Space-Time-Frequency Methods for Interference-Limited Communication Systems

Karl F. Nieman

Department of Electrical and Computer Engineering The University of Texas at Austin

PHD DEFENSE

October 22, 2014

COMMITTEE MEMBERS

Ross Baldick Brian L. Evans Robert W. Heath, Jr. Russell Pinkston Preston S. Wilson

Wireless Networking & Communications Group

Wireless Research – Some Perspective

Pope Election 2005

Pope Election 2013

What a difference in just 8 years!

Relentless Demand for More Data

Industry Forecasts of Mobile Data Traffic

From Mobile Broadband: The Benefits of Additional Spectrum (FCC Report 10/2010)

Wgaa Kookies Receivings Were Like...

Interference-Limited Communications

• Thesis statement:

Multi-dimensional signal processing methods can be applied to dramatically enhance communication performance <u>without</u> sacrificing real-time requirements.

Contributions

Space-Time-Frequency Methods for Interference-Limited Communication Systems

Space-Time for Underwater Acoustic	 Wideband, space-time interference suppression Sum-efficiencies 10x above prior state-of-the-art
Time-Frequency for Powerline	 Cyclic modulation and impulsive noise mitigation Up to 28 dB operating point improvements
Space-Time- Frequency for Cellular	 Real-time framework for up to 128 antenna MIMO Used in world's first 100-antenna testbed

First Contribution

Space-Time Methods for Underwater Acoustic Communications

Figure taken from: http://www.l-3mps.com/maripro/throughwateracousticcomm.aspx

Underwater Acoustic Physics

- Data is modulated on longitudinal acoustic pressure waves
- Different physics from radio frequency (RF) propagation
 - 200,000x slower than RF in free space
 - Highly complex propagation, particularly in shallow water environments

Typical Medium Range System

Time-Frequency Coherence

http://ltesignaling.blogspot.com/2011/12/radio-interface-basics.html Wideband methods must (dB) be used due to large magnitude of relative bandwidths autocorrelation coherence Slow sound speed coherence time bandwidth \rightarrow doubly-selective Adaptive equalization 075 15 225 3 supports fixed time/ frequenc) bandwidth area Acoustic **RF** Cellular 3.3 ms 2 µs RMS delay spread 1.2 ms coherence time 1 ms 0.01 3.24×10^{-7} Doppler dilation factor 1.0 for $f_c = 30$ kHz, 0.0072 for $f_c = 2.6$ GHz, relative bandwidth 18 MHz bandwidth 30 kHz bandwidth

Space-Time-Frequency Coherence

Adaptive Space-Time Interference Suppression

- Space-time monopulse prefilter applied to array outputs[Hen85]
- Beam pairs with frequency-invariant properties are produced

• Broadband beampattern has no nulls, yet linear combination can be used to create beam x(t) with deep null at angle θ_n

$$x(t) = s_1(t) - (\sin \theta_n - \sin \theta_s) s_0(t)$$

- Reduction in channel count has two benefits
 - 1. Computational complexity is substantially reduced
 - 2. Time-frequency coherence of adaptive equalizer is increased

Shallow Water Acoustic Data Collection

- Mobile research vessel transmits back to stationary array at test station
- ~5 TB of acoustic data collected and analyzed over 2 yr project
 - Methods developed for Doppler tracking[Per10], monopulse[Nie10a], and equalizer design[Nie10b]

Overhead view of Lake Travis Test Station with overlaid bathymetric map

Prior Empirical Results

- Close fit to *empirical range-rate bound* of 40 kbps/km_[Ki00]
 - Target bit-error-rates of 10⁻¹ and 10⁻²

Method	Number of Elements/ Array Geometry	Center Frequency (kHz)	Range (km)	Rate (kbps)	Bound (kbps)	Sum-Rate Efficiency (bps/Hz)
Multi-Channel Adaptive Equalization _[Fre08]	8 vertical or horizontal line, multi- user	23	0.5-2	2.8	20	0.56
Channel Eigen Decomposition	64 cross-beam	24	3.2	16	12.5	1.0
Spatial Filter then Equalizing [Yan07]	32 vertical line	1.2	10	0.4	4	1.0
OFDM _[Sto08]	8 vertical	25	1	24	40	2.0
Single-Carrier MIMO _[Tao10]	8 vertical receive, 2 vertical transmit	17	1-3	32	13.3	2.3

Spatial-Division Multiple Access (SDMA) + Monopulse

- Multiple azimuthal users supported via orthogonal beam set
- Monopulse dynamically suppresses up to 14 dB interference
- Achieved sum rate of 28 bps/Hz serving 40° sector

New Empirical Results

- Achieved sum-spectral efficiencies **10x** prior state-of-the-art
 - Target bit-error-rates of 10⁻¹ and 10⁻²

Method	Number of Elements/ Array Geometry	Center Frequency (kHz)	Range (km)	Rate (kbps)	Bound (kbps)	Sum-Rate Efficiency (bps/Hz)
Multi-Channel Adaptive Equalization _[Fre08]	8 vertical or horizontal line, multi- user	23	0.5-2	2.8	20	0.56
Channel Eigen Decomposition [Bea04]	64 cross-beam	24	3.2	16	12.5	1.0
Spatial Filter then Equalizing [Yan07]	32 vertical line	1.2	10	0.4	4	1.0
OFDM _[Sto08]	8 vertical	25	1	24	40	2.0
Single-Carrier MIMO _[Tao10]	8 vertical receive, 2 vertical transmit	17	1-3	32	13.3	2.3
Monopulse + SDMA _[Nie11]	2-D w/ hundreds, 7 simultaneous users			1400		28

Highlights

Develop methods for enhanced Doppler tracking and equalization

Develop space-time reverberation (interference) reduction method

Demonstrate sum spectral efficiencies **10x** above prior state-of-the-art

Relevant work

- [Nie11] K. F. Nieman, K. A. Perrine, T. L. Henderson, K. H. Lent, and T. J. Brudner, "Sonar arraybased acoustic communication receivers with wideband monopulse processing," *USN Journal of Underwater Acoustics*, 61(2), 2011.
- [Nie10a] K.F. Nieman, K.A. Perrine, T.L. Henderson, K.H. Lent, T.J. Brudner, and B.L. Evans, Wideband monopulse spatial Itering for large receiver arrays for reverberant underwater communication channels. *Proc. IEEE OCEANS*, 2010.
- [Per10] K.A. Perrine, K.F. Nieman, T.L. Henderson, K.H. Lent, T.J. Brudner, and B.L. Evans. Doppler estimation and correction for shallow underwater acoustic communications. *Proc. IEEE Asilomar Conference on Signals, Systems, and Computers*, 2010.
- [Nie10b] K.F. Nieman, K.A. Perrine, K.H. Lent, T.L. Henderson, T.J. Brudner, and B.L. Evans. Multi-stage and sparse equalizer design for communication systems in reverberant underwater channels. *Proc. IEEE Workshop on Signal Processing Systems*, 2010.

Time-Frequency Methods for OFDM Powerline Communications

Powerline Communications (PLC)

- Power grid originally designed for power distribution
- Form networks by coupling in communication signals

PLC Noise in the 0-200 kHz Band

- Primary components
 - 1. Cyclostationary
 - 2. Asynchronous impulsive
- Sources include
 - Light dimmers/ballasts
 - Switching converters
 - Induction motors
 - Rectifiers
- Limited noise mitigation in PLC standards:
 - G3-PLC_[Max11]
 - PRIME
 - IEEE P1901.2[lee13]
 - ITU G.9901-9904_[Itu13]

Conventional OFDM PLC System

- Built upon orthogonal frequency-division multiplexing (OFDM)
 - Splits communication signal into orthogonal sub-bands
- Standards address cyclic and impulsive noise through
 - Robust modulation, interleaving, and error-correcting codes
 - Designed to uniformly distribute signal <u>not rate optimal</u>

Proposed OFDM PLC System

Impulsive Noise Mitigation Techniques

- Compressive sensing approach used for low impulse power
- AMP provides best performance vs. complexity tradeoff

Method	Impulse Low	e Power High	Non- Parametric?	Computational Complexity
Nulling/ Clipping _[Tse12]		V		Low
Iterative Decoding for OFDM _[Har00]		\checkmark		High
Thresholded Least Squares/MMSE _[Cai08]		\checkmark		Med
Sparse Bayesian Learning _[Lin13]	V	\checkmark	\checkmark	High (matrix inversion)
/ ₁ -norm minimization _[Cai08]	V	\checkmark	~	High
Approximate Message Passing (AMP) _[Nas13, Nie13]	V	V		Med

Implementation Process

Implemented using field programmable gate arrays (FPGAs)[Nie13b]

Real-Time Measurements in Impulsive Noise

• Up to <u>8 dB</u> of impulsive noise mitigated in real-time testbed

Cyclic Adaptive Modulation and Coding

using SNR estimate \mathbf{S}

- Transmitter and receiver exchange tone map C^{\star}
- Circularly index tone map

modulation	bits/subcarrier
D8PSK	3
DQPSK	2
DBPSK	1
ROBO	0.25

Simulations Using P1901.2 Noise Model

Case C: Cyclostationary + Narrowband Noise

Highlights

Conduct noise measurement campaign and cyclic spectral analysis

Implement real-time impulsive noise mitigation testbed for PLC

Develop cyclic adaptive modulation and coding scheme for OFDM

Achieved up to 8 dB noise mitigation in real-time and 28 dB operating point shifts

Relevant work

[Nie13a] – K.F. Nieman, J. Lin, M. Nassar, K. Waheed, and B.L. Evans, "Cyclic spectral analysis of power line noise in the 3-200 kHz band," *Proc. IEEE ISPLC*, 2013. Won best paper award
 [Nie13b] – K.F. Nieman, M. Nassar, J. Lin, and B.L. Evans, "FPGA implementation of a message-passing OFDM receiver for impulsive noise channels. *Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers*, 2013. Won best student paper Architecture and Implementation Track
 [Wah14] – K. Waheen, K. F. Nieman, Adaptive cyclic channel coding for orthogonal frequency division multiplexed (OFDM) systems, US patent pending, 2014.

Third Contribution

Space-Time-Frequency Methods for Multi-Antenna Cellular Communications

http://www.steelintheair.com/Cell-Phone-Tower.html

Multiple-Input, Multiple-Output (MIMO)

- Multiple antennas at transmitter and/or receiver
 - Higher robustness via space-time block codes
 - Increased rate via spatial multiplexing
- Can be extended to multi-user MIMO (MU-MIMO)
 - Serve multiple simultaneous users via spatial-division multiple access
 - Over same bandwidth, same time slot, just more antennas

Massive MIMO (Scaling Up MU-MIMO)

- Scale N_{BS} by an order of magnitude over existing standards
 - LTE-A provisions $N_{BS} \le 8$, so increase to $N_{BS} = 64$, 100, 128
- Challenges for Massive MIMO
 - Scaling data rates and interfaces to support large N_{BS}
 - Low-latency for channel reciprocity (fast switch from uplink to downlink)
 - Synchronizing radios across N_{BS} basestation antennas

Existing Massive MIMO Testbeds

Several research groups have developed test systems

Group	Band (GHz)	Hardware Platform	Number of Antennas at Basestation	Number of Users	Real-time MIMO Processing?
Lund University ^[Rus13]	2.6	Network Analyzer	128 cylindrical array	6	No ¹
Rice University ^[She12]	2.4	WARP boards, powerPC	8 x 8 = 64 planar array	15	No ²
Samsung FD-MIMO ^[Sam13]	<5	Proprietary w/ Freescale DSPs	8 x 8 = 64 planar array	?	Yes ³

¹ Data collected over long duration (hours) where channel is assumed constant; post-processed.
 ² Experimental results based on SINR measured at UE w/ high latency (100 ms) beamforming over 0.625 MHz of bandwidth. Currently working on lower latency, higher BW system.
 ³ Proprietary system; not many public details available except that 1 Gb/s achieved at 2 km.

Proposed Massive MIMO Test Platform

New platform allows for real-time, off-the-shelf solution

Group	Band (GHz)	Hardware Platform	Number of Antennas at Basestation	Number of Users	Real-time MIMO Processing?
Lund University ^[Rus13]	2.6	Network Analyzer	128 cylindrical array	6	No
Rice University ^[She12]	2.4	WARP boards, powerPC	8 x 8 = 64 planar array	15	No
Samsung FD-MIMO ^[Sam13]	<5	Proprietary w/ Freescale DSPs	8 x 8 = 64 planar array	?	Yes
Proposed	1.2-6	National Instruments USRP	Up to 128	10	Yes ¹

¹20 MHz bandwidth w/ less than 1 ms latency.

Channel State Acquisition and Processing

- Supports different precoders zero-forcing, MRT, etc.
- Uses OFDM signaling in uplink and downlink
 - Divide processing via orthognal sub-bands to meet hardware limitations
- Assumption of channel reciprocity requires:
 - Fast switching between uplink and downlink (< channel coherence time)
 - Compensation of RF impairments (transmit and receiver response)

Mapping to Hardware

Lund University (100-Antenna) Testbed

160-element dualpolarized array allows different geometries to be explored

cabled PCI-Express to switches and controller

distributed processing of 120 MS/s * 32 bits/S/channel * 100 channels = **384 Gb/s** in uplink and downlink directions

Phase and Time Synchronization Results

100-Antenna Uplink MIMO Constellation

Contribution 3 Summary

Highlights

Develop a commercial, off-the-shelf solution for up to 128-antenna MIMO

Scale data rates/interfaces, minimize latency, and distribute synchronization

Presented first results of 100-antenna MIMO

Relevant work

- [Nie13] K. F. Nieman and B. L. Evans, "Time-Domain Compression of Complex-Baseband LTE Signals for Cloud Radio Access Networks", *Proc. IEEE Global Conference on Signal and Information Processing*, 2013.
- [Hua12] H. Huang, K. Nieman, P. Chen, M. Ferrari, Y. Hu, and D. Akinwande, "Properties and applications of electrically small folded ellipsoidal helix antenna", *IEEE Antennas and Wireless Propagation Letters*, 2012.
- [Hua11] H. Huang, K. Nieman, Y. Hu, and D. Akinwande, "Electrically small folded ellipsoidal helix antenna for medical implant applications", *Proc. IEEE International Symposium on Antennas and Propagation*, 2011.
- [Vei14] J. Vieira, S. Malkowsky, K. F. Nieman, Z. Miers, N. Kundargi, L. Liu, I. Wong, V. Owall, O. Edfors, and F. Tufvesson, "A flexible 100-antenna testbed for Massive MIMO", *Proc. IEEE Global Communication Conference (GLOBECOM)*, 2014, accepted for publication.
- [Nie14] -- K. F. Nieman, N. U. Kundargi, I. C. Wong, and B. C. Prumo, Synchronization of large antenna count systems", 2014, US patent pending.
- [Won14] I. C. Wong, K. F. Nieman, and N. U. Kundargi, "Signaling and frame structure for Massive MIMO cellular telecommunication systems", 2014, US patent pending.
- [Kun14] N. U. Kundargi, I. C. Wong, and K. F. Nieman, Distributed low latency Massive MIMO telecommunication transceiver processing framework and use," 2014, US patent pending
- [Nie14] K. F. Nieman, N. Kundargi, I. Wong, and B. L. Evans, "High speed processing framework for high channel count MIMO", *Proc. IEEE ISCAS*, 2014, to be submitted.

Summary of Contributions

Multi-dimensional signal processing methods can be applied to dramatically enhance communication performance <u>without</u> sacrificing real-time requirements.

Summary of Relevant Work by Presenter

- [Nie10a] K.F. Nieman, K.A. Perrine, T.L. Henderson, K.H. Lent, T.J. Brudner, and B.L. Evans, Wideband monopulse spatial Itering for large receiver arrays for reverberant underwater communication channels. *Proc. IEEE OCEANS*, 2010.
- [Per10] K.A. Perrine, K.F. Nieman, T.L. Henderson, K.H. Lent, T.J. Brudner, and B.L. Evans. Doppler estimation and correction for shallow underwater acoustic communications. *Proc. IEEE Asilomar Conference on Signals, Systems, and Computers*, 2010.
- [Nie10b] K.F. Nieman, K.A. Perrine, K.H. Lent, T.L. Henderson, T.J. Brudner, and B.L. Evans. Multi-stage and sparse equalizer design for communication systems in reverberant underwater channels. *Proc. IEEE Workshop on Signal Processing Systems*, 2010.
- [Nie11] K. F. Nieman, K. A. Perrine, T. L. Henderson, K. H. Lent, and T. J. Brudner, "Sonar array-based acoustic communication receivers with wideband monopulse processing," USN Journal of Underwater Acoustics, 61(2), 2011.
- [Hua11] H. Huang, K. Nieman, Y. Hu, and D. Akinwande, "Electrically small folded ellipsoidal helix antenna for medical implant applications", *Proc. IEEE International Symposium on Antennas and Propagation*, 2011.
- [Hua12] H. Huang, K. Nieman, P. Chen, M. Ferrari, Y. Hu, and D. Akinwande, "Properties and applications of electrically small folded ellipsoidal helix antenna", *IEEE Antennas and Wireless Propagation Letters*, 2012.
- [Nie13a] K.F. Nieman, Jing Lin, M. Nassar, K. Waheed, and B.L. Evans, "Cyclic spectral analysis of power line noise in the 3-200 kHz band," Proc. IEEE Conf. on Power Line Communications and Its Applications, 2013. Won best paper award
- [Nie13b] K.F. Nieman, M. Nassar, Jing Lin, and B.L. Evans, "FPGA implementation of a message-passing OFDM receiver for impulsive noise channels. *Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers*, 2013. Won best student paper Architecture and Implementation Track, took 2nd place overall
- [Nie13c] K. F. Nieman and B. L. Evans, "Time-Domain Compression of Complex-Baseband LTE Signals for Cloud Radio Access Networks", *Proc. IEEE Global Conference on Signal and Information Processing*, 2013.
- [Vei14] J. Vieira, S. Malkowsky, K. F. Nieman, Z. Miers, N. Kundargi, L. Liu, I. Wong, V. Owall, O. Edfors, and F. Tufvesson, "A flexible 100antenna testbed for Massive MIMO", *Proc. IEEE Global Communication Conference (GLOBECOM)*, 2014, accepted for publication.
- [Nie14] –K. F. Nieman, N. Kundargi, I. Wong, and B. L. Evans, "High speed processing framework for high channel count MIMO", *Proc. IEEE International Symposium on Circuits and Systems (ISCAS)*, 2014, to be submitted.
- [Nie14] -- K. F. Nieman, N. U. Kundargi, I. C. Wong, and B. C. Prumo, Synchronization of large antenna count systems", 2014, US patent pending.
- [Won14] I. C. Wong, K. F. Nieman, and N. U. Kundargi, "Signaling and frame structure for Massive MIMO cellular telecommunication systems", 2014, US patent pending.
- [Kun14] N. U. Kundargi, I. C. Wong, and K. F. Nieman, Distributed low latency Massive MIMO telecommunication transceiver processing framework and use," 2014, US patent pending

References

- [Cai08] G. Caire; T. Y. Al-Naffouri; A. K. Narayanan, "Impulse noise cancellation in OFDM: an application of compressed sensing," *Information Theory,* 2008. ISIT 2008. IEEE International Symposium on , 2008.
- [Tse12] D-F. Tseng; Y. S. Han; W. H. Mow; L-C. Chang; A.J.H. Vinck, "Robust Clipping for OFDM Transmissions over Memoryless Impulsive Noise Channels," *Communications Letters, IEEE*, vol.16, no.7, 2012.
- [Lin13] J. Lin; M. Nassar; B. L. Evans, "Impulsive Noise Mitigation in Powerline Communications Using Sparse Bayesian Learning," *Selected Areas in Communications, IEEE Journal on*, vol.31, no.7, 2013.
- [Nas13] M. Nassar; P. Schniter; B. L. Evans, "A factor graph approach to joint OFDM channel estimation and decoding in impulsive noise environments," *IEEE Trans. on Signal Processing*, accepted for publication, 2013.
- [Har00] J. Häring and A. J. Han Vinck, "OFDM transmission corrupted by impulsive noise," in Proc. Int. Symp. Powerline Communications (ISPLC), 2000.
- [Max11] Maxim and ERDF, "Open Standard for Smart Grid Implementation," 2011.
- [Pri13] PRIME Alliance, "Interoperable Standard for Advanced Meter Management and Smart Grid," 2013.
- [lee13] P1901.2, "IEEE Draft Standard for Low Frequency (less than 500 kHz) Narrow Band Power Line Communications for Smart Grid Applications," 2013.
- [Itu13] ITU, "Narrowband orthogonal frequency division multiplexing power line communication transceivers," 2013.
- [Kil00] D. B. Kilfoyle; A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE Journal of Oceanic Engineering, vol.25, no.1, 2000.
- [Fre08] L. Freitag; M. Grund; J. Catipovic; D. Nagle; B. Pazol; J. Glynn, "Acoustic communication with small UUVs using a hull-mounted conformal array," *OCEANS, 2001. MTS/IEEE Conference and Exhibition*, vol.4, 2001.
- [Bea04] P.-P.J. Beaujean; L. R. LeBlanc, "Adaptive array processing for high-speed acoustic communication in shallow water," *IEEE Journal of Oceanic Engineering*, vol.29, no.3, 2004.
- [Yan07] T. C. Yang, "A study of spatial processing gain in underwater acoustic communications," *IEEE Journal of Oceanic Engineering*, 32(3), 2007.
- [Hen85] T. L. Henderson, "Matched beam theory for unambiguous broadband direction finding," J. Acoust. Soc. Am., 78(2), 1985.
- [Sto08] M. Stojanovic, "OFDM for underwater acoustic communications: Adaptive synchronization and sparse channel estimation," *Proc. IEEE Conf. on Acoustics, Speech and Signal Processing,* 2008.
- [Tao10] J. Tao; Y. Zheng; C. Xiao; T. C. Yang; W-B. Yang, "Channel equalization for single carrier MIMO underwater acoustic communications," EURASIP Journal on Advances in Signal Processing, 2010.
- [Pau04] A. J. Paulraj; D. A. Gore; R. U. Nabar; and H. Bolcskei, "An overview of MIMO communications a key to gigabit wireless," *Proceedings of the IEEE*, 92(2), 2004.
- [3gp13] 3rd Generation Partnership Project. 3GPP Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Access Network (E-UTRA); Base Station Radio Transmission and Reception (Release 12), 2013.
- [Rus13] F. Rusek; D. Persson; B. K. Lau; E.G. Larsson; T. L. Marzetta; O. Edfors; F. Tufvesson, "Scaling Up MIMO: Opportunities and Challenges with Large Arrays," *IEEE Signal Processing Magazine*, 30(1), 2013.
- [She12] C. Shepard; H. Yu, N. Anand, E. Li, T. L. Marzetta, R. Yang, L. Zhong. "Argos: Practical Many-Antenna Base Stations," in Proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), 2012.
- [Sam13] Samsung, "Samsung takes first 5G steps with advanced antenna," Press Release, May 2013, Online: <u>http://www.pcworld.idg.com.au/article/461656/samsung_takes_first_5g_steps_advanced_antenna/</u>

Questions?