Estimation and Capacity of Channels in

Smart Antenna Wireless Communication Systems

- Communication Anywhere-Anytime-Anytype
 - Increasing Demand for Wireless Services
 - Unique Problems compared to Wireline communications

SMART ANTENNA SYSTEMS

• Wireless systems broadcast signals across wide areas to individual users

Most of energy is wasted while little reaches

the intended user

• Spatial processing characterizes the RF environment

through antenna arrays and innovative digital signal processing sotware

$$\mathbf{a} = \begin{bmatrix} \mathbf{1} e^{j2\pi\Delta\cos(\theta)/\lambda} & \cdots & e^{j2\pi(M-1)\Delta\cos(\theta)/\lambda} \end{bmatrix}$$
$$\mathbf{x}(t) = \mathbf{a}(\theta)\mathbf{s}(t) + \mathbf{n}(t)$$

• Additional dimension of functionality

Added Dimension in Wireless Communication

• Space division compelements existing air interfaces

toward intended users – away from unintended users

WIDEBAND CHANNEL MODEL

• The symbol period, T, is comparable to multipath spread, au_{max}

• Single user case with L paths to receiver

$$\mathbf{x}(t) = \sum_{k=1}^{L} lpha_k s(t - au_k) = \mathbf{h}(t) \otimes s(t)$$

• Vector channel model with an antenna array

$$\mathbf{x}(t) = \sum_{k=1}^{L} lpha_k \mathbf{a}(heta_k) s(t - au_k) = \mathbf{h}(t) \otimes s(t)$$

UPLINK PROCESSING FOR WIRELESS BASESTATIONS

- **Objective:** Combine the intended user signals while suppressing the co-channel signals.
- How? Estimate the wireless channel parameters $(\mathbf{h}_p(n))$ based on the data received

- Wideband CDMA (W-CDMA)
 - Emerging third-generation standards
 - Estimate (vector) FIR channel parameters for symbol estimation

DATA FORMULATION

• Baseband signal, single receiver, P users:

$$x(t) = \sum_{i=1}^{P} \sum_{n=-\infty}^{\infty} s_i(n)g_i(t - nT_s)$$

- i denotes the user index
- $\bowtie P$ is the number of users
- \bowtie { $s_i(n)$ } are the information symbols
- \square T_s is the symbol duration
- $\bowtie g_i(t)$ is a signature waveform

$$g_i(t) = \sum_{k=1}^{2L_c} c_i(k - k_i)h_i(t - kT)$$

- \mathbb{S} { $c_i(1), c_i(2), \cdots, c_i(L_c)$; $c_i(k) = \pm 1$ } is the spreading code of i^{th} user
- $\bowtie L_c$ is the code length
- $\bowtie \{h_i(t)\}$ are the channels

MATRIX FORM

• Represent the data vector of samples with a symbol period in a matrix form

$$\mathbf{X}(n) = \begin{bmatrix} x((N-n)L_c+1) & x((N-n+1)L_c+1) & \cdots & x((2N-1-n)L_c+1) \\ x((N-n)L_c+2) & x((N-n+1)L_c+2) & \cdots & x((2N-1-n)L_c+2) \\ \vdots & \vdots & \ddots & \vdots \\ x((N-n+1)L_c) & x((N-n+2)L_c) & \cdots & x((2N-n)L_c) \end{bmatrix}$$

• Stack KL_c successive samples of the signal in vector form

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}(N) \\ \mathbf{X}(N-1) \\ \vdots \\ \mathbf{X}(N-K+1) \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{G}_1 & \cdots & \mathbf{G}_P \end{bmatrix}}_{\mathbf{G}} \underbrace{\begin{bmatrix} \mathbf{S}_1(r) \\ \vdots \\ \mathbf{S}_{P(r)} \end{bmatrix}}_{\mathbf{S}} = \sum_{i=1}^{P} \mathbf{X}_i = \sum_{i=1}^{P} \mathbf{G}_i \mathbf{S}_i(r)$$

 $\bowtie K$ is defined as the *smoothing factor*.

• \mathbf{X}_i shows the algebraic relation between the input and output $\begin{bmatrix} \mathbf{g}_i(2) & \mathbf{g}_i(1) & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{g}_i(2) & \mathbf{g}_i(1) & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{g}_i(2) & \mathbf{g}_i(1) \end{bmatrix} \begin{bmatrix} s_i(1) & s_i(2) & \cdots & s_i(N-r+1) \\ s_i(2) & s_i(3) & \cdots & s_i(N-r+2) \\ \vdots & \vdots & \ddots & \vdots \\ s_i(r) & s_i(r+1) & \cdots & s_i(N) \end{bmatrix}$ $\mathbf{G}_i, K+1 \, blocks \qquad \mathbf{S}_i(r), r=K+1$

• Signature waveform matrix G_i has rich structure

$$\mathbf{G}_{i} = \underbrace{\begin{bmatrix} \mathbf{c}_{i}(2) & \mathbf{c}_{i}(1) & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{c}_{i}(2) & \mathbf{c}_{i}(1) & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{c}_{i}(2) & \mathbf{c}_{i}(1) \end{bmatrix}}_{\mathbf{C}_{i}, (K+1) \times L} \underbrace{\begin{bmatrix} \mathbf{h}_{i} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{h}_{i} & \vdots & \vdots \\ \mathbf{0} & \mathbf{h}_{i} & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{h}_{i} \end{bmatrix}}_{\mathbf{H}_{i}, K+1 \ blocks}$$

MULTI-USER CHANNEL ESTIMATION

- Estimate signature vectors $\{\mathbf{g}_i\} \iff$ determine the channel vectors $\{\mathbf{h}_i\}$
- Data model when including additive white noise

$$\mathbf{X} + \mathbf{N} = \mathbf{GS} + \mathbf{N}.$$

• Perform subspace decomposition on ${\bf X}$ by a singular value decomposition (SVD)

$$\mathbf{X} + \mathbf{N} = \begin{pmatrix} \mathbf{U}_s & \mathbf{U}_o \end{pmatrix} \begin{pmatrix} \boldsymbol{\Sigma}_s & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_o \end{pmatrix} \begin{pmatrix} \mathbf{V}_s^H \\ \mathbf{V}_o^H \end{pmatrix}$$

 \blacksquare Vectors in \mathbf{U}_s span the signal subspace, \mathbf{G} .

 \bowtie Vectors in \mathbf{U}_o span the *noise subspace*.

MULTI-USER CHANNEL ESTIMATION

- Estimate $\{G_i\}$ from X without knowledge of S
- Orthogonality between noise and signal subspace

$$\mathbf{U}_o \perp \mathbf{G} \Rightarrow \mathbf{U}_o^H \mathbf{G}_i = \mathbf{0}, \quad i = 1, \cdots, P$$

• Using
$$\mathbf{G}_i = \mathbf{C}_i \mathbf{h}_i$$
 yields

$$\mathbf{U}_o^{\scriptscriptstyle H} \mathbf{C}_i \mathbf{h}_i = \mathbf{0}, \quad i = 1, \cdots, P$$

 $\mathbf{R} \mathbf{C}_i$ is a Toeplitz matrix of spreading codes

 \mathbf{w} \mathbf{h}_i is in the null space of $\mathbf{U}_o^H \mathbf{C}_i$

PROPOSED ALGORITHM FOR A SINGLE RECEIVER

- 1. Construct data matrix $\, {\bf X}$
- 2. Apply SVD to X, or eigenvalue decomposition (EVD) of XX^{H} , to obtain orthogonal subspace U_{o} .
- 3. For each user, estimate the channel vector \mathbf{h}_i
- 4. Reconstruct signature vectors $\{\mathbf{g}_i\}$ and $\{\mathbf{G}_i\}$
- Exploits fact that each signature vector is a linear function of a unique spreading code [Torlak & Xu, IEEE-TSP Jan. 1997]

CAPACITY INCREASE USING ANTENNA ARRAY

- *Problem:* Existing systems are not designed to accommodate more than L_c (spreading gain) users, i.e. $P \le L_c$
- Goal: Adjust the algorithm to manage an overloaded system ($P > L_c$)
 - Proposed algorithm in an overloaded system breaks down since the dimension of the orthogonal subspace U_o reduces
 - Additional orthogonal vectors are required to guarantee more equations than unknowns.
- Solution: spatially oversample by means of multiple receivers

CAPACITY INCREASE USING ANTENNA ARRAY

 $\bullet\,$ Assume M receivers at the base-station

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}^1 \ dots \ \mathbf{X}^M \end{array}
ight] = \sum_{i=1}^P \left[egin{array}{c} \mathbf{G}_i^1 \ dots \ \mathbf{G}_i^M \end{array}
ight] \mathbf{S}_i(K+1) \ \mathbf{G}_i^M \ \mathbf{G}_i \end{array}$$

- $\mathbf{X} = \mathbf{GS}$ and subspace space relation between \mathbf{X} and \mathbf{G} still hold
- Orthogonal vectors in \mathbf{U}_o increases from $KL_c (K+1)P$ to $MKL_c (K+1)P$
- Signal space remains fixed while noise space increases
- Extend our proposed algorithm to handle $P \ge L_c$

CDMA WITH APERIODIC SPREADING SEQUENCES

- Aperiodic spreading sequences
 - distribute signal spectrum uniformly
 - have inherent interference averaging capabilities
 - are beneficial to the soft capacity in IS-95 CDMA systems
- Subspace-based methods require periodic spreading sequences
- Current methods in CDMA sytems with aperiodic spreading sequences
 - 1-D RAKE receivers
 - Image: 2-D RAKE receivers (with an antenna array)
 - Principal Component (PC) Algorithm
- Proposed a new iterative blind channel estimation method
 - Channel estimation at chip level
 - Joint block equalization at symbol level

DATA MODEL • CDMA system with *P* users $\mathbf{y}(t) = \sum_{i=1}^{P} \sum_{j=1}^{\infty} w_i(n) \mathbf{h}_i(t-nT) + \mathbf{v}(t)$ i-1 n=-c $\bowtie T$ is the chip period $\mathbf{v}(t)$ is the noise vector $w_i(k) = s_i(n)c_i(k - nL_c - k_i)$ \mathbb{R} $n = \lfloor \frac{k - k_i}{L_c} \rfloor$; k_i ($0 \le k_i < L_c$) is the chip delay index assumed to be known.

- Wideband channel model
- Source symbols are drawn from a finite alphabet
- Pseudo-noise (PN) spreading codes

STEP 1: ESTIMATION OF CHANNELS GIVEN TRANSMITTED SYMBOLS

• Construct the data matrix of the signal

$$\mathbf{Y} = \mathbf{H}\mathbf{W} = \left[egin{array}{cccc} \mathbf{h}_1 & \cdots & \mathbf{h}_P \end{array}
ight] \left[egin{array}{cccc} \mathbf{w}_1(N) \ dots \ dots \ \mathbf{w}_P(N) \end{array}
ight]$$

$$\mathbf{k} \mathbf{k}_i = [\mathbf{h}_i(L-1) \mathbf{h}_i(L-2) \cdots \mathbf{h}_i(0)]$$

- \mathbf{w}_i is constructed from the estimated input symbols and the code sequence for ith user
- Solution for the above equation

$$\mathbf{H} = \mathbf{Y}\mathbf{W}^{\dagger}$$

• Most of ${\bf W}$ is known due to the known PN spreading sequence.

STEP 2: ESTIMATION OF SYMBOLS GIVEN CHANNELS

• Stack the spatial data samples so that the data matrix

$$\mathcal{Y} = \left[\begin{array}{ccc} \mathcal{G}_1 & \mathcal{G}_2 & \cdots & \mathcal{G}_P \end{array}\right] \left[\begin{array}{ccc} \mathbf{s}_1^T \\ \mathbf{s}_2^T \\ \vdots \\ \mathbf{s}_P^T \end{array}\right]$$

$$\mathbf{s}_i = [s_i(1) \cdots s_i(N_t)]$$
 are to be estimated

Estimated wideband channel parameters and spreading codes form

$$\mathcal{G}_{i} = \underbrace{\begin{bmatrix} \mathcal{C}_{i} & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & \mathcal{C}_{i} \end{bmatrix}}_{M \text{ blocks}} \begin{bmatrix} \mathcal{H}_{i}^{1} \\ \vdots \\ \mathcal{H}_{i}^{M} \end{bmatrix}$$

- Each block covers one symbol period and has Toeplitz structure
- Use $\mathcal{Y} = \mathcal{G}\mathbf{S}$ to solve for $\mathbf{S},$ then

$$\mathbf{S}=\mathcal{G}^{\dagger}\mathcal{Y}$$

ALGORITHM SUMMARY

- H = YW[†] and S = G[†]Y allow us to use both frameworks to exploit the discrete-alphabet property of CDMA signals and knowledge of spreading codes.
- Adopt Iterative Least Squares with Projection (ILSP) algorithm originally developed by Talwar, Viberg, and Paulraj for TDMA systems.
- Update S iteratively, which updates W, and H under the constraint that the information symbols S are from finite alphabets.
- Continue to iterate until ${\bf S}$ or ${\bf H}$ converge.

ALGORITHM OUTLINE

- 1. Randomly choose S_0 and set l = 0
- 2. l := l + 1(a) $\begin{bmatrix} \mathbf{h}_{1,l} & \cdots & \mathbf{h}_{P,l} \end{bmatrix} = \mathbf{Y} \mathbf{W}_l^{\dagger}$ where $\mathbf{W}_l = \begin{bmatrix} \mathbf{w}_{l,1}(NL_c) \\ \vdots \\ \mathbf{w}_{l,P}(NL_c) \end{bmatrix}$
 - (b) Construct G_l with the channel estimates and PN sequences.
 - (c) \mathbf{S}_{l+1} is estimated through

$$\mathbf{S}_{l+1} = \mathcal{G}_l^{\dagger} \mathcal{Y}.$$

(d) Project $[s_{l,i}(k)]$ to closest discrete values.

3. Continue until $S_{l+1} - S_l = 0$.

CONTRIBUTIONS AND OTHER RESEARCH

- Uplink processing for W-CDMA with smart antennas
 - Blind multi-user channel estimation
 - CDMA with aperiodic spreading codes
- Downlink processing for multi-transmitter diversity
 - Designing weight vectors for maximum capacity
- Smart Antenna Testbed development
 - Statistical vector channel modeling
 - Real-time signal processing
- TDMA with smart antennas
 - Fast source separation algorithms for Digital Wireless Applications

FUTURE DIRECTIONS

- 1G and 2G are optimized for Voice Communications (FDMA, TDMA, CDMA) at 8-13 kbps
- 3G technology must deliver data at 144 kbps-2 Mbps
 - Coordinated system concept
 - Wideband-CDMA : The Universal Platform
- Fourth-generation systems
 - Multimedia/Telemedicine/Internet access
 - Accommodating mixed traffic
- Wideband testbed development with antenna arrays
 - Channel propagation studies
 - Experimental validations of algorithms