

LD ≥ 1 + T
α
2D2λK(α)

(
E
{
h2B2

})α
2

Lmax∑
n=1

(E{ n∑
k=1

h2
0(k)B2

0(k)

})−α
2

FL(n)


(4.41)

= 1 + T
α
2D2λK(α)

(E {h2B2})
α
2

E {hα0 Bα
0}

Lmax∑
n=1

n−
α
2 FL(n). (4.42)

Equality in (4.42) is attained, for example, when h2
0(k)B2

0(k) does not vary

with k. Such a situation can occur when the desired node employs channel in-

version power control by adapting its instantaneous transmission power B2
0(k)

to combat the variations due to channel fading h2
0(k). Using (4.42), it can be

concluded that channel inversion power control reduces the local delay of the

network.

Lifetime probability: From (4.38) it can concluded that the local

delay increases as E(L) increases. This is also intuitively clear as increasing

the mean lifetime of nodes causes more interference in the network. Further

the static and highly network models studied in prior work [92, 94] can be

analyzed as particular cases of the network models I and II.
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(a) Network model I with L
p→∞: This would represent a static network

with no node mobility, where given a particular instantiation of the PPP,

the node actively transmit for a large number of time slots. Here Lmax →

∞, FL(n) = 1 ∀n from (4.33). Thus the local delay is

LD ≥ 1 + T
α
2D2λK(α)

∞∑
n=1

n−
α
2 →∞ (4.43)

since α < 2. This is the same result as [92, 94] for the Poisson bipolar

model with medium access probability of 1 in slotted-ALOHA MAC

protocol.

(b) Network model II with L
p
= 1: This would represent a highly mobile net-

work, where the location of active nodes at each time slot is an indepen-

dent instantiation of the PPP. Here Lmax = 1, FL(1) = 1, and FL(n) = 0

for n ≥ 2 from (4.33). The local delay for such a network can be ex-

pressed as

LD = 1 + T
α
2D2λK(α)

(E {h2B2})
α
2

E {hα0 Bα
0}
≥ 1 + T

α
2D2λK(α) (4.44)

which is asymptotically (T � 1) same as the result in [92] for the Poisson

bipolar model with Rayleigh fading and medium access probability of 1

in slotted-ALOHA MAC protocol.

4.4.2 Outage with respect to Throughput

Let S(n) denote the number of successful transmissions in n consecutive

time slots. Then the outage probability associated with achieving at least s
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successful transmissions in n time slots is

P (S(n) < s)

= P

 ⋃
1≤i1≤···≤in−s+1≤n

SIRi1 < T, · · · , SIRin−s+1 < T

 (4.45)

=
n∑

k=n−s+1

(−1)k−(n−s+1)

(
k − 1

n− s

) ∑
1≤i1≤···≤ik≤n

P (‖Ii1‖ > βi1 , · · · , ‖Iik‖ > βik)

(4.46)

for 1 ≤ s ≤ n, where βi = βηi, β
2 = T−1D−γ, and η2

i = h2
0(i)B2

0(i). Now for

I = {i1, · · · , ik},

lim
β→∞

√∑
l∈I

β2
l

α

P (‖Ii1‖ > βi1 , · · · , ‖Iik‖ > βik)

= 2ασML(i1, ik)Cα
2

cos
(πα

4

)
Γ
(

1 +
α

2

)
(4.47)

where

ML(i, j) =

{
FL(j) for network model I,

FL(j − i+ 1) for network model II
(4.48)

can be derived using (4.34) and noting that the log-characteristic function for{
I

(I)
i1
, I

(Q)
i1
· · · , I(I)

ik
, I

(Q)
ik

}
is of the form (4.23) or (4.25) for network models I

and II, respectively, with |ωm| set to zero for m /∈ I. Using (4.46) and (4.47),

for β large

P (S(n) < s) ≈ T
α
2D2λK(α)

(
E
{
h2B2

})α
2

n∑
k=n−s+1

(−1)k−(n−s+1)

(
k − 1

n− s

)

×
∑

1≤i1≤···≤ik≤n

E


(∑

l∈I

h2
0(l)B2

0(l)

)−α
2

ML(i1, ik) (4.49)
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= T
α
2D2λK(α)

(
E
{
h2B2

})α
2

n∑
k=n−s+1

(−1)k−(n−s+1)

(
k − 1

n− s

)

× E


(

k∑
l=1

h2
0(l)B2

0(l)

)−α
2


n∑
d=k

N(n, k, d)FL(d) (4.50)

where

N(n, k, d) =


{
n for k = 1,

(n− d+ 1)
(
d−2
k−2

)
for k ≥ 2,

for network model I,(
d−1
k−1

)
for network model II.

(4.51)

Trends similar to the local delay can be observed for P (S(n) < s) as a function

of various network parameters. Further, if a node is active for n consecutive

time slots, the expected number of successes during those n time slots is given

as

E {S(n)} = n−
n∑
s=1

P (S(n) < s) . (4.52)

Using P (S(n) < s) and E {S(n)}, the throughput performance of the network

is analyzed in the following subsections for network model II.

4.4.3 Average Network Throughput (Network Model II)

I focus on network model II since the underlying point process of active

nodes is statistically invariant across time slots in this case. Recall that at any

give time slot, there are λE{L} active nodes per unit area on average. Now

consider a typical node in the network that is active for l consecutive time slots

with probability P(L = l). Assume that for each successful transmission, the

typical node is able to communicate at log2(1 + T ) bits/Hz, i.e., the Shannon
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rate. In l time slots, the typical node is expected to have E {S(l)} successful

transmissions, or an expected successful transmission rate of E{S(l)}
l

log2(1+T )

bps/Hz. Averaging this rate over the lifetime distribution of a typical node,

the average network throughput can be expressed as

Cav = λE{L} log2(1 + T )EL

{
E {S(L)}

L

}
bps/Hz/area. (4.53)

4.4.4 Transmission Capacity and Throughput-Delay-Reliability (TDR)
Tradeoff (Network Model II)

The average throughput of the network discussed in the last subsection

does not capture the quality-of-service constraints which may be required in

most networks. Motivated by the approach used in [84,91], I define the trans-

mission capacity of the network and show that it captures the TDR tradeoff.

For single hop transmissions, delay can be interpreted as the number

of time slots a typical node has to be active to achieve a desired throughput

with a certain reliability. Thus E{L} is considered to be the delay for single

hop transmissions. This definition also enables us to study the TDR tradeoff

of the network for different probability mass functions of the time slots that a

node is active, pL(l) for l ∈ {1, · · · , Lmax}, given a delay constraint E{L} = L.

Further, given an outage constraint of ε, let us define

s∗(l, ε) = max {s : P (S(l) < s) ≤ ε} (4.54)

as the maximum number of successful transmissions in l time slots that can

be achieved with reliability (1 − ε). Hence a successful transmission rate of
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EL

{
s∗(L,ε)

L

}
log2(1 + T ) bps/Hz can be achieved with reliability of (1− ε) for

each user. I define the transmission capacity of the network as

TC(L, ε) , max
pL(l),l∈{1,··· ,Lmax},

E{L}=L

λL log2(1+T )EL

{
s∗(L, ε)

L

}
(1−ε) bps/Hz/area.

(4.55)

Thus transmission capacity captures the TDR tradeoff, where the successful

throughput of TC(L, ε) bps/Hz/area can be achieved in a network with relia-

bility constraint of (1− ε) and delay constraint E{L} = L. For a given (L, ε)

pair, TC(L, ε) can be evaluated using numerical optimization of (4.55) over

feasible lifetime distributions. Further, for a given distribution of L, closed-

form expression for P (S(n) < s) in (4.50) enables direct numerical evaluation

of (4.55), without requiring any Monte Carlo simulations of the network.

4.5 Simulation Results

Using the physical model discussed in Section 4.2, I apply Monte Carlo

numerical techniques to simulate the dynamics of network models I and II.

A typical link is simulated by generating the desired transmission link in the

presence of network interference using (4.1) and (4.4) for network models I

and II, respectively. The empirical performance measures are then compared

against the closed-form expressions for the corresponding measures derived in

this chapter. Even though the chaper assumes that T−1 is large for deriving

closed-form expressions, simulations reveal that the results are almost exact

for considerably small values of T−1 of around 10− 20.
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Unless mentioned otherwise, the network model parameters used in

numerical simulations are:

γ = 4, λ = 0.01,h ∼ Rayleigh

(
1√
2

)
,B = 5,

and the lifetime (L) of a typical node is assumed to follow a truncated Poisson

distribution given as

L ∼
L
l

l!

Lmax∑
l=1

L
l

l!

l = 1, · · · , Lmax, (4.56)

where Lmax and L are the maximum and the average number of time slots a

node is active, respectively. In simulations, L is chosen to be Lmax
2

.

4.5.1 Local Delay

Figs. 4.3 and 4.4 compare the empirical and estimated local delay of the

network for network models I and II, respectively, as a function of the inverse

of the SIR threshold (T−1) required for successful detection. Variation of local

delay with various network parameters discussed in Section 4.4.1 can also be

observed in Figs. 4.3 and 4.4. Note that transmit power control is implemented

by adapting the instantaneous transmission power B2
0(k) to the channel fading

conditions h2
0(k) over time slots k, such that h2

0(k)B2
0(k) = B2 = 25.

4.5.2 Outage with respect to Throughput

Figs. 4.5 and 4.6 compare the empirical and estimated probability

throughput outage probability for network models I and II, respectively, as
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Figure 4.3: Local delay in network model I with and without power control, Lmax = 20
(L = 10), and power pathloss exponent γ of {4, 6}. Local delay increases sublinearly as
SIR threshold T required for successful detection increases, and exponentially as the power
pathloss exponent increases. Channel inversion power control reduces the local delay of the
network.
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Figure 4.4: Local delay in network model II with and without power control, Lmax = 20
(L = 10), and power pathloss exponent γ of {4, 6}. Variations of local delay with various
network parameters are similar to those observed for network model I in Fig. 4.3.
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Figure 4.5: Outage probability associated with achieving at least s = {1, 2, 3, 4} successes
in Lmax = 20 time slots for network model I.
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Figure 4.6: Outage probability associated with achieving at least s = {1, 2, 3, 4} successes
in Lmax = 20 time slots for network model II.
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Figure 4.7: Average throughput for network model II for Lmax = 10, L = 5, and for
λ = {0.01, 0.005}. Average throughput decreases as the SIR detection threshold T increases.
Average throughput grows sublinearly with λ.

a function of the inverse of the SIR threshold T−1. Note that P(S(Lmax) < 1)

(s = 1 in Figs. 4.5 and 4.6) corresponds to the probability of outage in all

Lmax time slots, and is equivalent to the joint tail probability of interference

over Lmax time slots (P(∆ > Lmax)). Hence Figs. 4.5 and 4.6 also serve as

a verification of the result on joint tail probability of interference derived in

(4.34).

4.5.3 Average Network Throughput (Network Model II)

Fig. 4.7 compares the simulated and estimated average network through-

put as a function of T−1 for λ = {0.01, 0.005}. Increasing λ results in a in-

creased spatial density of transmissions, but also increases interference at any

receiver. Thus the average throughput grows sublinearly with λ.
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Figure 4.8: Transmission capacity TC(L, ε) of network model II as a function of the outage
constraint ε and delay constraint of L = Lmax

2 = {20, 10} for a SIR detection threshold T of
0.1. Transmission capacity is plotted for a truncated Poisson lifetime distribution defined
in (4.56) and that obtained by optimizing over all feasible lifetime distributions.

4.5.4 Transmission Capacity and Throughput-Delay-Reliability (TDR)
Tradeoff (Network Model II)

The transmission capacity TC(L, ε) for network model II in (4.55) cap-

tures the TDR tradeoff of single hop transmissions. Fig. 4.8 compares the

transmission capacity of the network as a function of the outage constraint ε.

Further the transmission capacity is plotted for the lifetime distribution de-

fined in (4.56) and that obtained by optimizing over all lifetime distributions

that satisfy the delay constraint (as expressed in (4.55)). The optimization

problem in (4.55) is solved numerically using the fmincon function in MATLAB

using the active-set algorithm [1]. Following observations can be made regard-

ing the TDR tradeoff of the network from Fig. 4.8.
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• When higher outages are tolerable, increasing L increases the transmis-

sion capacity of the network since the spatial density of users trans-

mitting at any time slot (= λL) increases more than the loss suffered

due to increased interference. When outages are constrained to be low

(ε < 0.1 in Fig. 4.8), increasing L decreases the transmission capacity as

interference becomes a limiting factor.

• Optimizing over all feasible lifetime distributions not only increases the

peak throughput, but also improves the reliability at which the peak

throughput is achieved. Gains in throughput and reliability increase

with the increasing L. This motivates the design of MAC strategies that

achieve the optimal lifetime distribution for improved communication

performance of the network.

4.6 Conclusions

The chapter utilized the approximate temporal statistics of interference

amplitude to derive network performance measures in simple algebraic form.

This approach deviates from the mathematical techniques commonly used in

literature for analyzing various network performance measures. While not

shown in the chapter, using such common methods to derive measures such

as local delay for the network model assumed in this chapter yields rather

intractable results, providing minimal insight into the effect of various network

parameters on the communication performance. The closed-form expression

for various network performance measures, along with the extended definition
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of transmission capacity of the network, unveils a potential gain of 2× in

network throughput and improved reliability by optimizing over the lifetime

distribution.

The results derived in this chapter can be easily extended to include a

slotted-ALOHA channel access protocol [55] in conjunction with the network

model assumed in the chapter. The analytical form of the results remain the

same, with FL(n) replaced with pnFL(n), where p is the channel access proba-

bility. Further, for a pathloss function of the form min(1, r−
γ
2 ), the statistics of

interference can be derived using similar steps used in this chapter and shown

to follow the multivariate Gaussian mixture distribution [104]. Extensions to

networks with contention based MAC protocols, however, appears nontrivial

– but approximations may be proposed based on Poisson assumption with a

Guard zone, that results in multivariate Gaussian mixture distributed inter-

ference [60,104].

Chapter 5 extends the network model II introduced in this chapter to

include a bounded constraint on the pathloss function. Joint temporal statis-

tics of interference are shown to follow a multivariate Gaussian mixture dis-

tribution. Chapter 5 utilizes the knowledge of closed-form temporal statistics

to design pre-filtering methods to mitigate interference at the receiver.
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Chapter 5

Pre-filter Design to Mitigate RFI in Wireless

Receivers

5.1 Introduction

Wireless receivers are typically designed assuming additive Gaussian

distributed thermal noise in the system. Chapters 1 and 2 emphasized the

presence of residual RFI in wireless networks that affects the communication

performance of wireless receivers. Chapter 3 derived closed-form instantaneous

statistics of residual RFI in a wide variety of wireless networks and showed that

RFI follows non-Gaussian impulsive statistics. Chapter 4 extended the RFI

statistics for a decentralized wireless network to include temporal dependence

in RFI assuming an unbounded pathloss function to model the decay of trans-

mit power with distance. The closed-form temporal statistics were utilized to

analyze the throughput, delay, and reliability of single-hop transmissions in

a decentralized wireless network. In this chapter, I first use the framework

developed in Chapter 3 to derive temporal statistics of RFI in a decentralized

wireless network assuming a more realistic bounded pathloss function. The

knowledge of the RFI statistics is used to design non-parametric pre-filters to

mitigate the residual RFI at the receiver.
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5.1.1 Motivation and Prior Work

The increase in the intensity of residual RFI in wireless networks mo-

tivates the design of wireless transceivers that are robust to the non-Gaussian

statistics of RFI. At the wireless receiver, this translates to deriving accu-

rate statistics of residual RFI and using Bayesian or maximum a posteriori

inference as a detection criterion. Based on the statistics of RFI, the opti-

mal detection rule may not lead to a receiver structure that is amenable to

real-time implementation. In this chapter, I focus on pre-filtering methods

to mitigate RFI since they require minimal redesign of conventional receivers

that are designed under the assumption of additive Gaussian noise in the sys-

tem. Pre-filters are placed prior to the conventional receiver with the purpose

of removing any outliers in the received samples that may severely affect the

communication performance of conventional receivers.

Pre-filters can be classified as parametric or non-parametric. Paramet-

ric pre-filters are designed assuming a particular statistical distribution of RFI

and require estimation of the parameters that characterize the RFI distribu-

tion. Non-parametric pre-filters, on the other hand, may use the knowledge of

RFI statistics to choose a design criterion (such as distance measure), but do

not require the estimation of any distribution parameters. In most cases, the

computational advantage of non-parametric pre-filters that do not require pa-

rameter estimation outweighs the incremental improvement in communication

performance of parametric pre-filters that utilize the exact RFI distribution.

Further, the communication performance of parametric pre-filters may degrade
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considerably when the statistics of observed RFI deviates significantly from

the statistics assumed during pre-filter design. Non-parametric pre-filters, on

the other hand, may be designed to be robust to variations in RFI statistics.

This motivates the design of non-parametric pre-filters to mitigate RFI using

knowledge of RFI statistics that are applicable to a wide range of interference

scenarios, and are yet robust to deviations in RFI statistics.

In this chapter, I assume that a wireless receiver is affected by RFI from

a spatial Poisson field of interferers with temporally correlated user locations.

As shown in Chapter 4, such a model captures the dynamics of user locations

in a decentralized wireless network. Under the assumption of an unbounded

pathloss function l(r) = r−
γ
2 , where r is the propagation distance and γ is the

power pathloss exponent, Chapter 4 shows that the joint temporal statistics of

interference follow a multivariate symmetric alpha stable distribution. The as-

sumption of an unbounded pathloss function, however, is not realistic because

it suggests that the received interference power is greater than the transmit

power when r < 1. In this chapter, I assume a bounded pathloss function of the

form l(r) = min
(
1, r−

γ
2

)
. To the best of my knowledge, closed-form instanta-

neous or temporal statistics of RFI under the assumption of bounded pathloss

function for the network model considered in this chapter is not known. Us-

ing the framework developed in Chapters 3 and 4, this chapter shows that the

joint temporal statistics of interference follows a multivariate Gaussian mixture

distribution under the assumption of a bounded pathloss function. Gaussian

mixture distribution is also robust to deviations from the assumptions made
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in the network model, e.g., Poisson field of interferers, and has been shown to

be applicable in a wide range of interference scenarios in Chapter 3. This mo-

tivates the design of pre-filters assuming a multidimensional Gaussian mixture

distribution for temporal RFI.

The statistics of RFI affects the design and analysis of pre-filters with

respect to the following factors: (i) pre-filter structure, (ii) distance measure,

and (iii) lower bound on BER performance. Following is a review of prior work

with respect to these factors.

Pre-filter structure: To the best of my knowledge, the optimal pre-

filter structure for BER performance in the presence of temporally depen-

dent Gaussian mixture distributed RFI is not known. Pre-filter comprising

of a memoryless non-linearity has been shown to be locally optimal when

the signal-to-interference ratio is low [134,135]. Locally optimal non-linearity

comprises of a derivative of the RFI distribution function evaluated at the

received sample point, and hence requires the estimation of parameters that

govern the RFI distribution. Further, a locally optimal non-linearity may ex-

hibit significant degradation in communication performance compared to opti-

mal Bayesian detection at moderate-to-high signal-to-interference ratios [99].

Other non-linearities commonly used to mitigate non-Gaussian RFI include

clipping, blanking, and clipping/blanking [97]. While such non-linearities are

computationally attractive, their selection and design (clipping and/or blank-

ing thresholds) is rather ad hoc [97].

Mean squared error (MSE) optimal filtering signals in the presence of
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additive Gaussian mixture interference was studied in [110–113]. MSE op-

timal filters for Gaussian mixture interference are composed of a bank of

Gaussian optimal filters (Kalman [110, 111], Weiner [112], or Gaussian par-

ticle filters [113] based on the statistical assumptions on the signal) whose

outputs are combined in a non-linear manner. BER optimality of these pre-

filtering methods [110–113], however, is not guaranteed since the minimum

MSE criterion is BER optimal only if the noise is Gaussian distributed.

Distance measure: For a given pre-filter structure, the RFI statistics

govern the distance measure to be used to design or adapt the pre-filter. To the

best of my knowledge, a distance measure that leads to BER optimal design in

the presence of Gaussian mixture interference is not known. In this chapter, I

propose the use of correntropy induced metric (CIM) as a distance measure [2].

The CIM between two points behaves like L2 norm when the points are close,

L1 as they move apart, and L0 norm when they are far apart. Varying behavior

of the CIM space provides robustness against non-Gaussian RFI [2, 136]. The

region of L2, L1, or L0 norm like behavior is controlled by a parameter σc. The

choice of the σc is thus central to the applicability and robustness of CIM in

non-Gaussian RFI. Prior work has been limited in choosing an appropriate σc

based on the statistics of the non-Gaussian RFI [137,138].

In this chapter, I propose to use zero-order statistics (ZOS) of the ob-

served Gaussian or non-Gaussian RFI to control the CIM space. ZOS framework

was recently proposed as a measure of power of highly impulsive non-Gaussian

signals [3]. Unlike L2 norm as a measure of power, ZOS is resilient to the im-
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pulsive nature of the signal and hence provides a fair estimate of power in

non-Gaussian environments [3, 101]. This motivates the use of ZOS to scale

CIM space according the signal and non-Gaussian RFI power in the system.

Lower bound of BER: Numerical analysis of an accurate lower bound

on BER performance of pre-filter based receivers in the presence of temporally

dependent Gaussian mixture distributed RFI is mathematically intractable

[139]. Intuitively, BER optimality of the pre-filter can be linked to the ability

of a pre-filter to remove the “impulsive component” of RFI from the received

samples, such that only the residual “Gaussian part” of RFI is present as a

part of the pre-filter output. Here “Gaussian part” of interference is used to

represent small variations in the interference that are indistinguishable from a

Gaussian distributed random variable with certain power.

5.1.2 Contributions, Organization, and Notation

I derive the joint characteristic function of RFI over multiple time in-

stants in a Poisson field of interferes with temporally correlated interferer loca-

tions assuming a bounded pathloss function. The joint characteristic function

of RFI is shown to follow a multivariate Gaussian mixture distribution. The

knowledge of RFI statistics is used to design pre-filter based receivers that mit-

igate RFI. While focus is on selection (S) and combination (L` ) pre-filters,

a robust framework is proposed that can be used to design a wide range of

pre-filters to mitigate non-Gaussian RFI. The robust framework is based on

using CIM as a distance measure, and use of ZOS of non-Gaussian RFI to scale
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the CIM space. An approximate lower bound on communication performance

of pre-filter based receivers is also proposed using the ZOS framework. Tradeoff

in communication performance vs. computational complexity of S and L` pre-

filters designed using L2 norm, L1 norm, and CIM as a distance measure is also

presented.

The chapter is organized as follows. Section 5.2 discusses the system

model. Section 5.3 derives joint temporal statistics of RFI for the network

model discussed in the system model. Section 5.4 uses the particular form

of RFI statistics derived to motivate the pre-filter design criterion, including

a review of CIM and ZOS. Section 5.5 designs the S and L` pre-filters using

CIM and ZOS based framework. Section 5.6 presents results from numerical

simulations. Appendix B contains a brief overview of statistical properties

of multivariate Gaussian mixture distributions that are used in the chapter.

Table 5.1 summarizes the notation used in this chapter.

5.2 System Model

The following subsection describes the baseband model of transmitter

and pre-filter based receiver in the presence of RFI. The network model used

to derive RFI statistics is described next.

5.2.1 Baseband Model of Transmitter and Receiver

Fig. 5.1 shows a simplistic baseband model of a typical transmitter and

receiver pair in the network. For illustration of pre-filter design and commu-
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Table 5.1: Summary of Notation used in Chapter 5

Symbol Description

Π(m) Poisson point process of emerging nodes at time slot m

λ intensity of Π(m)

Ξn(Ξk,n)
point process of nodes active at time slot n (that emerged
at time slot k)

R,R(m) (random) location of a node in space
L,L(m) (random) time slots a node transmits (i.e., lifetime)
γ power pathloss exponent (γ > 2)
X = Bejφ amplitude and phase of interferer emissions
g = hejθ amplitude and phase of narrowband fading

In(Ik,n)
interference at time slot n (due to nodes that emerged at
time slot k)

Ik,1:n ,
{

I
(I)
k,1, I

(Q)
k,1 , · · · , I

(I)
k,n, I

(Q)
k,n

}
, Ik,m=I

(I)
k,m+jI

(Q)
k,m

ω1:n ,
{
ω

(I)
1 , ω

(Q)
1 , · · · , ω(I)

n , ω
(Q)
n

}
frequency variables

ΦI (ω1:n) characteristic function of I, where I = Ik,n or In
ψI (ω1:n) log-characteristic function of I, where I = Ik,n or In
η, β obtained from solving (5.15) as shown in Table 3.2

NT
number of mixture terms per Gaussian component in mul-
tivariate Gaussian mixture distribution

pi, σ
2
m(i)

mixture probability, variances of Gaussian mixture distri-
bution

Cg exponential of Euler constant (≈ 1.78)
W window size of pre-filter
T number of training symbols
σc size of the Gaussian kernel κσc(·, ·)
MThres threshold used for impulse masking in L` pre-filter

α1, α2, α3, α4

flexible parameters used in σc and Mthres, with suggested
values α2 ≈ 2, α3 ≈ 1

0.6
, α4 ≈ 2 (α1 depends on transmit

waveform)
WL` weight vector of L` pre-filter

µ, ε
step size, perturbation factor used for adaptive weight up-
date in (5.50) and (5.51)
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Figure 5.1: Simplistic baseband model of a typical transmitter and receiver pair in the
network employing single carrier, uncoded, QAM modulated transmissions.

nication performance analysis, single carrier uncoded transmissions in an ad-

ditive noise and interference channel is considered. The pre-filters proposed in

this chapter are applicable to any practical communication system (e.g., with

coding, multi-carrier modulation, random fading, channels with memory).

The discrete time received signal can be expressed as

x[n] =
∑
k

√
Ess[k]gTx

[
n− kTs

Td

]
+ I[n] + NTh[n] (5.1)

where x[·] is the received sequence of samples, s[·] is the sequence of complex M-

QAM modulated symbols, Es is the received signal energy, gTx[·] is the transmit

pulse shaping filter, Td is the sampling time period, Ts is the symbol time

period, I[·] is the random interference, and NTh[·] is the random thermal noise

at the receiver. The random thermal noise is assumed to follow a zero mean

complex Gaussian distribution with variance σ2
Th.

The received samples x[·] are pre-filtered before passing them into a

receive filter gRx[·] that is matched to the transmit filter. The aim of the pre-

filter is to remove the distortions caused due to the interference I[·]. Accurate
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statistical modeling of the interference is thus required for pre-filter design.

The following subsection describes the network model assumed to derive the

statistics of interference at the receiver. While the baseband model assumed for

pre-filter design is simplistic, the interference statistics are designed assuming

more general and physically realistic assumptions of any general narrowband

emissions which suffer pathloss and narrowband fading before reception at the

receiver. Temporal dependence in interference is also captured.

5.2.2 Network Interference Model

This chapter adopts the Network Model II introduced in Section 4.2

of Chapter 4 to model interference experienced by a typical receiver in the

network and is summarized here for convenience (see Fig. 5.2). While Chap-

ter 4 assumes an unbounded pathloss function, this chapter assumes a more

realistic bounded pathloss function.

Time is assumed to be slotted to represent sampling time instants. The

locations of interferers, also referred to as nodes, are modeled using a spatial

point process. A node is said to emerge at a particular time slot if it first starts

to transmit at that time slot. All nodes transmitting at a given time slot are

referred to as active nodes at that time slot. Thus at each time slot n, the set

of active nodes is a union over the sets of nodes that first emerged at a slot

m ≤ n and are still active at the time slot n. Emerging nodes at any time slot

m are assumed to be spatially distributed according to a homogeneous PPP

Π(m) =
{(

R
(m)
i ,L

(m)
i

)
, i ≥ 1

}
with intensity λ. Here R

(m)
i is the random
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Figure 5.2: Network model used to derive interference statistics. Interferers can emerge at
any time slot and are active for a random number of time slots (= L). A bounded pathloss
function l(r) = min{1, r−

γ
2 } is assumed, where r is the distance of interferer from the origin

and γ = 4 is the power pathloss exponent.

location of the node i that first emerged at time m, and L
(m)
i ≥ 1 is the

random number of time slots (lifetime) it intends to be active. The node i

disappears after L
(m)
i time slots after its emergence at time slot m.

The point process of active nodes at time slot n can then be represented

as Ξn =
n⋃

k=−∞
Ξk,n, where Ξk,n =

{
R : (R,L) ∈ Π(k),L ≥ n− k + 1

}
is the

set of interferers that first emerged at time slot k and are still active at time

n . Note that for n < k, Ξk,n is an empty set. The interference at any time

slot n can then be represented as

In =
n∑

k=−∞

Ik,n (5.2)

=
n∑

k=−∞

 ∑
Ri∈Ξk,n

l(ri)hi(n)Bi(n) (cos(φi(n)+θi(n)) + j sin(φi(n)+θi(n)))

 .
(5.3)

where Ik,n is the sum interference at time slot n due to interferers that first
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emerged at time slot k, i is the interferer index, ri = ‖Ri‖ are the random dis-

tances of active interferers from the receiver, Bi(n)ejφi(n) are the narrowband

interferer emissions from interferer i at time slot n, hi(n)ejθi(n) is the narrow-

band fading experienced by the interferer emissions, and l(·) is the pathloss

function. Random variables Bi(n),hi(n),φi(n),θi(n) are each assumed to be

i.i.d. for every interferer i and time slot n. Assuming the actual emerging time

of the interferers to be uniformly distributed between two sampling instants,

φi(n) and θi(n) can be assumed to be uniformly distributed on [0, 2π]. A

bounded pathloss function l(ri) = min
(

1, r
− γ

2
i

)
is assumed to model the decay

in transmit signal power with distance, where γ is the power pathloss expo-

nent. This is a more realistic pathloss model as compared to an unbounded

pathloss function l(ri) = r
− γ

2
i assumed in Chapters 3 and 4.

For the unbounded pathloss function l(ri) = r
− γ

2
i , the joint interfer-

ence statistics of interference was shown to follow a multivariate symmetric

alpha stable distribution in Chapter 4. Deriving closed-form joint interference

statistics for a bounded pathloss function l(ri) = min
(

1, r
− γ

2
i

)
, however, is

more involved. The mathematical steps required for deriving the joint inter-

ference statistics with a pathloss function l(ri) = min
(

1, r
− γ

2
i

)
are similar to

deriving the statistics of interference in the presence of guard zone around the

receiver. This is because the min
(

1, r
− γ

2
i

)
function creates an artificial guard

zone around the receiver, where all interferers that are at a distance r < 1,

can be interpreted to be “pushed out” to unit circle around the receiver. The

two problems, however, are not equivalent since a physical guard zone around
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the receiver implies that the interferers that lie within the unit circle do not

contribute to the sum interference at all. Nonetheless, the similarity in math-

ematical formulation enables us to utilize the mathematical approach used

in Chapter 3 to derive closed-form interference statistics in the presence of a

guard zone around the receiver.

5.3 Joint Statistics of Interference

In this section, I derive the joint temporal statistics of interference for

network model discussed in section 5.2.2. Let Ik,1:n =
{

I
(I)
k,1, I

(Q)
k,1 , · · · , I

(I)
k,n, I

(Q)
k,n

}
denote the vector of in-phase and quadrature phase components on the in-

terference at time slots 1 through n due to nodes that emerged at time in-

stant k. Similarly, let I1:n =
{

I
(I)
1 , I

(Q)
1 , · · · , I(I)

n , I
(Q)
n

}
denote the vector of

in-phase and quadrature phase components on the interference at time slots

1 through n due to nodes that emerged anytime until slot n. Further, let

ω1:n =
{
ω

(I)
1 , ω

(Q)
1 , · · · , ω(I)

n , ω
(Q)
n

}
denote the vector of frequency variables. To

derive the joint statistics, I consider the nodes distributed over disc of radius

R, denoted as b(0, R), and take the limit on the joint distribution as R→∞.

Using (5.3) and noting that the underlying Poisson process of emerging nodes

at any time slot k is mutually independent for all k, the joint characteristic

function of I1:n can be expressed as

ΦI1:n
(ω1:n) =

n∏
k=−∞

ΦIk,1:n
(ω1:n) (5.4)
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where ΦIk,1:n
(ω1:n) is the joint characteristic function of Ik,1:n. Equivalently,

the joint log-characteristic function of ψI1:n
(ω1:n) , log ΦI1:n

(ω1:n) can be

expressed as

ψI1:n
(ω1:n) =

n∑
k=−∞

ψIk,1:n
(ω1:n) (5.5)

I first derive the joint characteristic function of Ik,1:n, and use (5.4) and

(5.5) to express the joint characteristic and log-characteristic functions of I1:n,

respectively.

5.3.1 Joint characteristic function of Ik,1:n

Using (5.3), the joint log-characteristic function of Ik,1:n is given as

ψIk,1:n
(ω1:n) = log

(
E
{
e
j

n∑
m=1

(
ω

(I)
m I

(I)
k,m+ω

(Q)
m I

(Q)
k,m

)})
(5.6)

= λπ
n∑
s=1

F
(k,n)

L (s)Υ(k,s) (ω1:n) (5.7)

where for γ > 2 and any parameters {k, s}

Υ(k,s) (ω1:n) = −
∞∫

0

∂

∂r

 s∏
m=max(1,k)

Eh,B {J0 (|ωm| l(r)hB)}

 r2dr. (5.8)

Here |ωm| =
√(

ω
(I)
m

)2

+
(
ω

(Q)
m

)2

, and

F
(k,n)

L (s) =


0 s < k,

P(L = s− k + 1) k ≤ s < n,

P(L ≥ s− k + 1) s = n.

(5.9)

Equation (5.7) is obtained using simplifications identical to those used in (4.7)

through (4.18) with the pathloss function r−
γ
2 replaced with a general pathloss
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function l(r), and are not repeated here for brevity. The expectation in (5.8)

is conditioned such that the node locations are uniformly distributed over

b(0, R) [63, 104]. The distance of each node from the typical receiver at the

origin thus follows the distribution

fr(r) =

{
2r
R2 if 0 ≤ r ≤ R,

0 otherwise.

To the best of my knowledge, exact evaluation of (5.8) for any general distri-

bution of the random variable hB is not possible when s > max(1, k). Under

the assumption that Eh,B(h2B2) is finite, I invoke an identity proposed by

Middleton to further simplify (5.8) [12]. The identity, reproduced here for

readability, shows that

Eh,B {J0 (|ωm| l(r)hB)} = e−
|ωm|2(l(r))2Eh,B{h2B2}

4 (1 + Λ(|ωm|)) (5.10)

where Λ(|ωm|) indicates a correction term with the lowest exponent in |ωm| of

four and is given by

Λ(|ωm|) =
∞∑
k=2

(EZ {Z})k |ωm|2k (l(r))2k

22kk!
EZ

{
1F1

(
−k; 1;

Z

EZ {Z}

)}
(5.11)

where the random variable Z = h2B2, and 1F1 (a; b;x) is the confluent hyper-

geometric function of the first kind. Also Λ(|ωm|) = O
(
|ωm|4

)
as |ωm| → 0.

Using this identity, and approximating Λ(|ωm|) � 1 for |ωm| ,m =

1, · · · , n in the neighborhood of zero, (5.8) reduces to

Υ(k,s) (ω1:n)

143



≈ −
∞∫

0

∂

∂r

(
e−

 s∑
m=max(1,k)

|ωm|2
(l(r))2Eh,B{h2B2}
4

)
r2dr (5.12)

= −
∞∑
k=1

(
−

(
s∑

m=max(1,k)

|ωm|2
)
Eh,B {h2B2}

)k

2k
∞∫
0

(l(r))2k−1r2
(
∂l(r)
∂r

)
dr

4kk!

(5.13)

=
∞∑
k=1

(
−

(
s∑

m=max(1,k)

|ωm|2
)
Eh,B {h2B2}

)k

4kk!

kγ

kγ − 2
(5.14)

where (5.14) is derived for l(r) = min
(
1, r−

γ
2

)
. When hB is Rayleigh dis-

tributed, e.g., for constant amplitude modulated transmissions in Rayleigh

fading environment, then Λ(|ωm|) = 0 and the expression in (5.14) is exact.

The multiplicative factor kγ
kγ−2

in (5.14) prevents the log-characteristic

function to be expressed in closed-form. Similar to the approach used in

Chapter 3 (in Section 3.3.3), I approximate kγ
kγ−2

as 1 + ηeβk. The parameters

η and β are chosen to minimize the weighted mean squared error (WMSE)

{η, β} = arg min
η,β

∞∑
k=1

(
kγ

kγ − 2
−
(
1 + ηeβk

))2

u(k) (5.15)

where u(k) are the weights. Note that the optimization problem (5.15) is the

same as (3.31). Table 3.2 lists the values for {η, β} and the associated WMSE

for certain values of γ, using the weights u(k) = e−k. By approximating kγ
kγ−2

as 1 + ηeβk for k ≥ 1, (5.14) can be expressed as

Υ(k,s) (ω1:n) = −(1 + η)
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+ e−

 s∑
m=max(1,k)

|ωm|2
Eh,B{h2B2}

4 + ηe−

 s∑
m=max(1,k)

|ωm|2
Eh,B{h2B2}eβ

4 . (5.16)

Using (5.7) and (5.16), the log-characteristic function of Ik,1:n can be

expressed as

ψIk,1:n
(ω1:n) = λπ

[
−

n∑
s=1

F
(k,n)

L (s)(1 + η)

+
n∑
s=1

F
(k,n)

L (s)

(
e−

 s∑
m=max(1,k)

|ωm|2
Eh,B{h2B2}

4 +ηe−

 s∑
m=max(1,k)

|ωm|2
Eh,B{h2B2}eβ

4

)]
(5.17)

Equation (5.17) corresponds to a log-characteristic function of a multivariate

Gaussian mixture distribution. The joint characteristic function, if expressed

directly using (5.17), involves many summations and is omitted for now. Con-

cise expression for the joint characteristic function of I1:n is tackled in the next

subsection.

Example: To illustrate the particular form of the joint characteristic

function of Ik,1:n, let us consider an example when k = 1 and n = 2, i.e., the

joint characteristic function of interference at time slots 1 and 2 due to inter-

ferers that first emerged at time slot 1. Using (5.17), the joint characteristic

function can be expressed as

ΦI1,1:2
(ω1:2) =e

−λπ(1+η)
(
F

(1,2)
L (1)+F

(1,2)
L (2)

) ∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

(
λπF

(1,2)

L (1)
)k1+k2

ηk2

k1!k2!

×

(
λπF

(1,2)

L (2)
)k3+k4

ηk4

k3!k4!
e−
|ω1|

2E{h2B2}(k1+k2e
β+k3+k4e

β)
4 e−

|ω2|
2E{h2B2}(k3+k4e

β)
4 .

(5.18)
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5.3.2 Joint characteristic function of I1:n

Using (5.5) and (5.17), the joint log-characteristic function of I1:n can

be expressed as

ψI1:n
(ω1:n) = λπ

n∑
k=−∞

[
−

n∑
s=1

F
(k,n)

L (s)(1 + η)

+
n∑
s=1

F
(k,n)

L (s)

(
e−

 s∑
m=max(1,k)

|ωm|2
Eh,B{h2B2}

4 +ηe−

 s∑
m=max(1,k)

|ωm|2
Eh,B{h2B2}eβ

4

)]
(5.19)

Since (5.19) is a sum of log-characteristic functions of independent multivariate

Gaussian mixture distributed random vectors, I1:n follows a multivariate Gaus-

sian mixture distribution. Combining terms in (5.19), the log-characteristic

function can be expressed as

ψI1:n
(ω1:n) = −(1 + η)

n∑
i1=1

n∑
i2=i1

N(i1, i2)

+
n∑

i1=1

n∑
i2=i1

N(i1, i2)

(
e−

i2∑
m=i1

|ωm|2Eh,B{h2B2}
4 + ηe−

i2∑
m=i1

|ωm|2Eh,B{h2B2}eβ
4

)
(5.20)

where

N(i1, i2)=λπ



P (L≥1) P (L≥2) P (L≥3) · · · P (L≥n−1)
∞∑
k=n

P (L≥k)

0 P (L=1) P (L=2) · · · P (L=n−2) P (L≥n−1)

0 0 P (L=1) · · · P (L=n−3) P (L≥n−2)
...

...
. . . . . .

...
...

0 0 0 · · · P (L=1) P (L≥2)

0 0 0 · · · 0 P (L≥1)


.

(5.21)
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Intuition into the above expression can be gained by recognizing that N(i1, i2)

contributes to the joint log-characteristic function in the dimensions corre-

sponding to
{
ω

(I)
i1
, ω

(Q)
i1
, · · · , ω(I)

i2
, ω

(Q)
i2

}
. Thus N(i1, i2)/π is the density of

interferers that first emerged at time slot i1 (or before when i1 = 1, that cor-

responds to the first row) and are active exactly until time slot i2 (or beyond

for i2 = n, that corresponds to the last column).

Each exponential term in the log-characteristic function leads to a

Gaussian mixture series expression in the joint characteristic function. Us-

ing (5.20), and truncating each of the Gaussian mixture series summation to

NT terms, the joint characteristic function can be expressed in a more concise

and familiar form of a multivariate Gaussian mixture distribution as

ΦI1:n
(ω1:n) ≈ e

−(1+η)
n∑

i1=1

n∑
i2=i1

N(i1,i2)
(NT )2n!∑
i=1

p(i)e
−

n∑
m=1

|ωm|2σ2
m(i)

2
(5.22)

where p =
n⊗

i1=1

(
n⊗

i2=i1

ki1,i2

)
is a (NT )2n!× 1 length vector of mixture probabil-

ities. Here ki1,i2 = k
(1)
i1,i2

⊗
k

(2)
i1,i2

, and for i2 ≥ i1,

k
(1)
i1,i2

, k
(2)
i1,i2

= e
−(1+η)

n∑
i1=1

n∑
i2=i1

N(i1,i2)

×




(N(i1,i2))0

0!

...
(N(i1,i2))NT−1

(NT−1)!

 ,


(ηN(i1,i2))0

0!

...
(ηN(i1,i2))NT−1

(NT−1)!

 .
(5.23)

Similarly σ2
m =

n⊕
i1=1

(
n⊕

i2=i1

t
(m)
i1,i2

)
are a (NT )2n! × 1 length vector of mixture

variances corresponding to the mth component in the joint distribution. Here
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t
(m)
i1,i2

= t
(m,1)
i1,i2

⊕
t
(m,2)
i1,i2

, and

t
(m,1)
i1,i2

, t
(m,2)
i1,i2

=
Eh,B {h2B2}

2
×




0
...

NT − 1

 ,


eβ×0
...

eβ×(NT − 1)

 if i1 ≤ m ≤ i2,


0
...

0

 ,


0
...

0

 otherwise .

(5.24)

Note that σm corresponds to the vector of mixture variances for the interference

observed at the m time slot. The condition i1 ≤ m ≤ i2 in (5.24) can thus

be explained as follows. For a interferer to contribute to the mth time slot, it

should emerge at a time slot prior to m (i.e., i1 ≤ m) and remain active until

at least the mth time slot (i.e., i2 ≥ m).

Expressing the joint characteristic function of I1:n as (5.22) is helpful

in recognizing the multivariate Gaussian mixture form and also enables quick

simulation of the joint tail probability of interference. The approximation in

(5.22) can be made arbitrarily accurate by increasing NT .

5.4 Pre-filter Design Criterion

In the last section, the joint temporal statistics of interference under

realistic assumptions are shown to a follow a multivariate Gaussian mixture

distribution. Gaussian mixture distribution is also robust to capture any de-

viations from the assumptions made in the network model, e.g., Poisson field
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of interferers. This motivates the design of pre-filters with the knowledge that

the interference observed over consecutive sampling instants follow a multi-

dimensional Gaussian mixture distribution. In particular, the following char-

acteristics of interference can be noted. The in-phase and quadrature phase

components of interference at any sampling instant are dependent, but uncor-

related. Further, the interference is temporally dependent, but uncorrelated.

The characteristics of interference statistics affects the design and anal-

ysis of pre-filtering methods to mitigate RFI. The following subsections review

some basic properties of CIM and ZOS that motivate their use in analysis and

design of pre-filters.

5.4.1 Correntropy and Correntropy Induced Metric (CIM)

The correntropy of two scalar random variables X and Y using a Gaus-

sian kernel function is defined as [2, 138]

V(X,Y) = E {κσc (X−Y)} (5.25)

=
1√

2πσc
E
{

exp

(
−‖X−Y‖2

2σ2
c

)}
(5.26)

=
1√

2πσc

∞∑
k=0

(−1)k

(2σ2
c )
k k!

E
{

(X−Y)2k
}

(5.27)

where κσc(·, ·) is a Gaussian kernel of size σc given as

κσc(X − Y ) =
1√

2πσc
exp

(
‖X − Y ‖2

2σ2
c

)
. (5.28)

Thus correntropy is a similarity measure between scalar random variables X

and Y that contains all even order moments of X−Y. The kernel size σc in
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Figure 5.3: Contours of CIM(X, 0) in a two-dimensional sample space (N = 2, X = [x1, x2])
for Gaussian kernel size σc = 1. When X is close to the origin, CIM(X, 0) behaves like L2
norm. As X moves away from the origin, the behavior of CIM(X, 0) changes from L2 norm,
to L1 norm, and to L0 norm when they are far apart [2].

(5.27) controls the contribution of the higher order moments of X −Y with

respect to the second moment. Increasing σc decreases the contribution of

higher order moments and the second order moment dominates. Note that

V(X,Y) is symmetric, positive, and bounded in
[
0, 1√

2πσc

]
.

When the joint probability density function of {X,Y} is not known and

only finite number of sample instantiations of {X, Y } = {(xi, yi), i = 1, · · · , N}

are available, a sample estimate of the correntropy can be expressed as [2]

V̂(X, Y ) =
1

N
√

2πσc

N∑
i=1

exp

(
−‖xi − yi‖

2

2σ2
c

)
(5.29)

Correntropy, as a sample estimator, induces a metric space in the sam-

ple space and is named as the Correntropy induced metric CIM [2]. However,
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CIM is not homogeneous and thus does not induce a norm on the sample space.

For N -dimensional vectors {X, Y } = {(xi, yi), i = 1, · · · , N}, CIM is defined as

CIM(X, Y ) =

√
1√

2πσc
− V̂(X, Y ). (5.30)

CIM is bounded in
[
0,
√

1√
2πσc

]
. Fig. 5.3 plots the contours of CIM(X, 0) in a

two-dimensional sample space (N = 2) for Gaussian kernel size σc = 1. It

can be observed from Fig. 5.3 that CIM behaves like L2 norm when the two

vectors are close, L1 norm as they move apart, and L0 norm when they are

far apart. As the two vectors grow apart, L0 norm behavior makes the metric

insensitive to the distance. This property of CIM with a Gaussian kernel can

thus be exploited for rejection of outliers. For example, in selection filters, the

contribution of an outlier in the CIM space is the same to all potential output

points and thus does not affect the selection filter output. The kernel size σc

controls the extend of range over which CIM behaves likes L2, L1, or L0 norm.

The choice of kernel size is hence critical to use CIM to reject outliers.

CIM is also closely related to M-estimation, thus further establishing the

robust behavior of CIM to outliers [136]. M-estimation is a generalized max-

imum likelihood method proposed by Huber to estimate the parameter set

Θ from error observations e[·] under the cost function min
Θ

N∑
i=1

ρ (e[i]|Θ). Here

ρ(·) is a differential function that satisfies ρ (e[i]) ≥ 0, ρ (e[i]) = 0, ρ (e[i]) =

ρ (−e[i]), and ρ (e[i]) > ρ (e[j]) for |e[i]| > |e[j]|. When ρ (e[i]) = (e[i])2,

this corresponds to mean squared error minimization. Defining ρ (e[i]) =

1√
2πσc

(
1− exp

(
− (e[i])2

2σ2
c

))
, all the aforementioned properties of ρ(·) are sat-
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isfied, and the M-estimation can be written as

min
Θ

N∑
i=1

ρ (e[i]|Θ) = min
Θ

N∑
i=1

1√
2πσc

(
1− exp

(
−(e[i])2

2σ2
c

))
(5.31)

= min
Θ

CIM(E, 0) (5.32)

= max
Θ

V̂(E, 0). (5.33)

Thus estimating the filter parameters by minimizing CIM of the error sequence

corresponds to M-estimation with the function ρ (e[i]) = 1√
2πσc

(
1− exp

(
− (e[i])2

2σ2
c

))
.

The kernel size σc controls the robustness to outliers in the estimation problem.

5.4.2 Zero-Order Statistics (ZOS)

L2 norm is the widely accepted notion of power of a second-order ran-

dom process [140]. For Gaussian random process, this is accurate as the L2

directly relates to the variance of the process. For non-Gaussian random pro-

cesses, however, the L2 norm falls short of being an accurate measure for the

signal strength. To this end, ZOS was proposed as a measure of power that is

well defined over all distributions with algebraic or lighter tails [3].

Let X be a logarithmic order random variable with algebraic or lighter

tails, such that E {log |X|} < ∞. Then the ZOS or geometric power of X is

defined as [3]

ZOS(X) = eE{log |X|}. (5.34)

When the probability density function of X is not known and only finite sample

instantiations of X = {xi, i = 1, · · · , N} are available, a sample estimator for
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Figure 5.4: Sample snapshot of a Gaussian and Gaussian mixture random process with the
same zero-order statistic(ZOS) power. With the same ZOS = 0.5300, smaller variations in
the Gaussian mixture random process are indistinguishable from a Gaussian process, as
indicated by the dotted lines. A similar illustration is presented in [3] for a symmetric alpha
stable random process.

the ZOS can be expressed as

ZOS(X) = exp

(
1

N

N∑
i=1

log (|xi|)

)
(5.35)

=

(
N∏
i=1

|xi|

) 1
N

(5.36)

When XG is Gaussian distributed with variance σ2, ZOS(XG) = σ√
2Cg

,

where Cg ≈ 1.78 is the exponential of the Euler constant [3]. When XGMM

follows a Gaussian mixture distribution with mixture probabilities pi and mix-

ture variances σ2
i for i = 1, · · · , N , ZOS(XGMM) =

N∏
i=1

σ
pi
i√

2Cg
.

Benefit of using ZOS as an estimate of power in very impulsive random

variable has been argued in prior work [3]. Intuitively, this is due to the pres-
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ence of log(·) function in (5.34) that causes the lower values of X to impact

the ZOS much more than the higher values. To further illustrate this, Fig. 5.4

compares sample snapshot of two random processes with the same sample

estimate of ZOS. With the same ZOS, smaller variations in the Gaussian mix-

ture random process are indistinguishable from a Gaussian process. Thus ZOS

can be intuitively argued to capture the strength of the “Gaussian part” in a

non-Gaussian random process.

5.4.3 Using CIM and ZOS in pre-filter design

I propose to use CIM as a distance measure to design pre-filters in the

presence of Gaussian mixture distributed interference. The distance between

two complex sample points X
(I)
1 + jX

(Q)
1 and X

(I)
2 + jX

(Q)
2 is measured in the

CIM space as CIM
([
X

(I)
2 −X

(I)
1 , X

(Q)
2 −X(Q)

1

]
, [0, 0]

)
. Further, to reduce

the computational complexity, only V̂
([
X

(I)
2 −X

(I)
1 , X

(Q)
2 −X(Q)

1

]
, [0, 0]

)
is

required as it has a one-to-one correspondence to CIM(·, ·). V̂(·, ·) and CIM(·, ·)

are inversely related and thus a larger V̂(·, ·) between two points indicates

smaller distance between them in the CIM space. CIM has the advantage of

behaving as L2 norm for “Gaussian part” of the interference, while being ro-

bust to outliers through the use of lower order norms based on the intensity

of the interference. In comparison, pre-filters design based on a fixed norm,

e.g. L1 norm, results in degradation in the presence of Gaussian distributed

interference due to extra robustness and/or not be robust enough when inter-

ference is highly impulsive. Further, from (5.29), the additional complexity in
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computing V̂(·, ·) over L2 norm is marginal (one multiplication and table look

up for evaluating the exponential).

The choice of the Gaussian kernel size σc is central to the flexibility

of CIM space. Intuitively, σc should be chosen such that the signal and the

“Gaussian part” of the interference lies in the L2 norm region in the CIM space.

This motivates the following choice of σc:

σc =
1

α3

(
α1

√
Es + α2

√
σ2
Th + 2Cg (ZOS(I))2

)
. (5.37)

Here 2Cg (ZOS(I))2 is the variance of a Gaussian distribution that has the same

ZOS as the interference. From Fig. 5.3, the CIM space switches in behavior from

L2 to L1 norm when the Euclidean distance between the points is α3 ≈ 1.5 for

a Gaussian kernel size σc = 1. Equation (5.37) attempts to maintain the same

ratio based on maximum variation expected between two sample points. In

a local neighborhood, two received samples can be apart by α1

√
Es due to

signal variations, where α1 depends on the transmit waveform structure. For

example, as Ts
Td

increases, the signal variations in consecutive sample decreases.

In addition to signal variations, the pre-filter should allow for variations due to

thermal noise and the “Gaussian part” of the interference. This is accounted

for in the term α2

√
σ2
Th + 2Cg (ZOS(I))2. Thus α2 = 2 may be chosen so that

variations up to twice the standard deviation of the Gaussian noise lie within

the L2 norm behavior region of CIM. Variations higher than those expected in

(5.37) are most likely due to the impulsive behavior of interference, and the

CIM space chooses an appropriate norm behavior to measure the distance.
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The CIM space along with the novel choice of Gaussian kernel bandwidth

in (5.37) enables use of non-parametric ZOS to adapt to the varying impulsive

behavior of the interference environment.

5.4.4 Lower Bound on Error Probability

I propose an approximate lower bound on error probability using ZOS of

interference. Lower bound on error probability is derived by assuming that the

pre-filter removes all “impulses” from the interference, such that only residual

“Gaussian part” of the interference is present at the output. The approximate

lower bound can thus be expressed as

PeLB , PeG
(
σ2
Th + 2Cg (ZOS(I))2) (5.38)

where PeG(σ2) is the error probability of the receiver, that is designed assuming

Gaussian noise, in the presence of Gaussian distributed noise with variance σ2.

Even through the lower bound proposed in (5.38) is approximate, it

provides a useful reference point. Since the lower bound is non-parametric, it

is particularly useful when comparing performance or receivers in the presence

of different interference statistics.

5.5 Pre-filter Design to Mitigate RFI

Using the design criterion discussed in the previous section, I now con-

sider the design of selection and combination pre-filters. While I propose the

use of CIM as a distance measure, comparison with pre-filters designed using
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Table 5.2: Distance cost function corresponding to L2 norm, L1 norm, and CIM as a distance
measure in a S pre-filter.

Distance Measure Cost Function J (x1, x2)

L2 norm
∥∥∥x(I)

2 − x
(I)
1

∥∥∥2

+
∥∥∥x(Q)

2 − x(Q)
1

∥∥∥2

L1 norm
∣∣∣x(I)

2 − x
(I)
1

∣∣∣+
∣∣∣x(Q)

2 − x(Q)
1

∣∣∣
CIM − exp

(
−
∥∥∥x(I)

2 −x
(I)
1

∥∥∥2

2σ2
c

)
− exp

(
−
∥∥∥x(Q)

2 −x(Q)
1

∥∥∥2

2σ2
c

)

L2 norm and L1 norm as a distance measure is also provided.

For notational simplicity, an odd valued window size W in the sliding-

window pre-filters is assumed. Let XW (n)=
{
x
[
n− W−1

2

]
, · · · , x[n],

· · · , x
[
n+ W−1

2

]}
denote the set of input samples in a window of size W

used for calculating the nth output sample. The output sequence xPF[·] can

then be expressed as

xPF[n] = PF (XW (n)) . (5.39)

5.5.1 Selection Pre-filter (S pre-filter)

S pre-filter chooses one of the input samples in XW (n) as the nth output

sample such that

xS−PF[n] = arg min
xi∈XW (n)

∑
xk∈XW (n),xk 6=xi

J (xi, xk) (5.40)

where J(·, ·) is the cost function. Table 5.2 lists the cost function corresponding

to the L2 norm, L1 norm, and CIM as a distance measure.
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5.5.2 Combination Pre-filter (L` pre-filter) with Impulse Masking

A drawback of S pre-filter is that it ignores the temporal order of input

samples. This degrades the performance of the pre-filter, particularly when

operating at moderate-to-high SIR values. L` pre-filter performs a weighted

combination of the samples in the windows such that the weights are dependent

on the temporal and rank order of the samples.

Classical formulation of L` filters assumes real samples [101]. I first

extend the L` pre-filter formulation to account for dependence in the in-phase

and quadrature phase components of the interference, and hence the received

samples. Further, due to the combination form of L` pre-filter, the output of

the filter is sensitive to very large variations in the input sample. Even though

outliers get mapped to a small weight during combination, a large value of the

outlier may still cause significant deviation to the pre-filter output. To this

end, I propose a modification of the L` pre-filter to mask out the high valued

outliers. Identifying the high valued outliers in the set XW (n) is done using

ZOS framework.

The in-phase or quadrature phase component of a received sample are

weighted individually. The weights of the in-phase or quadrature phase are ex-

pressed as a function of the temporal order of the sample, rank of the in-phase

component among <{XW (n)}, and rank of the quadrature phase component

among ={XW (n)}. High sample values are masked out prior to weighted com-
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bination. The output of L` pre-filter is expressed as [101]

xL`−PF[n] = W
T

L`XL`(n) (5.41)

where XL`(n) is the 2W 3 long vector that combines the temporal information

and rank information in in-phase and quadrature phase components. XL`(n)

is defined as

XL`(n) =

[(
X

(I)

L` (n)
)T (

X
(Q)

L` (n)
)T]T

(5.42)

where

X
(I)

L` (n) =
[
x

(I)
1(1,1), · · · , x

(I)
1(1,W )

∣∣x(I)
1(2,1), , · · · , x

(I)
1(2,W )

∣∣ · · · , x(Q)

i(k(I),k(Q))
, · · ·

∣∣
x

(I)
W−1(W−1,1), · · · , x

(I)
W−1(W−1,W )

∣∣x(I)
W (W,1), · · · , x

(I)
W (W,W )

]T
(5.43)

X
(Q)

L` (n) =
[
x

(Q)
1(1,1), · · · , x

(Q)
1(1,W )

∣∣x(Q)
1(2,1), , · · · , x

(Q)
1(2,W )

∣∣ · · · , x(Q)

i(k(I),k(Q))
, · · ·

∣∣
x

(I)
W−1(W−1,1), · · · , x

(Q)
W−1(W−1,W )

∣∣x(Q)
W (W,1), · · · , x

(Q)
W (W,W )

]T
(5.44)

where

xi(k(I),k(Q)) =

 mixi
if x

(I)
i , x

(Q)
i has a rank of k(I), k(Q) in the set

<{XW (n)} ,={XW (n)}, respectively,
0 otherwise,

(5.45)

and

mi =

{
0 if ‖xi − xS−PF[n]‖ > MThres

1 otherwise.
(5.46)

Here xi is the ith element of the set XW (n), xS−PF[n] is the selection pre-filter

output defined in (5.40), and MThres is the threshold value indicating a highly

corrupted sample value.
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The weight vector can be expressed as WL` =
[
W

(I)

L` , W
(Q)

L`

]
, where

W
(I)

L` =

[(
W

(I)

1

)T
|
(
W

(I)

2

)T
| · · · |

(
W

(I)

W

)T]T
andW

(I)

i =
[
w

(I)
i(1,1), · · · , w

(I)
i(1,W ),

· · · , w(I)
i(W,1), · · · , w

(I)
i(W,W )

]T
is the W 2 long tap vector associated with the in-

phase component of the ith input sample in XW (n). Weights of the quadra-

ture phase components W
(Q)

L` are defined similarly. Note that even though the

length of the vectors XL` and WL` is large, the weighted combination in (5.41)

involves only 2W multiplications since XL` has only 2W non-zero terms.

The threshold MThres is chosen using the ZOS framework. Let us assume

that the CIM space gracefully morphs into L0 norm behavior at an Euclidean

distance of α4σc away from the origin. From Fig. 5.3, α4 ≈ 2. This motivates

choosing MThres as

MThres = α4σc (5.47)

=
α4

α3

(
α1

√
Es + α2

√
σ2
Th + 2Cg (ZOS(I))2

)
. (5.48)

Using 5.41, the filter weights can be derived similar to the Wiener

solution as

WL`,opt = arg min
WL`

E
{
J
(
xTx[n]−W T

L`XL`(n), 0
)}

(5.49)

where xTx[n] =
∑

k

√
Ess[k]gTx

[
n− k Ts

Td

]
is the transmitted training samples

known at the receiver, and J(·, ·) is the cost function corresponding to the cho-

sen distance measure as listed in Table 5.2. For CIM distance, exact evaluation

of the Wiener-type solution for filter weights is complicated. In the presence
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Table 5.3: Weight update factor
∂J(e(I)[n],0)

∂W
(I)
L`,n

for weights corresponding to in-phase sample

values using L2 norm, L1 norm, and CIM as a distance measure in a adaptive L` pre-filter.

Here e[n] = xTx[n] − W
T

L`XL`(n) is the error in the estimate of the nth training sam-
ple. Weight update factor for weights corresponding to quadrature phase sample values
∂J(e(Q)[n],0)

∂W
(Q)
L`,n

follow similarly with (I) replaced by (Q).

Distance Measure
∂J(e(I)[n],0)
∂W

(I)
L`,n

L2 norm 2e(I)[n]X
(I)

L` (n)

L1 norm sign
(
e(I)[n]

)
X

(I)

L` (n)

CIM 1√
2πσ3

c
exp

(
−‖e(I)[n]‖2

2σ2
c

)
2e(I)[n]X

(I)

L` (n)

of training data, a computationally attractive adaptive update of the filter

weights can be expressed as [101]

W
(I)

L`,n+1 = W
(I)

L`,n +
µ( ∑

xi∈XW (n)

∥∥∥x(I)
i

∥∥∥2

+ ε

) ∂J (e(I)[n], 0
)

∂W
(I)

L` (n)
(5.50)

W
(Q)

L`,n+1 = W
(Q)

L`,n +
µ( ∑

xi∈XW (n)

∥∥∥x(Q)
i

∥∥∥2

+ ε

) ∂J (e(Q)[n], 0
)

∂W
(Q)

L` (n)
(5.51)

where µ is the step size, ε is a small positive number to avoid error amplification

when the energy of the received samples is near zero, e[n] = xTx[n]−W T

L`XL`(n)

is the error in estimating the nth sample value. Note that e(I)[n] = x
(I)
Tx [n] −(

W
(I)

L`,n

)(T )

X
(I)

L` (n) and e(Q)[n] = x
(Q)
Tx [n] −

(
W

(Q)

L`,n

)(T )

X
(Q)

L` (n). Closed-form

expressions for
∂J(e(I)[n],0)
∂W

(I)
L`,n

,
∂J(e(I)[n],0)
∂W

(I)
L`,n

are listed in Table 5.3 corresponding to

L2, L1, and CIM distance measures [138].

Initial value of the weight vector WL`,0 may be chosen such that it
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corresponds to a pass-through filter. A pass-through filter can be enforced by

using w
(I)
W+1

2
(·,·) = w

(Q)
W+1

2
(·,·) = 1, and w

(I)
i(·,·) = w

(Q)
i(·,·) = 0 for i 6= W+1

2
. When

interference plus thermal noise follows a Gaussian distribution, a pass-through

filter is BER optimal. When interference is non-Gaussian, the filter weights

adapt to mitigate the impulsive nature of interference.

5.5.3 Extensions to include temporal dependence in RFI (LJ` pre-
filter)

Both S and L` pre-filter do not account for the temporal dependence in

interference [101]. The design of L` pre-filters discussed in the previous subsec-

tion is directly applicable to a broader class of LJ` pre-filters. In LJ` filters,

each sample weights is dependent on its temporal order, its own rank, and

the rank of next J − 1 neighboring samples. Thus L1` is simply an L` filter.

Simulations reveal that the additional benefit of LJ` filters with J > 1 are

insignificant (less than 0.5 dB SNR gain at a BER of 10−3) with respect to

L` filters for the system model and interference considered in this chapter. The

improvement in BER performance is at the cost of increased number of filter

weights (2W 2J+1) that require more computations (e.g. sorting) and training

data.

5.5.4 Computational Complexity Analysis

Table 5.4 compares the computational complexity of S and L` pre-

filters (PF) of length W designed using different distance measure. Com-

pared to L2 norm, using CIM as a distance measure in pre-filter design requires
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Table 5.4: Comparison of computation complexity of S and L` pre-filters (PF) of length W
that use L2, L1, or CIM as a distance measure. The computations are reported per output
sample in the runtime phase (RN), and per training sample in the training phase (TR).
T training samples are assumed to be available in the training phase. Computational com-
plexity is reported with respect to the number of real multiplications or inverse operations
(×, (·)−1), additions or subtractions (+,−), comparisons (>,<,=), and exponential evalu-
ations (e(·)) required. Reported numbers are accurate only up to O(1). Other O( 1

T ) and

O( 1
W ) operations, such as log(·) and

√
(·) required in certain pre-filters, are not reported.

PF Distance
Mea-
sure

TR/
RN

×, (·)−1 +,− >,<,= e(·)

S

L2 norm W (W−1) 3W (W−1)
2

W 0

L1 norm 0 3W (W−1)
2

W 0

CIM
TR 1 O

(
1
T

)
0 O

(
1
T

)
RN 3W (W−1)

2
3W (W−1)

2
W W (W−1)

L`

L2 norm
TR W (W+5) W (3W+5)

2
2W (1+ log(W )) 0

RN W (W+1) W (3W+1)
2

2W (1+ log(W )) 0

L1 norm
TR 6W W (3W+5)

2
2W (1+ log(W )) 0

RN 2W W (3W+1)
2

2W (1+ log(W )) 0

CIM
TR 3W (W+3)

2
W (3W+5)

2
2W (1+ log(W )) W (W−1)

RN W (3W+1)
2

W (3W+1)
2

2W (1+ log(W )) W (W−1)

marginal increase in multiplications, and O(W 2) additional exponential eval-

uations. The improvement in communication performance offered by the CIM

distance measure at this marginal increase in computational complexity mo-

tivates the use of CIM (and ZOS to aid the scaling of CIM space) in receiver

design.

5.6 Simulation Results

Using the network model discussed in Section 5.2.2, I apply Monte-

Carlo numerical techniques to simulate the interference observed at a typical
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receiver in the network. The joint interference statistics derived in Section 4.3

are first validated by comparing the simulated joint tail probability of interfer-

ence against the estimated tail probability derived from the statistical model.

Closed-form joint tail probability of multivariate Gaussian mixture distributed

interference is derived in Appendix B. Baseband communication between a

transmitter-receiver pair in the presence of interference is then simulated based

on the transmission model described in Section 5.2.1. Communication perfor-

mance of various pre-filter based receivers is compared against the conventional

matched receiver for 16-QAM modulated baseband transmissions.

The network model parameters used in the numerical simulations are

γ = 4, h ∼ Rayleigh

(
1√
2

)
, B = 10,

and the lifetime (L) of a typical node is assumed be distributed in [1, 3] such

that

P (L = i) =


0.4706 i = 1,

0.3529 i = 2,

0.1765 i = 3,

0 otherwise.

Mean lifetime of typical node is 1.7059 time slots.

5.6.1 Joint Statistics of Interference

Fig. 5.5 compares the simulated and estimated joint tail probability of

interference observed over n = 1, 2, 3 time slots. The simulated tail probability

is empirically estimated using 200000 time samples of the received interfer-

ence. The estimated tail probability match closely with the simulated joint
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Figure 5.5: Joint tail probability of interference amplitude over n = 1, 2, 3 time slots with the
intensity of emerging interferers λ = 0.1. A bounded pathloss function l(r) = min

(
1, r−

γ
2

)
is

assumed, where r is the propagation distance and γ = 4 is the power pathloss exponent. The
number of mixture terms NT for each contributing component was chosen as 4, that results
in a total number of mixture terms (NT )

2n!
= 42, 44, 46 for n = 1, 2, and 3, respectively.

tail probability, thereby validating the closed-form joint interference statistics

in (5.22).

5.6.2 Communication Performance of Pre-filter Based Receivers

Baseband communication between a typical transmitter-receiver pair in

the network is simulated using (5.1). Thermal noise present in the system is as-

sumed to be 30 dB below the interference power. Transmit filter is assumed to

be a square-root raised cosine filter with rolloff factor 0.1, filter group delay of 8

input symbols, and Ts
Td

= 14 samples per symbol. Communication performance

of various pre-filter based receivers is studied for both simulated network in-
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terference and Gaussian distributed interference. Receivers are simulated for

100000 16-QAM modulated transmit symbols that includes T = 5000 training

symbols in the beginning. Estimation of ZOS of interference, and adaptation

of L` filters is performed in the training phase.
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Figure 5.6: Communication performance of correntropy induced metric (CIM) based pre-
filters in the presence of the simulated network interference. Intensity of emerging interfer-
ers λ = 0.0001 results in non-Gaussian impulsive interference. Interference-to-noise ratio is
fixed at 30 dB. While L` pre-filter outperform S pre-filter, the latter provides a good tradeoff
between communication performance and computational complexity in the presence of im-
pulsive non-Gaussian interference. Both pre-filters provide around 15−20 dB improvement
over conventional matched receiver at a symbol-error-rate (SER) of 10−3.

Pre-filter length W = 5 is chosen because the maximum lifetime of an

interferer is set to 3 sampling time instants. Thus interference may exhibit

strong dependence over 3 consecutive samples. A pre-filter length of 5 will

generally result in less than half highly corrupted samples. The dependence

in interference can be easily estimated in realtime implementation by listening
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Figure 5.7: Communication performance of S pre-filters in the presence of the simulated
network interference. Intensity of emerging interferers λ = 0.0001 results in non-Gaussian
impulsive interference. Interference-to-noise ratio is fixed at 30 dB. CIM based S pre-filter
outperforms its counterparts that use L2 or L1 norm as a distance measure.
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Figure 5.8: Communication performance of L` pre-filters in the presence of the simulated
network interference. Intensity of emerging interferers λ = 0.0001 results in non-Gaussian
impulsive interference. Interference-to-noise ratio is fixed at 30 dB. CIM based L` pre-filter
outperforms its counterparts that use L2 or L1 norm as a distance measure.
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to the RFI environment prior to active transmissions. For CIM based pre-

filters, α1 = 0.3, α2 = 2, α3 = 1
0.6

, and α4 = 2 are used in (5.37) and

(5.48). These values are consistent with the discussion provided in Section

5.4.3. L` pre-filters are initialized as pass-through filters and adapted using a

step size µ = 0.01. Further, ε = 0.001 is chosen to avoid instability in (5.50)

and (5.51) during weight updates.

Simulated network interference: Interference is simulated using

the network parameters listed in Section 5.6 with the intensity of emerging

interferers λ = 0.0001. The low density of users causes the interference to be

non-Gaussian. Fig. 5.6 compares the symbol error rate of CIM based pre-filters

in the presence of the simulated interference with varying SIR. L` pre-filter

outperforms the S pre-filter by around 4−5 dB at a symbol error rate of 10−4.

S pre-filters, however, provides a good tradeoff between communication per-

formance and computational complexity, particularly at low SIR. Both S and

L` pre-filters provide significant improvement over the conventional matched

filter even at a very low SIR. This motivates using pre-filter based receiver

structure to mitigate non-Gaussian distributed interference.

Figs. 5.7 and 5.8 compare the communication performance of S and

L` pre-filters, respectively, designed using L2 norm, L1 norm, and CIM distance

measure. Pre-filters designed using CIM outperform their counterparts that are

designed using L2 or L1 norm as a distance measure.

Gaussian distributed interference: Fig. 5.9 compares the com-

munication performance of correntropy induced metric (CIM) based S and
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Figure 5.9: Communication performance of correntropy induced metric (CIM) based pre-
filters in the presence of Gaussian distributed interference. Interference-to-noise ratio is
fixed at 30 dB. Matched filter receiver is BER optimal in the presence of Gaussian dis-
tributed interference. At a symbol-error-rate (SER) of 10−3, degradation in communication
performance due to L` and S pre-filters is approximately 0.3 dB and 1 dB, respectively.

L` pre-filters in the presence of Gaussian distributed interference. In presence

of Gaussian distributed thermal noise and interference, the matched filter is

BER optimal. S pre-filter introduces some unwanted smoothing in the received

signal, thereby degrading the receiver performance a little. L` pre-filter, ide-

ally, should be able to pass the received signal unaltered in the presence of

Gaussian noise. Due to the adaptive weight updates, deviations from the ideal

L` pre-filter weights may cause a little degradation in communication perfor-

mance. Fig. 5.9 shows that the degradation in communication performance at

a symbol-error-rate (SER) of 10−3 is approximately 0.3 dB and 1 dB for L` and

S pre-filter, respectively, in the presence of Gaussian distributed interference.
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5.7 Conclusions

This chapter demonstrates the advantage of pre-filter based receiver,

where a filtering stage is placed prior to the conventional receiver with the

task of removing the “impulsive component” of RFI. At a SER of 10−3, a SNR

gain of 15−20 dB is observed in for uncoded 16-QAM modulated transmis-

sions. This translates to an improved link spectral efficiency by an additional

5−7 bits/sec/Hz for a desired SER of 10−3 for uncoded QAM transmissions.

Even at low SER of 10−1, an improved link spectral efficiency by an additional

1−2 bits/sec/Hz is attainable using pre-filtering methods. A disadvantage of

pre-filter based receiver, however, is that it operates at the sample rate (Ts/Td

times the symbol rate) and significantly increases the computational complex-

ity of the receiver. RFI mitigation methods that operate on the matched filter

output at the symbol rate, however, yield reduced gains in communication

performance compared to pre-filtering methods. [141,142].

The chapter uses CIM as a distance measure and proposes using ZOS

of non-Gaussian RFI to scale the CIM space. This framework can be used

for a wide range of signal processing techniques to mitigate RFI in wireless

receivers. For example, the ZOS scaled CIM space can be used as a robust metric

for likelihood evaluation in Turbo decoders [142]. Further, the non-parametric

nature of CIM and ZOS render the framework applicable for a wide range of

non-Gaussian RFI statistics.
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Chapter 6

Conclusions

6.1 Summary

In this dissertation, I show the benefit of using closed-form interfer-

ence statistics to analyze and improve the communication performance of

interference-limited wireless networks. Prior work has been limited in pur-

suing this approach since exact closed-form interference statistics are known

only in a few interference scenarios. For interference-limited wireless networks,

however, only accurate modeling of the tail probability of interference is re-

quired. Chapter 3 proposes a framework to derive closed-form instantaneous

statistics of interference that accurately model the tail probability of interfer-

ence in a wide variety of wireless networks. Focusing on decentralized wireless

networks, Chapters 4 and 5 extend the framework to include temporal de-

pendence in interference under the assumption of unbounded and bounded

pathloss function, respectively. Chapter 4 uses the joint temporal interfer-

ence statistics to study the throughput, delay, and reliability of single-hop

transmission in a decentralized wireless network, unveiling 2× improvement in

network throughput by optimizing a MAC parameter to control the temporal

dependence in interference. Chapter 5 uses the knowledge of joint interference

statistics to derive pre-filtering methods to mitigate RFI, yielding improved
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link spectral efficiency, e.g., by an additional 1−6 bits/sec/Hz for uncoded

QAM modulated transmission per communication link in the network.

Table 6.1 compares the contributions of this dissertation to the prior

work summarized in Table 2.2. Comparison is presented with respect to con-

tributions in (i) statistical modeling of RFI, (ii) use of RFI statistics for com-

munication performance analysis of wireless networks, and (iii) use of RFI

statistics for receiver design to mitigate RFI. As seen from Table 6.1, the ap-

proach used in this dissertation leads to closed-form interference statistics in

a wide range of interference scenarios. The benefit of closed-form statistics in

communication performance analysis of wireless networks, and receiver design

to mitigate RFI is also evident.

The specific contributions of this dissertation are built on the following

novel approaches that can be utilized to analyze and improve the communica-

tion performance of wireless networks:

1. Chapter 3 proposes a framework to derive closed-form interference statis-

tics that accurately model the tail probability of interference. The as-

sumption of narrowband emissions and fading, using the Middleton’s

identity given by (3.19), and using approximations such as (3.31), are

the central ideas that enable expressing the statistics in closed-form.

The framework enables establishing the applicability of symmetric alpha

stable and Gaussian mixture distributions in a wide variety of wireless

networks. While this framework works well for Poisson-based interferer
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distributions (e.g., Poisson and Poisson-Poisson cluster), extension to

general non-Poisson interferer distributions is not straightforward.

2. Chapter 4 uses a novel approach of utilizing the tail probability of in-

terference to derive closed-form communication performance measures

in wireless networks. This approach is particularly helpful when the ex-

act statistics of interference are not known in closed-form. Formulating

the problem at the amplitude and phase abstraction of the interference

enables using additional assumptions on the user emissions and fading

that help in deriving closed-form tail probability of interference.

3. Chapter 5 proposes the use of CIM as a distance measure, with ZOS of

interference to scale the CIM space, to design receivers that are robust

to the non-Gaussian impulsive statistics of residual interference. While

the potential of CIM as a distance measure in non-Gaussian environments

has been shown in prior work [2,138], using the ZOS of the interference to

scale the CIM space enables practical applicability of CIM space to varying

non-Gaussian interference environments.

Practical applications of this work include the design of MAC layer

protocols and robust transceivers to mitigate residual RFI in wireless networks.

This dissertation proposes direct contributions in robust transceiver design and

identifies the potential improvement in network throughput via optimization

of MAC layer channel access protocols.

173



Table 6.1: Contributions of this dissertation compared to prior work in (i) statistical mod-
eling of RFI, (ii) use of RFI statistics for network performance analysis, and (iii) use of
RFI statistics for receiver design to mitigate RFI. SAS, MCA, and GMM are defined in
Section 1.6. BPL/UBPL refer to the assumption of bounded/unbounded pathloss function.
Unless specified, statistics are derived assuming an UBPL function. CIM and ZOS stand for
correntropy induced metric and zero-order statistics, respectively.

S
ta

ti
st

ic
a
l

M
o
d
e
li
n

g
o
f

R
F

I

Instantaneous Statistics of RFI
Interferer Dis-
tribution

Spatial
Topology

Prior Work Chapter 3

Poisson
Entire Plane SAS [70–72] SAS (UBPL)

GMM (BPL)
Finite Area MCA [12,13] MCA
Guard Zone Not known MCA

Poisson-Poisson
Cluster

Entire Plane Not known SAS
Finite Area Not known GMM
Guard Zone Not known GMM

Joint Temporal Statistics of RFI
Interferer Dis-
tribution

Spatial
Topology

Prior Work Chapters 4,
5

Poisson Entire Plane Limited
[71,72]

SAS (UBPL)
GMM (BPL)

N
e
tw

o
rk

P
e
rf

o
r-

m
a
n

ce
A

n
a
ly

si
s Throughput, Delay, and Reliability of

Decentralized Wireless Networks

Prior Work Chapter 4

Networks with tem-
poral correlation

Limited [92–94] Spans temporal in-
dependence to full
correlation

R
e
ce

iv
e
r

D
e
si

g
n

to
M

it
ig

a
te

R
F

I Pre-filter Design to Mitigate RFI
Prior Work Chapter 5

Motivated by RFI
statistics

Limited Yes

Can include thermal
noise

Limited [29,112,113] Yes

Distance measure L2,L1 norm,
LDa [101]

CIM (ZOS scaled)

aLogarithmic Deviation
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6.2 Future Work

In this section, I outline several interesting research directions that this

dissertation can be extended to.

Closed-form statistics in non-Poisson field of interferers: The

assumption of Poisson distributed interferer locations is commonly made for

analytical tractability [56, 68, 74, 76]. Many MAC protocols, such as CSMA,

break this Poisson assumption. While various mathematical tools exist for

Poisson distributed interferers, analysis of communication performance in wire-

less networks with non-Poisson distributed interferer locations is non-trivial

[143]. If closed-form statistics that accurately model the tail probability of

interference can be derived, then the analysis of communication performance

will be significantly simplified. The framework used in Chapter 3 to derive

closed-form interference, however, works only for Poisson-based interferer dis-

tributions (e.g. Poisson and Poisson-Poisson cluster). While the applicability

of Gaussian mixture distributions can be intuitively argued under the assump-

tion of bounded pathloss model in any interferer distribution, explicit mathe-

matical characterization for communication performance analysis is required.

Applications to cognitive networks: The problem of modeling in-

terference from secondary users in a cognitive network resembles closely to

the network model used in this dissertation [66, 144]. In cognitive radios,

time-domain spectrum sensing algorithm formulate the detection problem as

a hypothesis test, and are sensitive to the assumption on interference statistics.

The results of this dissertation on statistical modeling can be directly extended
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to derive closed-form statistics of interference from the secondary users in the

network. Secondary users in a cognitive network can be considered to be dis-

tributed according to a Poisson point process [66]. A secondary user is active if

the received power of the uplink signal transmitted by a primary user falls be-

low the detection threshold, thereby creating a Guard zone around the primary

user [66]. The sum interference from secondary users can be modeled as Case

III in Chapter 3, and shown to follow a Gaussian mixture distribution. The

knowledge of closed-form interference statistics can be used to apply spectrum

sensing algorithms with improved detection performance [145]. Prior work on

signal detection in the presence of Gaussian mixture interference shows 15–

38dB improvement in detection performance at a false detection probability

of 0.1% over Gaussian detectors [145].

Applications to powerline communication networks (PCN):

The framework used in this dissertation can be adapted to model asynchronous

noise in the last mile PLC network (from the customer power meters to the

command and control center of the local utility) [146]. The last mile PLC

network is a shared medium between several subscribers (as in the US) to

hundreds of subscribers (as in Europe) [147]. The switching activity in these

large number of subscribers connected to the PLC network results in tempo-

rally correlated non-Gaussian interference. Modeling the switching activity

as a Poisson process, the results of this dissertation can be applied to model,

analyze, and improve the communication performance of PLC networks.

Multi-hop communication performance of decentralized wire-
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less networks: Chapter 4 used the joint temporal statistics of interference

to characterize the single-hop communication performance in a decentralized

wireless network. Extensions to analyze the multi-hop communication per-

formance would require the knowledge of joint spatio-temporal statistics –

deriving which is nontrivial in multi-hop networks. Nonetheless, if joint spatio-

temporal statistics can be derived, then multi-hop communication performance

of decentralized wireless can be analyzed using techniques similar to those used

in Chapter 4.

Decentralized optimization of MAC parameters to mitigate

RFI: Certain parameters of the MAC protocols, such as the channel access

probability in slotted-ALOHA, can be optimized using the knowledge of in-

terference statistics for improved network performance. In Chapter 4, 2×

improvement in the network throughput was shown by optimizing the number

of physical packets that are transmitted in a burst by the users. The opti-

mization required centralized knowledge of the network parameters such as

the user density. To the best of my understanding, decentralized optimization

of the MAC parameters at each user is nontrivial due to limited information

available from acknowledgment packets. Certain network parameters, such as

temporal correlation, may be partially characterized by observing the interfer-

ence at user. MAC parameters can thus be optimized at any user using the

additional information from the observed interference at that user.

Using CIM and ZOS based framework for robust receiver de-

sign: Many of the common receiver algorithms, such as time and frequency
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synchronization, channel estimation, channel equalization, and turbo decod-

ing, exhibit severe degradation in communication performance in the presence

of non-Gaussian impulsive noise [39, 40, 96, 148]. The ZOS scaled CIM space

proposed in Chapter 5 provides a useful distance measure in the presence of

non-Gaussian interference, and can be applied to design robust receiver al-

gorithms. For example, in turbo decoders robust distance metrics, such as

limiting nonlinearities and Huber’s metric, are employed in likelihood calcu-

lations to provide robustness against outliers. Adapting these metrics to the

changing interference environment is not straightforward. Using ZOS of inter-

ference to scale the CIM space provides a non-parametric framework to adapt

to the changing RFI environment.

Impact of mismatch in RFI distribution on receiver perfor-

mance: Simulations results presented in Chapter 3 and 5 show that re-

ceiver algorithms, such as pre-filters, to mitigate RFI are generally robust

to mismatch in the assumed RFI distribution and parameter estimation er-

rors [99, 145]. In particular, the robustness of the Gaussian mixture distri-

bution to model RFI was argued. Analytical characterization of the impact

of model mismatch on the BER performance of the receiver, however, is not

studied in this dissertation. Such characterization, though hard, can further

motivate the choice of a particular RFI distribution based on its robustness to

estimation errors in practical receivers.
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Appendix A

Statistical Properties of Symmetric Alpha

Stable Random Vectors

This appendix presents a brief review of the statistical properties of

symmetric alpha stable vectors used extensively throughout this dissertation.

I also prove some important theorems which are integral to the derivation of

communication performance measures presented in Chapter 4. This appendix

borrows heavily from the notation, theorems, and proofs used in [125], while

still being consistent with the notation used in this dissertation.

The following two theorems are stated without without proof. Theorem

A.1 concerns the representation of general symmetric alpha stable vectors,

while Theorem A.2 concerns the representation of an isotropic symmetric alpha

stable vector.

Theorem A.1. [Theorem 2.4.3 in [125]] X is a symmetric alpha stable vector

in Rd with 0 < α < 2 if and only if there exists a unique symmetric finite

measure Γ on the unit sphere Sd such that

E

{
exp

(
j

d∑
i=1

ωiXi

)}
= exp

−∫
Sd


√√√√ d∑

i=1

ωisi

α

Γ(ds)

 . (A.1)

Γ is the spectral measure of the symmetric alpha stable vector X.
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Theorem A.2. [Adapted from Proposition 2.5.5 in [125]] Let X be an isotropic

symmetric alpha stable vector in Rd with 0 < α < 2. Then the following three

statements are equivalent:

(a) The characteristic function of X is of the form

E

{
exp

(
j

d∑
i=1

ωiXi

)}
= exp

−σ

√√√√ d∑

i=1

ω2
i

α . (A.2)

(b) The spectral measure of X is uniformly distributed over the d-dimensional

unit sphere Sd.

(c) X is sub-Gaussian such that

X
d
=
{

A
1
2 G1, · · · ,A

1
2 Gd

}
. (A.3)

Here A is a positive stable random variable with characteristic exponent

α
2

, skewness parameter 1, and dispersion parameter 2
α
2 σ cos

(
πα
4

)
[125].

G1, · · · ,Gd are mutually independent, zero mean, unit variance Gaus-

sian random variables and independent of A.

Using Theorem A.2, I derive the following corollary regarding the joint

amplitude tails of an isotropic symmetric alpha stable vector.

Corollary A.3. Let X = (X1,I ,X1,Q, · · · ,Xd,I ,Xd,Q) be an isotropic symmet-

ric alpha stable vector in R2d with 0 < α < 2 and dispersion parameter σ as

defined by Theorem A.2. Then the joint tail probability of ‖X1‖, · · · , ‖Xd‖ can

be expressed as

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd) = 2ασCα
2

cos
(πα

4

)
Γ
(

1 +
α

2

)
(A.4)
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where β =

√
d∑
i=1

β2
i , ‖Xi‖ =

√
X2
i,I + X2

i,Q, and

Cα =

{
2
π

when α = 1,
1−α

Γ(2−α) cos(πα2 )
otherwise. (A.5)

Proof. Using the sub-Gaussian representation of an isotropic symmetric alpha

stable vector given in (A.3), X
d
=
{

A
1
2 G1,I ,A

1
2 G1,Q, · · · ,A

1
2 Gd,I ,A

1
2 Gd,Q

}
where A is a positive stable random variable and G1,I ,G1,Q, · · · ,Gd,I ,Gd,Q

are i.i.d. Gaussian random variables as defined in Theorem A.2, gives

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd)

= lim
β→∞

βαP
(
A
(
G2

1,I + G2
1,Q

)
> β2

1 , · · · ,A
(
G2
d,I + G2

d,Q

)
> β2

d

)
(A.6)

= lim
β→∞

βαP

(
A
β2

β2
1

(
G2

1,I + G2
1,Q

)
> β2, · · · ,Aβ2

β2
d

(
G2
d,I + G2

d,Q

)
> β2

)
(A.7)

= lim
β→∞

βαP

(
A min

i=1,··· ,d

β2

β2
i

(
G2
i,I + G2

i,Q

)
> β2

)
(A.8)

= lim
β→∞

βα
∞∫

0

P
(

A >
β2

x

)
1

2
e−

x
2 dx (A.9)

= 2ασCα
2

cos
(πα

4

)
Γ
(

1 +
α

2

)
(A.10)

where (A.9) is expressed by noting that for all i,
β2
i

β2

(
G2
i,I + G2

i,Q

)
are indepen-

dent and exponentially distributed with mean 2β2

β2
i

. Thus min
i=1,··· ,d

β2
i

β2

(
G2
i,I + G2

i,Q

)
is also exponentially distributed with mean

(∑d
i=1 β

2
i

2β2

)−1

= 2. Equation (A.10)

follows from the dominated convergence theorem, and noting that A is a posi-

tive α
2
-stable random variable with tails limt→∞ t

α
2 P (A > t) = 2

α
2 σCα

2
cos
(
πα
4

)
.
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Deriving the joint amplitude tail probability of a general symmetric

alpha stable vector is more involved as compared to the specialized case of

isotropic symmetric alpha stable vector dealt in Corollary A.3. I now state

a Lemma without proof and then prove a theorem which relates the joint

amplitude tail probability of a general symmetric alpha stable vector to its

spectral measure.

Lemma A.4. [Lemma 4.4.2 in [125]] Suppose that X is a random variable

with a regularly varying tail, i.e. , there is a number θ > 0 such that for every

number a > 1,

lim
x→∞

P(X > ax)

P(X > x)
= a−θ. (A.11)

Suppose also that the tail of X dominates the tail of a positive random variable

Y in the sense that

lim
x→∞

P(Y > x)

P(X > x)
= 0. (A.12)

Then

lim
x→∞

P(X + Y > x)

P(X > x)
=

P(X−Y > x)

P(X > x)
= 1. (A.13)

Theorem A.5. Let X = (X1,I ,X1,Q, · · · ,Xd,I ,Xd,Q) be a symmetric alpha

stable vector in R2d with 0 < α < 2 and a unique symmetric finite measure Γ

on the unit sphere S2d. If βi = βηi such that 0 < ηi < ∞ for i = 1, · · · , d,

then

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd) = Cα

∫
S2d

min
i=1,··· ,d

(√
s2

2i−1 + s2
2i

ηi

)α

Γ(ds)

(A.14)

where Cα is defined in (A.5).
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Proof. This proof adopts the approach used in the proof of Theorem 4.4.1

in [125]. Using Theorems 3.5.6 and 3.10.1, and Corollary 3.10.4 in [125],

(X1,I ,X1,Q, · · · ,Xd,I ,Xd,Q)
d
= (Y1, · · · ,Y2d) (A.15)

such that Yk have a Le-Page series representation

Yk =
(
CαΓ̃(S2d)

) 1
α

∞∑
i=1

εiΓ
− 1
α

i

fk(Vi)

f ∗(Vi)
(A.16)

=
(
CαΓ̃(S2d)

) 1
α
ε1Γ

− 1
α

1

fk(V1)

f ∗(V1)︸ ︷︷ ︸
=Uk

+
(
CαΓ̃(S2d)

) 1
α

∞∑
i=2

εiΓ
− 1
α

i

fk(Vi)

f ∗(Vi)︸ ︷︷ ︸
=Wk

(A.17)

Here fk : S2d → R is defined as fk(s) = sk for k = 1, · · · , 2d and s ∈ S2d,

f ∗ : S2d → R is defined as f ∗(s) = max
k=1,··· ,2d

|fk(s)| for s ∈ S2d, Γ̃(ds) =

(f ∗(s))α Γ(ds) is a finite measure on (S2d, Borel σ-algebra on S2d), {Γ1,Γ2, · · · }

is the sequence of arrival times of a Poisson process with unit arrival rate,

{V1,V2, · · · } is the sequence independent of {Γ1,Γ2, · · · } such that Vi has

a distribution Γ̃

Γ̃(S2d)
on S2d, and {ε1, ε2, · · · } is the sequence independent of

{Γ1,Γ2, · · · } and {V1,V2, · · · } such that P(εi = 1) = P(εi = −1) = 1
2
.

Using (A.17), and the triangle inequality, gives

min
i=1,··· ,d

√
U2

2i−1 + U2
2i

ηi
− 2

 max
i=1,··· ,2d

|Wi|

min
i=1,··· ,d

ηi

 ≤ min
i=1,··· ,d

√
Y2

2i−1 + Y2
2i

ηi

≤ min
i=1,··· ,d

√
U2

2i−1 + U2
2i

ηi
+ 2

 max
i=1,··· ,2d

|Wi|

min
i=1,··· ,d

ηi

 . (A.18)
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Tails of the random variable min
i=1,··· ,d

√
U2

2i−1+U2
2i

ηi
can be expressed as

lim
β→∞

βαP

(
min

i=1,··· ,d

√
U2

2i−1 + U2
2i

ηi
> β

)

= lim
β→∞

βαP

((
CαΓ̃(S2d)

) 1
α

Γ
− 1
α

1 min
i=1,··· ,d

√
f 2

2i−1(V1) + f 2
2i(V1)

ηif ∗(V1)
> β

)
(A.19)

= lim
β→∞

βα
∫
S2d

P

((
CαΓ̃(S2d)

) 1
α

Γ
− 1
α

1 min
i=1,··· ,d

√
f 2

2i−1(s) + f 2
2i(s)

ηif ∗(s)
> β

)
Γ̃(ds)

Γ̃(S2d)

(A.20)

= lim
β→∞

βα
∫
S2d

(
1− exp

(
−CαΓ̃(S2d)β

−α

(
min

i=1,··· ,d

√
s2

2i−1 + s2
2i

ηif ∗(s)

)α))
Γ̃(ds)

Γ̃(S2d)

(A.21)

= Cα

∫
S2d

min
i=1,··· ,d

(√
s2

2i−1 + s2
2i

ηi

)α

Γ(ds) (A.22)

where (A.20) involves integrating over the distribution of V1, and (A.22) is

derived using the dominated convergence theorem and transforming the finite

measure over which the integral is expressed. From (A.22), it can be noted

that the random variable min
i=1,··· ,d

√
U2

2i−1+U2
2i

ηi
is regularly varying (as defined

by (A.11)). Furthermore,
max

i=1,··· ,2d
|Wi|

min
i=1,··· ,d

ηi
is a positive random variable and the

relation

lim
β→∞

βαP
(

max
i=1,··· ,2d

|Wi| > β

)
= 0 (A.23)

was proved as an intermediate step in the proof of Theorem 4.4.1 in [125]. Thus

according to Lemma A.4, the tails of min
i=1,··· ,d

√
U2

2i−1+U2
2i

ηi
± 2

(
max

i=1,··· ,2d
|Wi|

min
i=1,··· ,d

ηi

)
are

dominated by the tails of min
i=1,··· ,d

√
U2

2i−1+U2
2i

ηi
. Using (A.14), (A.18), and Lemma
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A.4,

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd)

= lim
β→∞

βαP

(
min

i=1,··· ,d

√
Y2

2i−1 + Y2
2i

ηi
> β

)
(A.24)

= lim
β→∞

βαP

(
min

i=1,··· ,d

√
U2

2i−1 + U2
2i

ηi
> β

)
(A.25)

= Cα

∫
S2d

min
i=1,··· ,d

(√
s2

2i−1 + s2
2i

ηi

)α

Γ(ds). (A.26)

This concludes the proof of the theorem.

Using Theorem A.5, I now prove a result which is relevant for the

particular form of the symmetric alpha stable vectors derived in Chapter 4.

Corollary A.6. Let X = (X1,I ,X1,Q, · · · ,Xd,I ,Xd,Q) be a symmetric alpha

stable vector in R2d with 0 < α < 2 and a spectral measure Γ on the unit sphere

S2d. Consider the case when the spectral measure is a sum of independent

spectral measures of the form

Γ = Γ0 +

|X|∑
k=1

Γkδ

 ⋃
j∈X(k)

{s2j−1, s2j}

 (A.27)

where X is an arbitrary collection of non-empty proper subsets of {1, 2, · · · , n},

|X| denotes the cardinality of X, X(k) denotes the kth set contained in X, δ(· · · )

denotes the dirac delta functional, Γ0 is a spectral measure distributed over

the unit sphere S2n, and Γk is a spectral measure distributed over S2(n−|X(k)|)

formed from the dimensions ∪j=1,··· ,2n;j /∈X(k){2j − 1, 2j}. If βi = βηi such that
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0 < ηi < ∞ for i = 1, · · · , d, then the joint tail probability are dominated by

the spectral measure Γ0 such that

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd) = Cα

∫
S2d

min
i=1,··· ,d

(√
s2

2i−1 + s2
2i

ηi

)α

Γ0(ds).

(A.28)

Proof.

lim
β→∞

βαP (‖X1‖ > β1, · · · , ‖Xd‖ > βd)

=Cα

∫
S2d

min
i=1,··· ,d

(√
s2

2i−1 + s2
2i

ηi

)α

Γ(ds) (A.29)

=Cα

∫
S2d

min
i=1,··· ,d

(√
s2

2i−1+s2
2i

ηi

)α

Γ0(ds)

+

|X|∑
k=1

∫
S2d

min
i=1,··· ,d

(√
s2

2i−1+s2
2i

ηi

)α

δ

 ⋃
j∈X(k)

{s2j−1, s2j}

Γk(ds)

 (A.30)

=Cα

∫
S2d

min
i=1,··· ,d

(√
s2

2i−1+s2
2i

ηi

)α

Γ0(ds) (A.31)

since mini=1,··· ,d

(√
s22i−1+s22i
ηi

)α
δ
(⋃

j∈X(k){s2j−1, s2j}
)

= 0 as Xk is a non-

empty set.

Interpretation of Corollary A.6: A spectral measure of the form

(A.27) arises when the alpha stable vector X = (X1,I ,X1,Q, · · · ,Xd,I ,Xd,Q)

can be represented as a sum of independent stable random vectors such that

X = Y(0) +
∑

i Y
(i) where Y(0) has all components

{
Y

(0)
k,I ,Y

(0)
k,Q

} p

6= 0, k =
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1, · · · , d and Y(i) have at least one
{

Y
(i)
k,I ,Y

(i)
k,Q

}
p
= 0, k ∈ {1, · · · , d}. Here

p
= and

p

6= denote equality and non-equality in probability, respectively. Then

Corollary A.6 states that joint tail probability of the random vector X of the

form P (‖X1‖ > β1, · · · , ‖Xd‖ > βd) is dominated by the tails of the random

vector Y0 alone, when β1, · · · , βd →∞ at the same rate.
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Appendix B

Statistical Properties of Gaussian Mixture

Random Vectors

This appendix presents a brief review of the statistical properties of

zero-mean Gaussian mixture random vectors. Let X = {X1,I ,X1,Q, · · ·

,Xd,I ,Xd,Q} be a 2d-dimensional Gaussian mixture random vector in R2d.

This appendix assumes a particular case when {Xi,I ,Xi,Q} is isotropic for

i = 1, · · · , d. The joint characteristic function of X can be expressed as

ΦX(ω) =
∞∑
l=0

ple
− |ω1|

2(σ1(l))2+···+|ωd|2(σd(l))2

2 . (B.1)

where ω = {ω1,I , ω1,Q, · · · , ωd,I , ωd,Q} is the set of frequency variables and

|ωi| =
√
ω2
i,I + ω2

i,Q. Here pl are the mixture probabilities such that pl ≥ 0

and
∞∑
l=0

pl = 1, (σi(l))
2 is the variance of corresponding to {Xi,I ,Xi,Q} in the

lth mixture component.

Using (B.1), the joint probability density function can be expressed as

fX (X) =
∞∑
l=0

pl
∏

m∈[1,d],σm(l)=0

δ (Xm,I , Xm,Q)
∏

m∈[1,d],σm(l) 6=0

1√
2πσm(l)

e
−
X2
m,I+X2

m,Q

2(σm(l))2

(B.2)

where δ(·, ·) represents the two dimensional Dirac delta functional.
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Using (B.2), the tail probability of the random envelope for the Gaus-

sian mixture distribution with parameters pl and (σm(l))2 for y ≥ 0 can be

expressed as

PGMM(‖X1‖ > β1, · · · , ‖Xd‖ > βd) =
∞∑
l=0

pl
∏

m∈[1,d],σm(l)6=0

e
− β2

m
2(σm(l))2 (B.3)

where ‖Xm‖ =
√

X2
m,I + X2

m,Q and βm ≥ 0 for m ∈ [1, d].
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Appendix C

Statistical Properties of Middleton Class A

Complex Random Variables

The Middleton Class A distribution is a particular form of the Gaussian

mixture distribution. The joint probability density function of a isotropic

complex random variable X = XI + jXQ distributed according to Middleton

Class A model (without an additive Gaussian component) can be expressed

as [13]

fXI ,XQ
(XI , XQ) = e−Aδ(XI , XQ) +

∞∑
m=1

e−AAm

m!
e
−
X2
I+X2

Q
2mΩ2A
A (C.1)

where A is the overlap index and Ω2A is the mean intensity of the random

variable.

From (C.1), the joint characteristic function of the in-phase and quadra-

ture phase components of the complex random variable can be expressed as

ΦXI ,XQ
(ωI , ωQ) = e

A

e−(ω2
I+ω2

Q)Ω2A
2A −1


. (C.2)

Note that as A → ∞ while Ω2A is finite, the Middleton Class A model con-

verges to a Gaussian distribution with variance Ω2A.

Using (C.1), the tail probability for the Middleton Class A distribution

with parameters A and Ω2A corresponding to an amplitude threshold y ≥ 0
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can be expressed as

PMCA(‖X‖ > β) =
∞∑
m=1

e−AAm

m!
e
− β2

2mΩ2A
A . (C.3)
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