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Wireless Research – Some Perspective 
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Pope Election 2005 Pope Election 2013 

What a difference in just 8 years! 
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Relentless Demand for More Data 
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Industry Forecasts of Mobile Data Traffic 

From Mobile Broadband: The Benefits of Additional Spectrum (FCC Report 10/2010) 

More Data 
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Digital Communications 
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Channel Encoding Decoding 
source 

data 
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Transmitter Receiver 

What We Wish Channels Were Like… What is More Realistic… 
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Impulsive Noise in Wi-Fi 

clocks, 

buses 

• Transfer digital information to/from remote destination 

• Things we care about  
– Throughput – how fast is source information moving over the link? 

– Latency – how long does it take for information to get there? 

– Signal to noise ratio – how noisy is the channel? 

– Bit error rate – what is the probability that bits are decoded incorrectly? 
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Interference-Limited Communications 
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• Thesis statement: 

Multi-dimensional signal processing methods can be applied 
to dramatically enhance communication performance  
without sacrificing real-time requirements. 

Underwater Acoustic Powerline Communications Multi-Antenna Cellular 



Contributions 
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• Wideband, space-time interference suppression 

• Sum-efficiencies 10x above prior state-of-the-art 

Space-Time for 

Underwater 

Acoustic 

• Cyclic modulation and impulsive noise mitigation 

• Up to 28 dB operating point improvements 

Time-Frequency 

for Powerline 

• Real-time framework for up to 128 antenna MIMO 

• Used in world’s first 100-antenna testbed 

Space-Time-

Frequency for 

Cellular 

Space-Time-Frequency Methods for  
Interference-Limited Communication Systems 



Space-Time Methods for Underwater 

Acoustic Communications 

First Contribution 
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Figure taken from: http://www.l-3mps.com/maripro/throughwateracousticcomm.aspx 



• Data is modulated on longitudinal acoustic pressure waves 

• Different physics from radio frequency (RF) propagation 

– 200,000x slower than RF in free space 

– Highly complex propagation, particularly in shallow water environments 

 

 

 

Underwater Acoustic Physics 
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Typical Medium Range System 

For comparison, SR-71 jet at Mach  

3.4 achieves only 0.0000034 cRF 

Absorptive mechanisms 

include viscosity, strain 

relaxation, heat conduction usable band at 1 km 

range (km) 0.02 – 10 

bandwidth (kHz) 1 – 100 

center frequency (kHz) 5 – 100 

ratio of attainable speed to 

propagation speed for typical user 
0.00 – 0.01 



Time-Frequency Coherence 

•
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Acoustic RF Cellular 
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http://ltesignaling.blogspot.com/2011/12/radio-interface-basics.html 

RMS delay spread 3.3 ms 2 μs 

coherence time 1 ms 1.2 ms 

Doppler dilation factor 0.01 3.24 × 10-7 

relative bandwidth 



Space-Time-Frequency Coherence 
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• 4-D coherence properties 

of shallow water channel 

• Based on high resolution 

imaging SONAR data 

• Can be used to derive  

4-D marginal of signal 

range-Doppler (time-frequency) 

receive power (from mobile transmitter to boat) 
line-of-sight component 

bottom scatterers 

surface reverb 

specular diffuse 

Doppler-

spread 

delay-spread 
http://www.optimismnow.com/optimism-blog/tag/happiness 



Adaptive Space-Time Interference Suppression 

•
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0.17s0(t) + s1(t) 

linear 

combination 



Shallow Water Acoustic Data Collection 

• Mobile research vessel transmits back to stationary array at test station 

• ~5 TB of acoustic data collected and analyzed over 2 yr project 

– Methods developed for Doppler tracking[Per10], monopulse[Nie10a], and equalizer design[Nie10b] 
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Overhead view of Lake Travis Test Station with overlaid bathymetric map 



Prior Empirical Results 

• Close fit to empirical range-rate bound of 40 kbps/km[Kil00] 

– Target bit-error-rates of 10-1 and 10-2 
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Method 
Number of Elements/ 

Array Geometry 

Center 

Frequency 

(kHz) 

Range 

(km) 

Rate 

(kbps) 

Bound 

(kbps) 

Sum-Rate 

Efficiency 

(bps/Hz) 

Multi-Channel 

Adaptive 

Equalization[Fre08] 

8 vertical or 

horizontal line, multi-

user 

23 0.5-2 2.8 20 0.56 

Channel Eigen 

Decomposition 
[Bea04] 

64 cross-beam 24 3.2 16 12.5 1.0 

Spatial Filter 

then Equalizing 
[Yan07] 

32 vertical line 1.2 10 0.4 4 1.0 

OFDM[Sto08] 8 vertical 25 1 24 40 2.0 

Single-Carrier 

MIMO[Tao10] 

8 vertical receive,  

2 vertical transmit 
17 1-3 32 13.3 2.3 
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Spatial-Division Multiple Access (SDMA) + Monopulse 

• Multiple azimuthal users supported via orthogonal beam set 

• Monopulse dynamically suppresses up to 14 dB interference 

• Achieved sum rate of 28 bps/Hz serving 40° sector 
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user 1 
user 2 

user 3 

array 



New Empirical Results 

• Achieved sum-spectral efficiencies 10x  prior state-of-the-art 
– Target bit-error-rates of 10-1 and 10-2 

15 

Method 
Number of Elements/ 

Array Geometry 

Center 

Frequency 

(kHz) 

Range 

(km) 

Rate 

(kbps) 

Bound 

(kbps) 

Sum-Rate 

Efficiency 

(bps/Hz) 

Multi-Channel 

Adaptive 

Equalization[Fre08] 

8 vertical or 

horizontal line, multi-

user 

23 0.5-2 2.8 20 0.56 

Channel Eigen 

Decomposition 
[Bea04] 

64 cross-beam 24 3.2 16 12.5 1.0 

Spatial Filter 

then Equalizing 
[Yan07] 

32 vertical line 1.2 10 0.4 4 1.0 

OFDM[Sto08] 8 vertical 25 1 24 40 2.0 

Single-Carrier 

MIMO[Tao10] 

8 vertical receive,  

2 vertical transmit 
17 1-3 32 13.3 2.3 

Background  |  Acoustic  |  Powerline  |  Cellular  |  Conclusion 

 

Monopulse + 

SDMA[Nie11] 

2-D w/ hundreds, 

7 simultaneous users 
-- -- 1400 -- 28 



Contribution 1 Summary 
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Highlights 

Develop methods for enhanced Doppler tracking and equalization 

Develop space-time reverberation (interference) reduction method 

Demonstrate sum spectral efficiencies 10x  above prior state-of-the-art 

Relevant work 
[Nie11] – K. F. Nieman, K. A. Perrine, T. L. Henderson, K. H. Lent, and T. J. Brudner, "Sonar array-

based acoustic communication receivers with wideband monopulse processing," USN Journal 
of Underwater Acoustics, 61(2), 2011. 

[Nie10a] – K.F. Nieman, K.A. Perrine, T.L. Henderson, K.H. Lent, T.J. Brudner, and B.L. Evans, 

Wideband monopulse spatial ltering for large receiver arrays for reverberant underwater 

communication channels. Proc. IEEE OCEANS, 2010. 

[Per10] – K.A. Perrine, K.F. Nieman, T.L. Henderson, K.H. Lent, T.J. Brudner, and B.L. Evans. 

Doppler estimation and correction for shallow underwater acoustic communications. Proc. 
IEEE Asilomar Conference on Signals, Systems, and Computers, 2010. 

[Nie10b] – K.F. Nieman, K.A. Perrine, K.H. Lent, T.L. Henderson, T.J. Brudner, and B.L. Evans. 

Multi-stage and sparse equalizer design for communication systems in reverberant underwater 

channels. Proc. IEEE Workshop on Signal Processing Systems, 2010. 



Time-Frequency Methods for OFDM 

Powerline Communications 

Second Contribution 
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Powerline Communications (PLC) 

• Power grid originally designed for power distribution 

• Form networks by coupling in communication signals 

• Enables smart grids: 

– Smart meters/billing 

– Distributed sensing 

– Fault detection 

18 

Medium Voltage (MV) 

1 kV – 33 kV 
Low Voltage (LV) 

under 1 kV 

High Voltage (HV) 

33 kV – 765 kV 

Source: ERDF 
Transformer 
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• Primary components 
1. Cyclostationary 

2. Asynchronous impulsive 

• Sources include 
– Light dimmers/ballasts 

– Switching converters 

– Induction motors 

– Rectifiers 

• Limited noise mitigation  
in PLC standards: 
– G3-PLC[Max11] 

– PRIME[Pri13] 

– IEEE P1901.2[Iee13] 

– ITU G.9901-9904[Itu13] 

 

PLC Noise in the 0-200 kHz Band 
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low-voltage noise measured in Austin, TX [Nie13a] 



Conventional OFDM PLC System 
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• Built upon orthogonal frequency-division multiplexing (OFDM) 

– Splits communication signal into orthogonal sub-bands  

• Standards address cyclic and impulsive noise through 

– Robust modulation, interleaving, and error-correcting codes 

– Designed to uniformly distribute signal – not rate optimal 

 



Proposed OFDM PLC System 
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• Using new noise model, add:  

1. Impulsive noise mitigation 

2. Cyclic adaptive  

modulation and coding  

 



Impulsive Noise Mitigation Techniques 

Method 
Impulse Power 

Low       High 

Non- 

Parametric? 

Computational 

Complexity 

Nulling/ 

Clipping[Tse12] 

Low 

Iterative Decoding for 

OFDM[Har00] 

High 

Thresholded Least 

Squares/MMSE[Cai08] 

Med 

Sparse Bayesian 

Learning[Lin13] 

High 

(matrix inversion) 

l1-norm  

minimization[Cai08] 

High 

Approximate Message 

Passing (AMP)[Nas13, Nie13] 

Med 
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• Compressive sensing approach used for low impulse power 

• AMP provides best performance vs. complexity tradeoff 

Approximate Message 

Passing (AMP)[Nas13, Nie13] 

Med 

22 



Implementation Process 

• Implemented using field programmable gate arrays (FPGAs)[Nie13b] 
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Determine static 

schedule, map to 

fixed-point data 

and arithmetic 

Translate to 

hardware 

Floating-point 

algorithm 
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signal-to-noise ratio (SNR) [dB] 

target BER = 10-2 

Real-Time Measurements in Impulsive Noise 

• Up to 8 dB of impulsive noise mitigated in real-time testbed 
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4 dB gain  

for 20 dB 

impulse power 

8 dB gain  

for 30 dB  

impulse power 



• Rate maximized by solving 

 

 

 
 

using SNR estimate  

• Transmitter and receiver 

exchange tone map 

• Circularly index tone map 

Cyclic Adaptive Modulation and Coding 
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modulation bits/subcarrier 

3 

2 

1 

0.25 

Example S and C* for G3-PLC in  

CENELEC-A (35.9-90.6 kHz) band 

rate for a 

given map 

theoretical 

SNR￫BER 

target 

BER 



noise w/ transmit packet 
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Simulations Using P1901.2 Noise Model 
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Case C: Cyclostationary + Narrowband Noise 
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legend 

up to 28 dB operating point shift 

Can be used to achieve 

same throughput at 100x 

less transmit power 

current 

proposed 
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Contribution 2 Summary 

28 

Highlights 

Conduct noise measurement campaign and cyclic spectral analysis 

Implement real-time impulsive noise mitigation testbed for PLC 

Develop cyclic adaptive modulation and coding scheme for OFDM 

Achieved up to 8 dB noise mitigation in real-time and 28 dB operating point shifts 

Relevant work 
[Nie13a] – K.F. Nieman, J. Lin, M. Nassar, K. Waheed, and B.L. Evans, "Cyclic spectral analysis of 

power line noise in the 3-200 kHz band," Proc. IEEE ISPLC, 2013. Won best paper award 

[Nie13b] – K.F. Nieman, M. Nassar, J. Lin, and B.L. Evans, "FPGA implementation of a message-

passing OFDM receiver for impulsive noise channels. Proc. IEEE Asilomar Conf. on Signals, 
Systems, and Computers, 2013. Won best student paper Architecture and Implementation Track 

[Wah14] – K. Waheen, K. F. Nieman, Adaptive cyclic channel coding for orthogonal frequency division 

multiplexed (OFDM) systems, US patent pending, 2014. 
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Space-Time-Frequency Methods for  

Multi-Antenna Cellular Communications 

Third Contribution 

29 

http://www.steelintheair.com/Cell-Phone-Tower.html 
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Multiple-Input, Multiple-Output (MIMO) 

• Multiple antennas at transmitter and/or receiver 

– Higher robustness via space-time block codes 

– Increased rate via spatial multiplexing 

• Can be extended to multi-user MIMO (MU-MIMO) 

– Serve multiple simultaneous users via spatial-division multiple access 

– Over same bandwidth, same time slot, just more antennas 
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Matrix channel 

MIMO system 

Multiplexing 

performance is 

highly dependent 

on propagation 

conditions[Rus13] 



Massive MIMO (Scaling Up MU-MIMO) 

•
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Existing Massive MIMO Testbeds 

• Several research groups have developed test systems 

32 

Group 
Band 

(GHz) 

Hardware 

Platform 

Number of  

Antennas at  

Basestation 

Number 

of Users 

Real-time MIMO 

Processing? 

Lund 

University 
[Rus13] 

2.6 
Network 

Analyzer 

128 

cylindrical 

array 

6 No1 

Rice 

University 
[She12] 

2.4 

WARP 

boards, 

powerPC 

8 x 8 = 64 

planar array 
15 No2 

Samsung 

FD-MIMO 
[Sam13] 

<5 

Proprietary  

w/ Freescale 

DSPs 

8 x 8 = 64 

planar array 
? Yes3 

1 Data collected over long duration (hours) where channel is assumed constant; post-processed. 
2 Experimental results based on SINR measured at UE w/ high latency (100 ms) beamforming  

  over 0.625 MHz of bandwidth.  Currently working on lower latency, higher BW system. 
3 Proprietary system; not many public details available except that 1 Gb/s achieved at 2 km. 
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Proposed Massive MIMO Test Platform 

• New platform allows for real-time, off-the-shelf solution 
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Group 
Band 

(GHz) 

Hardware 

Platform 

Number of  

Antennas at  

Basestation 

Number 

of Users 

Real-time MIMO 

Processing? 

Lund 

University 
[Rus13] 

2.6 
Network 

Analyzer 

128 

cylindrical 

array 

6 No 

Rice 

University 
[She12] 

2.4 

WARP 

boards, 

powerPC 

8 x 8 = 64 

planar array 
15 No 

Samsung 

FD-MIMO 
[Sam13] 

<5 

Proprietary  

w/ Freescale 

DSPs 

8 x 8 = 64 

planar array 
? Yes 

Proposed 1.2-6 

National 

Instruments 

USRP 

Up to 128 10 Yes1 

1 20 MHz bandwidth w/ less than 1 ms latency. 
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Channel State Acquisition and Processing 

• Supports different precoders – zero-forcing, MRT, etc. 

• Uses OFDM signaling in uplink and downlink 

– Divide processing via orthognal sub-bands to meet hardware limitations 

• Assumption of channel reciprocity requires: 

– Fast switching between uplink and downlink (< channel coherence time) 

– Compensation of RF impairments (transmit and receiver response) 

 
34 

latency-critical 

signal path 

Processing at the basestation 

down- 

link 

up- 

link 
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Mapping to Hardware 

35 

star architecture links processing 

elements (FPGAs) via PCI-Express 

distributed MIMO processing over  

16-antenna subsystems 
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Lund University (100-Antenna) Testbed 

36 

160-element dual-

polarized array allows 

different geometries to 

be explored 

cabled PCI-Express to 

switches and controller 

distributed processing of 

120 MS/s  

* 32 bits/S/channel 

* 100 channels 

= 384 Gb/s  in uplink and 

downlink directions 
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Phase and Time Synchronization Results 

37 

phase coherency 

between RF channels 

<5° over 1 hr 

100-antenna wireless channel sounding 

reveals synchronization within  

one 30.72 MS/s sample (33 μs) 

< 33 μs 

delay (μs) minute 
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100-Antenna Uplink MIMO Constellation 

38 

line-of-sight,  

~2 m spacing  

between users 

non-line-of-sight,  

~10 cm spacing 

between users 

zero-forcing maximum ratio combining 
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Contribution 3 Summary 
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Highlights 

Develop a commercial, off-the-shelf solution for up to 128-antenna MIMO 

Scale data rates/interfaces, minimize latency, and distribute synchronization 

Presented first results of 100-antenna MIMO 

Relevant work 
[Nie13] – K. F. Nieman and B. L. Evans, "Time-Domain Compression of Complex-Baseband LTE Signals for 

Cloud Radio Access Networks", Proc. IEEE Global Conference on Signal and Information Processing, 2013. 
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