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In many modern wireless and wireline communication networks, the

interference power from other communication and non-communication devices

is increasingly dominating the background noise power, leading to interference

limited communication systems.

Conventional communication systems have been designed under the

assumption that noise in the system can be modeled as additive white Gaus-

sian noise (AWGN). While appropriate for thermal noise, the AWGN model

does not always capture the interference statistics in modern communication

systems. Interference from uncoordinated users and sources is particularly

harmful to communication performance because it cannot be mitigated by

current interference management techniques.

Based on previous statistical-physical models for uncoordinated wire-

less interference, this dissertation derives similar models for uncoordinated

vii



interference in PLC networks. The dissertation then extends these models

for wireless and powerline interference to include temporal dependence among

amplitude samples. The extensions are validated with measured data.

The rest of this dissertation utilizes the proposed models to design re-

ceivers in interference limited environments. Prior designs generally adopt

suboptimal approaches and often ignore the problem of channel estimation

which limits their applicability in practical systems. This dissertation uses

the graphical model representation of the OFDM system to propose low-

complexity message passing OFDM receivers that leverage recent results in

soft-input soft-output decoding, approximate message passing, and sparse sig-

nal recovery for joint channel/interference estimation and data decoding. The

resulting receivers provide huge improvements in communication performance

(more than 10dB) over the conventional receivers at a comparable compu-

tational complexity. Finally, this dissertation addresses the design of robust

receivers that can be deployed in rapidly varying environments where the in-

terference statistics are constantly changing.
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Chapter 1

Introduction

Digital communication systems transmit information bits from a trans-

mitter to a receiver through a physical medium. The main impairments to a

communication system, whether wireless or wireline, are the effects of multi-

path propagation through the physical medium and random fluctuations in the

received signal due to disturbance from either natural or man-made sources,

referred to as noise or interference. A common approach for communication

system design models the multipath effects as a convolutive linear filter that,

in the slow-fading scenario, can be characterized by a fixed impulse response

over the duration of one codeword; and the effects of the random distortions as

an additive noise process. Statistically, the channel coefficients are modeled as

independent complex Gaussian random variables, resulting in the well-known

“uncorrelated Rayleigh-fading” and “uncorrelated Rician-fading” models [94].

Similarly, the samples of the additive noise process are modeled as indepen-

dent complex Gaussian random variables giving rise to the “additive white

Gaussian noise” (AWGN) model that dominates the communications litera-

ture until today [94].

While an appropriate model for the thermal noise in the receiver cir-
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cuitry, the AWGN model fails to capture the characteristics of the noise and

interference in modern communication systems. Extensive measurement cam-

paigns in various frequency bands up to 4 GHz demonstrate that the additive

noise is in fact impulsive with amplitudes up to 40 dB above the thermal

background noise [13, 56, 74, 83, 84]. Similar studies for both narrowband and

broadband powerline communications (PLC) also indicate that the noise is

highly impulsive and in some scenarios occurs in bursts [72, 73, 104].

1.1 Interference in Communication Systems

Broadly speaking, interference or noise refers to the disturbance en-

ergy, resulting from either natural or man-made sources, that adds to the

transmitted signal at receiver and degrades its ability to successfully detect

the transmitted information. Throughout this dissertation, I use noise and

interference interchangeably. Interference can be roughly classified based on

its source as being either communication or non-communication based. In the

following, I give a brief overview of each category.

1.1.1 Non-Communication Based Interference

Non-communication based interference typically includes unintentional

electromagnetic emissions from sources that could either be on the same plat-

form as the transceiver, called in-platform interference, or external to the

platform, called out-of-platform interference. The in-platform interference in-

cludes the well-known circuit noise which is typically assumed to be AWGN. In

2



the following, I discuss these categories of interference by giving some examples

of each.

1.1.1.1 In-Platform Interference

The computational platform contains many subsystems, such as various

clocks and buses, that generate emissions that interfere with the transceiver

present on the same platform [86]. This interference is not only due to the

near-field coupling with radiation at the same frequencies as the driving clocks

but also includes the harmonics produced by these subsystems. Given that

there are no regulations that limit the interference power inside the platforms

and the current trend to decrease their form factors, in-platform interference is

becoming a prominent limitation for communications performance in modern

devices.

1.1.1.2 Out-of-Platform Interference

This interference is caused by external devices operating in the same

frequency band as the communication system. This is common for example

in the 2.4GHz Industrial, Scientific, and Medical (ISM) band that is used for

IEEE 802.11b/g/n WLANs and Bluetooth which are subjected to interference

from various non-communications devices such as microwave ovens [13, 74].

Microwave ovens exhibit non-stationary statistics largely deviating from the

Gaussian model and powers as high as 50 dBm at 15 m [13] (comparable

to the transmit power of an access point (AP) in WLANs). With a typical

3



usage on the order of minutes, this can lead to serious disruption for real-time

streaming applications such as wireless video and presentations in home and

office environments.

The impact of out-of-platform interference is even more severe in PLC

networks. PLC interference consists of random impulses of varying durations.

It is mainly caused by switching transients of various appliances and devices in

individual homes and businesses present on the network [29, 104]. Additional

interference can also be picked up by the PLC network acting as an antenna

for wireless in-band and aliased signals [29]. This interference power density

can reach 50dB above the background noise and is considered one of the main

impairments to reliable communications in broadband PLC [104].

1.1.2 Communication Based Interference

The physical propagation medium in both the wireless and PLC sys-

tems is shared among many transceivers. Without coordination, the transmis-

sions of these transceivers collide creating interference at each others receivers.

Typically, sources that occupy the same frequency band as the signal of inter-

est dominate the resulting interference, labeled co-channel interference [37].

A weaker interference source results from transmissions occurring in adjacent

bands that leak to the band of interest due to nonlinearities in the transmit-

ter circuitry. This interference is labeled adjacent-channel interference [37].

Furthermore, mismatch in channel state information (CSI) can, in many sce-

narios, lead to residual interference for example due to transmitter inability

4



to perfectly orthogonalize its transmission with respect to other users.

1.1.2.1 Co-Channel Interference

Co-channel interference arises from overlapping transmissions within

the same frequency band. Such a scenario includes multi-user systems that em-

ploy dense-spatial frequency reuse driven by the increasing demand for higher

data rates. A unlicensed band is another example where multiple standards,

typically uncooperative, compete for reliable communication under power con-

straints imposed by the Federal Communications Commission (FCC). Exam-

ples include WiFi, Bluetooth, and Zigbee all operating in the 2.4 GHz ISM

band [19].

1.1.2.2 Adjacent-Channel Interference

Adjacent-channel interference arises from transmissions in neighboring

frequency bands. With the increased push toward smaller form factors, in-

tegration of multiple wireless transceivers that operate simultaneously in the

same platform is becoming common place allowing users to download data via

WiFi while placing a call over the cellular network [77].

1.2 Multicarrier Communication Systems

Due to presence of various scatterers and reflectors in many environ-

ments, the transmitted signal typically propagates through multiple paths be-

fore reaching the receiver. If the time difference between the received copies

5
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Figure 1.1: Multicarrier Communication: A wide-band channel is divided into
a set of narrowband channels with simpler equalization.

of the transmitted signal, called delay spread, is significant compared to the

signaling time of transmitter, the channel is said to be frequency-selective, or

wide-band. As discussed in the beginning of this chapter, the channel is then

modeled as a convolutive linear channel with channel taps given as {hj}L−1
j=0

with L > 1 [94].

In general, having multiple independent copies of the same transmitted

signal improves the detection performance through diversity ; in this case it

is frequency-diversity [94]. However, if not properly accounted for, wide-band

channels can cause significant degradation in communication performance due

to the presence inter-symbol-interference (ISI), a type of self interference that

results from the overlap of the different copies of the transmitted signal arriving

at different times at the receiver [94].

Orthogonal frequency division multiplexing (OFDM) is a transmit pre-

coding technique that transforms the wide-band channel into a set of non-

interfering, orthogonal, and narrowband sub-channels. This significantly sim-

6



plifies the channel compensation procedure, called equalization, and, under

AWGN, leads to independent decoding across the different sub-channels. How-

ever, when subjected to interference with typically non-Gaussian statistics, the

noise is no longer independent across the sub-channels and independent sub-

channel decoding is highly suboptimal [45]. Furthermore, the MMSE channel

estimator (important for equalization) is highly non-linear1 and unknown. By

ignoring the statistics of the interference and treating it as an AWGN process,

the receiver causes significant degradation (tens of dBs) in communication

performance [45]. This is the central issue addressed by this dissertation.

1.3 Dissertation Summary

In this dissertation, I address the problem of designing OFDM receivers

in interference limited environments. By modeling the non-Gaussian statistics

of the interference, I propose a Bayesian inference framework for designing

OFDM receivers that jointly estimate the channel/interference and decode

the transmitted data. Furthermore, the framework is flexible enough to allow

for a trade-off between the communication performance and implementation

complexity.

1.3.1 Thesis Statement

In this dissertation, I defend the following thesis statement:

1Under AWGN, the MMSE channel estimator is the linear MMSE (LMMSE) [94].
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In interference-limited multicarrier communication systems, accurate

statistical modeling of the interference enables the design of low-complexity

message passing multicarrier receivers that increase the link spectral efficiency

by several bits/s/Hz, without any coordination or knowledge of the number,

locations, or types of interference sources.

1.3.2 Summary of Contributions

In this dissertation, I investigate the impact of uncoordinated interfer-

ence on multicarrier systems. I develop statistical models of this interference

using (i) physical models of the interference network and stochastic models

of interference emissions; and (ii) empirical models based on measurement

data collected in the lab and field. I then embed these models as priors in a

Bayesian inference framework represented by a factor graph to design message

passing receivers that mitigate the effect of the interference and significantly

improve the communication performance. Using recent results in approximate

inference for high dimensional linear mixing problems [28, 79, 80], the proposed

receivers have a low computational complexity on the same order as the typi-

cal OFDM receivers in AWGN noise (O(N logN) where N is FFT size). The

main contributions of this dissertation can be summarized as follows.

1. Statistical Modeling of Uncoordinated Interference: In this con-

tribution, I develop a statistical-physical models of uncoordinated inter-

ference in PLC networks. In particular, I consider interference emissions

that arrive according to a Poisson point process and have a duration that
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is exponentially distributed. Interference with such properties has been

found to be dominant in broadband PLC networks [104] and is expected

to become significant in narrowband PLC networks with the dense de-

ployment of smart meters based on multiple inoperable standards [73].

For these scenarios, I show that the Middleton class-A and Gaussian

mixture models are the appropriate interference marginal distributions,

a fact verified by prior empirical studies [26, 96].

In addition, I propose two empirical models to capture the temporal de-

pendence in narrowband PLC networks and bursty interference in wire-

less transceivers. Using noise data collected in medium and low voltage

sites, I propose a cyclostationary noise model that models the periodicity

of the noise both in the temporal and spectral domain as an excitation

of a filter bank by an AWGN signal. Similarly, using interference data

collected from a laptop provided by Intel for the 2.4 GHz ISM band, I

show that a hidden Markov model with Gaussian emissions (GHMM)

provides a good fit for the inter-arrival times and durations of the bursty

emissions exhibited by this data.

2. Message-Passing OFDM Receivers in Impulsive Noise Chan-

nels: This contribution builds on the results of the previous contribu-

tion which states that the effect of uncoordinated interference can be

modeled as additive impulsive noise with a Gaussian mixture marginal

and HMM temporal dynamics. Assuming that the statistics of the in-

terference remain stationary for the duration of data transmission, the
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Figure 1.2: Training-based receivers: the parameters of the interference model
are estimated during a quiet time and used in the receiver to perform detec-
tion. The interference statistics should be slowly varying otherwise the receiver
might suffer from model mismatch.

interference model parameters are estimated from the noise samples dur-

ing a training period, a quiet time when no data transmission occurs.

The resulting interference models are then used to design receivers that

mitigate the effect of this interference increasing the communication per-

formance dramatically over traditional OFDM receivers. In particular,

I propose two types of receivers: an Expectation-Maximization (EM)

receiver that treats the presence of interference as a latent variable, and

a message-passing receiver that adopts a Bayesian approach by treating

the interference models as priors while attempting to jointly estimate

the channel and the interference while decoding the transmitted data.

The proposed receivers provide gains of up to 13dB over the typical DFT

receiver at the same asymptotic complexity.

3. Robust Message-Passing OFDM Receivers in Impulsive Noise

Channels: In this contribution, I consider two practical limitations
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Figure 1.3: Robust receivers adapt their internal interference models based
on the received data. As a result, they don’t require extra training time and
avoid the model mismatch problem in fast varying environments.

that the message-passing OFDM receivers proposed in the previous con-

tribution might suffer from: (i) the lack of knowledge of the interfer-

ence model parameters, (ii) and a mismatch in the assumed interference

model. These limitations can occur if there is not enough quiet time

for parameter training or if the receiver is operating in fast-varying en-

vironments where the noise statistics are changing rapidly. I propose

two classes of robust receivers that are able to adapt to the interference

environment. The first class does blind estimation of interference model

parameters; i.e., it estimates the model parameters without an explicit

training period. The second class uses the automatic relevance deter-

mination (ARD) prior, commonly used in sparse Bayesian learning and

Bayesian compressed sensing, to design robust receivers that are inde-

pendent of specific interference models leveraging only the noise sparsity

in the time domain.
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1.4 Organization

The dissertation is organized as follows:

Chapter 2 presents a brief overview of the basic concepts used in this

work. It starts with the basic OFDM system model and how it is affected

by interference that is non-AWGN. Then, it describes various techniques used

to manage interference in communication networks highlighting some of their

limitations that result in the presence of residual interference. Different statis-

tical models are described that capture the characteristics of this interference

in wireless networks. The chapter ends with a discussion of prior work on

OFDM receiver design in uncoordinated interference and a brief overview of

graphical models and their application to interference modeling.

Chapter 3 proposes various statistical models of uncoordinated inter-

ference in both PLC and wireless networks. It starts with statistical-physical

modeling of uncoordinated interference in PLC networks using temporal Pois-

son point processes for emission arrivals. Then, it proposed two empirical

models for temporal dependance that captures cyclostationarity in PLC noise

and burstiness in wireless interference.

Chapters 4, 5, and 6 discuss how the models discussed in Chapter 3

can be utilized for OFDM receiver design. In particular, Chapter 4 describes

an EM-based OFDM receiver that leverages the interference model to improve

the communication performance under the constraint of independent chan-

nel decoding. Chapter 5 proposes a Bayesian inference framework for joint
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channel/interference estimation and data decoding. The proposed receivers

leverage recent advances in soft-input soft-output decoding, approximate mes-

sage passing, and sparse signal recovery to design a low complexity reciever

that is within 1dB from a lower bound. Chapter 6 builds on Chapter 5 to

propose robust receivers that can be employed in rapidly varying interference

environments.

Finally, Chapter 7 summarizes the contributions of this dissertation

and outlines avenues for future research.

1.5 Notation

Vectors and matrices are denoted by boldface lower-case (x) and upper-

case notation (X), respectively. XR,C then represents the sub-matrix con-

structed from rows R and columns C of X, where the simplified notation XR

means XR,: and “:” indicates all columns of X. The notations (·)T and (·)∗ de-

note transpose and conjugate transpose, respectively. The probability density

function (pdf) of a random variable (RV) X is denoted by pX (x), with the sub-

script sometimes omitted when clear from the context. Similarly, for discrete

RVs, the probability mass function (pmf) is denoted by PX (x). For a circular

Gaussian RV with mean µ and variance γ, I write the pdf as N (x;µ, γ). The

expectation and variance of a RV are then given by E {·} and V {·}, respec-

tively. I use the sans-serif font to indicate frequency domain variables like

X.
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1.6 List of Acronyms

ADC: Analog to Digital Converter

AMP: Approximate Message Passing

AWGN: Additive White Gaussian Noise

ARD: Automatic Relevance Determination

ARMA: Auto Regressive Moving Average

BER: Bit Error Rate

BP: Belief Propagation

CGM: Cyclostationary Gaussian Model

CoMP: Coordinated Multi-Point

DFT: Discrete Fourier Transform

EM: Expectation Maximization

FFT: Fast Fourier Transform

ICI: Inter-Carrier Interference

ISM: Industrial, Scientific, and Medical band

IDFT: inverse Discrete Fourier Transform

JCNED: Joint Channel/Noise Estimation and Decoding

JNED: Joint Noise Estimation and Decoding

GAMP: Generalized Approximate Message Passing
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GHMM: Gaussian Hidden Markov Model

GM: Gaussian Mixture

QAM: Quadrature Amplitude Modulation

LDPC: Low Density Parity Check

LMMSE: Linear Minimum Mean Square Estimate

LTE: Long Term Evolution

LTI: Linear Time Invariant

LPTV: Linear Periodically Time-Varying

LV: Low Voltage

MAC: Media Access Control

MAP: Maximum a-Posteriori Probability

MC: Markov Chain

MCA: Middleton Class-A

MIMO: Multiple Input Multiple Output

MMSE: Minimum Mean Squared Error

ML: Maximum Likelihood

MUD: Multi-user Detection

MSE: Mean Squared Error

MV: Medium Voltage
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NBI: Narrowband Interface

NSI: Noise State Information

NMSE: Normalized Mean Squared Error

OFDM: Orthogonal Frequency Division Multiplexing

PEP: Pair-wise Error Probability

PGM: Probabilistic Graphical Model

PLC: Powerline Communications

PPP: Poisson Point Process

PRIME: PoweRline Intelligent Metering Evolution

SBL: Sparse Bayesian Learning

SC: Single Carrier

SER: Symbol Error Rate

SIC: Successive Interference Cancellation

SISO: Soft-Input Soft-Output

SNR: Signal to Noise Ratio

SP: Sum Product

STFT: Short time Fourier Transform
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Chapter 2

Background

This chapter discusses the relevant background for multicarrier commu-

nication systems, interference management, graphical models and Bayesian

inference using belief propagation. Section 2.1 provides the general system

model for OFDM modulation and briefly discusses the impact of the impul-

sive noise on its performance. Section 2.2 briefly discusses interference man-

agement techniques that are typically employed in practice to reduce the in-

terference level and highlight some of their shortcoming that are addressed

by this dissertation. Section 2.3 discusses the statistical models used in the

literature to model uncoordinated interference that cannot be mitigated by

typical interference management techniques. Section 2.4 discusses prior work

on designing OFDM receivers in impulsive interference and how they relate to

receivers proposed by this dissertation. Finally, Section 2.5 ends with a brief

overview of graphical models; their application to modeling OFDM systems

and interference; and Bayesian inference using belief propagation.
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Figure 2.1: A simplified OFDM system model and its effect on impulsive
interference: the DFT operation spreads the impulsive interference (in red)
across all subcarriers.

2.1 OFDM Systems

Many modern wireless communications systems, such as IEEE 802.11n

(Wi-Fi) and LTE (cellular), and recent powerline communication standards,

such as PRIME and IEEE P1901.2, have adopted orthogonal frequency divi-

sion multiplexing (OFDM) as their modulation scheme.

OFDM divides the transmission bandwidth into many subbands. The

frequency at the center of each subband is called the subcarrier. Data is sent

over many of the subbands at once. Pilot subcarriers carry known symbols

that are used for channel estimation, while null subbands are loaded with zero

power to adhere to out-of-band emissions requirements, relax cut-off filter

requirements, or facilitate interference mitigation. Many OFDM standards

also adapt the transmission in each subband based on the subband’s signal-

to-noise ratio (SNR) [37, 94] to increase the data throughput.

Most OFDM systems are based on the DFT and its implementation
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using the fast Fourier transform (FFT) as illustrated in Figure 2.1. N data

symbols are pre-coded using IDFT of length N . The resulting time-domain

signal is transmitted through a frequency selective channel and corrupted by

noise and interference present at the receiver. Then, the receiver takes the

DFT of the received signal and applies minimum distance decoding on each

symbol. These operations can be represented mathematically as

r = HF∗x + n
DFT−→ y = Fr = H ◦ x + Fn. (2.1)

Here, r,x, n, and H are N × 1 complex vectors denoting the received OFDM

signal, the transmitted symbols, the noise+interference vector, and frequency

domain channel, respectively. H is a cyclic matrix formed by the vector h of

the channel impulse response. By design, the OFDM receiver will diagonalize

H into Λ = FHF∗ = diag{H}, where H = Fh and ◦ denotes the Hadamard

product. As a result, a sub-carrier k experiences a flat fading channel Hk;

this significantly simplifies the equalization of the multipath channel. The

described receiver is optimal under AWGN channels since the unitary trans-

formation F does not change the statistics of the additive Gaussian noise.

However, under non-AWGN interference, this receiver is highly suboptimal by

tens of dBs [45–47].

To get a better understanding of the effect of impulsive interference

on the communication performance, we consider the comparison of an OFDM

system with a single carrier (SC) system given in Figure 2.2. The multiplica-

tion of the transmitted vector x by F∗ spreads the “information” about each
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Figure 2.2: A simplified OFDM system model and its effect on impulsive
interference.

symbol xi across all of the OFDM symbol of duration N symbol times, pro-

viding a type of code diversity formalized for impulsive channels in [45, 47].

Alternatively, we can view the DFT operation at the receiver as smearing the

impulse energy across all tones and reducing its impact at any given time sam-

ple. In contrast, in SC systems, the impulse energy will concentrate in time

and severely affect the symbol being transmitted during at that instant. As

a result, the symbol error rate curve in Figure 2.2 shows two regimes. In the

first, the impulse energy is high enough to corrupt an entire OFDM symbol.

However, since its effect in SC is localized, SC outperforms the DFT-based

OFDM receiver. In the second, the impulse energy is low enough that when

spread across the entire OFDM symbol its effect is significantly reduced and

the DFT-based OFDM receiver outperforms the SC.
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It should be noted the regime where SC outperforms OFDM is in a sense

artificial: while the SC detector is MAP optimal, the DFT-based OFDM ig-

nores the dependency of the noise and interference samples across sub-carriers.

In fact, [78] shows that under a wide range of practical conditions, the mutual

information between the decoded and the transmitted symbols is higher for SC

than it is for a mutlicarrier system that performs independent detection across

sub-carriers ignoring the dependencies. However, PEP-analysis performed in

[45, 47] of the MAP OFDM decoder and the SC decoder shows that the MAP

OFDM decoder outperforms the SC decoder by tens of dBs. The main draw-

back, discussed extensively in subsequent chapters, is that MAP decoding of

OFDM in impulsive noise channels is exponential in computational complexity

and, with number of tones ranging in the thousands for modern OFDM sys-

tems, intractable even for desktop simulations. The main contribution of this

dissertation is designing computationally efficient algorithms that approximate

the MAP OFDM decoder recovering the performance loss suffered by typical

OFDM receivers.

2.2 Interference Management

A variety of interference management techniques has been developed

to keep the interference power under control and ensure the scalability of

communication networks. These techniques vary in the type of information

they leverage for interference management. This information could encompass

the deployed network topology or even the current state of the network and the
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present interferers through coordination. Interference management techniques

remain an active area of research both in industry and academia. A brief

overview of such techniques is provided in the following.

2.2.1 Shielding

Shielding constitutes the most basic form of interference management

techniques. By taking interference measurements across the platform, the

sources of interference can be determined and shielded accordingly. This will

protect the wireless transceiver from any emissions emitted from those sources.

A drawback is that shielding is in general costly and heavy: something to avoid

in designing modern ultra-light platforms. In addition, since shielding cannot

be applied to other communicating devices or interferers outside the platform,

it cannot protect against adjacent channel or out-of-platform interference[86].

2.2.2 Orthogonal Multiple Access Schemes

Such schemes allow multiple users to share a common propagation

medium by making their transmissions orthogonal to each other in some di-

mension. Common dimensions include: time resulting in time division mul-

tiple access (TDMA), frequency resulting in frequency division multiple ac-

cess (FDMA), or code resulting in code division multiple access (CDMA)

[37, 94]. While TDMA and FDMA require coordination, CDMA can oper-

ate asynchronously [37, 94]. When perfect orthogonality is achieved, interfer-

ence is canceled completely. However, in practice, orthogonality might not
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be achieved due to timing offsets and channel effects as is the case in the

CDMA uplink channel [94]. This results in residual interference. Further-

more, it was shown in [58] that there are fundamental limits on cooperation:

an interference-limited network cannot be converted to a noise-limited one.

Basically, due to the finite number of users that can orthogonalized, cooper-

ation can only be achieved in limited size clusters. As a result significant,

out-of-cluster interference is still present.

2.2.3 MAC Layer Access Schemes

Typically employed in decentralized networks like WiFi, MAC layer

access schemes attempt to avoid simultaneous transmissions which would re-

sult in interference. Carrier sense multiple access (CSMA) is a popular access

scheme that monitors the energy in the common medium to determine whether

a transmission in underway. However, this procedure is prone to false deci-

sions. As a result, this schemes cannot orthogonalize the access and inevitably

result in residual interference.

2.2.4 Interference Cancellation

Interference cancellation techniques leverage the fact that interference

seen from uncoordinated users is a communication signal. If this signal is

strong enough, it can be successfully decoded at the receiver and subtracted

from the received signal to improve its detection [37, 94]. Common methods

of interference cancellation include multiuser detection (MUD), and successive
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interference cancellation (SIC) [37, 94, 98]. Interference cancellation schemes

are typically effective against dominant interferers whose power is high enough

for successful decoding. However, signals from interferers whose power is below

the successful decoding threshold or whose modulation is unknown will still

appear as interference. Furthermore, this method is powerless against non-

communication interferers such as many devices operating in ISM band and

most interferers in powerline communication networks.

2.2.5 Precoding Techniques

MIMO precoding techniques leverage the freedom provided by multiple

antennas to structure interference in a manner that reduces its impact on the

different receivers. MIMO interference coordination has been an active area of

research and many solutions has been proposed such as inter-cell interference

cancellation [15], network MIMO (also known as CoMP) [35], and interference

alignment [7]. The common limitation is the heavy reliance on coordination

and sharing side information such as channel state information and user data

(in the case of CoMP). This limits the applicability of such solutions in sys-

tems that lack a centralized or otherwise dedicated back-haul for sharing these

information such as WiFi.

2.3 Statistical Modeling of Uncoordinated Interference

The previous section described how the presence of interference cannot

be completely avoided in modern communication systems; however, as the
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Model Characterization Application

Symmetric
Alpha Stable

Characteristic function:
Sensor and

Ad hoc networks
Φ(ω) = e−σ|ω|

α

α: characteristic exponent
σ: dispersion

Gaussian Mixture

p (x) =
M−1∑
k=0

πkN (x; 0, γk) Cellular Networks
with user clustering
Two-tier Femtocell

Networks

M : number of components
πk: component probability
γk: component variance

Middleton class-A

Gaussian Mixture with

Dense WiFi Networks
Cellular networks

M =∞, A: overlap index
Γ: power ratio, πk = e−AAk/k!
γk = γ(k/A+ Γ)/(1 + Γ)

γ: variance

Table 2.1: List of statistical-physical models for additive noise/interference
and their applications in communication systems.

demand for higher data rates grows, it is becoming the performance bottle

neck. As a result, statistical modeling of this uncoordinated interference is

of great importance for receiver design and performance analysis. The two

approaches for selecting an appropriate model are the statistical-physical and

the empirical approaches. In the statistical-physical approach, one constructs

a statistical model based on the physical principles governing the quantity of

interest such as the spatial distribution of interferers, their power, and the

channel fading statistics. The empirical approach uses experimental data to

propose a statistical model that describes the measurements of interest.
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2.3.1 Statistical-Physical Models for Uncoordinated Interference

Since the 1970s, significant effort has been devoted to developing statistical-

physical models for impulsive noise based on the physical characteristics of the

deployment environment. In his pioneering work, Middleton modeled these

random spatio-temporal emissions, or the “noise field”, using Poisson point

processes (PPP) giving rise to the “Middleton class-A” and “Middleton class-

B” noise models (for a recent review see [69]). More recently, this work has

been extended to modeling field of interferers in many wireless and PLC net-

works using spatial and temporal PPPs. In [51, 87], it was shown that the in-

terference from a homogeneous Poisson field of interferers distributed over the

entire plane, an abstraction for wireless ad hoc networks, follows a symmetric

alpha stable distribution. When we constraint the Poisson field of interferers

to a finite region with or without guard zones, for example to model cellular

systems, the generated interference follows a Middleton’s class A distribution

[41]. For Poisson clusters, in which each cluster contains Poisson distributed

interferers, the interference follows a Gaussian mixture distribution [41]. This

models cellular networks with user clustering and two-tier femtocell networks.

These models are summarized in Table 2.1.

The temporal dependence of the interference in Poisson fields was in-

vestigated in [101] in which a model for second order statistics was proposed.

More recently, a joint distribution of interference temporal samples in Poisson

fields, with random interferer transmission duration, has been found to follow

a multivariate Gaussian mixture distribution [40].
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2.3.2 Empirical Models for Uncoordinated Interference

Empirical models are based on interference measurements collected in

the field or the platform. For example, extensive measurement campaigns of

terrestrial wireless installations indicate that the additive noise is impulsive,

with peak noise amplitudes reaching up to 40 dB above the thermal back-

ground noise level [13, 56, 74, 83, 84]. The noise affecting powerline communi-

cations (PLC) has also been shown to be highly impulsive, as well as bursty

[72, 73, 104]. These measurement campaigns were used to fit the interference

data to different statistical models of the marginal pdfs such as Middleton’s

Class A [96], Nakagami-m [65], and Rayleigh [18] distributions empirically

without considering the underlying physical models of interference generation.

In the case when field data is not available, simulated data can be used instead.

For example, recent work in [26] uses simulated data of filtered interference

to support the Gaussian mixture and Middleton class-A models. Due to their

experimental nature, these marginal empirical models and their estimated pa-

rameters might not generalize across different scenarios. As a result, these

models are considered subpar to the statistical-physical models described in

Section 2.3.1. That said, empirical models shine in modeling temporal de-

pendencies as it is usually challenging to derive closed-form analytical joint

distributions of interference’s temporal samples from statistical-physical net-

work models [40]. Examples of such tractable models include Hidden Markov

models (HMM), Auto-Regressive (AR) models, and cyclostationary models

that are commonly used to model PLC interference data [52, 104]. Table 2.2
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Model Characterization Application

Gaussian Mixture

p (x) =
M−1∑
k=0

πkN (x; 0, γk)
Marginal pdf

of interference samples
M : number of components
πk: component probability
γk: component variance

Middleton class-A

Gaussian Mixture with

Marginal pdf
of interference samples

M =∞, A: overlap index
Γ: power ratio, πk = e−AAk/k!
γk = γ(k/A+ Γ)/(1 + Γ)

γ: variance

Rayleigh
p (x) = x

σ2 e
−x2/σ2

σ: mode

Marginal pdf
of interference power

Nakagami-m
p (x) = 2mm

Γ(m)Ωm
x2m−1e−mx

2/Ω

m: shape
Ω: spread

Marginal pdf
of interference power

Gaussian Hidden
Markov Model

(GHMM)

p (zk|zk−1, · · · , z0) = p (zk|zk−1)
p (zk = j|zk−1 = i) = Tij

p (xj|zj) = N
(
xj; 0, γzj

)
T: state transition matrix
γj: variance in state j

Temporal dependance

Autoregressive
Moving-Average

(ARMA)

xk = εk +
∑

l αlxk−l +
∑

j θjεk−j
p (εk) = N (εk; 0, γ)
{αl, θj}j,l: parameters

γ: variance

Spectrally shaped
interference (correlation

between samples)

Cyclostationary
p (xi + T, · · · , xj + T ) =

p (xi, · · · , xj)
T : period

Repeating Phenomena

Table 2.2: List of empirical models for additive noise/interference and their
applications in communication systems.
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summarizes the empirical models and their applications.

2.4 Prior Work on the Design of Interference-Limited
Receivers

Motivated by huge potential gains, there has been significant amount

of prior work that attempts to redesign the OFDM receiver taking into ac-

count the impulsive nature of uncoordinated interference. For simplicity of

exposition, I categorize the prior work into three categories: time-domain pre-

processing, sparse impulse noise reconstruction, and iterative receivers.

2.4.1 Time-Domain Preprocessing Techniques

These techniques use nonlinear estimators or sample thresholding to

mitigate the effect of the impulse noise in the time-domain before passing

it to the conventional DFT receiver. By treating the time-domain OFDM

sample at time t (ut), as being a Gaussian random variable, Haring derives

E {ut|rt}, its MMSE estimate given the received sample rt and the impulsive

noise model, and passes it to the DFT receiver for decoding [45]. Thresholding

techniques, on the other hand, compare each OFDM time-domain sample to

a threshold T : if a sample exceeds T , it is either blanked or clipped. The

analysis and various threshold selection methods for such techniques are given

in [95, 103]. While having a low implementation complexity, these techniques

don’t exploit the signal space diversity provided by the OFDM modulation

[47]; thus, their performance deteriorates when the power of impulses is close
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to the power of the OFDM signal or when higher order modulations are used

[45]. Under these conditions, the receiver is more error prone to threshold an

actual OFDM signal sample that is uncorrupted by an impulse. Furthermore,

these techniques don’t account for the variation in the received signal due to

a fading dispersive channel which severely limits their application in practical

systems.

2.4.2 Sparse Impulsive Noise Reconstruction

These methods assume that the impulsive noise is sparse in the time

domain, and attempt to reconstruct it using the received signal on known

tones (either null or pilot tones). The reconstructed impulse vector is then

subtracted from the received signal and the result is passed to a DFT receiver.

Exploiting the similarities between OFDM modulation with known tones and

Reed-Solomon coding, Wolf proposed the use of frequency algebraic interpo-

lation techniques to estimate the impulse vector [99]; this approach was later

extended to more general settings in [2, 3]. Recently, recognizing the limita-

tions of these methods in the presence of background noise, Caire proposed the

use of compressed sensing for impulse noise reconstruction [17]. This method

was later extended to bursty noise in [55]. For the typical number of known

tones in OFDM systems, these techniques can reconstruct only very sparse

impulse noise (one impulse in a 256-tone OFDM system with 30 known tones)

and their performance degrades significantly under more practical impulsive

noise scenarios [17, 57]. A more robust approach based on sparse Bayesian
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learning (SBL) was given in [57]. The SBL receiver not only achieves signif-

icantly better performance under practical impulsive noise scenarios but also

enables the receiver to use all the tones, including data tones, in a joint noise

estimation and data detection scheme. A limitation of these techniques is that

they still depend on linear channel estimation to utilize the pilot tones which

is suboptimal in impulsive noise, and, with the exception of the SBL receiver,

don’t use the data tones or perform joint data detection and impulse noise

estimation. However, the main limitation is that these methods don’t utilize

the statistical models for interference discussed in the previous section.

2.4.3 Iterative Receivers

These receivers alternate between the time and frequency domains to

mitigate the effect of impulsive noise. In a given iteration, a time-domain

pre-processing technique, such as clipping, can be applied to the received sig-

nal followed by symbol detection and time-domain correction for the following

iteration [66, 102]. While low in implementation complexity, the limitations

of the time-domain preprocessing methods carry over to these receivers. An-

other approach is to leverage the central limit theorem and the resulting ap-

proximate Gaussian behavior of the impulsive noise and the OFDM signal in

the frequency and time domains, respectively, to design linear estimators and

detectors in each domain and sequentially apply them reducing the effect of

impulsive noise with each iteration [46, 71]. The main limitations of these tech-

niques is that they don’t incorporate channel estimation. In addition, although
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[46] achieves significant performance gains, it requires setting parameters by

simulation which limits its application in practical systems.

2.5 Probabilistic Graphical Models

Probabilistic graphical models (PGM) are probabilistic models for which

a graph represents the conditional independence structure between the random

variables or, equivalently, the factorization properties of the joint distribution

[12]. This graphical representation enables easy understanding of the relation-

ships between the random variables and, as seen later in this section, allows for

efficient inference using message passing algorithms. This section introduces

PGM basics required by later chapters and discusses how they can be applied

to modeling uncoordinated interference in OFDM systems.

2.5.1 Graphical Representation of Interference Models

Section 2.3 discusses various models that have been proposed in the lit-

erature to model uncoordinated interference in communication systems. Due

to their generality and tractability, we restrict our attention to Gaussian mix-

ture models and hidden Markov models. In particular, Middleton class-A and

symmetric alpha stable models can be approximated as a Gaussian mixture

distribution [54, 97].

As discussed, a random variable X has a Gaussian mixture distribu-

tion if its probability density function (pdf) is a weighted sum of Gaussian
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Figure 2.3: Graphical model representation of the interference distribution for
two cases: a) i.i.d. Gaussian mixture pdf and b) a Hidden Markov Model with
Gaussian emission density.

distributions N (µk, σ
2
k) , 1 ≤ k ≤ K given by

pX (x) =
K∑
k=1

πk ·N
(
x;µk, σ

2
k

)
, (2.2)

where N (x;µk, σ
2
k) denotes the complex Gaussian distribution with mean µk

and variance σ2
k, and πk is the mixing probability of the k-th Gaussian compo-

nent. This distribution admits a simple latent variable model interpretation

with the latent variable S indicating which Gaussian component was used to

generate a particular realization of X. The probability mass function (pmf ) of

S is given by the mixing vector π = [π1 · · · πK ]. For interference in communi-

cation systems, the mean is typically assumed to be zero; otherwise, it can be

subtracted from the received signal; i.e. we set µk = 0,∀k. A graphical rep-

resentation of the Gaussian mixture model is given in Figure 2.3a. Since the

latent variables in the Gaussian mixture model are independent, there is no

temporal dependence between the noise samples. Hidden Markov models, on

the other hand, introduce temporal dependence between the noise samples by
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Figure 2.4: A factor graph representing the distribution in (2.3) with f1 =
p (xA), f2 = p (xC |xA, xB), and f3 = p (xB).

imposing a Markov structure on the hidden variables. The graphical represen-

tation of the resulting distribution is given in Figure 2.3b. In particular, each

Si, that controls from which Gaussian component does the sample ni come

from, depends only on its previous value Si−1 and the transition probabilities

of the governing Markov chain. The emission probabilities of the HMM model

is Gaussian with variance determined by the latent variable Si.

2.5.2 Factor Graphs

Factor graphs are undirected graphical models that represent how a

probability distribution factorizes. Each factor graph is composed of two types

of nodes: variable nodes, typically represented by a circle, representing the

random variables of the joint distribution; and factor nodes, represented by

squares, denoting the individual factors in the factorization of the joint distri-

bution. Edges exist strictly between variable and factor nodes to indicate what

variables does each factor depend on. For example, the following factorization
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Figure 2.5: The graphical representation of the statistical dependencies of the
variables in an OFDM system (N = 4).

of a given pdf

p (xA, xB, xC) = p (xA) p (xB) p (xC |xA, xB) (2.3)

can be expressed by the factor graph given in Figure 2.4.

2.5.3 Factor Graph Representation of the OFDM System Model

Section 2.1 described the mathematical model behind OFDM systems.

An alternate description of the system can be provided using a factor graph

representation. The three main types of variables in this graph are: the trans-

mitted data x, the channel taps h, and the interference latent variables s.

Figure 2.5 represents the probabilistic relationships between the variables in
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an OFDM system by the following factorization of the joint probability density

p (x, s,h|y) ∝ p (x) p (h) p (s)
N∏
i=1

p (yi|x, s,h) . (2.4)

Additional modeling assumptions on x,h, and s will lead to additional fac-

torizations on their priors p (x) , p (h), and p (s). Some of the data symbols

are pilot or null tones with known values typically used for channel estima-

tion and spectral efficiency in wireless and powerline communication systems.

These variables are considered to be observed nodes and they are set to their

known values (blue nodes in Figure 2.5). The factor nodes represent the struc-

tural and statistical relationships between those variables. For example, the

factor node connecting the data variables can represent the FEC code that

was used to encode the bits that were translated into the transmitted symbols

x. The channel-structure factor node can represent the structured sparsity

typically observed in wireless channels [85]. The factor node connected to the

latent variables of the interference represents the temporal dependence and

the prior probability of each Gaussian component.
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Chapter 3

Statistical Modeling of Uncoordinated

Interference

Statistical models of interference are important for evaluating and op-

timizing the performance of communication systems both in wireless and pow-

erline systems. The effectiveness of these models depends on their ability to

capture the statistics of the underlying random properties of the interference

relevant to communication, such as burst durations and inter-arrival times of

the interference emissions. As discussed in Section 2.3, the main modeling ap-

proaches for uncoordinated interference are statistical-physical and empirical

models. While different statistical-physical models for uncoordinated inter-

ference in wireless networks have been proposed, no such models have been

derived for powerline communication networks (PLC). Furthermore, model-

ing temporal dependencies remains a challenging area of interference model-

ing. This chapter tries to address these shortcomings by deriving statistical-

physical models of interference in PLC networks and proposing various empir-

ical models to capture the temporal dependencies in both PLC and wireless

systems.
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3.1 Statistical-Physical Modeling of PLC Interference

Powerline distribution networks are increasingly being employed to sup-

port smart grid communication infrastructure and in-home LAN connectivity.

However, their primary function of power distribution results in a hostile en-

vironment for communication systems. In particular, asynchronous impulsive

noise, with levels as high as 50 dB above thermal noise, causes significant

degradation in communication performance. Much of the prior work uses lim-

ited empirical measurements to propose a statistical model for instantaneous

statistics of asynchronous noise. In this section, I derive a canonical statistical-

physical model of the instantaneous statistics of asynchronous noise based on

the physical properties of the PLC network, and validate the distribution using

simulated and measured PLC noise data. The results of this section can be

used to analyze, simulate, and mitigate the effect of the asynchronous noise

on PLC systems.

3.1.1 Introduction

Powerline networks are increasingly employed for communication pur-

poses. These purposes vary from Internet connectivity inside the house to

supporting smart grid applications such as automatic meter reading, device-

specific billing and smart energy management. These powerline communica-

tion networks (PLC), initially designed for power transfer, result in a hos-

tile environment for communication systems. Reflections and temporal vari-

ations in the PLC channel and correlated impulsive noise are the two main

38



impairments for reliable communication [50]. This dissertation focuses on

noise/interference statistics, and refers readers interested in channel modeling

to [8, 39, 50, 91, 105]. The non-Gaussian noise in PLC networks can be cat-

egorized into three main categories: generalized background noise, periodic

impulsive noise, and asynchronous impulsive noise [104]. The first type has

an exponentially decaying power spectral density superimposed with narrow-

band interference, while the second consists of broadband impulses occurring

periodically. On the other hand, the asynchronous impulsive noise consists of

random impulses of varying durations. It is mainly caused by switching tran-

sients of various appliances and devices in individual homes and businesses

present on the network [50, 104]. Additional interference can also be picked

up by the PLC network acting as an antenna for wireless in-band and aliased

signals [50]. This impulsive noise, with levels as much as 50 dB above thermal

noise, is considered the main cause of errors in PLC communications [50].

Frequency domain empirical studies fit the spectrally shaped back-

ground noise to various spectral models [22, 49]. Likewise, time domain prop-

erties of the asynchronous impulsive noise, such as impulse inter-arrival times,

impulse durations, and instantaneous statistics, have been experimentally in-

vestigated in [18, 22, 91, 104]. I refer the reader to [91] and [104] for modeling

the impulse inter-arrival times and impulse durations.

This section focuses on the instantaneous amplitude statistics of the

asynchronous impulsive noise which are important properties for communica-

tion system performance and simulation [6, 65, 96]. Prior work fits the noise
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Figure 3.1: A system model for a low-voltage powerline communications net-
work and an in-home PLC LAN with interference sources. Each interference
source can be either on the powerline or from an external wireless source.
Each interferer emits asynchronous impulsive noise at a distance dm from the
receiver for m = 1, . . . ,M .

data to different statistical models such as Middleton’s Class A [96], Nakagami-

m [65], and Rayleigh [18] distributions empirically without considering the

underlying physical models of interference generation. Recent work in [26]

supports the Gaussian mixture and Middleton noise models by filtering the

interference through a PLC channel in a Monte Carlo simulation and studying

the resulting statistics of the simulated noise.
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3.1.2 Contribution

As a follow-up to previous work, I derive an analytical statistical-

physical model of the first-order distribution of the asynchronous impulsive

noise in PLC networks based on physical models of the PLC channel and the

generated interference. Temporal and higher order statistics are left for future

work. On top of that, I validate our models using Monte-Carlo simulations

and experimental data collected on a PLC network.

Throughout this section, I use a slightly different notation that the

rest of this dissertation to make the derivation easier to follow. In particu-

lar, random variables are represented using boldface notation, deterministic

parameters are represented using non-boldface type, E {f(X)} denotes the ex-

pectation of the function f(X) with respect to the random variable X, and

P (·) denotes the probability of a random event.

3.1.3 System Model

I consider a power-distribution or an indoor PLC network in which a

randomly located receiver receives a signal of interest in the presence of inter-

fering signals. A typical system model for a low-voltage PLC network is given

in Figure 3.1. In this model, there are M interferers that are a combination

of various homes connected to a transformer and some wireless sources such

as AM transmissions. The PLC environment is very dynamic and can exhibit

different characteristics on hourly basis, such as variations in load impedance

during the day period [50, 90, 104]. However, this section focuses on deriving
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instantaneous impulse statistics on the time scale observed by a communica-

tion system. As a result, I ignore the large scale variations in the environment,

and assume it to be stationary on the desired time scale. The interference ex-

perienced by a receiver at a reference time t = 0 due to emissions that arrived

within a time interval of duration T from the reference time is given by

I (T ) =
M∑
m=1

Im (T ) (3.1)

where Im (T ) is the interference resulting from interference source m. Con-

sequently, the interference due to all emissions that arrived in the past until

time t is given by

Ψ = lim
T→∞

I (T ) . (3.2)

Although taking T →∞ might seem to contradict the stationarity assumption

mentioned earlier, I will show that in practice, due to an upper bound on the

maximum interference duration, this is not the case and the result holds for

the desired time scale. The objective is to find the first-order statistics of

this total interference by calculating the characteristic function of Im (T ) for

each interferer m. Toward this end, I focus on finding appropriate statistical

models for the impulsive emissions based on interferer’s temporal profiles based

on experimental studies found in the literature (typically up to 20MHz).

3.1.3.1 Interference Emissions Modeling

Figure 3.2 shows the superposition of impulsive emissions due to source

m. Each impulse i is made up of two parameters: an arrival time relative to
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Figure 3.2: Superposition of impulses generated by source m: vertical arrows
are illustrations indicating arrivals, km is the number of arrivals within time
duration T , and t = 0 is the reference time.

the reference time denoted by τm,i (indicated by an arrow) and an impulse

duration denoted by TE
m,i. The dynamics of the emissions are captured by the

inter-arrival times between impulses denoted by {4τ i : i ∈ N}. Various exper-

imental studies investigated the temporal properties of asynchronous impulsive

emissions in PLC networks [18, 22, 91, 104]. In particular, measurements done

in [91] and [104] showed that the inter-arrival time between two consecutive

impulses fits an exponential distribution; i.e., the inter-arrival time between

impulse i and impulse i+ 1 has the following distribution

4τm,i ∼ Exp (λm)

where λm is the emission rate of source m. Since two impulses arriving at

the same time are indistinguishable (they add up constructively), the process

Λm = {τm,i : i ∈ N} representing the impulse arrival times for source m is a

counting process with jumps of size one. This combined with the exponential
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inter-arrival times, makes it a time Poisson point process with rate λm. As a

result, the interference emissions in our model are characterized by a set of time

Poisson point processes {Λi (λi) : 1 ≤ i ≤M} corresponding to each interferer

in Figure 3.1. This modeling can be generalized to indoor PLC networks where

the interference sources are individual appliances [91]. On the other hand, the

statistics of the impulse duration TE
m,i have been studied in [22, 104]. It was

found that a typical impulse has a duration ranging from about 10µs to 1ms

with a distribution that is loosely exponential and a typical value of hundreds

of µs [104]. The exact distribution of the impulse duration is not important

since the derivation depends only on its first moment E
{
TE
m,i

}
.

3.1.3.2 Interference Channel Modeling

The PLC channel properties have been studied extensively in [8, 39,

105]. In [39], the PLC channel was fitted to a time-domain pulse model. On

the other hand, [8] and [105] exploit the physical properties of the transmission

line. The two-port network model presented in [8], represents each component

of the PLC network, such as a cable or a transformer, by its equivalent two-port

network description (ABCD or S-parameters). Then, transmission line (TL)

theory is used to compute the equivalent channels and reflection impedances.

On the other hand, the echo model, presented in [105], is simplified representa-

tion of the channel frequency response inspired by TL theory. The echo model

describes the channel by the following equation

H (f) =
N∑
j=1

gje
−α(f)dje−j2πfdj/ν (3.3)
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where N is the number of paths, gj is a random variable representing the

reflection coefficient of each propagation path that depends on the observed

load impedance, α (f) is the attenuation constant of the cables used, dj is the

length of each reflection path needs to travel, and ν is signal propagation speed

through the wire. The impulse response of this channel has a delay spread τh

between 1µs to around 4µs [39, 105].

The effect of this channel on an impulse i due to source m can be

inferred by comparing the typical values of TE
m,i, the impulse durations pre-

sented in Section 3.1.3.1, to the channel delay spread τh given above. Since

TE
m,i � τh, the response of channel to the impulsive emission will have only

one resolvable component and the channel will be a flat fading channel (the

signal’s propagation delay is much smaller than the impulse duration). A sim-

ilar conclusion can be reached by looking at the channel’s frequency response

given in [39] and [105]. For an impulsive emission bandwidth between 1kHz

and 100kHz corresponding to the aforementioned TE
m,i, the channel response

is relatively flat. As a result, the discrete baseband equivalent channel of (3.3)

is given by

h [n] = hejθe−α0dδ [n] (3.4)

where h is a random amplitude, θ is a random phase uniformly distributed on

[0, 2π] under the uncorrelated fading assumption, e−α0d is the path attenua-

tion, d is the distance between the interferer and the receiver, and α0 = α (f0)

for some f0 in the frequency band being considered (flat fading). Even if the

channel exhibits frequency selectivity, the resulting multipath of the interfer-
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ence can be lumped together into one longer impulse with a different amplitude

distribution. The derivation depends only on the second order moment of the

channel amplitude and thus can be applied to any channel distributions. For a

wireless interferer, I assume a Rayleigh flat fading channel with pathloss pro-

portional to d−γ/2, where d is the distance of the source and γ is the pathloss

exponent [94].

3.1.4 Statistical Modeling of Im (T )

Figure 3.2 shows a typical realization of impulse emissions within a

window of duration T resulting from interference source m. The resulting

interference at the receiver at a reference time t = 0, Im (T ), can be represented

as

Im (T ) = γ (dm)
km∑
i=1

hm,ie
jθm,iXm,i (3.5)

where km is the number of impulses that arrived within a window of duration

T , hm,ie
jθm,i is the flat channel gain (based on (3.4)) between the interfer-

ence source m and the receiver as seen by impulse i, and γ (dm) is the path

attenuation. From Section 3.1.3.2, the channel attenuation can be expressed

as

γ (dm) =

{
d
−η/2
m if m is a wireless source

e−α0dm if m is a wired source
(3.6)

where dm is the distance between the source and the receiver. On the other

hand, Xm,i is the random emission due to the duration of impulse i and can

be represented as

Xm,i = Bm,ie
jφm,i1

(
τm,i ≤ TE

m,i

)
(3.7)
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where 1 (·) is the indicator function, and Bie
jφi represents the result of nar-

rowband filtering of interference emissions performed at the receiver. The

condition inside of the indicator function guarantees that the emission corre-

sponding to impulse i is still active at the reference time t = 0 (See Figure 3.2).

For example, in Figure 3.2 impulse km no longer has an effect at t = 0 while

impulse 1 is still active as reflected in the indicator function’s condition. Bi is

an i.i.d. envelope and φi is a random phase uniformly distributed on [0, 2π].

This representation is valid as long as TE
m,i � 1

4fR
where 4fR is the receiver

bandwidth [67]. This is the case for the values of TE
m,i mentioned in Section

3.1.3.1, especially for broadband PLC (4fR ≈ 1MHz). Expanding Im (T ) into

its complex form, I obtain

Im (T ) =
km∑
i=1

hm,iBm,i1
(
τm,i ≤ TE

m,i

)
×
[
cos
(
φm,i + θm,i

)
+ j sin

(
φm,i + θm,i

)]
. (3.8)

From (3.8), the joint characteristic function of the in-phase and quadrature-

phase components of Im (T ) = I
(I)
m (T ) + jI

(Q)
m (T ), with implicit dependence

on T , is given by

ΦIm (ω) = EIm

{
ejωII

(I)
m +jωQI

(Q)
m

}
= E

{
e
j
km∑
i=1

hm,iBm,i1(τm,i≤TEm,i)|ω| cos(φm,i+θm,i+ωφ)
}

where Im =
[
I

(I)
m , I

(Q)
m

]T
and ω = [ωI , ωQ]T , |ω| =

√
ω2
I + ω2

Q, and ωφ =

tan−1
(
ωQ
ωI

)
. The expectation in the above equation is with respect to km,
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{
Bm,i,hm,i, τm,i,φm,i,θm,i,T

E
m,i : 1 ≤ i ≤ km

}
. Taking the expectation over

km, I obtain

ΦIm (ω) =
∞∑

km=0

P (km arrivals in duration T )×

E
{
e
j
km∑
i=1

hm,iBm,i1(τm,i≤TEm,i)|ω| cos(φm,i+θm,i+ωφ) | km
}

(3.9)

Since Λm (λm) is a homogeneous Poisson time-point process, the number of

impulse arrivals km in the window of duration T is Poisson distributed with

distribution

km ∼ Pois (λmT ) .

Furthermore, given km, the impulse arrival times {τm,i : 1 ≤ i ≤ km} are mu-

tually independent and uniformly distributed on [0, T ]; thus

τm,i | km ∼ U (0, T ) for 1 ≤ i ≤ km. (3.10)

Assuming
{
Bm,i,hm,i,φm,i,θm,i,T

E
m,i | km : 1 ≤ i ≤ km

}
are all i.i.d. (i.e. sta-

tistically identical emissions for each impulse i ), I can drop the index i and

write (3.9) as

ΦIm (ω) =
∞∑

km=0

e−λmT (λmT )km

km!

×
(
E
{
ej|ω|hmBm1(τm≤TEm) cos(φm+θm+ωφ)

})km
= e

λmT

(
E

{
e
j|ω|hmBm1(τm≤TEm) cos(φm+θm+ωφ)

}
−1

)
(3.11)
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Denoting the expectation in (3.11) by ψIm (ω), I obtain

ψIm (ω) , E
{
ej|ω|hmBm1(τm≤TEm) cos(φm+θm+ωφ)

}
(a)
= E

{(
1− TE

m

T

)
e0 +

TE
m

T
ej|ω|hmBm cos(φm+θm+ωφ)

}
(b)
= 1− µm

T
+
µm
T

E
{
ej|ω|hmBm cos(φm+θm+ωφ)

}
(3.12)

where step (a) follows from taking the expectation over τm, and step (b)

from taking the expectation over TE
m with the notation µm = E

{
TE
m

}
. In

step (a), I made the implicit assumption that T > TE
m (ω) , ∀ω ∈ Ω where

Ω is the probability space. This assumption is valid since in practice TE
m,

the impulse duration, is bounded and follows a truncated distribution [104].

Further, (3.2) shows that I are interested in the limit as T →∞ which justifies

our assumption. By using the identity

eja cos(θ) =
∞∑
k=0

jkεkJk (a) cos (kθ) (3.13)

where Jk is the Bessel function of the k-th order, ε0 = 1 and εk = 2 for k ≥ 1,

(3.12) can be written as

ψIm (ω) = 1− µm
T

+
µm
T

E
{ ∞∑
k=0

jkεkJk (|ω|hmBm)

× cos (k (φm + θm + ωφ))

}
. (3.14)

Since φm and θm are uniformly distributed on [0, 2π], Eφm,θm {cos (k (φm + θm + ωφ))} =

0 for k ≥ 1, and (3.14) reduces to

ψIm (ω) = 1− µm
T

+
µm
T

Ehm,Bm {J0 (|ω|hmBm)} . (3.15)
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An approximation for the expectation term in (3.15) is given by

Ehm,Bm {J0 (|ω|hmBm)} = e
−|ω|E{h2

mB2
m}

4

(
1 + Θ

(
|ω|4

))
(3.16)

where Θ (‖ω‖4) denotes a correction term with the lowest power of ‖ω‖ be-

ing four [67]. Fourier analysis shows that the behavior of the characteristic

function in the neighborhood of zero governs the tail probabilities of the ran-

dom variable. As a result, Θ (‖w‖4) � 1 for ‖w‖ → 0, and can be ignored

from (3.16) for modeling tail probabilities. For hmBm Rayleigh distributed,

Θ (‖w‖4) = 0 and the following result is exact. Substituting (3.16) into (3.15)

and then into (3.11), I obtain

ΦIm (ω) = e
λmµm

−1+e

−‖w‖2E{h2
mB2

m}
4



= e−λmµm
∞∑
k=0

(λmµm)k

k!
e
−k‖w‖2E{h2

mB2
m}

4 (3.17)

where the second step follows from the Taylor expansion of the exponential

function. Two important observations can be made about (3.17): 1) there is

no dependence on T , and (2) it is the characteristic function of a Middleton

Class A distribution with parameters given by

Am = λmµm = λmE
{
TE
m

}
(3.18)

Ωm =
Am × E {h2

mB2
m}

2
=
Amγ (dm)E {g2

mB2
m}

2
(3.19)

where Am is the overlap index that indicates the amount of impulsiveness of

the interference originating from source m, and Ωm is its mean intensity. The

independence of (3.17) from T is important for deriving the statistics of the

total interference and is discussed in the following section.
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3.1.5 Statistical Modeling of the Total Interference Ψ

The total interference as seen by the receiver is the superposition of

impulses resulting from all available interference sources. Further, it should

encompass the contribution of the impulse durations potentially spanning in-

finitely in the past. This is reflected in (3.2). However, as seen from (3.17),

the statistics of the total interference Ψ depend only on the impulses that ar-

rived within the maximum impulse duration which is finite. This has a simple

intuitive explanation: any impulse that arrived before the maximum impulse

duration would have died out by the reference time t = 0. On top of that, the

maximum impulse duration is on the order of milliseconds (only 1% of total

impulses exhibit a duration exceeding 1ms [104]). This duration is much lower

than the rate of variation in the PLC environment which is on the order of

hours and days [90]. This justifies the stationarity assumption mentioned in

Section 3.1.3.

Let ξ = max
{
TE
m (ω) : ω ∈ Ω, 1 ≤ m ≤M

}
, then (3.2) can be ex-

pressed as

Ψ = lim
T→∞

I (T ) = I (ξ) =
M∑
m=1

Im (ξ) . (3.20)

Assuming that impulses from different interference sources are independent

and using the result from (3.17), I can express the characteristic function of

the total interference as

ΦΨ (ω) = e−
∑M
m=1 λmµ

E
m

∞∑
k1=0

· · ·
∞∑

kM=0

M∏
m=0

(
µEmλm

)km
km!

× e−‖ω‖2
∑M
m=1 kmγ(dm)E{g2

mB2
m}/4. (3.21)
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This is the characteristic function of a Gaussian mixture distribution. Trun-

cating the each infinite summation into N terms, (3.21) can be simplified into

the more familiar form

ΦΨ (ω) =
NM∑
i=1

πie
−‖ω‖2σ2

i (3.22)

where

π =


λ01e
−µ1λ1

0!
...

λN1 e
−µ1λ1

N !

⊗ · · · ⊗

λ0Me

−µMλM

0!
...

λNMe
−µMλM

N !


and

σ2 =
1

4

 0 · E {h2
1B

2
1}

...
N · E {h2

1B
2
1}

⊕ · · · ⊕
 0 · E {h2

MB2
M}

...
N · E {h2

MB2
M}


where π =

[
π1 · · · πNM

]
and σ2 =

[
σ2

1 · · · σ2
NM

]
. The operations ⊗ and

⊕ denote the Kronecker multiplication and sum respectively. These equations

can be made arbitrary accurate by increasing N ; however, 2 to 3 terms are

usually sufficient in practice [61]. The amplitude distribution of the total

interference can be deduced from (3.22) and written as

f‖Ψ‖ (ζ) =
NM∑
i=1

πie
−‖ω‖2σ2

i
ζ

σ2
i

e−ζ
2/σ2

i

which is a sum of Rayleigh distributions.

3.1.6 Discussion

Eq. (3.21) and (3.22) describe the interference statistics under the gen-

eral conditions given in Figure 3.1. These equations can be further simplified
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Table 3.1: Statistical-physical modeling of asynchronous impulsive noise in
different PLC networks. For each interfering source m, λm is the emission
rate, µm is the mean, and dm is the distance to the receiver. There are M
interfering sources.

Scenario Model

General PLC network Gaussian Mixture

{λm, µm, dm : 1 ≤ m ≤M} π, σ2 in (3.22)

One Dominant Interference Source Middleton’s Class A

λ, µ, d A = λµ,Ω =
Aγ(d)E{h2B2}

2

Homogeneous PLC network Middleton’s Class A

λm = λ, µm = µ, γ (dm) = γ A = Mλµ,Ω =
λµγE{h2B2}

2

∀m ∈ {1, · · · ,M}

by assuming more homogeneous environments with similar properties such as

emission rates and channel and emission’s amplitudes statistics. For example,

environments with one dominant interference source will follow a Middleton

Class A model with parameters given in (3.18) and (3.19). Environments with

interference sources having similar rates, channel and emission statistics would

also have a Middleton Class A statistics. To see this, assume that λm = λ,

µm = µ, γ (dm) = γ and E {g2
mB2

m} = k ∀m ∈ 1, · · · ,M . Substituting these

values into (3.18) and (3.19) I get, for each interference sourcem ∈ {1, · · · ,M},

Am = λµ Ωm = λµ×γk
2

. (3.23)

Thus, the total interference Ψ is the sum of M independent Class A distributed

random variables with parameters given by (3.23). Consequently, Ψ is also
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Class A distributed with the following parameters [61]

AΨ = MAm ΩΨ = Ωm . (3.24)

The variance of the noise is also multiplied by M . The assumption that γ(dm)

is independent of dm is especially valid in lower frequency PLC networks (order

of 100kHz) since for wired sources

γ (dm) = e−α(f0)dm = e−(a0+a1fk0 )dm ≈ 1

where the last equality follows by substituting some measured values of the

given parameters: a0 = 0, a1 = 7.8 × 10−10, f0 = 100kHz, k = 1 and dm

having typical PLC network dimensions (20m ≤ dm ≤ 500m) [105]. In this

range the transmission line effects are negligible and lumped discrete models

can be used. These cases are summarized in Table 3.1.

3.1.7 Simulation and Experimental Results

I verify our derived models by using Monte-Carlo simulations of the

system given in Figure 3.1. In particular, for each interferer source m I

choose a rate λm and distance dm such that λm ∼ U (λmin, λmax) and dm ∼

U (dmin, dmax). I choose λmin = 50/sec and λmax = 1000/sec based on empir-

ical measurements [50, 104]. Also, I choose to simulate a medium-sized PLC

network with dmin = 50m, dmax = 500m, and α0 = 10−4 with the number

of interference sources M = 5, 15. The mean impulse duration E
{
TE
m

}
was

chosen to be 150µsec ∀m [104]. The accuracy of the statistical models is estab-

lished by comparing the empirical tail probabilities based on the Monte-Carlo

54



0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

threshold ζ

P
(|

Y
|>
ζ
)

 

 

Simulated, M=5

GMM Model, M=5

Simulated, M=15

GMM Model, M=15

Figure 3.3: For M different interfering sources, empirical tail probabilities
from Monte-Carlo simulations and the predicted tail probabilities from the
Gaussian mixture model given in (3.22) are shown. In both cases, the curves
match exactly for a wide range of ζ values.

simulated data and analytical tail probabilities predicted by our derived mod-

els. The tail probability characterizes the impulsiveness of a given distribution

and is given by P (‖Y ‖ > y). The comparison between the two tail probabil-

ities for the general cases where the number of interference sources is 5 and

15 is given in Figure 3.3. The empirical tail probability curve and the model

predicted tail probability curve are exact matches with little deviation at the

higher amplitudes due to the limited number of data points generated in that

range. Moreover, the curves corresponding to the case with 15 interference

sources is higher than that of 5 sources because the variance (power) is higher

for the former. On the other hand, Figure 3.4 shows the tail probabilities for

the homogeneous network described in Section 3.1.6. This network can be

an appropriate approximation for low-frequency PLC networks and results in
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tail probabilities from the Middleton Class A model given in (3.24) are shown.
In both cases, the curves match exactly for a wide range of ζ values.

interference that is Middleton Class A distributed with parameters given in

(3.24). Again, it can be seen that there is a good fit between the simulated

data and the derived model.

In order to validate the above model, I captured real PLC network

interference samples in an apartment building in Austin, TX. The noise was

sampled in the 45−90 kHz band at 1MSample/sec. I used the EM algorithm to

fit the gathered data in chunks of 14 ms to the proposed models. The results,

given by the tail probabilities, are shown in Figure 3.5. The Gaussian mixture

model provides the best fit in accordance with our derived model. The Class A

model does not fit well in this particular case indicating that the interference

sources had different emission properties. As expected, the Gaussian model

provided the worst fit because it does not take into consideration the heavy
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Figure 3.5: Comparison of tail probabilities obtained from measured data
samples and by the Gaussian distribution, Middleton Class A distribution,
and Gaussian mixture model. The Gaussian mixture model provides the best
fit among the derived models.

tails of the interference distribution.

3.2 Cyclostationary Modeling of Narrowband PLC In-
terference

A Smart Grid intelligently monitors and controls energy flows in an

electric grid. Having up-to-date distributed readings of grid conditions helps

utilities efficiently scale generation up or down to meet demand. Narrowband

powerline communication (PLC) systems can provide these up-to-date read-

ings from subscribers to the local utility over existing power lines. While the

interference in broadband PLC systems is dominated by asynchronous im-

pulsive noise discussed in Section 3.1, a key challenge in narrowband PLC

systems is overcoming additive non-Gaussian interference that exhibits strong
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cyclic temporal dependence due to the non-linear coupling with the AC mains

and various electrical devices employing switching power supplies. In this sec-

tion, I propose to use a cyclostationary model for the dominant component of

additive non-Gaussian noise. The key contributions are (1) fitting measured

data from outdoor narrowband PLC system field trials to a cyclostationary

model, and (2) developing a cyclostationary noise generation model that fits

measured data.

3.2.1 Introduction

The increasing energy demands of the future necessitate non-traditional

energy generation and management techniques. The concept of the Smart Grid

addresses this issue by intelligently monitoring and controlling energy flows in

the electric grid. A vital part of the Smart Grid revolves around providing

reliable communication links between various agents in the network. A strong

candidate for such a role is powerline communication (PLC) [33]. PLC tech-

nologies such as the TURTLE and TWACS have been in use by electric utilities

for remote metering applications for two decades [33]. However, new Smart

Grid applications demand much higher data rates than the one provided by

those early PLC technologies. As a result, there has been a lot of interest in

developing what is called high data rate narrowband (3− 500 kHz) PLC sys-

tems for remote metering and load control. Examples of such systems are the

ongoing standards such as ITU-T G.hnem and IEEE 1901.2 and the propri-

etary PRIME and G3. These systems employ OFDM modulation to provide
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Figure 3.6: The measurement setup listens to the powerline communication
band on low-voltage (LV) and medium-voltage (MV) lines, and samples the
noise traces at 1.25 MS/sec.

data rates up to hundreds of kilobits per second.

The attractive aspect of PLC is the possible deployment over the exist-

ing power grid, thereby saving the cost of a new infrastructure. The downside

is that this infrastructure, originally designed for one-way power transfer, is a

hostile environment for communication systems. Time-varying non-Gaussian

noise and time-varying frequency selective channels are the two primary im-

pairments affecting reliable PLC [29, 33]. This section focuses on noise mod-

eling for narrowband PLC systems. I refer the reader to [29] for PLC channel

models.

There has been significant interest in characterizing PLC noise due to

its impact on communication performance. Various noise models have been

proposed to capture the noise characteristics in PLC environments in frequency

ranges up to 20 MHz. Generally, PLC noise can be viewed as an aggregation

of various types of noise [29, 72, 104]. Many properties of PLC noise have been

studied empirically in [104]. However, these studies focus on the noise in the

0.2 − 20 MHz range and thus are more applicable for broadband PLC sys-
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tems. Less work has been done on characterizing narrowband PLC noise. An

exception is the periodic noise model proposed in [81] for the very low fre-

quency PLC and the cyclostationary Gaussian proposed in [52] that captures

the temporal cyclic behavior that dominates narrowband PLC noise. However,

this model ignores the time-varying spectral behavior of the noise which lim-

its its applicability to narrow single carrier systems, making it inappropriate

for OFDM systems. This spectral variation results from the noise being the

superposition of various noise processes with different generation mechanisms

(such as homes, heavy industry). Furthermore, the measurements used in [52]

were taken in indoor environments and don’t generalize readily to outdoor

environments such as the ones employed by utilities.

3.2.2 Contribution

In this section, I present measurements results from a low voltage site.

Then, I propose a passband cyclostationary noise model for narrowband PLC

that accounts for both the time and frequency properties of the measured noise.

The proposed model is computationally tractable and can be exploited by the

PLC modem for link adaptation. This work has been done in the context of

the IEEE P1901.2 standardization effort [23].

3.2.3 Measurement Setup

The measurement setup is shown in Figure 3.6. The analog to digital

converter (ADC) connects to a low voltage or medium voltage power line
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Figure 3.7: Spectrogram of a noise trace at a low voltage site [23]. The noise
displays the cyclostationary features both in time and frequency.

through a coupler and listens to the PLC environment under signal silence.

Since I are interested in narrowband PLC noise, a low pass filter with a cut-off

frequency of around 500 kHz is utilized. The output of this filter is sampled

at a sampling rate fS = 1.25 MS/sec. Before analyzing the data, I remove the

effect of the spectral shape of the acquisition equipment through equalization.

3.2.4 Data Analysis

Communication systems models need to capture both the temporal and

spectral properties of the noise. A commonly used technique for non-stationary

signal analysis is the Short-Time Fourier Transform (STFT) [76]. The result-

ing spectrogram (magnitude of the STFT) of a noise trace collected at a low

voltage site is given in Figure 3.7. This noise exhibits strong cyclostationary

features in time and frequency domain with period T = TAC/2 ≈ 8.3 ms. In

61



addition, there is a higher concentration of noise power in the lower frequency

band with broadband impulses occurring every T and some weaker narrow-

band interference. A complete analysis of 22 low voltage and medium voltage

sites are given in [23].

3.2.5 Cyclostationary Gaussian Model

The Cyclostationary Gaussian Model (CGM) is a cyclostationary model

proposed in [52] to model the dominant noise in narrowband PLC systems.

According to this model, the passband noise samples are modeled as zero-

mean Gaussian random variables with a periodic time-varying variance σ2[k]

of period N ; i.e.

s[k] ∼ N
(
0, σ2[k]

)
, σ2[k] = σ2[k + lN ] (3.25)

where k is the time index and l ∈ Z. The period N = TfS where fS is the

sampling frequency1. The variance σ2[k] is modeled as a sum of L sinusoids

with 3L parameters. The resulting noise process s[k] is cyclostationary with

autocorrelation given by

rs [k, τ ] = E {n[k]n[k + τ ]} = σ2[k]δ[τ ]. (3.26)

As expected, rs[k, τ ] = rs[k +N, τ ]. Due to δ[τ ], the spectrum of this process

is white in frequency with time-varying power. As a result, the CGM shapes

the resulting s[k] with an LTI filter h[k] to produce a decaying spectral profile

1fS is assumed to be aligned with T to result in N ∈ N.
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independent of time. The LTI filter is chosen to fit the spectral shape of the

background noise typically assumed to be exponentially decaying [29]. The

autocorrelation of the resulting process n[k] is given by

rn[k, τ ] =
∑
m

h[m]σ2[k −m]h[τ +m]. (3.27)

While still periodic, the resulting correlation is coupled with σ2[k−m] and the

resulting spectrum no longer corresponds to the shaping filter h[k]. Further-

more, there is no physical basis for choosing the sinusoid as the parametric

form for σ2[k]. This leads to a huge expansion in the parameter space, particu-

larly if the noise envelope has sharp transitions as seen in Figure 3.7, requiring

large amount of data and complexity for parameter estimation (50− 100 AC

cycles [52]).

3.2.6 Proposed Cyclostationary Model

The CGM models the noise process as an excitation of an LTI sys-

tem h[k] by a cyclostationary input n[k] given in (3.25). While accurate for

background noise, a single LTI system h[k] doesn’t capture the time variation

of the spectral content shown in Figure 3.7 which represent the aggregation

of various physical phenomena. This mismatch in the spectral domain makes

this noise model inappropriate for modern PLC standards that employ OFDM

[29]. Given the limited applicability of CGM to OFDM systems, I propose a

noise model for narrowband PLC that takes into account both the spectral

and temporal properties of the noise.
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3.2.6.1 Spectral Modeling

Figure 3.7 shows that the noise spectral content has three distinct re-

gions in each period T where the spectrum has similar shape corresponding

to a specific generating physical phenomena: a low power background noise

region (0 − 5 ms in Figure 3.7), a high power interference region (5 − 7 ms

in Figure 3.7), and a broadband impulse of duration ≈ 0.3 ms. In general, a

given period of duration T can be divided into M intervals R1, · · · ,RM where

the noise spectral shape remains unchanged (M is between 2 and 4 [23]). If

I assume that the noise is stationary in each interval Ri, then I can model

the noise in that interval as a response of an LTI filter hi[k] to a stationary

input s[k]. Accordingly, the noise can be modeled as the response of a lin-

ear periodically time-varying (LPTV) system h[k, τ ] to a stationary input s[k]

where

h[k, τ ] =
M∑
i=1

hi[τ ]1k∈Ri , 0 ≤ k ≤ N − 1 (3.28)

and h[k + lN, τ ] = h[k, τ ] where N is the discrete period corresponding to

half the AC-cycle T , l ∈ Z, and 1A is the indicator function (1A = 1 if A, 0

otherwise). As a result, the noise n[k] is given by

n[k] =
∑
τ

h[k, τ ]s[τ ] =
M∑
i=1

1(k mod N)∈Ri

∑
τ

hi[τ ]s[τ ]. (3.29)

This can be interpreted as sequential filtering of the stationary input s[k] by

a sequence of LTI filters hi[k] (See Figure3.8). The LPTV system approach is

further motivated by [21] where the indoor PLC channel response was shown
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Figure 3.8: Noise generation model: n[k] is the result of sequential filtering of
stationary input s[k] by a sequence of LTI filters hi[τ ].

to be well approximated by a LPTV filter consisting of a sequence of time

invariant filters.

3.2.6.2 First-Order Statistics of the Noise Samples

The LPTV filtering operation models the second order statistics of the

cyclostationary noise. In this section, I examine the first-order statistics of the

cyclostationary noise n[k] to determine the appropriate excitation stationary

process s[k] (n[k] is a weighted sum of s[k] samples). For a cyclostationary

process,

pk (z) = pk+lN (z) , l ∈ Z (3.30)

where pk (z) is the pdf of the noise sample n[k]. As a result, the pdf pk (z)

can be estimated from the pdf of the subsampled process nk[l] = n[k + lN ].

Figure 3.9 indicates that the normal distribution can be a good fit for the

subsampled sequences nk[l]. The Lilliefors test for normality over a noise

trace of 12 periods shows that 95% of the submsampled sequences nk[l] fit the

normal distribution at a significance level α = 0.01. Since filtering a Gaussian

process by a linear system produces another Gaussian process, s[k] can be
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Figure 3.9: The normal plot for 12 samples from the subsampled nk0 [l] for
some k0. The closeness of the data points to the red line indicates that the
samples follow a normal distribution.

modeled as a Guassian process. To simplify the estimation of the shaping

filters hi[k], I make s[k] a unit power Gaussian white noise.

3.2.6.3 Parameter Estimation

The proposed model is parametrized by the number of stationary re-

gionsM , the region intervals {Ri : 1 ≤ i ≤M}, and the LTI filters {hi[k]}1≤i≤M .

The number of stationary regions M and the region boundaries can be inferred

by visually inspecting the spectrogram such as the one in Figure 3.7. Further-

more, the stationary assumption during each interval Ri allows for an efficient

automated region detection in the time domain that can be implemented on

an PLC receiver. In particular, under the assumption that each LTI filter hi[k]

has a different power ‖hi‖2 (as is typically the case [23]), each noise sample
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n[k] will have a power given by

E
{
n2[k]

}
= ‖hi‖2 , k ∈ Ri (3.31)

due to the stationarity assumption. This means that noise samples within

each region have equal powers. As a result, a simple thresholding scheme

might be adopted to differentiate regions in the time-domain. Furthermore,

a PLC modem can set the thresholds γi to correspond to its adaptive coding

and modulation thresholds; thus estimating only the noise parameters that

are relevant to the communication performance.

The LTI filters {hi[k] : 1 ≤ i ≤M} are spectrum shaping filters. De-

signing these filters requires a spectrum estimate for each region Ri. Paramet-

ric and non-parametric techniques for spectral estimation are discussed in [48].

The trade-off between using either method is estimation accuracy vs. general-

ization error. Parametric models produce more accurate estimates under the

correct model assumptions but suffer under model mismatch. On the other

hand, non-parametric models generalize well but suffer from an increased noise

floor. In narrowband PLC, the spectral shapes vary significantly between sites

and the time of the day and may include narrowband interferers [23]. As a

result, non-parametric models are more appropriate for designing robust PLC

systems for field deployment. Given an estimate of the spectrum Ŝi (ω) during

Ri, an estimate of the autocorrelation sequence r̂i[τ ] during that same interval

can be obtained by taking its IDFT. This sequence can be then used to de-

sign the appropriate spectrum shaping filter hi[k] [48]. In addition, frequency
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Figure 3.10: The spectrogram of the fitted model: a close match to the spec-
trogram of the PLC noise given in Figure 3.7.

domain filtering using FFT can be applied using the spectral estimate Ŝi (ω)

followed by an IDFT operation.

3.2.7 Model Fitting

The application of the proposed model to narrowband PLC, in particu-

lar OFDM, depends on its accuracy in modeling the spectral properties of the

PLC noise. I apply the proposed modeling procedure to the data displayed

in Figure 3.7. By visual inspection, I determine M = 3 and the intervals

R1,R2, and R3 corresponding to the regions described in Section 3.2.4. The

corresponding spectral estimates Ŝ1 (ω) , Ŝ2 (ω), and Ŝ3 (ω) are estimated us-

ing the Welch’s method [48]. Applying frequency domain filtering to a unit

power AWGN noise, the spectrogram for the generated noise is given in Fig-

ure 3.10. As shown in Figure 3.10, the fitted model generates noise samples
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whose spectral and temporal traces resembles closely that of the original data.

3.3 Empirical Modeling of ISM-Band Wireless Interfer-
ence

In this section, I propose two empirical models for characterizing in-

terference in the ISM band: the Gaussian mixture (GM) model, discussed

previously, and the Gaussian hidden Markov (GHMM) model. Each of these

models captures a specific feature of the impulsive noise observed in practice:

the GM model captures the marginal pdfs of the impulsive noise while the

GHMM extends it to capture local dependencies in bursty impulsive noise

samples. I briefly review the GM model and its interpretation under a latent-

variable model as discussed in Section 2.5.1. This allows us to relate it to the

GHMM in Section 3.3.2.

3.3.1 The Gaussian Mixture Models - Impulsive Noise

The GM distribution is a generalization of the Gaussian distribution

that allows for multiple modes and heavier tails. The latter is what makes the

GM distribution suitable for impulsive noise modeling since large amplitudes

(the pdf tails) are more likely in impulsive environments than in AWGN. A

GM distribution of a random variable n with zero mean components is given

by

p (n) =
K−1∑
k=0

π(k) ·N (n; 0, γk) (3.32)
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where N (n; 0, γk) denotes a complex Gaussian pdf with zero mean and variance

γk; and π(k) is the probability of the k-th Gaussian component. Typically, the

component with the smallest variance represents the Gaussian background

noise g and the total noise can be decomposed as the sum of background and

impulsive noise given as

n = g + i (3.33)

where i is the impulsive noise component. If I let g ∼ N (0, γ0), then the pdf

of the impulsive noise is given by

p (i) = π(0)δ (i) +
K−1∑
k=1

π(k) ·N (i; 0, γk) , (3.34)

i.e. with probability π(0) only background noise is present and with probability

1−π(0) I have a non-zero impulsive noise on top of the background noise. Here,

the variances γk indicate the power of the impulse component rather than the

total variance of the noise n as in (3.32) (γk in (3.32) equals γ0 + γk in (3.34)

). The mixing vector π = [π(0) · · · π(K−1)] can be interpreted as a probability

mass function of a latent random variable z that selects the mixture component

used to generate a sample of n; i.e. P (z = k) = π(j),∀k ∈ {0, · · · , K − 1}.

Given z,

i|{z = k} ∼ N (0, γk) (3.35)

where γ0 = 0. Middleton class-A distribution is a special case of the GM

distribution with infinite number of Gaussian components [69]. In practice,

these are truncated to two or three components and the finite GM pdf given in

(3.32) provides an accurate approximation [97]. By choosing an appropriate
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model order, GM models provide flexibility in modeling general distributions

[64].

3.3.2 The Gaussian Hidden Markov Models - Bursty Noise

In many scenarios, such as in PLC systems, the noise is not only impul-

sive but also bursty; i.e., impulses arrive in bursts [104]. As a result, the noise

samples are no longer independent from each other as in the GM case. This

dependence can be captured by hidden Markov models (HMM) with Gaussian

emission probabilities [32]. In [104], the authors show that a Markov chain

with 7 states is able to accurately reproduce the burst durations observed in

broadband PLC.

The Gaussian HMM (GHMM) can be viewed as a generalization of the

GM model to the case where the latent variable at time t, zt, depends only the

previous latent variable zt−1. The temporal dynamics of this Markov chain are

determined by the state transition matrix T defined as

[T]i,j = P (zt = j|zt−1 = i) ∀i, j ∈ {0, · · · , K − 1} (3.36)

where I assumed that the Markov chain is homogeneous (stationary). Note

that the marginal distribution of the noise samples under this model is GM

with pdf given by (3.34) with the mixing vector π given by the solution of

π = πT. Under this model, the mean duration of a bursty impulse noise from

state k is given by

E {τk} =
1

1− [T]k,k
(3.37)
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Figure 3.11: A pdf fit of a noise trace collected from a receiver embedded in
a laptop: the GM model with 2 components provides a significantly better fit
than the normal fit.

where τk is the duration that the chain will persist in state k [32]. Given the

value of the latent variable zt the noise value at time t is selected according to

(3.35).

3.3.3 Fitting Empirical Data

Assuming the noise statistics are slowly varying, the parameters π,

{γk}K−1
k=0 , and T can be estimated using the expectation-maximization (EM)

algorithm [12] during the quiet time when there is no signal transmission. As

an illustrative example, I fit a noise trace collected from a laptop and shown

in Figure 3.11 into a 2-state GHMM. Using the EM algorithm, I find that
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Figure 3.12: The distribution of the persistence time (time to remain in a
state once its entered) of each state and its fit under the iid GM model and
the GHMM: the GHMM provides a better fit especially for the impulsive
component duration.

T =

[
0.422 0.578
0.013 0.986

]
and Γ = γ1/γ0 = 17dB with a marginal given by a GM

model with π =
[
0.98 0.02

]
. Figure 3.11 shows that GM model, unlike the

normal model, provides a close fit to the empirical pdf of the collected data

(fitted using a kernel density estimator using a Gaussian kernel). Furthermore,

Figure 3.12 shows that there is temporal dependence between the noise samples

(especially in the impulsive component) that is captured by the GHMM model.

3.4 Conclusion

In this chapter, I derive statistical-physical models for uncoordinated

interference in PLC networks. In particular, I show and verify by simulation

that the interference in homogeneous PLC networks follows the Middleton
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class-A model while the interference in dense PLC networks follows the more

general Gaussian mixture model. This is inline with experimental studies

reported in the literature [26, 104] and similar to models derived for wireless

networks [41, 42]. In addition, I show that a cyclostationary model is appropri-

ate for modeling the periodicity exhibited by interference in narrowband PLC

and that a Gaussian HMM model captures the statistics of bursty interference

present in some wireless platforms operating in the 2.4GHz ISM band.

In the following chapters, I use these models in the design of OFDM

receivers corrupted by interference. In particular, I focus on the Gaussian

mixture and Gaussian hidden Markov models. These models provide natural

priors on the interference. By exploiting this prior knowledge, the proposed

receiver are able to improve the communication performance by tens of dBs.
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Chapter 4

EM-Based OFDM Receiver in Gaussian

Mixture Interference

Thus far, I have argued that interference cannot be completely elim-

inated in modern OFDM systems such as cellular LTE and PLC networks.

Furthermore, Section 2.3 and Chapter 3 show that uncoordinated interference

in PLC and wireless networks can be modeled using statistical-physical and

empirical models. However, as discussed in Section 2.1, even though OFDM

modulation provides resilience to impulsive noise due to its code diversity,

OFDM receivers are commonly designed assuming that the noise and inter-

ference is AWGN, mainly due to the computational tractability provided by

independent decoding across subcarriers. This leads to suboptimal perfor-

mance due to the dependence in noise statistics across subcarriers resulting

from the DFT operation applied during receiver processing. Due to this de-

pendence, optimal detection of OFDM symbols becomes prohibitive due to its

exponential complexity. In this chapter, I consider the design of a practical

class of OFDM receivers that are constrained to perform independent detection

on each subcarrier. I propose an EM based low-complexity iterative decoding

algorithm for OFDM systems in impulsive noise environments that preserves

the independent decoding across subcarriers. I validate its performance under
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typical impulsive noise conditions in wireless and powerline platforms. The

proposed method achieves a gain between 2-7dB over the conventional OFDM

receiver depending on the SNR range.

4.1 Introduction

Communication transceivers in powerline communication (PLC) and

wireless networks suffer from uncoordinated interference from other users and

non-communication sources such as microwave ovens and switching power sup-

plies. The typical additive white Gaussian noise (AWGN) assumption is in-

adequate for capturing the statistical properties of such interference and leads

to suboptimal receivers. Different statistical models for impulsive noise have

been discussed in Chapter 3 in order to help in designing and analyzing the

performance of receivers in the impulsive noise channels.

The advantages of OFDM have been discussed in Section 1.2. Due to

these advantages, OFDM modulation has been adopted in many modern wire-

less communication standards, such as IEEE802.11n and LTE, and recent PLC

standards, such as PRIME and G3. As discussed in Section 2.4, the design of

OFDM receivers in impulsive noise can be classified into two subcategories ac-

cording to the assumed impulsive noise model. On one hand, non-parametric

techniques do not assume any particular model for impulsive noise and treat

it as a sparse vector. Example of such a technique is a compressed-sensing ap-

proach has been proposed in [17], while a more general Sparse Bayesian Learn-

ing approach was given in [57]. On the other hand, parametric models assume
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a given impulsive noise model and design the receiver based on its statisti-

cal properties. In general, parametric approaches outperform non-parametric

models if the assumed model provides a good match for the underlying im-

pulsive noise ([57], Chapter 5). This is typically the case in slowly varying

environments with quiet period that can be used for parameter training.

4.2 Contribution

In this chapter, using the GM model for uncoordinated interference, I

propose a parametric EM-based low-complexity iterative decoding algorithm

for OFDM systems in impulsive noise environments that preserves independent

decoding across subcarriers.

4.3 System Model

I consider the simplified OFDM system, described by the discrete-time

baseband model

y =
√
ρHF∗x︸ ︷︷ ︸

u

+w (4.1)

where y = [y1 · · · yN ]T is the received signal with N being the FFT block

length (number of subcarriers), ρ is signal power, x is the N × 1 frequency-

domain transmitted symbols, and w = [w1 · · ·wN ]T is the N × 1 additive

noise vector. The channel matrix H is a circulant matrix whose elements are

assumed to be known at the receiver. The FFT operation is represented by

the N ×N matrix F where (·)∗ represents the Hermitian operator. The N × 1
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vector u is the time-domain transmitted OFDM signal. The noise is assumed

to be temporally independent and identically distributed (i.i.d.) Gaussian

mixture random vector. Thus, the probability density function (pdf ) of w is

the product of single variable GM model pdf given by

p (w) =
N∏
i=1

K∑
j=1

πjN
(
wi; 0, σ2

j

)
. (4.2)

4.4 Optimal OFDM Detection in Impulsive Noise

The problem of detecting an OFDM symbol for the system model given

in (4.1) can be formulated as

x̂ = arg max
x

p (y|x) = arg max
x

pw (y −√ρHF∗x) . (4.3)

In (4.3), each of the components of w depends on yj −
√
ρ [HF∗x]j which

is a function of all components of x. In addition, there is no efficient code

representation for F which would reduce the decoding complexity. As a result,

an exhaustive search would be required to solve this problem. Conventional

OFDM receivers, designed under the Gaussian noise assumption, circumvent

this problem by computing the following statistic

Ψ = Fy =
√
ρH ◦ x + Fw︸︷︷︸

z

. (4.4)

where H is the frequency domain channel. When w is Gaussian, the trans-

formed noise z has a product form pdf across subcarriers because F is unitary

and preserves the Gaussian statistics of w and the independence between the
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noise vector samples in the Fourier domain. As a result, Ψ is a sufficient statis-

tic and decoding can be performed independently across subcarriers. However,

for the noise model in (4.2), the transformed noise z has dependent compo-

nents which means that detection across subcarriers can not be decoupled as

in the Gaussian case. This leads to the same exhaustive search as in (4.3).

4.5 Low Complexity Suboptimal Decoders

Due to the dependance of noise samples in the Fourier domain, optimal

detection can not be performed independently across subcarriers and has an

exponential complexity in the number of subcarriers N (ranging from 64 to

1024 for modern communication systems). This makes optimal detection based

on (4.3) impractical on current computational platforms. In addition, many

communication system assume independent decoding across subcarriers. As a

result, it desirable to design algorithms that will improve performance under

such a constraint. Two observations, employed by [45] to simplify the problem,

are: 1) the noise w is i.i.d. in time, and 2) the time-domain signal u =

[u1 · · ·uN ]T in (4.1) can be approximated, due to the Central Limit Theorem,

as being i.i.d. in time and uj ∼ Nc (0, ‖h‖2ρ) ,∀j where h is the known channel

vector. [45] then proceeds to find the MMSE estimate, û, of u with NSI and

without NSI, followed by hard detection on Fû. Since the proof is not explicitly

given in [45], I provide it here for completeness.
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4.5.1 MMSE Estimation with NSI

When NSI is available, the noise at time j is Gaussian with variance

σ2
sj

. The NSI is given by vector s = [s1 · · · sN ]T where sj represents the state of

the noise at the time instance j (see Section 2.5.1). Let Λ be a matrix function

of s given by

Λ (s) = diag {1/σs1 , · · · , 1/σsN} . (4.5)

Multiplying (4.1) by Λ (s), I obtain

Λ (s) y = Λ (s) u︸︷︷︸
√
ρHF∗x

+ Λ (s) w︸ ︷︷ ︸
n

|s (4.6)

where n is now a Gaussian vector with identity covariance matrix. However,

independent detection across subcarriers would introduce intersymbol inter-

ference (ISI) in the frequency domain since FΛ (s) F∗ 6= IN . Since u and n are

Gaussian, the MMSE estimate of u is also the Linear MMSE estimate given

by

û (y, s) = diag

{
‖h‖2ρ

‖h‖2ρ+ σ2
s1

, · · · , ‖h‖2ρ

‖h‖2ρ+ σ2
sN

}
y. (4.7)

At any time instant j, (4.7) multiplies the observation by ‖h‖2ρ
‖h‖2ρ+σ2

sj

. This

scaling reflects the reliability of the received sample based on the noise state it

was received under. The implementation complexity of this estimator is low,

however the assumption of having NSI at the receiver does not hold in most

practical scenarios.
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4.5.2 MMSE Estimation without NSI

When NSI is not present at the receiver, (4.1) can not be normalized as

in (4.6) and the resulting MMSE estimator û = [û1 · · · ûN ]T of u is a nonlinear

function of y. It can be shown that the MMSE estimate is given by

ûj =
Es

[
‖h‖2ρ

(‖h‖2ρ+σ2
s)2

exp
(
− ‖yj‖2

‖h‖2ρ+σ2
s

)]
Es

[
1

‖h‖2ρ+σ2
s

exp
(
− ‖yj‖2

‖h‖2ρ+σ2
s

)] · yj (4.8)

where the index j is dropped from the expectation. The proof is given in

Appendix 4.11.

4.6 The EM Algorithm

The EM algorithm is an iterative algorithm used to compute the ML

estimate of a desired parameter b ∈ B given some observed data y ∈ Y. In

particular, it solves the following optimization

b̂ = arg max
b∈B

p (y|b) (4.9)

where p (y|b) is the conditional density of y given b. In order to achieve this, it

treats this problem as incomplete data estimation problem where the missing

data α simplifies the evaluation of p (y, α|b)). The EM algorithm uses the

likelihood function of the complete data in a two-step procedure as follows:

1. E-step: Compute Q
(
b|b̂i
)

= Eα

[
log f (y, α|b) |y, b̂i

]
2. M-step: Solve b̂i+1 = arg maxb∈BQ

(
b|b̂i
)
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Given the right initial conditions, the estimate b̂i will converge to a stationary

point. In general, the solution of (4.9) can be obtained by an appropriate

choice of the initial value. In communication systems, the EM algorithm has

been widely applied to sequence and channel estimation problems. In [34],

the authors give a detection-specific framework for applying EM to sequence

estimation problems in communication systems.

4.7 Proposed EM-based Detection Algorithm

The ML detection rule of the transmitted vector x is given by

x̂ = arg max
x

p (y|x) . (4.10)

In Section 4.5.1, NSI reduced the complexity of the MMSE estimation from

a non-linear function to a linear function of y. This suggests that the latent

vector of noise states s could be an appropriate choice for unobserved data

in an EM-implementation. Thus, I choose (y, s) as our complete data and

formulate the E-step accordingly. The likelihood of the complete data can be

written as

p (y, s|x) = p (y|s,x) p (s|x) = p (y|s,x) p (s) (4.11)

where the second equality follows from the fact that x and s are independent

(transmission is not adapted to noise state). Since p (s) is not a function of x,

it will not have an effect on the M-step and can be ignored. Given that y is
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Gaussian given s and x, the E-step can be expressed as

Q
(
x|x̂i

)
= Es

{
log p (y|s,x) |y, x̂i

}
(1)
= Es

{
− (y −√ρHF∗x)∗ Λ−1

s (y −√ρHF∗x) |y, x̂i
}

(2)
= − (y −√ρHF∗x)∗ Es

{
Λ−1

s |y, x̂i
}

(y −√ρHF∗x)

where Λs = diag
{
σ2
s1
, · · · , σ2

sN

}
is the covariance matrix of y given s and x.

The term Es {Λ−1
s |y, x̂i} is a diagonal matrix as well with diagonal entries

1
γij
, ∀j ∈ {1, · · · , N} given by

1

γij
=

K∑
sj=1

1

σ2
sj

p
(
sj|y, x̂i

)
=

K∑
sj=1

πsj
σ2
sj

p (yj|sj, x̂i)
p (yj|x̂i)

(4.12)

where the second equality follows from the application of Bayes rule and sub-

stituting for the corresponding probabilities. The term p (yj|x̂i) is a constant

with respect to sj and can be computed as the normalization constant for the

distribution p (sj|y, x̂i) as follows

p
(
yj|x̂i

)
=

K∑
sj=1

πsjp
(
yj|sj, x̂i

)
.

As a result, the only term that requires non-linear computation is p (yj|sj, x̂i) =

1
πσ2

sj

e
−|yj−

√
ρ[F∗x̂i]j |2/σ2

sj which can be implemented using a look-up table. Let

Γy,x̂i = diag{γi1, · · · , γiN}, then the M-step can be written as

x̂i+1 = arg min
x

(y −√ρHF∗x)∗ Γ−1
y,x̂i

(y −√ρHF∗x) (4.13)

where max was replaced by min by removing the minus sign. The objective

in (4.13) can be interpreted as resulting from the system given by (4.1) where
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the noise vector w consists of Gaussian random variables each with a different

variance given by γj,∀j. In other words, this problem is similar to the problem

in Section 4.5.1 with perfect noise state information (NSI) where the states are

specified by Γy,x̂i . Thus, taking the FFT will just lead to ICI as described in

Section 4.5.1. The exact solution of (4.13) still requires an exponential search

over x. However; by formulating the problem as an EM problem, I transformed

the highly non-linear objective of (4.10) into a quadratic objective given in

(4.13). In addition, the problem was transformed from detection with no NSI

(highly non-linear) into multiple iterations of detection with perfect NSI (with

linear MMSE estimate). As a result, I approximate the solution of (4.13) by

taking the MMSE estimate of the OFDM symbol in the time domain using the

NSI followed by hard detection similar to the method given in Section 4.5.1.

As a result, the new step is given by

x̂i+1 ≈
[
Fûi+1

]
(4.14)

where [·] denotes hard detection and ûi+1 is given by its Linear MMSE estimate

as follows

ûi+1 = diag

{
‖h‖2ρ

‖h‖2ρ+ γi1
, · · · , ‖h‖2ρ

‖h‖2ρ+ γiN

}
y. (4.15)

The choice of the initial value x̂0 for the EM algorithm has a big effect

on the convergence rate and converging value. Two possible initial points are:

1) the result of the typical OFDM receiver (taking an FFT followed by hard

decision), and 2) taking the result of the MMSE receiver without NSI described

in Section 4.5.2. The former is computationally more tractable since it involves
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only an FFT operation while the latter might provide a better estimate and

lead to lower number of iterations. This is explored further in the results

section.

4.8 Numerical Results

The communication performance of the discussed algorithms is com-

pared for N = 1024 with 4-QAM modulation in the presence of a 2-term

Gaussian mixture model (also called the ε-contaminated Gaussian). In prac-

tice, the 2-term approximation is usually sufficient [25, 75]. For a fair compar-

ison with single carrier systems, I assume I have a flat fading identity channel;

i.e. H = I. The symbol error rate (SER) of the proposed iterative method

is given for the conventional OFDM and single carrier (SC) receivers and for

the non-iterative estimator-correlator receivers with NSI and without NSI. The

noise parameters are set to the following typical values: π =
[
0.9 0.1

]
, σ2

1 = 1,

and σ2
2 = 150. SNR is defined as the signal power to the second moment of

the impulsive noise.

4.8.1 Single Carrier vs. Conventional OFDM

Figure 4.1 shows the communication performance degradation between

single carrier (SC) systems and conventional OFDM receivers (using FFT fol-

lowed by hard detection). It is noticed that the single carrier system performs

better at low SNR till around 6dB. After that the conventional OFDM system

considerably outperforms the SC system with gains up to 7.5dB at SER=10−4.
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Figure 4.1: Communication performance of the low-complexity receivers in the
presence of impulsive noise (π1 = 0.9, π2 = 0.1, σ2

1 = 1 and σ2
2 = 100). The

proposed method has a gain of around 6dB in the moderate SNR region over
the next best implementable algorithm.

This can be explained by the fact that at low SNR the occurring impulses have

a much larger energy than the signal. In SC systems, this translates to losing

the symbol exposed to the impulse. However, in OFDM systems the high

energy of the impulse is spread across the whole OFDM symbol which results

in losing the whole OFDM block. As a result, the SC performs better at low

SNR. The opposite occurs at high SNR where the amplitude of the impulse

is spread across the whole OFDM symbol without affecting it, while the SC

system still suffers from the single symbols errors as in the previous case. This

is the basis for the OFDM impulse resilience ability which is the result of the

time diversity it provides when viewed as a time-code.
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Figure 4.2: Communication performance for different initial values of x0 with
10 iterations of the EM algorithm. The initial value obtained by the MMSE-
based detector with no NSI provides a slightly better performance for addi-
tional computational complexity than the conventional OFDM receiver.

4.8.2 Performance of the Proposed Method

The communication performance of the non-itarative MMSE methods

described in Section 4.5 and the proposed iterative method based on the EM

algorithm are shown in Figure 4.1. The non-iterative method with NSI pro-

vides the lower bound on the achievable performance using these time-domain

MMSE based class of algorithms. However, the perfect NSI at the receiver

assumption is not valid in most cases and this algorithm is impractical. The

iterative algorithm is allowed to run for a maximum of 10 iterations. It is

seen that the proposed EM-based algorithm provides a gain of ranging from

2dB to 7dB over the non-iterative MMSE without NSI. Further, the proposed

method, which is an approximate ML detector, achieves the lower bound for

the MMSE based methods with perfect NSI at almost the same computational
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complexity. The effect of the choice of the initial condition on the performance

of the proposed EM-based algorithm is given in Figure 4.2. The MMSE-based

detector with no NSI provides only a slight improvement at 10 iterations of

the EM algorithm.

4.9 Computational Complexity and Limitations

The computational complexity of the proposed algorithm is analyzed in

terms of the number of exponential evaluations and FFT operations it requires

per subcarrier. For each subcarrier k, the proposed algorithm has to compute

γk given in (4.12) for each iteration. This requires K (number of Gaussian

components, usually 2) scalar exponential evaluations that could be imple-

mented in a lookup table. In addition to that, at the end of each iteration a

FFT operation of size N has to be performed. Although the proposed method

leads to significant performance gain for typical impulsive environments, it

can fail in impulsive noise with extreme amplitudes that are for example 30dB

higher above the noise floor. Such scenarios are not common since in many

cases very high impulses are clipped by the receiver reducing their amplitude.

This degradation in performance is due to the approximation made in (4.14) by

which the EM algorithm loses its monotonic increase in likelihood. In addition,

due to the independent subcarrier decoding, it doesn’t take full advantage of

OFDM’s code diversity and its performance lags behind the theoretical lower

bounds derived in Chapter 5 and [45, 46]. Another shortcoming is that this

algorithm doesn’t explicitly consider channel estimation; thus it will utilize
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the suboptimal LMMSE channel estimator.

4.10 Conclusion

Using a latent variable interpretation of the interference model, I pro-

pose an EM-based OFDM receiver for impulsive noise channels that is con-

strained to perform independent subcarrier decoding. Compared to the con-

ventional DFT receiver, the proposed receiver provides a gain of around 6dB

in the low and moderate SNR range and about 2dB in the high SNR range.

To achieve this gain, the EM receiver uses two aspects of the communication

system: 1) OFDM modulated signals can be approximated as being iid Gaus-

sian in time-domain (by the central limit theorem); and 2) the knowledge of

the interference model pdf and its parameters. When combined under the

EM framework, these facts lead to a simple scalar LMMSE estimator in the

time-domain followed by DFT detection in frequency domain. While compu-

tationally attractive, such a disjoint decoding doesn’t allow this receiver to

fully exploit the OFDM’s resilience to impulsive interference. Furthermore, as

most of the prior work, this EM framework doesn’t explicitly consider channel

estimation. This can be a practical limitation as the conventional LMMSE

channel estimation is highly suboptimal in non-AWGN environments.

To address the limitations of EM-based receiver, I propose in the fol-

lowing chapter a fully Bayesian inference framework to design LDPC-coded

OFDM receivers in uncoordinated interference using the GM and GHMM mod-

els as priors. In particular, I propose a factor-graph-based approach to joint
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channel/noise-estimation-and-decoding (JCNED) of orthogonal frequency di-

vision multiplexing (OFDM) systems in interference-limited environments. My

receiver merges prior knowledge of the impulsive and bursty noise models with

the recently proposed “generalized approximate message passing” (GAMP) al-

gorithm, and soft-input soft-output decoding through the sum-product frame-

work.

4.11 Appendix

The system model of (4.1) can be expressed as

yj = uj + wj j = 1, · · · , T.

The MMSE estimate of uj given yj is

ûj = E {uj|yj} =

∫
CN
ujp (uj|yj) duj. (4.16)

Using Bayes rule and summing over all noise state realizations sj ∈ S with

P (sj) = πj, I obtain

p (uj|yj) =

∑
S πjp (uj|yj, sj) p (yj|sj)∑

S πjp (yj|sj)

=
Es {p (uj|yj, sj) p (yj|sj)}

Es {p (yj|sj)}
(4.17)

Substituting (4.17) in (4.16) and interchanging the order of integration and

expectation

ûj =
Es
{
p (yj|sj) ·

∫
ujp (uj|yj, sj) duj

}
Es {p (yj|sj)}

.
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Given the noise state sj, yj is a sum of two independent Gaussian vectors

and therefore Gaussian with covariance ρ + ‖h‖2σ2
sj

. On the other hand,∫
ujp (uj|yj, sj) duj = E {uj|yj, sj} is the LMMSE estimate of uj given in

(4.7). Thus,

ûj =

Es
{

1
‖h‖2ρ+σ2

s
exp

(
− ‖yj‖2

‖h‖2ρ+σ2
s

)
· ‖h‖2ρ
‖h‖2ρ+σ2

sj

yj

}
Es
{

1
‖h‖2ρ+σ2

s
exp

(
− ‖yj‖2

‖h‖2ρ+σ2
s

)}
which simplifies to (4.8).
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Chapter 5

Message-Passing OFDM Receivers for

Impulsive Noise Channels

In Chapter 4, I proposed an EM-based receiver that utilizes the in-

terference GM model to perform disjoint subcarrier detection. This receiver

typically leads to a 2dB to 7dB improvement in communication performance

over DFT OFDM receivers discussed in Section 2.1. However, by not con-

sidering the interference dependance across subcarriers, its performance falls

short from the huge performance gains predicted by the PEP analysis done

in [45, 46]. In this chapter, I propose a fully Bayesian inference framework to

design OFDM receivers in uncoordinated interference by using the GM and

GHMM models developed in Chapter 3 as priors. In particular, I propose a

factor-graph-based approach to joint channel/noise-estimation-and-decoding

(JCNED) of orthogonal frequency division multiplexing (OFDM) systems in

interference-limited environments. My receiver merges prior knowledge of the

impulsive and bursty noise models with the recently proposed “generalized

approximate message passing” (GAMP) algorithm, and soft-input soft-output

decoding through the sum-product framework. Unlike the prior work, I ex-

plicitly consider channel estimation in the problem formulation. For N sub-

carriers, the resulting receiver has a complexity of O(N logN), comparable to
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a typical DFT receiver, that can be parallelized and implemented efficiently

on FPGAs. Numerical results indicate that the proposed receiver outperforms

all prior impulsive noise OFDM decoders with improvements that reach 13dB

when compared to the commonly used DFT receiver.

5.1 Introduction

As discussed in Section 2.1, the effect of OFDM modulation is to spread

the impulsive noise energy across all frequency tones due to the discrete Fourier

transform (DFT) applied at the receiver [36]. This effect is both a blessing and

a curse: a blessing because it provides extra resilience by reducing the impulse

energy experienced by each symbol, but a curse because the noise is no longer

independent across sub-carriers and, unlike the AWGN case, independent de-

coding of each sub-channel is no longer optimal. In fact, under a wide range

of operating conditions, the theoretical information limit of OFDM under in-

dependent sub-channel decoding is lower than for SC systems [78]. However,

pairwise error probability (PEP) analysis of OFDM, under joint sub-channel

decoding, demonstrates huge performance gains (up to 25 dB) over SC sys-

tems in impulsive noise channels [46, 47]. An additional challenge for wideband

OFDM systems in impulsive noise, not considered in prior work or in Chap-

ter 4, is the channel tap estimation; while the optimal estimator is linear under

AWGN and independent Gaussian priors on {hj}L−1
j=0 , this is not the case under

impulsive noise or clustered-sparse channel taps which further complicates the

receiver design [53, 85].
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The prior work about OFDM receiver design in impulsive noise (dis-

cussed in Section 2.4) generally takes a decoupled and suboptimal approach to

the problem of channel and impulse noise estimation and data decoding: first,

the null tone knowledge is exploited to estimate the impulsive noise vector,

after which it is subtracted from the received signal and passed to the DFT

receiver which involves a linear estimation of the channel taps using pilot tones

followed by data decoding.

5.2 Contribution

In this chapter, I show that such an approach is suboptimal by propos-

ing a novel model-based low-complexity decoder jointly decodes the informa-

tion bits and estimates the channel and the impulsive noise vector utilizing

the impulsive noise models and the information available in all OFDM tones

(not just null or pilot tones). This receiver achieves significant performance

gains (tens of dBs) under practical impulsive noise channels. In particular, my

receiver leverages recent results in “generalized approximate message pass-

ing” (GAMP) [79], soft-input/soft-output (SISO) decoding [59], and struc-

tured sparse estimation [80] to achieve an implementation complexity of only

O (N logN) where N denotes the number of sub-carriers of the OFDM sys-

tem. The resulting implementation is order of magnitudes faster than compet-

ing receivers and can be parallelized providing a natural mapping to FPGA

implementations.
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5.3 System Model

5.3.1 Coded OFDM Model

I consider an N -tone OFDM system with the following tone partition:

Np pilot tones indexed by the set P, Nn null tones indexed by N, and Nd

data tones indexed by the set D where each data subcarrier is modulated by

a symbol from an 2M -ary constellation S. The data bits which are mapped

to the data symbols are generated by encoding Mi information bits using a

rate-R coder, interleaving them, and allocating the resulting Mc = Mi/R bits

among an integer number Q = dMc/NdMe of OFDM symbols.

In the sequel, I use s(i) ∈ S for i ∈
{

1, · · · , 2M
}

to denote the ith

element of S, and c(i) = [c
(i)
1 , · · · , c

(i)
M ]

T
to denote the corresponding bits as

defined by the symbol mapping. Likewise, I use sk[q] to denote the symbol

transmitted on the kth subcarrier of the qth OFDM symbol. Based on the

tone partition, I note that: sk[q] = p for all k ∈ P, where p is a known

pilot symbol; sk[q] = 0 for all k ∈ N; and sk[q] = s(l) for some l such that

ck[q] = c(l) for all k ∈ D, where ck[q] = [ck,1[q], · · · , ck,M [q]]T denotes the

coded/interleaved bits corresponding to sk[q]. On the frame level, I use c[q] to

denote the coded/interleaved bits allocated to the data tones of the qth OFDM

symbol, and c = [c[1], · · · , c[Q]]T to denote the entire codeword obtained from

the information bits b = [b1, · · · , bMi
]T by coding/interleaving.

OFDM modulation applies an N -point inverse discrete Fourier trans-

form (IDFT) F∗ to a vector of N symbols. These symbols are said to be in

the frequency-domain since they are recovered by applying the DFT F. The
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resulting time-domain signal corresponding to the qth OFDM symbol is given

by u[q] = F∗s[q] where u[q] = [u0[q] · · ·uN−1[q]]T is the time domain signal

and s[q] = [s0[q] · · · sN−1[q]]T is the transmitted symbol sequence.

After appending the cyclic prefix, the qth OFDM symbol’s waveform

propagates through a noisy LTI channel with a channel impulse response

h[q] = [h0[q] · · ·hL−1[q]]T where L is the number of channel taps. After dis-

carding the cyclic prefix and assuming perfect synchronization at the receiver,

the received signal r[q] can be expressed as

r[q] = H[q]u[q] + n[q] = H[q]F∗s[q] + n[q] (5.1)

where n[q] is additive noise, and H[q] is the circulant matrix formed by h[q]

[94]. The receiver applies DFT to r[q], and the resulting frequency-domain

signal is given by

y[q] = Fr[q] = FH[q]F∗s[q] + Fn[q] = H[q] ◦ s[q] + N[q] (5.2)

where H[q] = (
√
NF:,1:L)h[q] denotes the frequency-domain channel, N[q] =

Fn[q] the frequency-domain noise, and ◦ denotes the Hadamard product. In

short, (5.2) illustrates the main advantage of OFDM modulation: each tone k

now experiences a flat fading channel given by

yk[q] = Hk[q]sk[q] + Nk[q], ∀k ∈ {0, · · · , N − 1}. (5.3)

To simplify the development, I assume that Q = 1 in the sequel (but not in

the simulations), and drop the index [q] for brevity.
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5.3.2 Impulsive Noise Models

Since my message-passing receiver is inherently Bayesian, the statistical-

physical models presented in Chapter 3 provide natural priors on the impulsive

noise.I note that, given the pdf parameters, there is no distinction between the

MCA and GM models from the receiver design perspective. I now review the

models used in this chapter.

The pdf of a GM distributed random variable n with zero mean com-

ponents is given by

p (n) =
K−1∑
k=0

π(k) ·N (n; 0, γk) (5.4)

where N (n; 0, γk) denotes the complex Gaussian pdf with zero mean and vari-

ance γk; and π(k) is the probability of the k-th Gaussian component. Generally,

the Gaussian background noise g ∼ N (0, γ0) is the component with the small-

est variance, and the total noise can be decomposed as the sum of background

and impulsive noise as n = g + i, where i is the impulsive noise component

whose pdf is given by

p (i) = π(0)δ (i) +
K−1∑
k=1

π(k) ·N (i; 0, γk) . (5.5)

Eq. (5.5) admits a simple interpretation: with probability π(0) only background

noise is present and with probability 1−π(0) I have a non-zero impulsive noise

on top of the background noise. Here, the variances γk indicate the power of

the impulse component rather than the total variance of the noise n as in (5.4)

(γk in (5.4) equals γ0 + γk in (5.5) ). The mixing vector π = [π(0) · · · π(K−1)]
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can be interpreted as a probability mass function (pmf) of a latent random

variable z that selects the mixture component used to generate a sample of

n; i.e. P (z = k) = π(j),∀k ∈ {0, · · · , K − 1}. Furthermore, given z, I have

i|{z = k} ∼ N (0, γk) where γ0 = 0 corresponds to the absence of impulsive

noise. On the other hand, the Gaussian HMM (GHMM) captures the temporal

dynamics of bursty noise by embedding the latent state variable zt into a

Markov chain with a state transition matrix T defined as

Ti,j = P (zt = j|zt−1 = i) ∀i, j ∈ {0, · · · , K − 1} (5.6)

where I assumed that the Markov chain is homogeneous (stationary). I note

that the marginal distribution of the noise samples under this model is the

GM distribution given in (5.5) with π given by the solution of x = xT.

Similar to the GM model, conditioning on the state zt = k makes the noise

samples independent and Gaussian with variance γk. Under this model, the

mean duration of a bursty impulse noise from state k is given by E {τk} =

1/ (1−Tk,k) where τk is the duration that the chain will persist in state k

[32].

5.4 Decoding in Impulsive Noise Channels

My objective is to infer the information bits b transmitted on the data

tones given the received signal y, the prior knowledge about the impulsive

noise and the channel, and the locations of the pilot and null tones given by

P and N, respectively. A fully Bayesian approach first marginalizes over the
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channel taps h and the noise vector n, considered latent variables, and then

produces the likelihood ratio of each information bit bm. The MAP detection

rule can then be formulated as

b̂m = arg max
bm∈{0,1}

P (bm|y,Θ) , ∀m ∈ {1, · · · ,Mi} (5.7)

where Θ = {D,P,N, θi, θh}, θi = {T, {γk}K−1
k=0 } is the noise model parameters,

and θh is the channel model parameters.

To highlight the challenge of data decoding in impulsive noise, recall

the OFDM system model given by

y = H ◦ s + Fg + Fi = H ◦ s + I + G (5.8)

where I have explicitly written the noise as a sum of background and impulsive

noise. While, G is also an AWGN vector with independent components, this

is not the case for I. To see this, consider taking the DFT of a zero vector

with a single impulse; the components of the resulting vector are all non-zero

with amplitude that is a function of the impulse and its location. Due to this

coupling, the independent and disjoint decoding of the OFDM subchannels as

done under AWGN is no longer optimal.

Using the law of total probability, the posterior info-bit probability used
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in (5.7) can be written as

P (bm|y; Θ) =
∑
b\m

P (b|y; Θ) ∝
∑
b\m

P (y|b; Θ)P (b)

=
∑

s,c,b\m

∫
i,h

p (y|h, i, s; Θ) p (h; θh) p (i; θi)

× P (s|c)P (c|b)P (b)

=
∑

s,c,z,d,b\m

∫
i,h

N−1∏
k=0

p (yk|sk,h, i;D,N,P)

× P (sk|ck) p (ik|zk)P (zk|zk−1)P (c|b)

×
L−1∏
l=0

p (hl|dl)P (dl|dl−1)

Mi∏
i=1

P (bi) (5.9)

where b\m = [b1, · · · , bm−1, bm+1, · · · , bMi
]T and dl is the latent tap state for

clustered-tap channels (see [85]). The coupling between the subchannels is

evident in the p (yj|sj,h, i,D,P,N) term where the received signal at each tone

yj depends on the complete vectors i and h through the linearly mixed terms

Ij = [Fi]j and Hj = [Fh]j, respectively. This prevents the high-dimensional

integrals in (6.19) from simplifying into N scalar integrals, as would happen

under AWGN, and leads to an intractable marginalization.

5.5 Message Passing Receivers

The factorization of the pdf given in (6.19) is represented by the factor

graph in Figure 5.1 where the round nodes denote random variables and the

square nodes denote the factors of the posterior. The factor node yk, repre-

senting p (yk|Hk,Nk, sk,Θ), connects to the transmitted symbol sk (possibly a
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Figure 5.1: Factor graph representation of a coded data frame allocated across
Q OFDM symbols: the dense sub-graphs formed between the factors y and
time-domain i and h are due to the linear mixing via the Fourier matrix F;
solid circles (s3) represent known tones (pilots or nulls).

null or pilot tone) and, as a result of the linear mixing via F, to every im-

pulsive noise sample and channel tap in the time-domain forming two dense

sub-graphs: one with the impulsive noise samples and another with the channel

taps.

I now provide the background on factor graph inference followed by the

derivation of my message-passing receivers.
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Figure 5.2: The messages µ·→· propagate beliefs used for inference.
By the sum-product algorithm, µxA→f2 = µf1→xA and µf2→xB =∑

xA,xC
p (xC |xA, xB)µxA→f2 (xA)µxC→f2 (xC).

5.5.1 Belief Propagation using Sum-Product Algorithm

Inference using belief propagation (BP) transforms a high-dimensional

marginalization problem into a series of local low-dimensional marginalization

by passing beliefs in the form of pdf/pmf messages along the edges of a factor

graph using the sum-product (SP) algorithm [12]. Let us consider the factor

graph of Section 2.5.2 corresponding to the following factorization of a given

pdf

p (xA, xB, xC) = p (xA) p (xB) p (xC |xA, xB) (5.10)

and shown again in Figure 5.2. The SP algorithm computes the messages as

follows:

5.5.1.1 Messages from Factor Nodes to Variables

The message passed from a factor node fs to a variable xm is given by

µfs→xm (xm) =

∫
xs

fs (xm,xs)
∏

xl∈ne(fs)\xm

µxl→fs (xl) dxs
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where xs = [ne (fs) \xm] is a vector of variable nodes that are neighbors of fs

excluding the recipient variable xm. This message represents the belief of the

factor node fs about the variable xm that is obtained by marginalizing the

pdf factor represented by fs over all variables in ne (fs) \xm using the beliefs

passed on to fs about those variables.

5.5.1.2 Messages from Variables to Factor Nodes

The message passed from a variable node xm to a factor node fs is

µxm→fs (xm) =
∏

fk∈ne(xm)\fs

µfk→xm (xm) .

This can be interpreted as passing an independent combination of the beliefs

that factors in ne (xm) \fs have about the variable xm to the factor fs.

5.5.1.3 Marginal Approximation

The marginal at any variable node xm can be approximated as

p (xm) = C
∏

fs∈ne(xm)

µfs→xm (xm)

where C is a normalization constant. In other words, the beliefs from each

factor node connected to xm are treated as being independent; thus, their joint

is the product of the individual messages.

When the factor graph doesn’t contain any loops, BP-SP algorithm

performs exact inference after only two rounds of messages (i.e. forward and

backward passes). On the other hand, with loops in the factor graph, neither
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convergence nor exact inference are guaranteed; nevertheless, this loopy BP

has been successfully applied in many important problems: multi-user detec-

tion [16, 43], turbo decoding [63], LDPC decoding [59], and compressed sensing

[10, 28, 79].

5.5.2 Approximate Message Passing

As discussed in Section 5.4, the main challenge in computing the sym-

bol posteriors is the high dimensional inference problem due to the coupling

introduced by the linear mixing between the frequency-domain symbols and

time-domain noise and channel vectors via the Fourier matrix F. An impor-

tant sub-problem in this inference is the estimation of a vector of independent

possibly-non-Gaussian variables x that are linearly mixed via Φ ∈ CM×N to

form z = Φx = [z1 · · · zM ]T and subsequently observed at the output of in-

dependent and possibly non-Gaussian channels with pdfs {p (yi|zi)}Mi=1. The

inference under such a model was addressed by the generalized approximate

message passing (GAMP) algorithm proposed by Rangan [79, 80] as a general-

ization of relaxed BP by Guo and Wang [43] and approximate message passing

(AMP) algorithm for compressed sensing by Donoho, Maleki, Montanari, and

Bayati [11, 28].

The GAMP algorithm exploits the large dimensionality of the prob-

lem and the central limit theorem to approximate both the messages flowing

leftward from the nodes {xj}Nj=1 and rightward from the factors {p (yi|zi)}Mi=1

as Gaussian. The GAMP(x, z,Φ) algorithm, where z = Φx, is given in Ta-
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ble 5.1. The detailed derivation and theoretical guarantees of the GAMP al-

gorithm are beyond the scope of this dissertation; I refer the interested reader

to [79] and [11] for more information. Here, I focus on the GAMP aspects

that are specific to the design of my proposed receivers. In particular, the

product of messages coming into a factor node fi = p (yi|zi) is approximated

as
∏

j µxj→fi ≈ N (zi; p̂i, γ
p
i ) where p̂i and γpi are given in (R3) and (R2) of

Table 5.1. To compute the message from this factor node fi to a node xj,

the approximated product is multiplied by the factor p (yi|zi) according to SP

algorithm rules in Section 5.5.1.1; however, instead of marginalizing over the

remaining x\xj, GAMP approximates the outgoing message using a second

order Taylor series expansion summarized by two parameters: a mean ŝi and

variance γsi given in (R4) and (R5) of Table 5.1. The product of these mes-

sages arriving at node xj is further approximated as
∏

i µfi→xj ≈ N
(
xj; r̂, γ

r
j

)
where the mean r̂ and variance γrj are computed from parameters ŝi and γsi

given in (R6) and (R7) of Table 5.1. Next, this approximated message is

multiplied by the prior factor p (xj) according to the SP update rule given

in Section 5.5.1.2 and approximated as Gaussian using second order Taylor

series expansion leading to a estimate of the posterior p (xj|y) = N
(
xj; x̂j, γ

x
j

)
where x̂j and γxj are given in (R8) and (R9) of Table 5.1. These parameters

are then used in the computations of p̂ and γp in (R2-3) thereby completing

a single GAMP iteration. From (D2-3) and (D5-6) in Table 5.1, the GAMP

algorithm requires the derivation of four scalar functions that are a function of

the effective observation channels and signal priors: gout,i(yi, ẑ, γ
z), gin,j(r̂, γ

r),
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and their derivatives with respect of ẑ and r̂, respectively.

Table 5.1: The GAMP(x, z,Φ) Algorithm

Definitions:
p (zi|yi; ẑ, γz) = p(yi|zi)N(zi;ẑ,γ

z)∫
zi
p(yi|zi)N(zi;ẑ,γz)

(D1)

gout,i(yi, ẑ, γ
z) = 1

γz
(E {zi|yi; ẑ, γz} − ẑ) (D2)

g′out,i(yi, ẑ, γ
z) = 1

γz

(
V{zi|yi;ẑ,γz}

γz
− 1
)

(D3)

p (xj|r̂; γr) =
p(xj)N(x;r̂,γr)∫

xj
p(xj)N(xj ;r̂,γr)

(D4)

gin,j(r̂, γ
r) = E {xj|r̂; γr} (D5)

g′in,j(r̂, γ
r) = 1

γr
V {xj|r̂; γr} (D6)

Initialize:
∀j : x̂j(1) =

∫
x
x pXj(x) (I1)

∀j : γxj (1) =
∫
x
|x− x̂j(1)|2pXj(x) (I2)

∀i : ûi(0) = 0 (I3)
for t = 1, 2, 3, . . .

∀i : ẑi(t) =
∑N

j=1 Φijx̂j(t) (R1)

∀i : γpi (t) =
∑N

j=1 |Φij|2γxj (t) (R2)

∀i : p̂i(t) = ẑi(t)− γzi (t) ûi(t− 1) (R3)
∀i : ŝi(t) = gout,i(yi, p̂i(t), γ

z
i (t)) (R4)

∀i : γsi (t) = −g′out,i(yi, p̂i(t), γzi (t)) (R5)

∀j : γrj (t) =
(∑M

i=1 |Φij|2γsi (t)
)−1

(R6)

∀j : r̂j(t) = x̂j(t) + γrj (t)
∑M

i=1 Φ∗ij ŝi(t) (R7)
∀j : γxj (t+1) = γrj (t)g

′
in,j(r̂j(t), γ

r
j (t)) (R8)

∀j : x̂j(t+1) = gin,j(r̂j(t), γ
r
j (t)) (R9)

end

5.5.3 Joint Channel/Noise Estimation and Decoding (JCNED)

In designing my receiver, I take a fully Bayesian viewpoint and marginal-

ize over the channel taps and the impulsive noise samples by performing loopy

BP on the factor graph given in Figure 5.1. In particular, I make use of
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the GAMP algorithm to tackle the high dimension inference presented by the

impulsive noise and the channel dense sub-graphs.

Given the loopy nature of the factor graph, there exists considerable

freedom in the message passing schedule. For JCNED, I choose to pass the

messages roughly from right to left and backward in the following fashion: (i)

starting at the info-bits I send messages toward the coded bits and then to

the symbols; (ii) I then pass the messages to the channel sub-graph which

iterates between GAMP iterations and Markov chain (MC) channel-tap-state

decoding1 in what I refer to as “equalizer” iterations; (iii) after convergence,

the computed messages are passed back to the y factor nodes which in turn

pass them to the impulsive noise sub-graph so it can perform its own equalizer

iterations and pass the result back to the factor nodes y; (iv) finally, the

messages are propagated back toward the coding/interleaving factor which

performs SISO decoding and updates the info-bit likelihoods. I will refer to

each of these full cycles as a “turbo” iteration. I note that it is also possible to

execute a parallel schedule if the hardware platform supports it. The message

passing details are discussed below.

Without any prior knowledge about the information bits, the info-bit

belief flowing into the coding/interleaving factor node is P (bm) = 1/2,∀m. As

a result, the coded-bit beliefs flowing rightward out of the coding/interleaving

factor node and into the symbol mapping nodes are uniformly distributed. The

1Recall that MC decoding requires only one forward-backward iteration for loopy BP to
converge since it doesn’t contain any loops.
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Table 5.2: The GAMP output scalar estimation functions used for channel
inference in JCNED

Tone Type
Channel Output Scalar Estimation Functions

gout,k(yk, Ĥ, γ
H)

Pilot: k ∈ P p∗(yk − Îk − pĤ)/(γ0 + γIk + ρpγ
H)

Data: k ∈ D

∑|S|
l=1 λ

(l)
k s
∗(l)(yk − Îk − Ĥs(l))/(γ0 + γIk + ‖s(l)‖2γH)

where λ
(l)
k = p

(
yk|s(l)

)
β

(l)
k /
∑

j p
(
yk|s(j)

)
β

(j)
k and

p
(
yk|s(l)

)
= N

(
yk; Îk + Ĥs(l), γ0 + γIk + ‖s(l)‖2γH

)
−g′out,k(yk, Ĥ, γH)

Pilot: k ∈ P ρp/(γ0 + γIk + ρpγ
H)

Data: k ∈ D

‖gout,k(yk, Ĥ, γH) + Ĥ/γH‖2+∑|S|
l=1 λ

(l)
k

[
‖s(l)‖2/(γ0 + γIk + ‖s(l)‖2γH)− ‖Ĥ/γH

+s∗(l)(yk − Îk − Ĥs(l))/(γ0 + γIk + ‖s(l)‖2γH)‖2
]

symbol mapping is deterministic and forms a constraint factor node given by

P
(
s(i)|c(j)

)
= δi−j. According to the SP rules, the message passed rightward

from the symbol mapping factor node “Mk” is given by

µMk→sk(s
(i)) ∝

∑
ck∈{0,1}M

P
(
s(i)|ck

) M∏
m=1

µck,m→Mk
(cm)

=
M∏
m=1

µck,m→Mk
(c(k)
m ) (5.11)

which in turn is copied forward as the message passed rightward from node

sk; i.e. µMk→sk(s
(i)) = µsk→yk(s

(i)).

The next step in my message-passing schedule employs GAMP(h,H,
√
NF)

to approximate the messages going in and out of the channel dense sub-

graph. From Figure 5.1, I note two types of messages flowing into each factor
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Table 5.3: The GAMP output scalar estimation functions used for impulse
noise inference in JCNED

Tone Type
Impulsive Noise Output Scalar Estimation Functions

gout,k(yk, Î, γ
I)

Null: k ∈ N (yk − Î)/(γ0 + γI)

Pilot: k ∈ P (yk − Î− Ĥkp)/(γ0 + γI + ρpγ
H
k )

Data: k ∈ D

∑|S|
l=1 λ

(l)
k (yk − Î− Ĥks

(l))/(γ0 + γI + ‖s(l)‖2γHk )

where λ
(l)
k = p

(
yk|s(l)

)
β

(l)
k /
∑

j p
(
yk|s(j)

)
β

(j)
k and

p
(
yk|s(l)

)
= N

(
yk; Î + Ĥks

(l), γ0 + γI + ‖s(l)‖2γHk

)
−g′out,k(yk, Î, γI)

Null: k ∈ N 1/(γ0 + γI)

Pilot: k ∈ P 1/(γ0 + γI + ρpγ
H
k )

Data: k ∈ D

‖gout,k(yk, Î, γI) + Î/γI‖2+∑|S|
l=1 λ

(l)
k

[
1/(γ0 + γI + ‖s(l)‖2γHk )− ‖̂I/γI+

(yk − Î− Ĥks
(l))/(γ0 + γI + ‖s(l)‖2γHk )‖2

]
node yk that determine the GAMP output channel p (yk|Hk): (i) the sym-

bol beliefs from the symbol node sk denoted by βk = [β
(1)
k , · · · , β(|S|)

k ] where

β
(i)
k = µsk→yk(s

(i)); and (ii) N messages flowing leftward from impulsive noise

nodes i whose product is approximated as being N
(

Ik; Îk, γ
I
k

)
and computed

by GAMP(i, I,F) in the previous turbo iteration (in the first turbo iteration

Îk = 0 and γIk = γi ). From (5.3) and (5.8), the resulting GAMP(h,H,
√
NF)

output channels are given by

p (yk|Hk) =


N
(
yk; pHk + Îk, γ

I
k+γ0

)
if k ∈ P

|S|∑
l=1

β
(l)
k N

(
yk; s

(l)Hk + Îk, γ
I
k+γ0

)
if k ∈ D

with the corresponding output scalar estimation functions given in Table 5.2
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with their corresponding derivations highlighted in Appendix 5.8.1 and Ap-

pendix 5.8.2. The input scalar estimation function gin,j(r̂, γ
r) corresponding to

the clustered-tap channel prior is derived in [85]. Using these scalar estimation

functions, the GAMP(h,H,
√
NF) in Table 5.1 is iterated until it converges

generating close approximations to the conditional means ĥ and variances

γh = [γh0 , · · · , γhL−1]
T

given the observations y and the prior information. Af-

ter that, the generated channel tap-states are passed rightward to the channel

tap sub-graph for MC decoding. This is repeated for several channel equalizer

iterations as detailed in [85].

Upon the termination of the equalizer iterations in the channel sub-

graph, L messages are passed leftward from the channel taps node h to-

ward each factor node yk. The product of these messages is approximated by

GAMP(h,H,
√
NF) as N

(
Hk; Ĥk, γ

H
k

)
. These messages in addition to the sym-

bol beliefs β now determine the GAMP(i, I,F) output channels which based

on (5.3) and (5.8) can be written as

p (yk|Ik)=


N (yk; Ik, γ0) if k ∈ N

N
(
yk; pĤk + Ik, ρpγ

H
k +γ0

)
if k ∈ P

|S|∑
l=1

β
(l)
k N

(
yk; s

(l)Ĥk + Ik, ρpγ
H
k +γ0

)
if k ∈ D

with the corresponding output scalar estimation functions given in Table 5.3.

The input scalar estimation function gin,j(r̂, γ
r) for GAMP(i, I,F) depends on

the current impulsive noise belief which from Figure 5.1 can be expressed as

p (ij) = π
(0)
j δ (ij) +

K−1∑
k=1

π
(k)
j ·N (ij; 0, γk) (5.12)
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where πj = [π
(0)
j , · · · , π(K−1)

j ]
T

represents the current belief about the noise

state zj. When the assumed noise prior is the GM model, then (5.12) reduces

to (5.5) and πj, now independent of j, is given by the prior impulsive noise

model parameters (see Section 5.3.2). However, for the GHMM noise, these

beliefs are passed from the MC decoding of the noise state sub-graph; thus,

π
(k)
j ∝ µzj→pij (zj = k). The resulting input scalar estimation function and its

derivative are given by

gin,j(r̂, γ
r) =

K−1∑
k=0

α
(k)
j

γkr̂

γk + γr

g′in,j(r̂, γ
r) =

1

γi
[
−‖gin,j(r̂, γr)‖2

+
K−1∑
k=0

α
(k)
j

γr + γk

(
γrγk +

‖γkr̂‖2

γr + γk

)]

where γ0 = 0 (absence of impulsive noise) and α
(k)
j is the posterior noise state

belief given by

α
(k)
j = P (zj = k|r̂) =

p (r̂|zj = k) π
(k)
j∑K−1

l=0 p (r̂|zj = l) π
(l)
j

(5.13)

where p (r̂|zj = k) = N (r̂; 0, γr + γk) is the noise state likelihood. Using these

input and output scalar estimation functions, GAMP(i, I,F) is iterated until

convergence generating close approximations of the conditional means î and

variances γi = [γi0, · · · , γiN−1]
T

given the observations y and the prior informa-

tion. In the case of GHMM noise, I have additional equalizer iterations where

the resulting GAMP messages in the form of noise state likelihoods are passed

back to the MC sub-graph of the bursty noise as shown in Figure 5.1. These
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state beliefs are given by

µpij→zj (zj) ∝ N
(
r̂; 0, γr + γzj

)
.

Since the MC sub-graph is non-loopy, only one iteration of forward-backward

message passing is needed. This is a standard procedure and, for the interest

of space, I refer the reader to [59] and [12] for more details. After that, the

resulting noise-state posteriors are passed back to the GAMP algorithm where

they are treated as πj in (5.13) in the next equalizer iteration.

When the noise-state likelihoods passed between GAMP(i, I,F) and the

corresponding MC sub-graph have converged, the equalizer iterations are ter-

minated and messages are passed leftward from the impulse noise sub-graph

to the y factors. Following this, SP rules dictate that the symbol-belief prop-

agating leftward from the yk node is given by

µyk→sk(s) = N
(
yk; sĤk + Îk, ‖s‖2γHk + γIk + γ0

)
(5.14)

for all k ∈ D. (Since null and pilot symbols are known with certainty, there

is no need to update their pmfs). Here, (Ĥk, γ
H
k ) and (̂Ik, γ

I
k) play the role

of frequency-domain soft channel and impulsive noise estimates, respectively.

Furthermore, by SP rules, these messages are then copied leftward to the

symbol-mapping nodes so that µsk→Mk
(s) = µyk→sk(s).

Next, I pass the coded-bit beliefs from the symbol-mapping node Mk

to the corresponding bit nodes ck,m. Based on SP rules, the messages take the
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form

µMk→ck,m(c) =

|S|∑
l=1

∑
ck\cm

P
(
s(l)|ck

)
µsk→Mk

(s(l))

×
∏
m′ 6=m

µck,m′Mk→(cm′)

=

∑
l:c

(l)
m =c

µsk→Mk
(s(l))µMk→sk(s

(l))

µck,m→Mk
(c)

where the last step is derived in [85].

Finally, the computed coded-bit beliefs are passed to the coding/interleaving

factor node. This can be viewed as passing extrinsic soft information in the

form of coded-bit priors to the soft-input/soft-output (SISO) decoder. Since

SISO decoding has been studied extensively, I refer the interested reader to

[59] for a detailed account. As the SISO decoding terminates, it will produce

extrinsic soft coded-bit information which will be passed rightward to the

symbol-mapping nodes starting a new turbo iteration. The turbo iterations

are terminated until the decoder detects no bit errors, the soft bit information

has converged, or a maximum number of iterations has been reached.

5.5.4 Simplified Receivers

While the JCNED receiver, as presented, utilizes all the available tones

to perform inference over the complete factor graph given in Figure 5.1, the

proposed framework is highly flexible providing a trade-off between perfor-

mance and computational complexity. For example, a receiver, due to com-

putational or architectural constraints, might opt to simplify the receiver by
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either (1) restricting the algorithm to a subset U of the available tones, or (2)

simplifying the factor graph structure to avoid passing additional messages.

The selection of the subset U depends on the desired performance at a

given SNR (see Section 5.5.5) and the complexity of the corresponding output

estimation functions given in Table 5.2 and Table 5.3. I denote the receiver

utilizing only the tones in the subset U by JCNED (U). The channel and noise

estimates on the remaining tones can be obtained by taking the DFT of their

corresponding time-domain estimates produced by the GAMP(h,HU,
√
NFU)

and GAMP(i, IU,FU) employed by JCNED (U).

On the other hand, simplifying the factor graph can be achieved by

using the marginal GM distribution of the GHMM used for modeling clus-

tered channels and bursty noise; thus, the resulting factor graph removes the

MC subgraphs corresponding to the noise states and channel support effec-

tively ignoring any dependence within the channel taps and noise samples.

While detrimental to performance (see Section 5.6), this avoids computing the

messages required by the equalizer iterations. Another approach for simpli-

fying the factor graph is using an independent channel estimate, such as an

LMMSE estimator2 based on pilot tones. Although highly suboptimal in im-

pulsive noise, it eliminates the channel sub-graph from the factor graph and

saves the computations required by its corresponding GAMP(h,HU,
√
NFU).

2In this case, the LMMSE channel estimate and the resulting error will replace the
quantities Ĥk and γHk in the scalar impulsive noise estimator of Table 5.2.
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5.5.5 Tones Allocation and Selection

The JCNED receiver provides a framework to utilize different tones

of an OFDM system to jointly decode data and estimate the channel and

the impulsive noise. From this, two questions arise naturally: (i) how should

the OFDM system allocate its null, pilot, and data tones?, and (ii) given a

fixed number of tones that the receiver is willing to use due to computational

constraints, how should it pick the set U to maximize communication per-

formance? In AWGN channels, it has been shown that a uniformly-spaced

placement of pilots is optimal in the MMSE sense [9]. Similarly, null tones are

typically allocated at the edge of the spectrum to reduce out of band emis-

sions [1]. However, this no longer holds in impulsive channels as the MMSE

channel estimator is no longer linear and the noise is dependent across sub-

carriers; thus, the information on the null tones can no longer be ignored for

data decoding.

The impact of each tone on the ability of the receiver to reconstruct

the impulsive noise vector is determined by its type: null tones provide the

most information about the impulse noise vector but no information about the

channel taps, pilot tones provide information about both the channel taps and

the impulsive noise, data tones provide information about both the channel

taps and the impulsive noise although not as informative as the null and pilot

tones due to the presence of the transmitted data.

If I view the impulsive noise estimation as a sparse reconstruction prob-

lem [17], the impact of the tone locations, given by U, on the reconstruction
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performance can be evaluated from the properties of the resulting DFT sub-

matrix FU that is utilized as the measurement matrix Φ in GAMP(i, IU,FU). A

common metric for evaluating the reconstruction performance of a normalized

dictionary Φ is the coherence given by

µΦ = max
k,l,k 6=l

‖φ∗kφl‖ (5.15)

where Φ = [φ1 · · ·φN ] (see [89] for recent overview). A simple heuristic for

selecting a tone allocation U∗ is given by

U∗ = arg max
U

µFU
.

While I don’t claim any formal optimality of such selection in terms of com-

munication performance, simulation results in Section 5.6 validate using this

heuristic in practice.

5.5.6 Computational Complexity

The computational complexity of JCNED depends on two main factors:

(i) the number of iterations performed and (ii) the number of utilized tones in

the inference given by U. Recall that due to the loopy nature of the system’s

factor graph, there are two types of iterations: the “turbo iteration” during

which messages are passed globally between all the nodes, and the local “equal-

izer” iterations between the noise and channel dense sub-graphs and their MC

sub-graphs in the case of GHMM noise and clustered channels, respectively.

Since the MC sub-graphs are non-loopy, they require only one pass of mes-

sages (O(N)); thus, the complexity of a single “turbo iteration” is dominated
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by the complexity of GAMP(i, IU,FU) and GAMP(h,HU,
√
NFU) which can

be run in parallel. Since both GAMP implementations have Φ ∝ F, the term

‖Φij‖2 of Table 5.1 has a constant modulus and steps (R2) and (R6) reduce to

a single summation ∀i. Furthermore, steps (R1) and (R7) can be implemented

efficiently using the FFT algorithm for large |U| (comparable to the number

of tones N) with a complexity O(N logN). For smaller |U|, it might be more

efficient to implement steps (R1) and (R7) as an matrix-multiply with a com-

plexity O(|U|2). The remaining GAMP operations are scalar operations with

complexity O(|U|) when implemented sequentially and O(1) when parallelized.

As a result, the total complexity per turbo iteration is O(min{N logN, |U|2}),

the same complexity of a typical DFT receiver.

5.6 Numerical Results

In this section, I study the performance of my proposed message-passing

JCNED framework by the means of Monte-Carlo simulations. I demonstrate

that the proposed JCNED framework provides significant gains (within 1dB

from a lower bound) in both coded and uncoded communication systems at a

computational complexity slightly higher than the typical DFT receiver and

significantly lower than competing prior work. Furthermore, I present numer-

ical results that provide insights into more fundamental questions concerning

the value of noise modeling, the value of joint data decoding and channel/noise

estimation, and the impact of the number of tones and their allocation on com-

munication performance.
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Figure 5.3: The amplitude of two noise traces with the same sample marginals
but different temporal dynamics: in the iid model samples are generated in-
dependently, while the GHMM exhibits bursty behavior.

5.6.1 Setup

In my simulations, I consider either N = 256 (narrowband PLC sys-

tems) or 1024 (modern wireless systems) subcarriers modulated by either 4-

QAM or 16-QAM constellations. I assume a dispersive Rayleigh fading channel

with 10 taps for wireless systems and 5 taps for PLC3. Unless stated otherwise,

pilot tones are assigned uniformly while the null tones are chosen randomly.

The realizations of the impulsive noise were generated from two models: an

iid GM model having two impulsive components with powers 20dB and 30dB

above the background noise occurring 7% and 3% or the time, respectively;

and an GHMM having the same marginal distribution and impulsive power

3Due to space limitations, I choose to focus on a Rayleigh channel (although its estimation
is still highly non-linear), rather than the clustered-tap channel whose inference is detailed
in [85].
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with a state transition matrix given by

T =

0.989 0.006 0.005
0.064 0.857 0.079
0.183 0.150 0.667

 .
Even though both models have the same marginal, their traces, shown in Fig-

ure 5.3, have very different realizations due to their temporal dependencies.

Unless stated otherwise, the results have been generated using 5 turbo itera-

tions, and 15 GAMP iterations. In all results, the signal to noise ratio (SNR )

refers to the ratio of the signal power to the second order moment of the noise.

5.6.2 Comparison With Other Schemes

Figure 5.4 shows the uncoded symbol error rate (SER) comparison of

my proposed JCNED framework to the prior work discussed in Section 2.4 for

a 4-QAM modulated OFDM system with 256 subcarriers of which 80 are null

tones and 15 are pilots under a 5-tap Rayleigh channel corrupted by iid GM

noise. In addition to the typical OFDM receiver, labeled “DFT”, that takes

the DFT of the received signal and performs independent detection on each

subcarrier, I choose to compare against the MMSE receiver [45] and the SBL

receiver [57], labeled “MMSE” and “SBL”, respectively4. The MMSE receiver

has the best performance among the “time-domain preprocessing techniques”

since it is optimal in the MMSE sense when the temporal dependence in the

OFDM signal is ignored, an assumption shared among these techniques. Sim-

ilarly, the SBL receiver was shown to have the best performance among the

4I have augmented the MMSE and SBL receivers to perform channel estimation using
an LMSSE estimator, something missing in the original formulation in [45, 57]
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Figure 5.4: Uncoded SER of different schemes for 4-QAM and N = 256 sub-
carriers with Nn = 80 null subcarriers and Np = 15 pilot subcarriers.

“Sparse Impulse Noise Reconstruction” methods [57]. The SER curves in Fig-

ure 5.4 show that the proposed JCNED receiver outperforms the DFT receiver

by 15dB, the SBL receiver by 11dB, and the MMSE receiver by 7dB in the

low SNR regime and by 15dB in the high SNR regime. This huge performance

gain is due to JCNED utilizing all the tones for impulsive noise and channel

estimation as opposed to SBL and MMSE utilizing only the null and pilot

tones and using a LMMSE channel estimator. To further illustrate the effect

of using all available tones and the impact of joint impulsive noise and chan-

nel estimation, I plot the SER curve corresponding to a simplified version of

JCNED (N ∪ P)that uses only the known tones and the LMMSE estimate of

120



the channel instead of jointly estimating it. I denote this receiver as a joint

noise estimation and data decoding (JNED). From Figure 5.4, JNED is only

2.5dB better than SBL and worse than MMSE in the low SNR regime.

The MMSE has the lowest computational complexity, followed by JC-

NED, and then SBL. This is reflected in the simulations’ running time with

MMSE being the fastest. Since they utilize GAMP, the JCNED and the JNED

receivers had a comparable running time to the MMSE receiver as expected

from the discussion in Section 5.5.6. On the other hand, the SBL receiver,

requiring an huge matrix inversion, was by far the slowest with running time

100x slower than JCNED.

A lower bound on the communication performance of OFDM systems

in impulsive noise can be obtained by considering the transmission of a symbol

on a single data tone while nulling all the remaining tones and having perfect

channel information. I refer to this bound as the matched filter bound. Refer-

ring to (5.1), the received signal corresponding to sending a symbol s on tone

k is given by

r = HF∗(sek) + n = sf̄k + n (5.16)

where ek is the standard basis and f̄k is the k-th column of HF∗. Eq. (5.16)

represents an N -branch diversity under impulsive noise which was analyzed

in [88] for the case of a unit flat fading channel. Figure 5.4 shows the SER

attained by the MF bound labeled as “MF Bound”. It can be seen that my

proposed JCNED receiver follows the MF bound closely to within 1dB with a

slight deviation at very high SNR which I suspect is to the high nonlinearity
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Figure 5.5: Uncoded SER in a flat unit channel for an OFDM system of N =
256 subcarriers with Nn = 60 null tones.

of the output channel for GAMP(i, IU,FU) (at this SNR there is virtually no

background noise).

5.6.3 The Value of Impulsive Noise Modeling

In this section, I quantify the benefit of training a noise model vs. treat-

ing it as a sparse reconstruction problem as done by the SBL receiver. Fig-

ure 5.5 shows the SER performance of my receiver framework (labeled JNED

since there is no channel to estimate) compared to SBL for a unit flat fad-

ing channel in both the iid GM and GHMM noise. I chose a unit flat fading

channel to isolate the effect of noise modeling on communication performance.

For each setting, I compare SBL against JNED (N), that uses only the null
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tones, and against JNED that uses all available tones. The performance of

JNED (N) serves as a fair evaluation for the value of the noise model since

SBL doesn’t make use of the remaining data tones. There are two sets of SER

curves for the iid GM noise: one for 4-QAM modulation marked in green, and

another for 16-QAM modulation marked in red. Figure 5.5 shows that the

performance of JNED (N) is very close to that of SBL for 4-QAM modulation.

This small performance difference is due to the fact that detection of 4-QAM

symbols depends only on the phase of the estimated noise and is indifferent

to the accuracy of the noise amplitude which is better in JNED. However, as

seen in Sections 5.5.6 and 5.6.2, there is a huge computational and architec-

tural (order of magnitude faster and can be parallelized) advantage to using

the JNED algorithm over SBL.

Figure 5.6 plots the normalized mean squared error (NMSE) of the

noise estimate under each method. The noise NMSE is given by ‖n− î‖2/γn;

thus, for a unit power signal MSE = NMSE + SNR . JNED always results in

a lower NMSE than SBL with significant MSE difference across a wide SNR

range. As a result, I expect significant improvement in performance when em-

ploying higher order modulations as shown in Figure 5.5 for 16-QAM marked

in red (up to 6dB). Furthermore, using all the tones increases the performance

by an additional 8-10dB for both modulations. This is explained by the sig-

nificantly lower NMSE in Figure 5.6 when using all the tones. Interestingly,

when the estimation uses only the null tones, the NMSE is independent of the

modulation order; however, when utilizing all the tones, the NMSE for 16-
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Figure 5.6: Normalized MSE of the noise estimates produced by JNED and
SBL with SER performance given in Figure 5.5.

QAM modulation is higher than that of 4-QAM for a moderate range of SNR

. This can be explained by the fact that it is harder to distinguish a 16-QAM

modulated signal than the constant amplitude 4-QAM signal in the presence

of impulses. For GHMM noise, denoted in blue, I consider two categories of

receivers: (i) simplified receivers based on the GHMM noise model marginal

that ignore the temporal dependence of the noise to avoid MC equalization

represented by solid lines, and (ii) receivers with MC equalization. Similar

to the marginal JNED, SBL doesn’t make use of the temporal dependency in

the noise samples; however, the marginal JNED receiver is 3-6dB better than
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Figure 5.7: Uncoded SER in iid GM noise under a 5-tap Rayleigh channel for
an OFDM system with 256 tones with 60 null tones and 25 pilots allocated in
different configurations.

the SBL receiver. The JNED (N) receiver employing MC equalization adds an

additional 2.5dB in performance gain over the marginal JNED while using all

tones adds another 8dB.

5.6.4 Known Tone Allocation

Section 5.5.5 discussed the impact of known, either pilot or null, tones

on impulsive noise reconstruction and communication performance. Figure 5.7

shows the uncoded SER performance for JCNED in iid GM noise under a 5-
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tap Rayleigh channel. In this figure, blue indicates running JCNED on known

tones while red indicates running it with all tones. Furthermore, “type-X (µ)”

indicates that a tone of type either a null or a pilot has an allocation pattern X

(R-random, U-uniform, S-sideband) resulting in a dictionary coherence given

by µ. Figure 5.7 shows that the typical allocation of nulls at the sides of

the band and spreading the pilots uniformly produces the worst performance.

Randomizing the pilot tones alone improves the performance by 2.5dB while

randomizing the null tones improves the performance by 7dB. This also holds

when utilizing all the tones with a performance gain of around 5dB when ran-

domizing the null tone allocation. In addition, Figure 5.7 shows that the lower

the coherence of a certain allocation the better the communication perfor-

mance. This result opens new interesting research directions for known tone

allocation in impulsive noise channels where conventional allocation techniques

for the AWGN channel fail to account for impulsive noise estimation accuracy.

5.6.5 Coded Systems

Figure 5.8 shows the bit error rate (BER) performance of a coded

OFDM system with 1024 subcarriers with 150 pilots in a 10-tap Rayleigh

channel corrupted by iid GM noise. Due to the aggressive nature of impulsive

channels, I employ LDPC codes with code-word length ∼ 60 000 and rate 1/2.

The label “alg- #” refers to the algorithm used by the receiver followed by the

number of turbo iterations performed. I consider three types of receivers: the

typical receiver that takes the DFT of the received signal and performs sym-
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Figure 5.8: LDPC coded BER in iid GM noise under a 10-tap Rayleigh channel
for an OFDM system with 1024 tones with 150 pilots.

bol detection followed by LDPC decoding; the proposed JCNED receiver that

performs joint channel/noise estimation and LDPC decoding; and a simplified

version of JCNED, labeled “Seq. JCNED”, that first performs channel/noise

estimation and symbol detection as in uncoded systems delaying the LDPC

decoding till the last turbo iteration. In all receivers, I set the maximum LDPC

iterations to 50. With only 1 turbo iteration, JCNED5 provides an additional

9dB over the coded DFT receiver. An additional turbo iteration yields an

extra 2dB while 5 turbo iterations in total yield a 13dB improvement over

the DFT receiver. Furthermore, by decoding the LDPC code in each turbo

5Since there is only one turbo iteration, JCNED-1 and seq. JCNED-1 are identical.
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iteration, JCNED provides an additional 1dB over seq. JCNED.

5.6.6 Data Rates

Section 5.6.5 provided BER simulations achieved by the proposed re-

ceiver. In practice, information bits are coded and divided into data packets

for transmission. A collection of erroneous bits in a received packet might

render all the information in the packet useless. As a result, BER by itself is

not enough to characterize the data rates achieved by a given receiver.

The transmission rate R of an OFDM system can be related to its

bandwidth B and modulation order M (assuming same order across all sub-

carriers) as R = ηNd log2(M) × B/(N + Lc), where η is the code rate, N is

the number of tones, Nd is the number of data tones, and Lc is the length of

the cyclic prefix. For simplicity, let us assume that the information bits can

be mapped to one physical layer packet. Then, ignoring overhead at the MAC

layer, the rate of our system can be written as R = MiB/Q(N +Lc) where Mi

is the number of information bits at the application level and Q is the number

of OFDM symbols in a physical layer packet. However, due to packet losses,

the communication system will operate below this nominal rate.

Goodput characterizes data throughput from the perspective of the

number of information bits successfully transmitted to the receiver per unit

time. The goodput G is defined as G = R(1 − Pe) where Pe is the probabil-

ity of physical layer packet error (also data packet based on our assumption)

[4, 5, 100]. The probability of success Ps = 1 − Pe represents the fraction of

128



−10 −5 0 5 10 15
0

2

4

6

8

10

12

SNR [dB]

G
oo

dp
ut

 (M
bp

s)

DFT
JCNED

Figure 5.9: Goodput vs SNR for packets of size 32400bits: The proposed JC-
NED receiver achieves the same rate at a 12dB lower SNR than the traditional
DFT receiver.

successful packet transmissions. A different interpretation of G could be seen

by treating the data packet transmission and retransmission as a Bernoulli

trial with success probability Ps. Then, the expected number of packet re-

transmissions is given by 1/Ps. Since this number of retransmissions is needed

for the same packet the effective rate is then R× Ps which is the definition of

goodput G.

For simulations, I used the same system parameters as in Section 5.6.5

and chose B = 10MHz, and Q(N + Lc) = 142.7µsec (inspired by LTE). For

these settings, each data packet (32400bits) is mapped to a physical layer

packet made of 19 OFDM symbols. As a result, R = 32400/(19 × 142.7) ≈

12Mbps. Figure 5.9 shows the goodput vs SNR for these system settings. The

proposed receiver achieves a gain of about 12db over the DFT receiver allowing

the receiver to operate in much higher interference environments. A similar

result is shown in Figure 5.10 that shows goodput vs interference power at very
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Figure 5.10: Goodput vs interference power for packets of size 32400bits and
background power of −15dB: The proposed JCNED receiver achieves the same
rate at a 13dB higher interference power than the traditional DFT receiver.

low background noise power. Again our receiver is able to tolerate interference

power that is 13dB higher than those tolerated by the DFT receiver.

5.7 Conclusion

In a this chapter, I presented a factor-graph approach to joint chan-

nel/noise estimation and data decoding in impulsive noise channels. My ap-

proach merges recent work on modeling impulsive noise in communication

systems [41] with recent advances in approximate message passing algorithms

[28, 79, 80] and SISO decoding [59]. The presented receiver has a complexity

comparable to the typical DFT receiver while providing tens of dBs in per-

formance gain (1dB from a lower bound). Furthermore, it can be parallelized

which provides a natural mapping to FPGA implementations. In addition,

my experiments addressed more fundamental questions such as the value of
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impulsive noise modeling, and null and pilot allocation in impulsive noise. The

former provides new interesting ideas for future research.

In the following chapter, I address the question of noise parameter

estimation without an explicit training interval. This will make the proposed

receivers of this chapter more robust to fast varying environments.

5.8 Appendix

5.8.1 Derivation of GAMP(h,HU,
√
NFU) Functions

This appendix describes the derivation of the channel output scalar

estimation functions gout,k(yk, Ĥ, γ
H) and −g′out,k(yk, Ĥ, γH) for data tones. The

derivation for pilot tones is relatively straightforward and follows from linear

estimation theory [53]. The data tone output channel is given by

yk = skHk + Ik + Gk k ∈ D.

Given sk, this channel is Gaussian and

E
{

Hk|sk, yk; Ĥ, γH
}

= Ĥ +
s∗kγ

H
(
yk − Îk − skĤ

)
γ0 + γIk + ‖sk‖2γH

. (5.17)

Given the belief βk about symbol sk, we use the law of total expectation to

obtain

E
{

Hk|yk; Ĥ, γH
}

= Esk|yk
{
E
{

Hk|sk, yk; Ĥ, γH
}}

= Ĥ +

|S|∑
l=1

λ
(l)
k

γI
(
yk − Îk − Ĥs(l)

)
γ0 + γIk + ‖s(l)‖2γH

(5.18)

131



where the posterior symbol belief is given by

λ
(l)
k = P

(
sk = s(l)|yk

)
∝ p (yk|sk) β(l)

k

and p (yk|sk) = N
(
yk; Îk + Ĥsk, γ

I + ‖sk‖2γH + γ0

)
. Similarly, using the law

of total variance, for ∀k ∈ D we have

V
{

Hk|yk; Ĥ, γH
}

= Esk|yk
{
V
{

Hk|sk, yk; Ĥ, γH
}}

+ Vsk|yk

{
E
{

Hk|sk, yk; Ĥ, γH
}}

=

|S|∑
l=1

λ
(l)
k

[
γH
(
γ0 + γIk

)
γ0 + γIk + ‖s(l)‖2γH

+
∥∥∥E {Hk|sk, yk; Ĥ, γH

}∥∥∥2
]
−
∥∥∥E {Hk|yk; Ĥ, γH

}∥∥∥2

where E
{

Hk|sk, yk; Ĥ, γH
}

and E
{

Hk|yk; Ĥ, γH
}

are given in (5.17) and (5.18),

respectively. The resulting expressions for E
{

Hk|yk; Ĥ, γH
}

and V
{

Hk|yk; Ĥ, γH
}

can be plugged into steps (D2-3) of Table 5.1 to arrive at the desired result

given in Table 5.2.

5.8.2 Derivation of GAMP(i, IU,FU) Functions

This appendix describes the derivation of the impulsive noise output

scalar estimation functions gout,k(yk, Î, γ
I) and g′out,k(yk, Î, γ

I) for data tones.

The derivation for null and pilot tones is relatively straightforward and follows

from linear estimation theory [53]. The data tone output channel is given by

yk = Ik + skHk + Gk k ∈ D.
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Given sk, this channel is Gaussian and

E
{

Ik|sk, yk; Î, γI
}

= Î +
γI
(
yk − Î− Ĥksk

)
γ0 + γI + ‖sk‖2γHk

. (5.19)

Given the belief βk about symbol sk, we use the law of total expectation to

obtain

E
{

Ik|yk; Î, γI
}

= Esk|yk
{
E
{

Ik|sk, yk; Î, γI
}}

= Î +

|S|∑
l=1

λ
(l)
k

γI
(
yk − Î− Ĥks

(l)
)

γ0 + γI + ‖s(l)‖2γHk
(5.20)

where the posterior symbol belief is given by

λ
(l)
k = P

(
sk = s(l)|yk

)
∝ p (yk|sk) β(l)

k

and p (yk|sk) = N
(
yk; Î + Ĥksk, γ

I + ‖sk‖2γHk + γ0

)
. Similarly, using the law

of total variance, for ∀k ∈ D we have

V
{

Ik|yk; Î, γI
}

= Esk|yk
{
V
{

Ik|sk, yk; Î, γI
}}

+ Vsk|yk

{
E
{

Ik|sk, yk; Î, γI
}}

=

|S|∑
l=1

λ
(l)
k

[
γI
(
γ0 + ‖s(l)‖2γHk

)
γ0 + γI + ‖s(l)‖2γHk

+
∥∥∥E {Ik|sk, yk; Î, γI

}∥∥∥2
]
−
∥∥∥E {Ik|yk; Î, γI

}∥∥∥2

where E
{

Ik|sk, yk; Î, γI
}

and E
{

Ik|yk; Î, γI
}

are given in (5.19) and (5.20), re-

spectively. The resulting expressions for E
{

Ik|yk; Î, γI
}

and V
{

Ik|yk; Î, γI
}

can

be plugged into steps (D2-3) of Table 5.1 to arrive at the desired result given

in Table 5.2.
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Chapter 6

Robust Message-Passing OFDM Receivers for

Impulsive Noise Channels

The message-passing receivers proposed in the previous chapter pro-

vide significant gains in communication performance (more than 10dB) over

the conventional DFT receiver by utilizing the interference models proposed

in Chapter 3. However, these receivers assume knowledge of the interfer-

ence model parameters. While a reasonable assumption when the interference

statistics are slowly varying and could be estimated during a quiet period, this

will no longer be the case in rapidly changing environments where the interfer-

ence statistics could change on the order of an OFDM symbol duration. Under

such scenarios, the performance of the message-passing receivers might suffer

due to model mismatch in the assumed interference model. In this chapter, I

extend the graphical model framework, proposed in Chapter 5, to perform pa-

rameter estimation of the interference model. In addition, I propose replacing

the interference model priors by the automatic relevance determination (ARD)

prior that can take advantage of temporal sparsity commonly present in the

interference using an empirical Bayesian framework called sparse Bayesian

learning (SBL).
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6.1 Introduction

As discussed in previous chapters, interference in the form of impulsive

noise has a detrimental effect on communication performance. OFDM modu-

lation provides resilience to this interference by coding the data symbols over

multiple time samples. While the conventional DFT receiver doesn’t realize

the expected gain in communication performance [46, 47], the message-passing

receivers proposed in Chapter 5 provide huge performance gains (tens of dBs).

These receivers leverage accurate parametric models of the interference statis-

tics to perform Bayesian inference of the transmitted data. In particular, they

assume perfect knowledge of the interference model parameters. While a valid

assumption in slowly varying environments, this might no longer hold if the

interference statistics are rapidly changing. This could lead to model mis-

match that can deteriorate the communication performance significantly. As

a result, it is of interest to design robust OFDM receivers that can adapt to

the changing interference environment.

The prior work dealing with robust receivers for impulsive noise chan-

nels can be roughly classified into two categories: (i) robust-metric based, and

(ii) sparse signal recovery. Robust metrics are designed to minimize the ef-

fect of outliers and are typically employed as part of pre-processing mitigation

techniques as described in Section 2.4. Two examples are the Huber metric

[20] and the modified-soft-limiting metric [30] that has been used for turbo

decoding in single carrier systems. A more recent work proposes the use of the

correntropy induced metric combined with zero order statistics for prefilter-
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ing applications [42]. Receivers based on sparse signal recovery typically treat

the impulsive noise vector as an unknown and attempt to reconstruct it using

known data tones. These techniques have been discussed in Section 2.4.

6.2 Contribution

In this chapter, I propose the design of robust message-passing OFDM

receivers that can adapt to rapidly varying environments. In particular, I

propose two classes of robust receivers: (i) blind interference model parame-

ter estimation based, and (ii) automatic relevance determination (ARD) prior

based. On one hand, the blind receiver, discussed in Section 6.4, jointly esti-

mates the interference model parameters without any explicit training period

while performing joint channel/interference estimation and data decoding. On

the other hand, by using the ARD prior in Section 6.5 instead of the GM in-

terference model, I propose a message-passing version of the sparse Bayesian

learning (SBL) receiver that achieves excellent performance over a variety of

different interference models [57]. However, the message-passing SBL receiver

has the following key advantages over the direct SBL implementation: 1) its

computational complexity is of the same order as the conventional OFDM re-

ceiver; 2) doesn’t require any matrix inversions and can be naturally mapped to

an FPGA implementation; and 3) it is part of a Bayesian inference framework

that jointly estimates the channel and the interference while approximating

MAP symbol detection (direct SBL uses the suboptimal LMMSE estimate of

the channel and targets minimizing the MSE error of the interference estimate
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[57]). For the ease of presentation, this chapter derives the receivers for an un-

coded OFDM system; however, it is straightforward to generalize the receivers

to the LDPC coded framework presented in the previous chapter.

6.3 System Model

Since the proposed robust receivers are extensions of the message pass-

ing receivers described in Chapter 5 they will follow the same system model.

However, for ease of presentation and without loss of generality, I focus on

the uncoded OFDM system model. The extension of these algorithms to the

coded OFDM system of Chapter 5 is straightforward.

Same as in Section 5.3, I consider an N -tone OFDM system with the

following tone partition: Np pilot tones indexed by the set P, Nn null tones

indexed by N, and Nd data tones indexed by the set D where each data

subcarrier is modulated by a symbol from an 2M -ary constellation S. The

source-generated data bits are mapped to the data symbols using gray map-

ping. In the sequel, I use s(i) ∈ S for i ∈
{

1, · · · , 2M
}

to denote the ith

element of S. Likewise, I use sk[q] to denote the symbol transmitted on the

kth subcarrier of the qth OFDM symbol. Based on the tone partition, I note

that: sk[q] = p for all k ∈ P, where p is a known pilot symbol; sk[q] = 0 for all

k ∈ N; and sk[q] = s(l) for some l. On the frame level, I use c[q] to denote the

coded/interleaved bits allocated to the data tones of the qth OFDM symbol.

As discussed in Section 2.1 and Section 5.3, OFDM modulation applies

an N -point inverse discrete Fourier transform (IDFT) F∗ to a vector of N

137



symbols. After OFDM modulation, the resulting time-domain signal corre-

sponding to the qth OFDM symbol is given by u[q] = F∗s[q] where u[q] =

[u0[q] · · ·uN−1[q]]T is the time domain signal and s[q] = [s0[q] · · · sN−1[q]]T is

the transmitted symbol sequence.

After appending the cyclic prefix, the qth OFDM symbol’s waveform

propagates through a noisy LTI channel with a channel impulse response

h[q] = [h0[q] · · ·hL−1[q]]T where L is the number of channel taps. After dis-

carding the cyclic prefix and assuming perfect synchronization at the receiver,

the received signal r[q] can be expressed as

r[q] = H[q]u[q] + n[q] = H[q]F∗s[q] + n[q] (6.1)

where n[q] is additive noise, and H[q] is the circulant matrix formed by h[q]

[94]. The receiver applies DFT to r[q], and the resulting frequency-domain

signal is given by

y[q] = Fr[q] = FH[q]F∗s[q] + Fn[q] = H[q] ◦ s[q] + N[q] (6.2)

where H[q] = (
√
NF:,1:L)h[q] denotes the frequency-domain channel, N[q] =

Fn[q] the frequency-domain noise, and ◦ denotes the Hadamard product.

In this chapter, I assume the GM model of interference as described in

Chapter 2. As a result, the additive noise term n[q] will be a GM distributed

random vector. The pdf of a GM distributed random variable n with zero

mean components is given by

p (n) =
K−1∑
k=0

π(k) ·N (n; 0, γk) (6.3)
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where N (n; 0, γk) denotes the complex Gaussian pdf with zero mean and vari-

ance γk; and π(k) is the probability of the k-th Gaussian component. Generally,

the Gaussian background noise (also called thermal noise) g ∼ N (0, γ0) is the

component with the smallest variance that is typically assumed to be known.

The total noise can then be decomposed as the sum of background and impul-

sive noise as n = g + i, where i is the impulsive noise component whose pdf is

given by

p (i) = π(0)δ (i) +
K−1∑
k=1

π(k) ·N (i; 0, γk) . (6.4)

Here, π(0) represents the probability that only background noise is present;

thus, with probability 1 − π(0) a non-zero impulsive noise is present on top

of the background noise.
{
π(k)
}K−1

k=0
and {γk}K−1

k=1 are parameters to be esti-

mated. When the interference statistics are slowly varying, these parameters

can be estimated during a quiet period with no transmission and used in the

message passing receivers proposed in Chapter 5. However, in rapidly varying

environments, these parameters have to be estimated for every OFDM symbol:

a constraint that motivates the receivers proposed in this chapter.

6.4 Joint Channel/Noise Estimation and Decoding with
Blind Interference Model Parameter Estimation (Blind
JCNED)

In this section, I extend the framework used in Chapter 5 to design

OFDM receivers that estimate the interference model parameters without the

need for a explicit training period in addition to performing the joint chan-
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nel/interference estimation and data decoding.

6.4.1 Revisiting Decoding in Impulsive Noise Channels

As described in Section 5.4, the objective is to infer the information

bits b transmitted on the data tones given the received signal y, the prior

knowledge about the impulsive noise and the channel, and the locations of

the pilot and null tones given by P and N, respectively. In Chapter 5, the

prior knowledge about the interference was given by the parametric model

of the impulsive noise p (i; θi) and the true value of the parameters given by

θi = {γk}K−1
k=0 . In this section, the prior knowledge about the interference

is restricted to the parametric model of the impulsive noise p (i; θi) without

knowing the exact value of the parameters θi.

A fully Bayesian approach first marginalizes over the channel taps h,

the noise vector n ( both considered latent variables), and the impulsive noise

parameters θi for some prior p (θi). Then, it computes the posterior proba-

bility of the symbol sk given the received signal y. Writing the parameter

marginalization step explicitly, the posterior probability

P (sk|y) =

∫
θi

P (sk|y, θi) p (θi) dθi, ∀k ∈ D (6.5)

where I omitted the channel parameters for clarity of presentation (these are

explicitly considered in Section 5.4). Typically, this marginalization is not

readily available in closed form and requires using sampling techniques for

its evaluation. However, this is typically computationally intensive and not
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appropriate for receiver design. Instead, I opt to use a point estimate of

the interference parameters θ̂i. In contrast, when perfect knowledge of the

parameters is readily available as in Chapter 5, we have p (θi) = δ(θi − θti)

where θti are the true parameters. Based on the discussion above, given a

point estimate of the interference model parameters θ̂i, the symbol posterior

can be written as

P (sk|y) =

∫
θi

P (sk|y, θi) p (θi) dθi ≈ P
(
sk|y, θ̂i

)
, ∀k ∈ D. (6.6)

The MAP detection rule can then be formulated as

ŝk = arg max
sk∈S

P
(
sk|y, θ̂i

)
, ∀k ∈ D (6.7)

where S is the signaling constellation. Now, given the point estimate θ̂i, this

is the same MAP problem as in Chapter 5 with the true parameters replaced

by the point estimate.

As discussed in Chapter 5, even with the point estimate the high-

dimensional marginalization required to perform this MAP detection is in-

tractable. Recall the OFDM system model given by

y = H ◦ s + Fg + Fi = H ◦ s + I + G (6.8)

where I have explicitly written the noise as a sum of background and impulsive

noise. While, G is also an AWGN vector with independent components, this

is not the case for I whose components are in fact dependent (See discussion

in Section 2.1 and Section 5.4). Due to this coupling, the independent and
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disjoint decoding of the OFDM subchannels as done under AWGN is no longer

optimal. Using the law of total probability, the posterior symbol probability

used in (6.7) can be written as

P
(
sk|y; Θ, θ̂i

)
=
∑
s\k

P
(
s|y; Θ, θ̂i

)
∝
∑
s\k

p
(
y|s; Θ, θ̂i

)
P (s)

=
∑
s\k

∫
i,h

p (y|h, i, s; Θ) p (h; θh) p
(
i; θ̂i

)
P (s)

=
∑
s\k,z

∫
i,h

N−1∏
k=0

p (yk|sk,h, i;D,N,P)

× P (sk) p
(
ik|zk, θ̂i

)
P
(
zk|θ̂i

) L−1∏
l=0

p (hl) (6.9)

where s\k = [s1, · · · , sk−1, sk+1, · · · , sN ]T and Θ {D,P,N, θh} are the remain-

ing system parameters as described in Section 5.4. The coupling between the

subchannels is evident in the p (yj|sj,h, i,D,P,N) term where the received

signal at each tone yj depends on the complete vectors i and h through the

linearly mixed terms Ij = [Fi]j and Hj = [Fh]j, respectively. This prevents the

high-dimensional integrals in (6.19) from simplifying into N scalar integrals,

as would happen under AWGN, and leads to an intractable marginalization.

A similar challenge arises when trying to estimate the impulsive noise

parameters θ̂i. Typically, these parameters are estimated using the empirical

Bayes framework. This amounts to maximum likelihood (ML) estimation of

the interference prior (the impulsive noise model) parameters. Mathematically,

this can be expressed as follows

θ̂i = arg max
θi

p (y|θi) . (6.10)
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However, p (y|θi) requires marginalization over the transmitted symbols, the

channel, and the impulsive noise. This again involves high-dimensional inte-

grals that are intractable. In particular,

p (y|θi) =
∑
s

p (y|s; Θ, θi)P (s)

=
∑
s

∫
i,h

p (y|h, i, s; Θ) p (h; θh) p (i; θi)P (s)

=
∑
s,z

∫
i,h

N−1∏
k=0

p (yk|sk,h, i;D,N,P)

× P (sk) p (ik|zk, θi)P (zk|θi)
L−1∏
l=0

p (hl) (6.11)

which again involves the coupling term leading to the high-dimensional inte-

gral.

6.4.2 Message Passing Receivers with EM Parameter Estimation

To tackle the two challenging inference problems given in (6.9) and

(6.11), I follow the same approach as in Chapter 5 and use graphical modeling

with message passing to approximate these inference problems. Figure 6.1

represents the factor graph corresponding to the pdf factorization given in

(6.9) and (6.11). This is similar to the factor graph of the previous chapter

given in Figure 5.1. The main difference is in the presence of additional nodes

representing the GM interference parameters π and γ. In this section, I assume

that the number of terms in the Gaussian mixture is known. Future work will

address the case where this number can be estimated from the data.
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Figure 6.1: Factor graph representation of the OFDM system model given by
the pdf factorization in (6.9): The blue edges and the two nodes represent the
messages and the parameters of the GM model that are estimated by an EM
algorithm.

For a given π and γ, the messages passed between the nodes are exactly

the same as those of the JCNED algorithm described in Section 5.5.3. As a re-

sult, I encourage the reader to review the corresponding section discussing the

JCNED receiver before proceeding. For the purpose of this section, I assume

that all the messages passed on the red-colored subgraph have been returned

by the JCNED algorithm. In particular, consider the messages entering the

impulse noise node ik given by N (ik; r̂k, γ
r) where r̂k and γr1 are given in steps

1Note that γr is independent of the index k due to utilizing the DFT matrix in steps
(R6-7) of Table 5.1.
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(R6-7) of Table 5.1. By the sum-product algorithm, we have

p (y|θi) ≈
N∏
k=1

N (ik; r̂k, γ
r, θi) . (6.12)

As discussed in [79], this can be interpreted as having N observations {r̂k}Nk=1

with noise power γr; the approximate system model is then given by

r̂k = ik + N (0, γr) . (6.13)

As a result, the ML estimation of the parameters r̂k and γr can be approxi-

mated by

θ̂i = arg max
θi

p (r̂|θi) (6.14)

where r̂ = [r̂1, · · · , r̂N ]T and r̂k is given by (6.13). The solution to (6.14)

can be obtained by the EM algorithm [12]. The EM algorithm, described

in Section 4.6, is an iterative procedure that updates its parameters through

two steps: the expectation step (E), and the maximization step (M). The

derivation of the EM updates for the estimation problem in (6.14) is relatively

simple and proceeds as follows: Given the current estimate of the parameters

given by π(i) and γ(i), the value of the parameters at the next iteration is given
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by

νk,l =
π

(i)
l N

(
r̂k; 0, γr + γ

(i)
l

)
∑K−1

j=0 π
(i)
j N

(
r̂k; 0, γr + γ

(i)
j

)
Nl =

N∑
k=1

νk,l

π
(i+1)
l = Nl/N

γ
(i+1)
l =

1

Nl

N∑
k=1

νk,l‖r̂k‖2 − γr (6.15)

whereK is the number of Gaussian components in the mixture. As discussed in

Section 4.6, the performance of the EM algorithm depends heavily on the initial

conditions. For my experiments, I choose π(0) to be uniform and I set γ(0) to

the centers of the clusters obtained by running the k-means algorithm [12] on

‖r̂k‖2. Using this initialization, the EM algorithm produces good estimates

within the first 20 iterations.

I now proceed to describe the complete Blind JCNED algorithm. Ini-

tially, I run the JCNED algorithm, described in Section 5.5.3, assuming the

interference is AWGN. After convergence, I pass the resulting r̂ and γr to the

EM algorithm described in (6.15) to produce estimates of π to be uniform and

I set γ. These estimates are then used as the interference model parameters

for the JCNED for the next iteration. This continues until convergence or till

the maximum number of iterations has been reached.
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6.5 Joint Channel/Noise Estimation and Decoding with
ARD Prior

In this section, I propose to extend the framework used in Chapter 5 to

the case where the interference prior model is set to the automatic relevance

determination (ARD) prior [93]. The ARD prior is a hierarchical model that

promotes sparsity [93]. Typically, the inference is performed using an empirical

Bayes framework called Sparse Bayesian Learning (SBL).

6.5.1 Sparse Bayesian Learning

I describe the model specification in sparse Bayesian learning and re-

view the associated inference procedures proposed in [93].

6.5.1.1 System Model

SBL is commonly applied for sparse signal recovery from compressed

measurements. The typical system model for compressive measurement is

given by

y = Aw + n, (6.16)

where A is a known M ×N measurement matrix, and n is a N × 1 vector of

i.i.d. noise samples drawn from N (0, σ2). Here, the N × 1 unknown vector w

is typically high-dimensional and sparse, meaning that many of its elements

are zeros. Typically the number of measurements M is significantly less than

N .

From (6.16), the likelihood of the observations given the model is given
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by

p
(
y|w, σ2

)
= N

(
y|Aw, σ2I

)
, (6.17)

SBL places the following prior over w:

p (w|α) =
d∏
i=1

N (wi|0, αi) = N (w|0, C) , (6.18)

where C is a diagonal matrix with α in the diagonal. This is the ARD prior.

Each of the N independent hyperparameters α = (α1, . . . , αN)T controls the

variance of its corresponding weight. This type of prior ultimately leads to a

sparse model by setting many of α’s to sufficiently large and associated weights

to zero.

6.5.2 Inference

Given the ARD prior in (6.18) and the likelihood (4.11), the posterior

over w from Bayes rule is given by:

p
(
w|y,α, σ2

)
∝ N (w|µ,Σ) , (6.19)

where Σ = ( 1
σ2 A

TA + C)−1 and µ = 1
σ2 ΣATy. The posterior depends on the

hyperparameters. Integrating out those hyperparameters is not analytically

tractable. It is widely-used to set those to a most-probably point estimate of

αMP and σ2
MP by maximizing the marginal likelihood:

p
(
y|α, σ2

)
=

∫
p
(
y|w, σ2

)
p (w|α) = N (y|0,Λ) , (6.20)

where Λ = (σ2I+ACAT ). Although the marginal likelihood is in closed form

as a Gaussian in y; αMP and σ2
MP cannot be expressed in closed form, and
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are typically estimated by an EM algorithm. The main drawback is that com-

puting the re-estimation functions requires inverting the posterior covariance

matrix Σ. This operation requires O(N3) complexity for computation and

O(N2) for memory storage.

In [57], SBL was proposed as a robust approach for impulsive noise

estimation and mitigation without constraining it a specific model. This SBL

receiver is able to achieve significantly better performance under practical im-

pulsive noise scenarios than most compressive sensing techniques discussed in

Section 2.4. A limitation of SBL is that it depends on linear channel estimation

to utilize the pilot tones which is suboptimal in impulsive noise. Furthermore,

its objective is the accurate reconstruction of impulsive noise rather than min-

imizing the detection errors. In the following section, I propose a message

passing SBL that doesn’t suffer from these limitations.
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Figure 6.2: Factor graph representation of the OFDM system model when the
interference model is specified by the ARD prior: the α are a set of parameters
that are estimated by empirical Bayes.

6.5.3 Message Passing Receivers with ARD Prior

Similarly to Blind JCNED discussed in Section 6.4, the posterior sym-

bol probability given the received signal is given by

P (sk|y; Θ,α) =
∑
s\k

P (s|y; Θ,α) ∝
∑
s\k

p (y|s; Θ,α)P (s)

=
∑
s\k

∫
i,h

p (y|h, i, s; Θ) p (h; θh) p (i|α)P (s)

=
∑
s\k,z

∫
i,h

N−1∏
k=0

p (yk|sk,h, i;D,N,P)

× P (sk)N (ik; 0, αk)
L−1∏
l=0

p (hl) (6.21)
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where I substituted the ARD prior form. The factor graph corresponding to

this factorization is given in Figure 6.2. SBL inference in this context can be

formulated as the ML estimation of the hyperparameters α given by

α̂k = arg max
αk

p (y|αk) ≈ arg max
αk

N (r̂k; 0, 1/αk + γr) (6.22)

where r̂k and γr are given in steps (R6-7) of Table 5.1 and I utilized the

approximation employed by GAMP and discussed in Section 5.5.2. After some

arithmetic, it can be shown that the solution to the optimization problem in

(6.22) is given by

α̂k =

{
1/(‖r̂k‖2 − γr) if ‖r̂k‖2 > γr

∞ o.w.
(6.23)

where αk =∞ implies that ik = 0.

Now, I proceed to describe the complete message passing receiver that

utilizes the ARD prior, called ARD-JCNED. Initially, I set all 1/αk to an

average value of interference power. Then, I alternate between running JCNED

of Section 5.5.3 and computing the αs.

6.6 Numerical Results

In this section, I study the performance of my proposed robust message-

passing receivers by the means of Monte-Carlo simulations. In my simulations,

I consider a N = 256 (narrowband PLC systems) subcarriers modulated by

4-QAM. I assume a dispersive Rayleigh fading channel with 5 taps. Unless

stated otherwise, pilot tones are assigned uniformly while the null tones are
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Figure 6.3: Uncoded SER of comparing Blind JCNED vs JCNED with perfect
knowledge of parameters for 4-QAM and N = 256 subcarriers with Nn = 80
null subcarriers and Np = 15 pilot subcarriers.

chosen randomly. The realizations of the impulsive noise were generated from

an iid GM model having two impulsive components with powers 20dB and

30dB above the background noise occurring 7% and 3% or the time.

6.6.1 Blind JCNED vs JCNED

Figure 6.3 shows the uncoded symbol error rate (SER) comparison of my

proposed Blind JCNED framework that estimates the interference parameters

from the received data and the JCNED receiver from Chapter 5 which assumes

knowledge of the interference parameters. The Blind JCNED suffers in the low
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Figure 6.4: Uncoded SER of comparing ARD JCNED vs SBL receiver proposed
in [57] for 4-QAM and N = 256 subcarriers with Nn = 80 null subcarriers and
Np = 15 pilot subcarriers.

SNR region due to sensitivity of signal detection to mismatch in interference

model. However, at moderate to high SNRs the Blind JCNED is within 3dB

from the JCNED receiver and provides gains up to 8dB over the DFT receiver.

6.6.2 ARD-JCNED vs SBL

Figure 6.4 shows the uncoded symbol error rate (SER) comparison of

my proposed ARD-JCNED receiver and the SBL receiver proposed in [57].

In addition to being computationally simpler since it avoids all matrix inver-

sions, the ARD-JCNED receiver outperforms the typical SBL implementation

by around 9dB due to the fact that it jointly estimates the channel as well.
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Furthermore, it is within 3dB from JCNED that assumes complete knowledge

of the interference model.

6.7 Conclusion

In this chapter, I extend the graphical model framework, proposed in

Chapter 5, to perform parameter estimation of the interference model. In

addition, I propose replacing the interference model priors by the automatic

relevance determination (ARD) prior that can take advantage of temporal

sparsity commonly present in the interference using an empirical Bayesian

framework called sparse Bayesian learning (SBL). Both approaches provide

significant gains (around 8dB) over the DFT receiver.
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Chapter 7

Conclusion

In this dissertation, I focus on designing OFDM receivers in interference

limited systems and propose the following thesis statement:

In interference-limited multicarrier communication systems, accurate

statistical modeling of the interference enables the design of low-complexity

message passing multicarrier receivers that increase the link spectral efficiency

by several bits/s/Hz, without any coordination or knowledge of the number,

locations, or types of interference sources.

In the following section, I discuss how my contributions in each chapter

contribute toward defending this thesis statement.

7.1 Summary

In this dissertation, I propose various statistical models of uncoordi-

nated interference in wireless and PLC networks. Then, I leverage these mod-

els as prior knowledge in the design of OFDM receivers for interference limited

environments. In particular, I propose a probabilistic graphical model frame-

work for designing these receivers under different conditions and constraints.

The specific conclusions made from each contribution are listed below:
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In Chapter 3, I derive statistical-physical models for uncoordinated in-

terference in PLC networks. In particular, I show and verify by simulation that

the interference in homogeneous PLC networks follows the Middleton class-A

model while the interference in dense PLC networks follows the more general

Gaussian mixture model. This is inline with experimental studies reported

in the literature [26, 104] and similar to models derived for wireless networks

[41, 42]. In addition, I show that a cyclostationary model is appropriate for

modeling the periodicity exhibited by interference in narrowband PLC and

that a Gaussian HMM model captures the statistics of bursty interference

present in some wireless platforms operating in the 2.4GHz ISM band. Sub-

sequently, I use these models in the design of OFDM receivers corrupted by

interference.

In Chapter 4, using a latent variable interpretation of the interference

model, I propose an EM-based OFDM receiver for impulsive noise channels

that is constrained to perform independent subcarrier decoding. Compared

to the conventional DFT receiver, the proposed receiver provides a gain of

around 6dB in the low and moderate SNR range and about 2dB in the high

SNR range. To achieve this gain, the EM receiver uses two aspects of the

communication system: 1) OFDM modulated signals can be approximated as

being iid Gaussian in time-domain (by the central limit theorem); and 2) the

knowledge of the interference model pdf and its parameters. When combined

under the EM framework, these facts lead to a simple scalar LMMSE estimator

in the time-domain followed by DFT detection in frequency domain. While
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computationally attractive, such a disjoint decoding doesn’t allow this receiver

to fully exploit the OFDM’s resilience to impulsive interference. Furthermore,

as most of the prior work, this EM framework doesn’t explicitly consider chan-

nel estimation. This can be a practical limitation as the conventional LMMSE

channel estimation is highly suboptimal in non-AWGN environments.

To address the limitations of EM-based receiver, I propose in Chapter 5

a fully Bayesian inference framework to design LDPC-coded OFDM receivers

in uncoordinated interference using the GM and GHMM models as priors.

In particular, I propose a factor-graph-based approach to joint channel/noise-

estimation-and-decoding (JCNED) of orthogonal frequency division multiplex-

ing (OFDM) systems in interference-limited environments. My receiver merges

prior knowledge of the impulsive and bursty noise models with the recently

proposed “generalized approximate message passing” (GAMP) algorithm, and

soft-input soft-output decoding through the sum-product framework. Unlike

the prior work, I explicitly consider channel estimation in the problem formu-

lation. Compared to the conventional DFT receiver, the proposed message-

passing algorithm achieves a gain of 15dB for uncoded systems and about 13dB

for LDPC-coded systems. In fact, I demonstrate that the proposed receiver is

within 1dB from a lower bound on the communication performance. In addi-

tion to that, I illustrate that accurate modeling of the interference is especially

important with higher order constellations such as 16QAM. Furthermore, the

allocation of the pilot and null tones can have a large impact on the resulting

communications performance.
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In Chapter 6, I extend the graphical model framework, proposed in

Chapter 5, to perform parameter estimation of the interference model. In

addition, I propose replacing the interference model priors by the automatic

relevance determination (ARD) prior that can take advantage of temporal

sparsity commonly present in the interference using an empirical Bayesian

framework called sparse Bayesian learning (SBL). Both approaches still pro-

vide significant gains (around 8dB) over the DFT receiver.

7.2 Future Research Directions

In this section, I present some promising areas for future research di-

rection for uncoordinated interference modeling and mitigation.

1. Temporal Modeling of Uncoordinated Interference in Wireless

and Powerline Networks: The temporal modeling of interference has

for the most part been overlooked due to its difficulty. An exception

is [40] where the joint statistics of uncoordinated interference in decen-

tralized networks are shown to follow a multivariate Gaussian mixture.

However, this model is too complex to be used in low-complexity re-

ceivers. As a result, there is a need for statistical-physical models that

capture the temporal statistics of uncoordinated interference. Markov

models are particularly appropriate since they provide a trade-off be-

tween modeling accuracy and computationally complexity.

2. Pilot and Null Tone Allocation in Impulsive Noise Channels:
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Section 5.6.4 demonstrated that the locations of the null and pilot tones

can have a significant impact on communication performance. In fact,

the locations of these tones will determine the effective measurement ma-

trix as seen from the viewpoint of impulsive interference reconstruction.

This opens new interesting research directions for known tone allocation

in impulsive noise channels where conventional allocation techniques for

the AWGN channel fail to capture impulsive noise estimation accuracy.

Furthermore, the placement of both pilot and null tones will provide a

trade-off between channel estimation accuracy and impulsive noise esti-

mation accuracy. In Section 5.5.5, I propose to use dictionary coherence,

a metric typically used in compressive sensing, as a metric for optimizing

tone allocation. However, I don’t show any formal results regarding its

optimality for communication performance. Furthermore, maximizing

this metric is a combinatorial problem in general and thus difficult to

solve in real-time. Future work can try to address these questions.

3. Adaptive Modulation and Coding in Impulsive Noise Channels:

The proposed receiver in Section 5 and Section 6 approximates MAP in-

ference for a specific code and bit loading scheme. However, it does not

specify explicitly how such a scheme should be chosen. This problem

is typically referred to as adaptive modulation and coding (AMC) [37].

In AWGN, AMC targeting either probability of error or throughput can

be simply implemented independently on each subcarrier based on its

SNR . This is because independent minimum distance decoding on each
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subcarrier is optimal (with CSI). While it is possible to obtain the noise

distribution on each carrier [36], performing AMC independently on each

subcarrier will be suboptimal for either error rate or throughput. For

example, while loading a high-SNR subcarrier with a larger constellation

might increase the throughput for that tone, it might reduce the ability

to estimate the impulsive noise thereby reducing the total throughput.

Future work would target designing an AMC strategy that would opti-

mize the total throughput or average error rate across all tones.

4. Message-Passing Receiver Extension to Different Interference

and Noise Models: This dissertation focuses mainly on the GM and

GHMM interference models. These models capture the temporal vari-

ation in noise power; however, the resulting samples are uncorrelated

(GM samples are independent, HMM with zero-mean Gaussian emission

probabilities [32]). As a result the spectral decomposition of these mod-

els is white. However, many communication systems exhibit interference

that is spectrally shaped: the noise samples are correlated. Such a corre-

lation may arise due to the signal propagation channel or due to the lim-

ited bandwidth of the receiver when filtering broadband or uncorrelated

noise. This induces correlation in the noise and spreads impulsive events

over multiple time samples. In addition, the presence of many narrow-

band interferers and background noise in PLC systems can further color

the noise spectrum [73]. Correlation between time samples and spectral

shaping of a random process are typically achieved by linear filtering
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of uncorrelated samples. Stochastic process models based on this filter-

ing approach are called ARMA models [48]. Gaussian ARMA has been

used to model non-AWGN noise in narrowband PLC [70]. The proposed

message-passing framework in Chapter 5 can be easily extended to ac-

commodate such models by replacing the MC subgraph in Figure 5.1 by

an appropriate inference algorithm corresponding to the utilized model.

5. Message-Passing Receivers for Mitigating Narrowband Inter-

ferers: While this dissertation focuses on impulsive interference in time

domain, narrowband interference (NBI) arises in various powerline and

wireless OFDM receivers [73]. Various compressive sensing techniques

have been proposed in the literature [38]; however, these methods utilize

zero padded OFDM and can not exploit the structure present in NBI

[73]. The message-passing framework proposed in Chapter 5 can be uti-

lized to design OFDM receivers that operate on cyclic prefix OFDM and,

more importantly, utilize all time domain samples to estimate the NBI

and cancel it out.
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