

Secure Navigation and Timing Without Local Storage of Secret Keys

Kyle D. Wesson

Committee Dr. Todd E. Humphreys (supervisor) Dr. Brian L. Evans (co-supervisor) Dr. Ross Baldick Dr. Lili Qiu Dr. Ahmed H. Tewfik

Ph.D. Defense | The University of Texas at Austin | 9 April 2014

GNSS: The "Invisible Utility"

Introduction

GNSS GPS, GLONASS, Galileo, Compass/Beidou

Sectors

Agriculture, Automation, Communication, Defense, Energy, Finance, Safety, Transportation

Applications

Position, Navigation, and Timing (PNT)

Civil GPS is Vulnerable to Spoofing

Introduction

An **open access** civil GPS standard makes GPS popular but also renders it vulnerable to **spoofing**

Inside a Spoofing Attack

Spoofing Field Attacks

5

Civilian UAV, June 2012

- White Sands Missile Range, NM
- UAV commanded to hover at 12 m
- Spoofer at 620 m standoff distance
- □ 1 m/s spoofer-induced descent
- Saved from crash by manual override

\$80M Yacht, July 2013

- Mediterranean Sea
- Yacht sailed straight
- □ Spoofer at 3 m standoff distance
- Yacht veered off course 10 degrees
- Instantaneous capture without alarms

Introduction

Military GPS: Symmetric-Key Encryption

Advantages

- Near real-time authentication
- Exclusive user group
- Low computational cost to decrypt

Disadvantages

- Burdensome key management
- Tamper resistant hardware
- Trusted foundries increase cost
- Expensive, inconvenient receivers

Introduction

Thesis Statement

Both cryptographic and non-cryptographic **anti-spoofing techniques can secure civil GPS** and GNSS navigation and timing while **avoiding the serious drawbacks of local storage of secret cryptographic keys** that hinder military symmetric-key-based anti-spoofing.

Contributions: "Secure Navigation and Timing Without Local Storage of Secret Keys"

[for closed door session due to time constraints]

Probabilistic Anti-Spoofing Security Framework

Data Message Authentication

Data message authentication predicated on

- Performing brute-force search for secret key
- Reversing one-way hash functions
- □ U.S. NIST measures cryptographic security in <u>years</u> [FIPS 186-3]
 - 128-bit symmetric-key-equivalent key strength secure beyond year 2030

Takeaway: $P_D \approx 1$ and $P_F \approx 0$

Security-Enhanced GPS Signal Model

$$Y_k = \beta_{AGC} [w_k c_k \cos(2\pi f_{IF} t_k + \theta_k) + N_k]$$

= $\beta_{AGC} (w_k s_k + N_k)$

ho Received spread spectrum signal Y_k

- Automatic gain control β_{AGC}
- **D** Spreading code c_k

11

Carrier $\cos(2\pi f_{IF}t_k + \theta_k)$

Security code w_k with period T_w

- Generalization of binary modulating sequence
- Either fully encrypted or contains periodic authentication codes
- Unpredictable prior to broadcast
- Cryptographically verifiable after broadcast

Attacking Security-Enhanced GPS Signals

First Contribution

 Record and Playback or "Meaconing": record and re-broadcast radio frequency spectrum

$$Y_k = \beta_{\text{AGC}} \left(\alpha w_{k-d} s_{k-d} + N_{m,k} + w_k s_k + N_k \right)$$

re-broadcast with delay d authentic signal
and amplitude α

2. Security Code Estimation and Replay (SCER) Attack: estimate security code in real-time

$$Y_k = \beta_{\text{AGC}} \left(\alpha \hat{w}_{k-d} s_{k-d} + w_k s_k + N_k \right)$$

security code estimate \hat{w} authentic signal d can vary per satellite

Can V Authenticate GNSS Signals?

Consider a replay attack where spoofer has significant amplitude advantage $\alpha \gg 1$

$$Y_k = \beta_{AGC}(\alpha w_{k-d}s_{k-d} + N_{m,k} + w_k s_k + N_k)$$

$$\approx w_{k-d}s_{k-d} + \tilde{N}_k$$

□ But!

 $\mathbb{V}(w_{k-d}, k_{\text{public}}) = \text{TRUE}$

- Spoofer-induced delay undetectable
- Spoofer need not read or manipulate data to deceive receiver

V cannot authenticate GNSS signals because it cannot authenticate signal arrival time!

Authentication Components (1/2)

Timing Consistency CheckSecurity Code Estimation and Replay
(SCER) Detector

Hypothesis test on difference between received and predicted code phase of spreading code

SCER) Detector
 Hypothesis test at physical layer to detect if security code arrived intact

Authentication Components (2/2)

0

2

4

8

Time (days)

6

10

12

14

16

18

[Bha13]

-0.5

-1

[WesEva&13]

0.5

x 10

0

real(D)

Probabilistic Anti-Spoofing Framework

Measurement combines cryptographic & non-cryptographic checks

$$oldsymbol{z} = [\overline{\mathbb{V}} \wedge E,
u, L, P_T, D]^T \qquad P_F = \int_{\gamma}^{\infty} p_{oldsymbol{z}|H_0}(oldsymbol{\xi}|H_0)doldsymbol{\xi} \qquad P_D = \int_{\gamma}^{\infty} p_{oldsymbol{z}|H_1}(oldsymbol{\xi}|H_1)doldsymbol{\xi}$$

□ Extensible to multiple hypotheses (multipath, spoofing, jamming, ...)

□ Challenges

- deriving closed form $p_{\boldsymbol{z}|H_j}(\boldsymbol{\xi}|H_j)$
- differentiating between hypotheses (multipath vs. spoofing)

Subsequent contributions illustrate framework for practical cryptographic and non-cryptographic techniques

GPS Spoofing Detection via Composite Hypothesis Testing

Non-Cryptographic Anti-Spoofing Overview

Non-cryptographic techniques are enticing because they require no modification to GPS signal

	Non-Cryptographic Method	Extra Hardware	False Alarm Rate	Requires Motion	Increase Size	Addnl. Signals	Effective- ness
1	In-Band Power	No	High	No	No	No	Med
2	Sensor Diversity	Yes	Low	No	No	Yes	High
3	Single-Antenna Spatial Correlation	Yes	Low	Yes	No	No	High
4	Correlation Profile Anomaly Detection	No	High	No	No	No	Med
5	Multi-Element Antenna	Yes	Low	No	No	No	High
6	Distributed Antennas	Yes	Low	No	Yes	No	Med

1- [Sco10], [DehNie&12], [Ako12];
 2- [HumBha&10];
 3- [BroJaf&12], [PsiPow&13];
 4- [Phe01], [LedBen&10], [MubDem10], [CavMot&10], [WesShe&11], [WesShe&12], [GamMot&13];
 5- [DeLGau&05], [Bor13];
 6- [MonHum&09], [SwaHar13]

Receiver Measurements

power density [dB/Hz]

power density [dB/Hz]

5

Ω

-10 -8

-6

_4

Second Contribution

8

6

[WesHum&14]

Total In-Band Power Measurement

-2

0

frequency [MHz]

2

Symmetric Difference Measurement

$$D_k^i(\tau_d) \triangleq |\xi_k^i(\tau_p - \tau_d) - \xi_k^i(\tau_p + \tau_d)|.$$

Key Insight: Power–Distortion Tradeoff

 $\eta_{\min} < \eta < \eta_{\max}$

ensures distortion

- Admixture of authentic and spoofed signals causes distortions in correlation function
- □ Assume spoofer cannot null or block authentic signals
- □ Consider spoofer's power advantage $\eta \triangleq 10 \log_{10}(P_s/P_a)$
 - **Successful capture requires** $\eta > 0.4 \text{ dB}$ [She12]
 - What happens as $\eta \to \infty$? AGC maintains $E[\beta(t) | r(t) |^2] = 1$

Composite Hypothesis Testing

How do we decide between hypotheses given $z_k^i = [D_k^i, P_k]^T$?
 How do we represent uncertainty in interference model?

Parameter Space for Single-Interferer

$$r_I(t) = \eta \sqrt{P_a} D(t - \tau - \tau_I) C(t - \tau - \tau_I) e^{j(\phi - \phi_I)}$$

	hypothesis	η	$ au_I$	ϕ_I	
H_1	multipath	$\sim \text{Rayleigh}$	\sim Exponential	$\sim \text{Uniform}[0, 2\pi]$	
H_2	spoofing	$0.4 \text{ dB} \leq \eta$	$ au \leq au_I$	= 0 (worst case)	
H_3	narrowband jamming	$0~{\rm dB} \ll \eta$	$D(\cdot) = C(\cdot) = 1$ $\forall t, \tau, \tau_I$	$\sim \text{Uniform}[0, 2\pi]$	

Simulated Observation Space

Simulated Observation Space

Weighted marginals of simulated probability space reveal difficulty of detection based on distortion or power alone

Experimental Data

Second Contribution

1. ATX wardriving campaign, 2010

- Static and dynamic tests in deep urban multipath environments
- 2. Jammer characterization, 2011 [MitDou&11]
 - 18 "personal privacy device" recordings
- 3. <u>Texas Spoofing Test Battery</u>, 2012 [HumBha&12]
 - Only publicly-available spoofing dataset

-	Scenario Designation	Spoofing	Platform	Power
		Type	Mobility	Adv. (dB)
TEXBAT	1: Static Switch	N/A	Static	N/A
	2: Static Overpowered Time Push	Time	Static	10
	3: Static Matched-Power Time Push	Time	Static	1.3
	4: Static Matched-Power Pos. Push	Position	Static	0.4
	5: Dynamic Overpowered Time Push	Time	Dynamic	9.9
	6: Dynamic Matched-Power Pos. Push	Position	Dynamic	0.8
-				

Experimental Observation Space

Second Contribution

Decision Regions and Performance

Attack detection within three seconds

- \square $P_F = 0.0044$ and $P_D = 0.999$ (overall attack vs. no-attack metrics)
- Allows for time-varying cost and prior probabilities

clean multipath spoofing jamming

Asymmetric Cryptographic Signal Authentication

Cryptographic Anti-Spoofing Overview

- Techniques require unpredictable bits
- Recall: security code w in securityenhanced signal model

	Cryptographic Anti-Spoofing Technique	Effective- ness	Auth. Rate	Network Conn.	Implement Time	Practical for Civil?
1	Sec. Spread Code (L1C/A)	High	Seconds	No	Years	No
2	Sec. Spread Code (WAAS)	Low	Seconds	No	Years	No
3	Nav. Msg. Auth. (L2/L5)	Med.	Seconds	No	Years	Yes
4	Nav. Msg. Auth. (WAAS)	Low	Minutes	No	Years	Yes
5	Cross Correlation of P(Y)	High	Seconds	Yes	Months	Yes
6	Military GPS P(Y) Signal	High	Real-time	No	Implemented	No

[HeiKne&07B]; 1- [Sco03]; 2- [LoEng10]; 3- [Sco03], [PozWul&04] [WulPoz&05], [WesShe&12], [Hum13]; 4- [LoEng10]; 5- [PsiHan&12], [PsiOha13]; 6- [BarBet&06]

NMA on GPS L2/L5 CNAV

30

How to Authenticate NMA Signals?

How Effective is this Proposed Defense?

Third Contribution

Challenging SCER attack

- Spoofer has 3 dB carrier-tonoise ratio advantage
- Received spoofed signals 1.1 times stronger than authentic signals
- Spoofer introduces timing error of 1 μs
- False alarm probability for SCER detector is 0.0001

NMA is **highly** effective

WHAT STARTS HERE CHANGES THE WORLD

"Secure Navigation and Timing Without Local Storage of Secret Keys"

Case Study: Secure Navigation for Aviation

[for closed door session due to time constraints]