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Preface

This dissertation is based on research in the area of antenna array applications

to wireless systems conducted under the supervision of Prof. Guanghan Xu and

Prof. Brian L. Evans. Many of the results presented here appear in conference

proceedings and in manuscripts published in or submitted to refereed journals.

The minimum distance idea in Chapter 2 is based on results in

� "A capacity measure for space-division-multiple-access channels ," Proc.

IEEE Asilomar Conf. on Signals, Systems, and Computers, vol. 1, pp.

790{794, Nov. 1998, Paci�c Grove, CA (with S. Y. Kim and G. Xu).

� \Minimum distance of space-division-multiple-access channels," Proc. IEEE

Vehicular Technology Conference, vol. 3, pp. 2223-2227, May 1997,

Phoenix, AZ (with G. Xu).

The blind channel estimation algorithms and simulations in Chapter 3 and

Chapter 4 are based on results in

� \Blind multi-user channel estimation in asynchronous CDMA systems, "

IEEE Trans. on Signal Processing, vol. 45, pp. 137-147, Jan. 1997 (with

G. Xu).
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� \Blind channel estimation in CDMA systems with aperiodic spreading

sequences," submitted to IEEE Journal on Selected Areas in Communi-

cations, July 1999 (with B. L. Evans and G. Xu).

The downlink weight vector estimation algorithm and numerical results in

Chapter 5 are based on results in

� \Fast Estimation of Weight Vectors to Optimize Multi-Transmitter Broad-

cast Channel Capacity," IEEE Transactions on Signal Processing, vol. 46,

pp. 243-246, Jan. 1998 (with G. Xu, B. L. Evans, and H. Liu).

� \Optimal weight vectors for broadcast channels," in Proc. IEEE Asilo-

mar Conf. on Signals, Systems & Computers, vol. 1, (Paci�c Grove, CA),

pp. 65-69, Nov. 1996 (with G. Xu, B. L. Evans, and H. Liu).

In the course of this research, we also obtain results on TDMA with smart

antenna systems which appeared in

� \A geometric approach to blind source separation for digital wireless ap-

plications," Signal Processing, vol. 73, pp. 153-167, Feb. 1999 (with L. K.

Hansen and G. Xu).
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The proliferation of digital wireless communication services has been

stimulating unprecedented demand for scarce radio spectrum. As the number

of subscribers grows, spectral crowding and co-channel interference are becom-

ing increasingly important issues. To alleviate such problems and to achieve

the ambitious requirements introduced for existing and future wireless sys-

tems, attention has recently turned to spatial �ltering methods using advanced

antenna techniques, a.k.a smart antennas. Smart antennas exploit the spa-

tial dimension as a hybrid multiple access technique (space division multiple

access-SDMA) for complementing FDMA, TDMA and CDMA to improve the

quality and spectral e�ciency of communications over wireless channels.

This dissertation develops new signal processing methods and derives

upper bounds on capacity for smart antenna wireless communication systems.
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In particular, I study channel estimation for uplink and optimum weight vector

design to maximize the downlink channel capacity. For uplink, I focus on blind

multi-user channel estimation in code division multiple access wireless com-

munication systems. For downlink, I investigate multi-transmitter broadcast

systems. A multi-transmitter broadcast channel is a communication channel in

which an antenna array system is transmitting to two or more receiving users.

In order to optimize performance of the communications system, the optimal

weight vector must be designed for each message signal that maximizes the

overall channel capacity.
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Chapter 1

Introduction

The proliferation of cellular phones, cordless phones, pagers, and other digital

wireless communication devices has demonstrated an unprecedented demand

for scarce radio spectrum. For example, from 1990 to 1999, the number of

mobile telephone users in the US has grown from 5.1 million to 65 million sub-

scribers. Worldwide, half of a billion mobile network subscribers are predicted

by the year 2000.

The �rst generation of public cellular wireless communication commu-

nication networks was introduced in the early 1980s to provide voice telephony

services to mobile subscribers over a wide area. These systems used the prin-

ciples of cellular systems. Frequencies used in one cell cluster could be reused

in other cells. Conversations could be handed from cell to cell to maintain con-

stant phone service as the user moves between cells. First-generation systems

using analog frequency division multiple access (FDMA) methods were inde-

pendently invented in various regions of the world. These systems include the

Advanced Mobile Phone System (AMPS) in North America, the Nordic Mobile

Telephone/Total Access Communication System (NMT/TACS) in Europe, and

the Nippon Telephone and Telegraph-800/Japanese Total Access Communica-

tion System (NTT-800/JTACS) in Japan.

1
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The second-generation (2G) systems were �elded in the late 1980s to

support both voice and low-speed data/facsimile (FAX) services. These sys-

tems are based on digital modulation techniques which provided better spec-

tral e�ciency. The 2G systems which were successfully deployed worldwide are

Global System for Mobile Communications (GSM) and Interim Standard-136

(IS-136) systems based on time division multiple access (TDMA) and IS-95

systems based on code division multiple access (CDMA).

The third-generation (3G) systems, to be introduced in the early 2000s,

will o�er considerably higher data rates and allow signi�cantly increased exi-

bility over 2G systems. As the number of subscribers grows, spectral crowding

and co-channel interference are becoming increasingly important issues. Co-

channel interference may result from frequency reusage whereby multiple cells

operate on the same carrier frequency. Furthermore, geographic conditions and

physical limitations of the environment introduce fundamental problems such

as noise, multipath, and fading for wireless communication channels.

To alleviate such problems and to achieve the ambitious requirements in-

troduced for existing and future wireless systems, attention has recently turned

to spatial �ltering methods using advanced antenna techniques, a.k.a. smart

antennas. A smart antenna array can exploit the spatial dimension as a hybrid

multiple access technique (space division multiple access or SDMA) for com-

plementing FDMA, TDMA and CDMA to improve the quality and spectral

e�ciency of communications over wireless channels. Moreover, it should be ca-

pable of simultaneously estimating the channels of several co-channel sources,

as well as demodulating the signals themselves. For this to be achieved, fast

and e�cient co-channel signal capture algorithms must be developed.
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Figure 1.1: Be smart.....reprinted with permission of Wireless Week, c 1997;
All rights reserved.

Wireless communication systems consist of two radio links: uplink from

the subscriber to the base station, and downlink from the base station to the

subscriber. In this dissertation, we study the utilization of an antenna array at

the base station with advanced signal processing for improving the performance

of wireless communication systems. For the uplink, we speci�cally focus on the

use of multiple antennas for CDMA wireless systems. For the downlink, we

will consider a more general problem of designing weight vectors for multi-

transmitter broadcast channels.

1.1 Modulation Techniques for Wireless Systems

First generation wireless systems employ analog modulation. Frequency mod-

ulation (FM) is the most popular analog modulation technique used in wireless

systems. FM signals have all their information in the phase or frequency of the

carrier. While FM systems have better noise immunity, they require a wider
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frequency band in transmitting media in order to obtain the noise immunity.

The second and future-generation systems use digital modulation tech-

niques. Advantages that digital modulation techniques o�er include greater

noise immunity, robustness to channel impairments, and accommodation of

equalization to improve the performance of the overall communication link. In

digital wireless communication systems, the modulating signal may be repre-

sented as a time sequence of symbols or pulses. Digital modulation also has

enabled many di�erent modulation schemes to be introduced such as spread

spectrum techniques. These techniques employ a transmission bandwidth that

is several orders of magnitude greater than the minimum required signal band-

width. The advantage of spread spectrum is that many users can share the

same bandwidth without signi�cantly interfering with one another.

1.2 Smart Antenna Wireless Communication Systems

Figure 1.2 shows a wireless communication system employing an antenna array

which is used to adaptively cancel the interference produced by subscribers us-

ing the same frequency band, time slots, or spreading code in nearby cells. More

importantly, we can take an even more interesting approach and allow users

within a single cell to share the same carrier frequency, time slot, or spread-

ing code and demodulate them by only exploiting their spatial and temporal

separation. This is a form of Space Division Multiple Access (SDMA) [1, 2, 3, 4]

Spatial processing with antenna arrays can facilitate a denser use of the

available bandwidth and, therefore, an increase in system capacity. This gain

in system performance, which is obtained by enabling directional transmission

and reception, can provide better coverage at the base station. Consequently,
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the number of base stations, as well as the complexity of the Mobile Telephone

Switching O�ce (MTSO), can be reduced. Moreover, signal pre-processing

techniques can be used to concentrate the complexity in the centralized base

station, so that the user receiver can be simpli�ed.

D

Mobile User 1

Mobile User 2

Direct Path

Multipath

Multipath

Direct Path

Base-Station

Processor

Receiver

Multipath

Figure 1.2: A base station with antenna array and two co-channel sources.
Uplink (communication from mobile users to basestations) is shown.

1.2.1 Spatial Signature and Composite Vector FIR Channel

To understand the operation of a smart antenna system, we need to �rst in-

troduce spatial signatures. Consider an M -element antenna array at a base

station receiving signals from di�erent users at di�erent spatial locations. The

array output contains both direct path and multipath signals. Radio propa-

gation environments exhibit multipath e�ect when the received signal consists

of multiple replicas of the transmitted signal, arriving from various directions.

The steering vector to a transmitting signal s(t) from a direction of arrival �

has the form

a(�) = [1; a2(�); : : : ; aM(�)]
T ; (1.1)
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where ai(�) is a complex number denoting the amplitude gain and phase shift

of the signal at the ith antenna relative to that of the �rst antenna. For a

uniform linear array

ai(�) = ej
2��sin �

�

where � is the spacing between adjacent antennas and � is the wavelength of

the carrier.

In a typical wireless scenario, an omni-directional antenna array not

only receives signals from a direct path but also from many reected paths

with di�erent DOAs. Therefore, the total signal vector received by the antenna

array can be written as

x(t) =
LX
l=1

�l a(�l) s(t) = a s(t); (1.2)

where L � 1 is the total number of multipath signals, �l is the phase and

amplitude di�erence between the lth multipath and the direct path, and a is

de�ned as the spatial signature (SS) associated with source s(t). On the other

hand, when signals are transmitted from the base station antenna array, it has

a vector from xH(t) = [x�1(t); � � � ; x�M(t)] due to the multiple transmitters. The
transmitter antenna output is given by

s(t) = xH(t) a:

In some applications, the symbol period of the transmitted signal may be com-

parable to the multipath spread. Then, a more general data model to accom-

modate long-delay multipath signals can be described as

x(t) =
LX
k=1

�ka(�k)s(t� �k) = h(t)
 s(t) (1.3)

where �k denotes the delay corresponding to the kth multipath signal. In this

model, h(t) is refered to as a composite vector FIR channel.
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1.2.2 Uplink

The objective in the uplink signal processor is to estimate the wireless channel

parameters based on the data received. Then, using the wireless channel es-

timates, we can extract the intended user's signal while separating co-channel

signals. The exact structure of the signal processor is dependent upon the

amount of the information (i.e., the modulation type, the time delay and DOA

of each multipath, and the availability of the training signals) available at the

base station.

My results for the uplink originated frommy research on blind multi-user

channel estimation in Asynchronous-CDMA (A-CDMA) systems. In the case

of A-CDMA systems transmitting over multipath channels, neither intersymbol

interference (ISI), as a result of interchip interference (ICI), nor multiple-access

interference (MAI) can be easily eliminated. We develop a blind estimation

method that estimates the multi-user channels by exploiting structure in the

data and user delays. By utilizing smart antennas, we extend our approach

to overloaded systems, where the number of users may exceed the spreading

factor. We also develop solutions for blindly estimating multiple co-channel

TDMA signals using smart antennas in the presence of multipath fading [5, 6].

1.2.3 Downlink

The downlink distributes signal power so that all signals with the same in-

formation can be constructively combined at a certain user's receiver while

suppressing undesired interference and noise. In a short-delay multipath sce-

nario, downlink SDMA can be accomplished by transmitting the superposition

of weighted signals. With the knowledge of the spatial signatures describing
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the downlink channel, transmission schemes may be devised via weight vectors

which maximize the power of signal of interest at the user while minimizing

co-channel interference and suppressing overall radiated power. Depending on

the noise, interference, and downlink spatial signatures, the weight vectors can

be designed to satisfy many di�erent criteria [7, 8, 9, 10]. We denote faig as
the downlink spatial signatures and fwig the downlink weight vectors. Clearly,
by transmitting x(t) =

P
P

i=1wisi(t) from the base station antenna array, the

ith user will receive aHi x(t). If we use the orthogonality property, i.e.

aHi wj = �(i� j);

then the output at the ith receiver is

ŝi(t) = aHi x(t) = aHi

PX
j=1

wjsj(t) = si(t):

1.3 Summary of Related Work

Antenna array processing techniques were originally developed for target track-

ing and anti-jamming military communications [11, 12]. After a decade of

extensive research (e.g. [13]) in this area coupled with rapid advances in mi-

croelectronics technology, high resolution antenna array technology can now

achieve superior performance with a�ordable cost. Recently, Smart Antenna

Systems [1, 2, 4, 14, 15] have been proposed to overcome some of the major di�-

culties in current wireless communication systems, e.g. multipath fading, inter-

symbol and co-channel interference, coverage and capacity limitations, hando�,

and battery life, by exploiting the spatial diversity. It will not be possible to

provide a complete and thorough coverage of the enormous body of work on
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array applications to wireless systems. In the next few paragraphs, the major

contributions on the subjects related to this dissertation are highlighted.

Since Cover's novel work in single-transmitter broadcast channels [16],

researchers have been exploring the use of both multi-transmitter and multi-

receiver systems [17, 18]. A multi-transmitter broadcast channel is a commu-

nication channel in which an antenna array system is transmitting to two or

more receiving users. In order to maximize the performance of the communi-

cations system, we must �nd the optimal weight vector for each message signal

that maximizes the overall channel capacity. The design of the optimal weight

vectors that maximize the overall channel capacity of the broadcast channels,

however, is still an open problem. The primary reason is that under certain

power constraints, the channel capacity R is a highly nonlinear function of the

M -dimensional weight vectors fwig, where M is the number of transmitters.

One of the topics addressed in this dissertation is channel identi�ca-

tion for extracting dispersed communication of direct sequence code division

multiple access (CDMA) signals. The channel identi�cation has been a major

problem of interest and practical importance for engineers in communications

for a long time [19]. Blind channel estimation [20], i.e. determining and equal-

izing the channel response based solely on the channel output without the use

of training sequences, was �rst proposed by Sato [20] in 1975. Two obvious

advantages make blind identi�cation attractive. One merit is the bandwidth

savings resulting from elimination of training sequences, while the other is the

self-start capability before the communications link is established or after it

has an unexpected breakdown.

In a CDMA communication environment, the receiver requires the sup-
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pression of multipath induced interchip-interference (ICI), which causes in-

tersymbol interference (ISI), and highly structured multiple user interference

(MUI). Moreover, the delays should be incorporated in the receivers. Note that

a conventional receiver that is matched to the spreading code treats both ISI

and MUI as noise. Hence, it is severely interference limited.

Recent research has been devoted to receiver design and signature wave-

form estimation methods that exploit the structure of the so-calledMUI and ICI

to achieve better performance and, more importantly, higher capacity. In [21],

Tsatsanis and Giannakis have proposed a discrete-time multirate �lter bank

model (zero-forcing receivers) which completely suppress MUI and ISI (ICI)

under some conditions. To design such receivers, however, explicit knowledge

of all of the signature waveforms is required.

Recently, adaptive multiuser detection [22, 23, 24] has been proposed

to combat fast fading channels. Despite its success in some scenarios, most

adaptive reception schemes still require pilot signals to obtain precise signature

waveform estimates for all active users. In [25], Honig, Madhow, and Verd�u

introduced a blind adaptive receiver which is potentially of great importance to

practical applications in multi-user detection. Although the adaptive receiver

eliminates the need for training sequences for every user, the adaptive detection

algorithm still requires knowledge of the desired user's signature waveform and

associated timing.

In a CDMA wireless system, conventional approaches for estimating the

signature waveforms rely on training sequences that are transmitted periodi-

cally [11]. Consequently, one must pay the price for using training sequences

with a signi�cant reduction of channel e�ciency [26]. Alternatively, subspace-
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based algorithms [27, 28, 29, 30] have been successfully developed for di�erent

CDMA schemes which eliminate the use of training sequences. However, these

methods are only applicable when the system is underloaded (the number of

users are smaller than the spreading gain) or when a few users are active. For

instance, the methods proposed in [27, 28] will fail if the spreading gain (Lc)

is less than four times the number of users (P ), i.e. Lc � 4P . Although

other subspace-based methods in [29, 30] have been proposed to estimate the

associated time delay of each user, the method in [29] is only applicable to

A-CDMA communication systems operating over an additive white Gaussian

noise (AWGN) channel and the extension of this method in [30] can estimate

the time delays of a few users, i.e. P � Lc=(2L) for a free parameter L. Thus,

new methods need to be developed to fully exploit the rich structure inherent in

CDMA systems. In [31], Liu and Xu have developed a blind estimation scheme

for synchronous CDMA (S-CDMA) channels. However, this method cannot be

directly applied to other forms of CDMA channels.

For asynchronous CDMA systems with periodic spreading sequences,

it would be possible to perform blind FIR channel estimation using subspace-

based methods and avoid the need for training sequences [21, 27, 32, 31]. Al-

though the periodicity of the spreading codes simpli�es the use of multiuser de-

tection techniques [25, 33], one of the practical features of existing and emerging

CDMA standards is the use of aperiodic spreading codes.

Aperiodic spreading codes distribute the signal spectrum over the al-

lotted bandwidth uniformly, have inherent interference averaging capabilities,

and are bene�cial to the soft capacity in IS-95 CDMA systems [34]. RAKE

receivers are commonly used to estimate channel parameters and alleviate mul-
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tipath fading, but they cannot fully exploit the rich structure of CDMA signals.

Aperiodic spreading codes prevent the use of many signal reception and blind

channel estimation methods [32, 35] that can fully exploit the structure of

CDMA signals.

1.4 Signi�cance and Contributions

This dissertation encompasses a variety of problems and provides a compre-

hensive study of smart antenna systems { from fundamental channel capacity

analysis using information theory, to applicable algorithm development for ba-

sic and advanced smart antenna operations, and to experimental studies using

a smart antenna testbed. The primary results of the present work are listed

below.

1.4.1 Fundamental performance measure

We approach this problem from a fundamental point of view, i.e. the mini-

mum distance of the constellation for SDMA channels because the minimum

distance determines the bit error rate. Using the minimum distance measure,

we can quantify the performance enhancement of the SDMA approach includ-

ing capacity increase and quality improvement. In particular, we evaluate the

minimum distance of SDMA channels in varying scenarios | di�erent number

of antennas in the array, co-channel signals and relative user positions.

1.4.2 Downlink weight vector estimation

In a multi-transmitter broadcast system, the weight vector for each message

signal can provide an additional degree of freedom for signal enhancement and
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interference suppression by taking advantage of the spatial diversity among the

users. The design of optimal weight vectors that maximize the overall channel

capacity is an open problem. Under certain power constraints, the channel

capacity R is a nonlinear function of the M -dimensional weight vectors fwig,
where M is the number of transmitters. Hence, �nding a closed-form algebraic

solution that maximizes R over fwig does not seem to be tractable. In this

dissertation, we decouple the weight vectors in R to simplify the optimization

problem to a search for the maxima of a smooth multidimensional function.

Based on this decoupling, we derive and evaluate two algorithms for computing

weight vectors for the two-user and three-user cases: orthogonal and optimal.

We also propose a near-optimum algorithm for the two-user case. The optimal

algorithm requires an iterative search. The orthogonal and near-optimal algo-

rithms are based on closed-form solutions and are easier to implement than the

optimal algorithm, especially on a programmable digital signal processor.

1.4.3 CDMA systems with periodic spreading

In CDMA systems transmitting over multipath channels, neither ISI as a result

of ICI nor MAI can be easily eliminated. Although it is possible to design

multiuser detectors which suppress MAI and ISI, these detectors often require

explicit knowledge of at least the desired users' signature waveform. In this

dissertation, we study a similar blind estimation scheme that provides estimates

of the multi-user channels by exploiting the structure information of the data

output and the users' delays. In particular, we show that the subspace of

the data matrix contains su�cient information for unique determination of

channels, and hence, the signature waveforms. By utilizing smart antennas, we
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extend our approach to overloaded systems, in which the number of users may

exceed the spreading factor.

1.4.4 CDMA systems with aperiodic spreading:

Blind multiuser channel estimation is complicated in CDMA systems, such

as IS-95 and emerging third-generation systems, that use aperiodic spreading

sequences. For these CDMA systems, 1-D and 2-D RAKE receivers could

perform blind multiuser channel estimation, but they would not be able to

exploit the code structure in CDMA signals fully. In this dissertation, we

develop a robust blind multiuser channel estimation method for single and

multiple antenna CDMA systems with aperiodic spreading sequences. The

method jointly estimates the multipath channel parameters and transmitted

symbols by using iterative least squares projection to alternate between two new

estimation frameworks. One framework computes channel parameters given an

estimate of the transmitted symbols, and the other calculates the transmitted

symbols given an estimate of the channel parameters. For the method, we

provide a fast implementation and an extension to multirate systems. We

also derive a Cram�er-Rao Bound for CDMA systems with aperiodic spreading

sequences.

1.5 Organization of the Dissertation

Chapter 2 analyzes the increase in capacity and performance due to the spatial

diversity. Chapter 3 develops fast methods for designing downlink (broadcast)

weight vectors to optimize the overall downlink channel capacity for narrow-

band systems. I give an optimal solution suitable for a workstation implemen-
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tation and near-optimal and orthogonal solutions suitable for a digital signal

processor implementation. Chapters 4 and 5 focus on CDMA systems. Chap-

ter 4 presents a blind multiuser channel estimation method for asynchronous

CDMA systems. I extend the method to handle an overloaded system. Chapter

5 derives a blind multiuser channel estimation method for CDMA systems with

aperiodic spreading sequences. I present a fast implementation of the method

and an extension to handle multiple users transmitting at di�erent data rates.

Chapter 6 summarizes the dissertation and discusses future areas of research.
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1.6 Nomenclature

1.6.1 Notation

(�)T = transpose of matrix (�)
(�)� = complex conjugate of matrix (�)
(�)H = complex conjugate transpose of matrix (�)

 = convolution

� = Kronecker product

�(�) = �rst-order perturbation of quantity (�)
~(�) = noise-corrupted quantity of (�)
(̂�) = estimation of quantity (�)
Im(�) = imaginary part of matrix (�)
Re(�) = real part of matrix (�)
E(�) = expectation of matrix (�)
I = identity matrix

Ay = pseudo-inverse of a full column rank matrix A

kAkF = Frobenius norm of matrix A

det(A) = Determinant of square matrix A

Tr(A) = Trace of square matrix A

�(n) = Kronecker impulse �(n) =

(
1 if n = 0
0 otherwise
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1.6.2 Acronyms

A-CDMA : Asynchronous CDMA

AMPS : Advanced

AWGN : Additive White Gaussian Noise

BER : Bit Error Rate

BPSK : Binary Phase Shift Keying

CCI : Co-Channel Interference

CDMA : Code-Division Multiple-Access

CMA : Constant Modulus Algorithm

CRB : Cram�er-Rao Bound

DF : Direction Finding

DOA : Direction-of-Arrival

ESPRIT : Estimation of Signal Parameters via Rotational Invari-
ance Techniques

EVD : EigenValue Decomposition

FDD : Frequency Division Duplex

FDMA : Frequency Division Multiple Access

FIR : Finite Impulse Response

FSD : Fast Subspace Decomposition

GSM : Global System for Mobile Communications

ICI : Inter-Chip Interference

ILSP : Iterative Least-Squares with Projection Algorithm

ISI : Inter-Symbol Interference

LMS : Least Mean Squares

MAC : Multiple Access Channel

MAI : Multiple Access Interference

ML : Maximum Likelihood

MMSE : Minimum Mean Squared Error

MSE : Mean Squared Error
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MUI : Multi User Interference

MUSIC : MUltiple SIgnal Classi�cation

PC : Principal Component

PCS : Personal Communications Services

RMSE : Root Mean Square Error

SAS : Smart Antenna Systems

S-CDMA : Synchronous CDMA

SCORE : Self COherence REstoral

SDMA : Space-Division-Multiple-Access

SNR : Signal-To-Noise Ratio

SINR : Signal-To-Interference-Noise Ratio

SIR : Signal-To-Interference Ratio

SS : Spatial Signature

SVD : Singular Value Decomposition

TDD : Time Division Duplex

TDMA : Time Division Multiple Access

ZF : Zero Forcing



Chapter 2

A Capacity Measure for Space-Division

Multiple-Access Channels

In digital communications [19, 36], the distance between the points in the sig-

nal constellation determines the probability that one point will be erroneously

detected. If the points are closer, then they are more likely to be mistaken with

another point. Thus, the minimum distance (dmin) between the points in the

signal constellation is an alternative measure to compare the di�erent signal

constellations. Of course, the more points the constellation has, the more power

the communication system requires to have the same noise immunity with a

constellation which has fewer points. In this dissertation, we examine the per-

formance of SDMA channels from a fundamental point of view, i.e. by using

the minimum distance of the constellation. We evaluate SDMA performance

in di�erent scenarios | di�erent number of antennas, co-channel signals, and

relative user positions.

2.1 Introduction

We consider the uplink on which users transmit to the base station. We assume

a system which is a multiple access system with additive white Gaussian noise

(AWGN) channels and multiple receivers at the base station. The multiple re-

19
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ceivers observe the spatial diversity among users and consist of a uniform linear

array with M sensors with spacing 4. We also invoke the usual assumptions |

narrowband signals, planar wavefront propagation, and slowly varying antenna

responses.

With P (P > 1) co-channel users in the absence of noise, the vector of

array outputs at time k may be expressed as

x(k) =
h
x1(k) � � � xm(k)

iT
(2.1)

Similarly, let s(k) = [s1(k) � � � sP (k)]T be the vector of symbols from alphabet

S at time k generated by the P signals. Then

x(k) =
PX
i=1

aisi(k) = [a1 � � � aP ]| {z }
A

2
664
s1(k)
...

sP (k)

3
775

| {z }
s(k)

(2.2)

where ai is called the antenna response of the ith signal (sometimes referred to

as spatial signature), which is in general a complex vector.

For general applications, the spatial signature ai takes into account both

the direct path and multipath components of the ith user and can be decom-

posed into

ai =
LiX
ki=1

�kia(�ki) (2.3)

where Li is the total number of paths associated with si(k), and �ki represents

the complex gain of the kthi multipath of the ith user. In the absence of multi-

path (direct path only), normalizing each element in ai with respect to its �rst

element yields

ai =
h
1 ej2� sin �i4=� � � � ej(M�1)2� sin �i4=�

i
(2.4)
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where �i is the Direction of Arrival (DOA) angle of the incoming signal from

ith user. In this special case, the spatial signature is called the steering vector

or array response vector.

2.2 Minimum Distance of SDMA Channels

The minimum distance parameter, dmin, plays an important role in quantifying

the performance of SDMA systems. The probability of error in an AWGN

channel decreases exponentially with the increase in dmin. An upper bound

on dmin can be used to determine a lower bound on the probability of error

achieved by the best reception method.

2.2.1 Two-User Case

To simplify the discussion and provide insight on how the minimum distance

parameter determines SDMA performance, we �rst examine the two-user case

x(k) = a1s1(k) + a2s2(k) = As(k) (2.5)

For the case in which the transmitted signals are BPSK signals in the alphabet

f�1; 1g, the alphabet set which contains all combinations of inputs can be

written as

S =

"
1 1 �1 �1
1 �1 1 �1

#
: (2.6)

Then, the matrix of all possible antenna outputs is X = AS. With this in

mind, we derive the minimum distance relationship. The minimum distance

between pairs of outputs is de�ned as

dmin = min
i6=j

kXi �Xjk 8i; j (2.7)
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where the norm is the L2 (Euclidean) norm, and i; j denotes the column index

of X . Xi is the output corresponding to the input Si. Thus, the squared

minimum distance is

d2min = min
i6=j

kA(Si � Sj)k2

= min
i6=j

(Si � Sj)HAHA(Si � Sj): (2.8)

AHA is real, symmetric, and can therefore be factored as

AHA = U�UH (2.9)

where U is the 2� 2 orthonormal matrix whose columns are the eigenvectors

of AHA, and � = diag[�1; �2], where �1 and �2 are the real, nonnegative

eigenvalues of AHA. Then the minimum distance can be written as

dmin = min
i;j
k�1=2(UHSi �UHSj)k (2.10)

As seen from (2.8), dmin is a function of a1 and/or a2. Once the mini-

mum distance is found, the probability of error of SDMA signals Pe is expressed

as

P =
1

2
erfc

 
dmin

2
p
No

!
(2.11)

where erfc(x) is the complementary error function de�ned as 2p
�

R1
x e�t

2

dt; and

No is the power spectral density of the additive noise in the system.

2.2.2 E�ect of User Positions

As shown in Figure 2.1, the angle between two spatial signatures is a key factor

to determine the minimum distance. In this section, we investigate the e�ect of

relative user position. Intuitively, one would expect that the minimum distance

varies depending on the relative locations of di�erent users.
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Figure 2.1: Illustration of possible minimum distance measures in a two-user
system

Theorem 1 In a two-user SDMA system with BPSK signals and ka1k = ka2k,
the minimum distance is maximum when the angle between the users' array

response vectors is more than 60 degrees.

Proof:

We shall prove this theorem by using the minimumdistance formulation in (2.7).

dmin = ka1k = ka2k = c is maximum when

ka1 � a2k � c

(aH1 � aH2 )(a1 � a2) � c2

ka1k2 � aH2 a1 � aH1 a2 + ka2k2 � c2

Using c = ka1k = ka2k and aH2 a1 = ka1kka2k cos(�), we obtain

c2 � 2c2 cos(�) + c2 � c2

c2 � 2c2 cos(�) � 0

cos(�) � 1

2
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� � 60�:

2

The result of this theorem can be observed from Figure 2.1.

2.2.3 E�ect of the Number of Receivers

If we employ more receivers, then the minimum distance of a multi-user SDMA

system will be closer to that of single user system. Depending on the an-

gle between the spatial signatures, the minimum distance of the multi-user

system will be the same as the single user system. When the number of

receivers increases, the required di�erence between the users' DOA (direct

path only) to satisfy the maximum minimum distance decreases. By denot-

ing  = 2� sin ��=�, we rewrite the steering vector in (2.4) with M receivers

more concisely as

a( ) =
h
1; ej ; � � � ; ej(M�1) 

iT
:

For any  i 6=  j, = cos2 � = cos2 6 (a( i); a( j)) can be expressed as

jaH( i)a( j)j2
ja( i)j2 � ja( j)j2 =

1

M2

�����1� ejM( j� i)

1� ej( j� i)

�����
2

: (2.12)

De�nition 1 The e�ciency of an SDMA system for the kth user, ek, is de�ned

as the ratio between the minimum distance of the constellation of the kth user

and minimum distance of SDMA channels.

2.3 P -User SDMA System

We consider the case where there are more than two users accommodated by

an SDMA system. With the minimum distance formulation obtained in the
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previous section for a two-user system, it is now relatively easier to derive a

similar formulation for a P -user SDMA system. In this case, the alphabet set

S in (2.6) contains 2P distinct columns.

2.4 Numerical Results

In this section, we give numerical examples to demonstrate the usefulness of

the minimum distance measure to evaluate the SDMA approach. Figure 2.2

shows the real part of an SDMA constellation for P = 2 signals drawn from

the BPSK alphabet f-1,1g with SNR=7 dB.

In the �rst example, we investigated the e�ect of the relative users' loca-

tion through a computer simulation for two users direct path only case. For this

simulation, we used an 8-element antenna array, �xed the �rst user's location,

and changed the other user's location relative to the �rst user transmitting the

same power. In Figure 2.3, we see that beyond a certain angle di�erence, the

minimum distance reaches a threshold value which is determined by the lowest

user power.

In the next example, spatial signatures for two users were obtained from

real RF �eld experiments using the smart antenna testbeds described in the

Appendix. Using (2.10), we evaluated dmin vs. number of antennas and the

minimum probability of error vs SNR. We see in Figure 2.4 that by increasing

the number of antennas, the minimum distance of the constellation of SDMA

channels increases. Hence, we observe that an increase in the distance between

SDMA channels reduces the probability of error detection.

Figure 2.5 shows the results of a comparison experiment. The curve
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with the solid line shows the probability of error which was predicted by the

formulation in (2.11). The curve with the dashed lines shows the probabil-

ity error found through simulation. In this comparison experiment, we used a

�ve-element uniform linear array with half wavelength separation. Two sources

impinged on the array with DOAs 90� and � where � varied from 0� to 180�.

These two sources had 7 dB SNR. In this example, we observe that the mini-

mum distance may be a good criteria to predict the performance of the SDMA

approach.

The last example shown in Figure 2.6 shows the change in minimum

distance in a three-user system with varying DOAs. This example suggests

the required DOA separation of 60� among users in order to reach single user

performance.
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Figure 2.2: An SDMA constellation for P = 2 BPSK signals with M = 3
antennas. Only the real part of the constellation is plotted.
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Figure 2.4: (a) Minimum distance vs. number of antennas, and (b) minimum
probability of error vs. SNR.
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2.5 Summary

In this chapter, the minimum distance of the constellation of SDMA channels

under di�erent scenarios is investigated when the signals are restricted to a

�nite alphabet. The minimum distance formulation was derived by considering

the simple two-user case. The minimum distance of SDMA channels were

evaluated for di�erent numbers of antennas, co-channel signals and relative

user positions.

Here, the minimum distance criterion was primarily used to quantify the

uplink performance enhancement promised by SDMA. For downlink SDMA sig-

nals; however, it is important to design broadcast or transmit weight vectors to

achieve the maximum capacity of smart antenna systems. In the next chapter,

the problem of designing optimum downlink weight vectors will be considered.



Chapter 3

Fast Estimation of Weight Vectors to

Optimize Multi-Transmitter Broadcast

Channel Capacity

Capacity of broadcast channels by employing multiple transmitters and ex-

ploiting the spatial diversity among the users is improved. We derive fast

algorithms to compute orthogonal, near-optimal, and optimal weight vectors

for broadcasting message signals to two and three users. The key innovation

is that we decouple the weight vectors in the measure of channel capacity to

simplify the optimization problem. Based on the decoupled formulation, we

�nd the optimal solution by searching for the maxima of a smooth multidi-

mensional function and derive closed-form expressions for the orthogonal and

near-optimal solutions.

3.1 Introduction

In a multi-transmitter broadcast system, the weight vector for each message

signal can provide an additional degree of freedom for signal enhancement and

interference suppression by taking advantage of the spatial diversity among

the users. Since Cover's novel work in single-transmitter broadcast channels

[16], researchers have been exploring the use of both multi-transmitter and

30
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multi-receiver systems [17, 18, 37]. In a multi-transmitter broadcast channel,

an antenna array transmits to two or more receiving users. To optimize the

performance of the communications system, we must �nd the weight vector for

each message signal that maximizes the overall channel capacity. In this disser-

tation, we assume independent decoding since it is more feasible to implement

in practical systems than joint decoding.

The design of the weight vectors that maximize the overall channel

capacity of the broadcast channels, however, is still an open problem. The

primary reason is that under certain power constraints, the channel capacity R

is a highly nonlinear function of theM -dimensional weight vectors fwig, where
M is the number of transmitters [7]. Hence, �nding a closed-form algebraic

solution that maximizes R over fwig does not seem to be tractable.

In this chapter, we decouple the weight vectors in R to reduce the op-

timization problem to a search for the maxima of a smooth multidimensional

function, which has P (P � 1) dimensions for P users. Based on this decou-

pling, we derive two algorithms for computing orthogonal and optimal weight

vectors for the two-user and three-user cases: orthogonal and optimal. We also

present a near-optimum algorithm for the two-user case. The optimal algo-

rithm requires an iterative search, whereas the orthogonal and near-optimal

algorithms rely on closed-form solutions. The orthogonal and near-optimal al-

gorithms require many fewer computations than the optimal algorithm, and

can be implemented on a programmable digital signal processor. Section 3.2

states the problem. The decoupling of weight vectors and the algorithms for

two-user case are given in Section 3.3 and in Section 3.4, respectively. Three-

user case is investigated in Section 3.5. Section 3.6 compares the performance
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of the algorithms.

3.2 Problem Statement

In [8], we consider maximizing the channel capacity in a two-user broadcast

system with multiple transmitters. We let fsi(t)g be the set of message signals.
The base station weighs each message signal with a weight vector and then

transmits the superimposed signal of d users from an array of M elements

(d �M):

y(t) =
dX
i=1

�iwisi(t):

The signals fsi(t)g are assumed to be i.i.d. with Gaussian distribution; fwig is
the set of normalized weight vectors, i.e., kwik = 1 8 i = 1; : : : ; d; and f�ig is
the set of the transmitting magnitudes which are subject to power constraints.

For simplicity, we assume

�21 + � � �+ �2d = 1:

If independent decoding were employed at the user receivers, then the

achievable channel capacity Ri for each user i can be expressed as log(1+SINR),

where SINR is the signal-to-interference noise ratio:

Ri =
1

2
log

 
1 +

�2i�
2
iw

H

i aia
H

i wi

1 +
Pd
j=1;j 6=i �

2
i�

2
jw

H
j aia

H
i wj

!
(3.1)

Here, ai = (ai;1 ai;2 � � �ai;M)T is a unit vector representing the direction of the

spatial signature vector of the ith user, and �i is the magnitude of the spatial

signature vector of the ith user. Thus, the spatial signature vector, a.k.a. the
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steering vector1, of the ith user represents the propagation pattern of the ith

user, and is equal to �i ai. The noise power has been normalized to unity.

The goal is to select the weight vectors [w1 � � � wd] that maximize the

total channel capacity

R =
PX
i=1

Ri: (3.2)

Maximizing the total channel capacity is di�erent than maximizing the signal-

to-interference-noise (SINR) ratio for each user, as is seen in (3.1). Maximizing

the SINR, however, is a �rst-order approximation to the total channel capacity.

The �rst term in the Taylor series for log(1 + SINR) about SINR = 0 is equal

to SINR. To a �rst-order approximation, (3.2) is equal to SINR1+ � � �+SINRd,

which is the total SINR.

3.3 Decoupling Weight Vectors

Theorem 2 The optimal weight vectors fwig that maximize the channel ca-

pacity are in signal subspace A and can be written as linear combinations of

spatial signature vectors faig.

Proof:

wi = �aiA+ �biB (3.3)

where A = [a1 � � � ad] is the spatial signature matrix; B = [bd+1 � � � bM ]

which denotes the orthogonal subspace of A, i.e., A ? B; �ai = [�ai;1 � � � �ai;s]
and �bi = [�bi;s+1 � � � �bi;M ]. Clearly, we have to show that k�bik2 = 0. As seen

1This is only true for one direction of propagation.
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from the capacity formulation in (3.2), f�big will be in the power constraint

kwik = k�aik2 + k�bik2 = 1: (3.4)

We want k�bik2 = 0 so as not to waste any energy in the orthogonal subspace.

2

A similar theorem is also applicable to the case in which the average

SINR is maximized [9].

3.4 Two-User Case

For a given pair of transmission magnitudes (�1; �2) and a given pair of spa-

tial signatures (a1; a2), our goal is to �nd the weight vectors w1 and w2 that

optimize the total channel capacity R = R1 +R2. Denote

�11 = wH

1 a1a
H

1w1 �12 = wH

2 a1a
H

1w2

�21 = wH

1 a2a
H

2w1 �22 = wH

2 a2a
H

2w2
(3.5)

where �ij = cos2 6 (wi; aj) is a measure of the angle between the ith weight

vector and the jth spatial signature vector. Thus, each �ij term is con�ned to

[0; 1].

From (3.1) and (3.2), R is optimal that for certain �11 and �22 if the re-

lationship between �21 = wH

1 a2a
H

2w1 = cos2 6 (w1; a2) and �12 = wH

2 a1a
H

1w2 =

cos2 6 (w2; a1) is determined. We �nd the maximum values of �11 and �22 in

terms of �21 and �12 or we �nd the minimum values of �21 and �12 in terms of

�11 and �22, respectively. By substituting (3.4) into the �rst two equations in

(3.5) and normalizing wi so that w
H

1w1 = 1,

�211 + �212 + 2�11�12
q
� = 1 (3.6)
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�211 + �212� + 2�11�12
q
� = �11

�211� + �212� + 2�11�12
q
� = �21

where

� = aH1 a2a
H

2 a1 = cos2 6 (a1; a2): (3.7)

so 0 � � � 1. Although f�ijg = r�ije
j��ij and aH1 a2 =

p
�e�� are usually com-

plex numbers, we can always adjust their phases so that they cancel each other

out without a�ecting the values of �ij and the norm of the weight vectors and

the spatial signature vectors. Therefore, we solve (3.6) for absolute values of

�11, �12, and �11 using Lagrange multipliers, and �nd the relationship between

�11 and �21 to be [7]

�11 =
�q

��21 +
q
(1� �)(1� �21)

�2
: (3.8)

If we follow the same procedure for w2, we will see that the similar function is

true for w2. The channel capacity can be rewritten in terms of �12 and �21.

The optimization problem can be written as

max
�12;�21

1

2
log

0
B@1 + 11

�p
��21 +

q
(1� �)(1� �21)

�2
1 + 12�12

1
CA+

1

2
log

0
B@1 + 22

�p
��12 +

q
(1� �)(1� �12)

�2
1 + 21�21

1
CA : (3.9)

subject to the constraints

0 � �12 � � � 1
0 � �21 � � � 1

(3.10)

where

� = aH1 a2a
H

2 a1 = cos2 6 (a1; a2)
ij = �2i�

2
j for i; j = 1; 2:

(3.11)
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Figure 3.1: Illustration of search for an optimal weight vector.

3.4.1 Orthogonal Weight Vector Algorithm

Due to the additional degrees of freedom introduced by multiple transmitters,

one can manipulate the complex weight vectors to enhance the desired signal

while suppressing the interference. There exists wi such that wH

i ai = �ij which

can completely eliminate the interference from one user to the other. When

wH

i aj = �(i�j), the channels are orthogonal and each message can be transmit-
ted without interference. As shown in Figure 3.1, w1 should be in the direction

of P?
a2
a1, where P

?
a2
denotes the projection operator onto the orthogonal space

of a2. Orthogonal weight vectors correspond to the following parameter values:

�11 = 1� � �12 = 0
�21 = 0 �22 = 1� �

(3.12)
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1. Choose values for �12 and �21.

2. For the given (�12; �21) pair, �nd the legitimate w1 which max-
imizes cos2 6 (w1; a1) and w2 which maximizes cos2 6 (w2; a2).
Evaluate R using (3.9).

3. Repeat steps 1 and 2 for a �nite number of times and identify the
optimal pair (�12;opt; �21;opt) which maximize R in (3.9).

4. The weight vectors that correspond to �12;opt and �21;opt in step 2
are the solutions.

Figure 3.2: Optimum weight vector design with an iterative search algorithm
for two-user case

However, this selection is generally not optimal in terms of channel capacity,

since the desired signal power at the receiver may be reduced as well.

3.4.2 Optimal Weight Vector Algorithm

To �nd the optimal weight vectors, we maximize the non-linear objective func-

tion in (3.9) with respect to variables �11 and �22 subject to (3.10). The

objective function is continuous and twice di�erentiable, the constraints are

continuous and twice di�erentiable, and the solution space is convex. As a

consequence, the optimization problem has a global maximum. Although a

closed-form solution for the global maximum may not exist, numerical meth-

ods can be used to search for the global maximum. For example, the global

optimum solution will always be found by the iterative Sequential Quadratic

Programming method [38]. An alternative iterative search algorithm is pro-

posed in Figure 3.2. Step 3 involves only a two-dimensional search, which

is tractable but computational expensive. Next, we derive a near-optimum

closed-form solution that is simple to compute.



38

3.4.3 Near-Optimal Weight Vector Algorithm

After substituting �21 = cos2(�2), �12 = cos2(�1), and � = cos2(�) into (3.9) and

performing logarithmic manipulations, the channel capacity can be rewritten

as

1

2
log (J(�1; �2)) =

1

2
log

( 
1 +

11 cos(�2 � �)2

1 + 12 cos(�1)2

! 
1 +

22 cos(�1 � �)2

1 + 21 cos(�2)2

!)
:

(3.13)

The maximum total capacity of a two-user broadcasting system depends on

two variables, �1 and �2. These variables denote the angles between the weight

vectors and the spatial signature vectors, as seen in (3.5). Since the logarithm is

a monotonic, increasing, one-to-one function over the positive numbers, maxi-

mizing the total channel capacity in (3.13) is equivalent to maximizing J(�1; �2).

A good initial guess at the optimum value is �1 = � and �2 = �, which are

the left endpoints of �12 and �21, respectively, because they bring the cosine

terms in the numerators in (3.13) to 1. We re�ne this approximation using

perturbation (sensitivity) analysis to �nd the local optimal value [8]. The near

optimum angle between the ith weight vector and the jth spatial signature

vector is

�i = �+ 2 cos2(�)4�i (3.14)

where

4�i = jijj cos(�) sin(�)(1 + ii + ij cos
2(�))

ii(1 + ji cos2(�))(1 + jj + ji cos2(�))
(3.15)

such that i; j = 1; 2 and i 6= j. Since the perturbation analysis returns an

approximation of the local optimum angles, the boundary conditions must be

explicitly checked to ensure that the local optimum value is a local maximum.

For each angle, two boundary conditions on kij (i.e., �i = � and �i = �) and
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1. Compute � = cos2(�) in (3.7) using the given (a1; a2) spatial
signature pair.

2. For i = 1; 2 and j = 1; 2, compute ij in (3.11) using the given
(�i; �j) values.

3. Compute near-optimum �1 and �2 angles in (3.14) and (3.15).

4. Check boundary conditions and near-optimum angle values by
substituting all nine possible angle pairs for J(�1; �2) in (3.13)
and keep the angle pair (�01; �

0
2) that gives the largest value of

J(�1; �2).

5. The weight vectors corresponding to (�01; �
0
2) are the solutions.

Figure 3.3: Fast near-optimum weight vector method for the two-user case

one local optimum value (i.e., �i in (3.14)) exist. With two angles, a total

of nine angle pairs (three times three) must be substituted into J(�1; �2) and

the pair that produces the largest J(�1; �2) value is the local maximum. Using

the closed-form solutions in (3.14), the near-optimum weight vectors can be

found by the following algorithm in Figure 3.3. Also, Table 3.1 shows the

implementation complexities of orthogonal and near-optimum solutions.

Operations Orthogonal Near-Optimal
Multiplications 2M 2M+12

Divisions 0 2

Table 3.1: Comparison of implementation complexity of orthogonal and near-
optimal algorithm for two-user case.
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3.5 Three-User Case

For the three-user case, I maximize the total channel capacity R = R1+R2+R3.

As in the two-user case, denote

�ji = cos2 6 (wi; aj): (3.16)

Now, the focus of the problem is to �nd the relationship between �ii and

f�ji; j 6= ig. Applying Theorem 1, we derive the following relation between

�11 and (�21; �31):

�11 =
�q

�12�21 �
q
�13�23�21 +

q
�13�31�q

�12�23�31 +
q
(1� �12 � �13 + 2�12�13�23 � �23)�q

(1� �23 � �21 + 2�23�21�31 � �31)
�2
=(1� �23)

2 (3.17)

where �ij = cos2 6 (ai; aj). Similar derivations can be carried out to �nd the rela-

tions between �22 and (�12; �32) and between �33 and (�13; �23). Using the rela-

tions, channel capacity can be expressed in terms of (�21; �31; �12; �32; �13; �23).

For each kii, the solution amounts to solving a set of linear equations and sub-

stituting the result into wHw = 1. The parameter values for orthogonal weight

vectors are �ij = 0; i 6= j and �11 = (1��12��13+2�12�13�23��23)=(1��23), and
(�22; �33) can be found similar to �11. However, as in the two-user case, this

selection is generally not optimal in channel capacity. To �nd optimal weight

vectors for the three-user case, we have to maximize the channel capacity with

respect to variables (�21; �31; �12; �32; �13; �23). An iterative algorithm similar

to the one in Section 3.4.2 can be used to search for the maximum.
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3.6 Numerical Examples

Figure 3.4 compares the performance of our numerical search and the near-

optimum closed-form algorithms with single antenna, orthogonal, and naive

time-sharing schemes. The system uses a linear uniform array with 8 antenna

elements to transmit to two users. The angle between spatial signature vectors

and the gains of spatial signature vectors, respectively, are � = 54�, �1 = 1:22,

and �2 = 1:333. Figure 3.5 compares the maximum total capacity for the

orthogonal weight vectors and the optimal weight vectors with respect to the

angle between the spatial signatures. The di�erence between the two techniques

becomes very signi�cant when the angle between the spatial signature vectors

is small.

3.7 Summary

The capacity of broadcast channels were improved by employing multiple trans-

mitters and exploiting the spatial diversity among the users. Fast algorithms

were developed to compute orthogonal, near-optimal, and optimal weight vec-

tors for broadcasting message signals to two and three users. The key in-

novation is that the weight vectors are decoupled in the measure of channel

capacity to simplify the optimization problem to a search for the maxima of a

smooth multidimensional function and derive closed-form expressions for the

orthogonal and near-optimal algorithms.
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Chapter 4

Uplink Channel Estimation: CDMA Systems

with Periodic Spreading Sequences

While the utilization of smart antenna systems has been very attractive in

FDMA and TDMA, it can also be used in code division multiple access (CDMA)

schemes such as the IS-95 standard. Direct sequence code division multiple ac-

cess techniques underlie the IS-95 standard and the emerging third-generation

wireless standards. CDMA o�ers e�cient use of available bandwidth, resis-

tance to interference, and adaptability to variable tra�c patterns in mobile

wireless systems. In CDMA systems, several independent users simultaneously

use the same transmission medium, but are distinguishable at the receiver by

di�erent user-speci�c signature waveforms.

4.1 Introduction

If all mobile radio signals arriving at the base station are synchronized to within

a fraction of a chip-time interval, then it is possible to reduce the e�ect of

mutual interference dramatically [39]. For such synchronous CDMA (S-CDMA)

systems, the use of orthogonal codewords can greatly enhance performance [34].

However, for large cells with large multipath delays, it may be di�cult to

synchronize mobile transmitters so that their signals arrive at the cell site

43
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within a fraction of a chip time. The synchronization of the users in the reverse

link becomes even more di�cult as the data rate increases. Thus, the channels

from mobile users to the base station are better characterized as asynchronous

CDMA (A-CDMA).

A-CDMA systems are generally assumed to be more sensitive to co-

channel interference than S-CDMA systems, since the transmission time of

A-CDMA users is not coordinated. An A-CDMA, receiver requires the sup-

pression of multipath induced interchip-interference (ICI), which causes in-

tersymbol interference (ISI), and highly structured multiple user interference

(MUI). Moreover, the propagation delays should be incorporated in such re-

ceivers. A conventional receiver that is matched to the spreading code treats

both ISI and MUI as noise. Hence, it is severely interference limited.

Conventional approaches in A-CDMA for estimating the channels rely

on training sequences sent periodically [11]. Consequently, using training se-

quences causes a signi�cant reduction of channel e�ciency [26]. Alternatively,

subspace-based algorithms [27, 28, 29, 30] have been successfully developed

for di�erent CDMA schemes which eliminates the use of training sequences.

However, these methods are only applicable when the system is underloaded

or when a few users are active. For instance, the methods proposed in [27, 28]

will fail if the spreading gain (Lc) is less than four times of the number users

(P ), i.e. Lc � 4P . Although other subspace-based methods in [29, 30] have

been proposed to estimate the associated time delay of each user, the method

in [29] is only applicable to A-CDMA communication systems operating over

an AWGN channel. The extension of this method in [30] can estimate the time

delays of a few users, i.e. P � Lc=(2L). Thus, new methods need to be
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developed to fully exploit the rich structure inherent in CDMA systems.

By using smart antennas, we provide a method to handle overloaded

systems, in which the number of users exceeds the spreading factor. However,

the computation cost is relatively high due to complicated matrix manipulation

which motivates further research e�orts in implementation and simpli�cation.

The rest of the chapter is organized as follows. Section 4.2 and Sec-

tion 4.3 describe the signal model. Section 4.4 introduces the algorithm and

discusses its implementation. Section 4.5 extends our algorithm to handle

overloaded systems. Section 4.6 derives the MSE of the signature waveform

estimates. Section 4.7 discusses the results of extensive computer simulations

of the capacity of an A-CDMA system using the proposed approach. Sec-

tion 4.8 describes RF �eld experiments conducted to validate the simulation

results using the Smart Antenna Testbed at The University of Texas at Austin.

Section 4.9 gives a summary.

4.2 Model and Data Formulation

To simplify the derivation, we temporarily ignore the noise and leave the ac-

commodation of noisy data for later discussion. We describe an A-CDMA

baseband signal with a single receiver from P users as

x(t) =
PX
i=1

1X
n=�1

si(n)gi(t� nTs) (4.1)

where subscript i denotes the user index; P is the number of users; fsi(n)g is the
set of information symbols from a �nite set of alphabets, e.g., f�1g for BPSK;
Ts is the symbol duration. Assume that fci(1); ci(2); � � � ; ci(Lc); ci(k) = �1g
is the preassigned spreading code of the ith user; and Lc is the code length.
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The signature waveform of the ith user with support t � [0; L(i)
g Ts] is de�ned as

gi(t) =
L
(i)
g LcX
k=1

ci(k � ki)hi(t� kT ) (4.2)

where T is the chip duration; ki is the chip delay index; and fhi(t)g is the set of
channels which represents the multipath fading environment between the users

and the receiver. It is generally plausible to model fhi(t)g as a �nite impulse
response (FIR) �lter which has a �nite support t � [0; LT ] [19]. In addition, we

may assume that the channel order L� Lc since the maximum delay spread of

the channel is usually insigni�cant relative to the symbol period Ts [40]. Thus,

depending upon the relative time delay and the channel length, the signature

waveforms may last at most three symbol periods. For the sake of simplicity,

we assume L(i)
g = 2 for each user throughout the paper.

4.3 Discrete-Time Representation

By sampling (4.1) at the chip rate so that Ts = LcTc and t = lTc, and we obtain

x(l) =
PX
i=1

1X
n=�1

si(n)gi(l � nLc) (4.3)

We may represent the data vector which is composed of samples with a symbol

period in a matrix form X as2
66664
x((N � n)Lc + 1) x((N � n + 1)Lc + 1) � � � x((2N � 1� n)Lc + 1)
x((N � n)Lc + 2) x((N � n + 1)Lc + 2) � � � x((2N � 1� n)Lc + 2)

...
... � � � ...

x((N � n + 1)Lc) x((N � n+ 2)Lc) � � � x((2N � n)Lc)

3
77775 :

(4.4)

Using the assumption that L(i)
g = 2 8 i, the discrete counterpart of the signature

waveform in (4.2) is given by

gi(l) =
2LcX
k=1

ci(k � ki)hi(l � k) =
LX
k=1

hi(k)ci(l � k + ki); l = 1; � � � ; 2Lc (4.5)
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where ki is the chip delay index which is known to the receiver. Although

we assume that the set of fkig is known during the derivation phase of our

algorithm, we introduce a blind initialization scheme to estimate fkig in [32].

The convolution in (4.5) can be represented as

gi =

"
gi(1)
gi(2)

#
=

2
66664
0 � � � ci(1) ci(2) � � � ci(Lc) 0 0 � � � 0
0 � � � 0 ci(1) ci(2) � � � ci(Lc) 0 � � � 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 � � � 0 0 ci(1) ci(2) � � � ci(Lc) � � � 0

3
77775

T

| {z }
ci; 2Lc blocks

hi

(4.6)

where ci is the kernel matrix with dimension 2Lc � L. If we partition

ci =

"
ci(1)
ci(2)

#
; ci(j) is Lc � L; j = 1; 2; (4.7)

then

gi(j) = ci(j) hi; j = 1; 2: (4.8)

The set fgig is uniquely determined by the unknown channel vectors fhig. For
consistency, we assume that fhig are of unit norm, i:e: khik = 1. Thus, (4.8)

becomes gi(j) = �i ci(j)hi where �i is the complex gain of the signal from the

ith user.

Stacking KLc successive samples of the received signal in vector form,

we obtain

X =

2
66664

X(N)
X(N � 1)

...
X(N �K + 1)

3
77775 =

h
G1 G2 � � � GP

i
| {z }

G

2
66664
S1(r)
S2(r)
...

SP(r)

3
77775

| {z }
S
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X =
PX
i=1

Xi =
PX
i=1

GiSi(r) (4.9)

where K is de�ned as the smoothing factor and r = K + 1. Then, we describe

the algebraic relation between the input and output matricesXi for the i
th user

as

2
66664
gi(2) gi(1) 0 � � � 0

0 gi(2) gi(1) � � � 0
...

...
. . . . . .

...
0 � � � 0 gi(2) gi(1)

3
77775

| {z }
Gi; K+1 blocks

2
66664
si(1) si(2) � � � si(N � r + 1)
si(2) si(3) � � � si(N � r + 2)
...

... � � � ...
si(r) si(r + 1) � � � si(N)

3
77775

| {z }
Si(r);r=K+1

:

(4.10)

The signature waveform matrix Gi associated with user i has rich structure

which we can exploit to improve system performance. Denoting

Gi =

2
66664
ci(2) ci(1) 0 � � � 0

0 ci(2) ci(1) � � � 0
...

...
. . . . . .

...
0 � � � 0 ci(2) ci(1)

3
77775

| {z }
Ci; (K+1)�L

2
666664

hi 0 � � � 0

0 hi
...

...
...

...
. . .

...
0 � � � 0 hi

3
777775

| {z }
Hi; K+1 blocks

(4.11)

Ci is the Toeplitz kernel matrix. When K = 1, the signature waveform matrix

G has a dimension of Lc�2P . It cannot be of full column rank if the spreading

factor is less than twice as the number of users, i:e: Lc < 2P . Before we derive

our method, the primary di�erences between our method and other existing

blind subspace channel estimation methods [27, 28, 31] are how to construct the

data matrix and how much of the data structure the method exploits. In our

model, we arrange the data vectors so that the data matrix has a Hankel block

structure. We use the Hankel structure to smooth output data vectors and to

restore the rank of G up to P � Lc so that we accommodate more users than
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existing techniques. Moreover, when P > Lc, it is always possible to restore

the rank of G by employing multiple receivers, which we will elaborate on in

Section 4.5.

4.4 Multi-User Channel Estimation

The previous section derives a restrictive structure for G in which Gi = CiHi.

Therefore, the estimation of the signature vectors is equivalent to the determi-

nation of the channel vectors. In the presence of additive white noise, the data

matrix becomes

X+N = GS +N:

In a manner similar to standard blind methods [41, 42], we perform subspace

decomposition of X +N using singular value decomposition (SVD) [43]

X+N =
�
Us Uo

� �s 0

0 �o

! 
VH

s

VH

o

!
= Us�sV

H

s +Uo�oV
H

o (4.12)

The vectors in Us, associated with the Ls signal eigenvalues, span the signal

subspace de�ned by the columns of G. The vectors in Uo, associated with the

Lo noise eigenvalues, span the noise subspace

Uo = [U1 U2 � � � UKLc�P(K+1)]: (4.13)

The dimensions of Us and Uo are KLc�P (K+1) and KLc�KLc�P (K+1).

Due to the orthogonality between the noise subspace and the signal subspace,

the columns ofG are orthogonal to any vector in the noise subspace. Therefore,

we have
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Uo ? G) UH

oGi = 0; i = 1; � � � ; P; (4.14)

where (�)H denotes the transpose conjugation operation. Here, we assume that

(i) the set fgig inG are linearly independent and (ii) S has more than P (K+1)

columns and is of full row rank. Both are reasonable conditions considering

the randomness of the symbol sequences and multipath channels [31].

4.4.1 Algorithm

We develop an algorithm to estimate fGig from X without the knowledge of

S. The structure of fGig can be used to link the orthogonal subspace with the

channel vector estimation. Substituting Gi = CiHi into (4.14) yields

UH

oCiHi = 0; i = 1; � � � ; P: (4.15)

This indicates that the channels can be determined from the orthogonal sub-

space of the data matrix X. Thus, we can identify fHig constructed from the

estimated channel vectors as

ĥi = arg min
khik=1

hH

i c
H

i

0
@KLc�P(K+1)X

l=1

~Ul
~UH

l

1
A cihi (4.16)

where

~Ul =

"
u
(l)
1 u

(l)
2 � � � u

(l)
K 0

0 u
(l)
1 u

(l)
2 � � � u

(l)
K

#
; Ul =

2
664
u
(l)
1
...

u
(l)
K

3
775 ; u(l)k is Lc�1; k = 1; � � � ; K:

(4.17)

If KLc�P (K+1) � L=2, then (4.15) is generally an overdetermined set

of linear equations and has a nontrivial solution. Equations (4.15) and (4.16)

e�ciently compute the channel vector up to a phase ambiguity directly from

the data matrix.
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1. Construct the data matrix X in (4.9).

2. Apply SVD to X, or equivalently, eigenvalue decomposition
(EVD) to XXH to obtain the orthogonal subspace Uo.

3. For each user, estimate the channel vector hi using (4.16).

4. Reconstruct the signature vectors fgig and fGig from (4.10) and
(4.5), respectively.

Figure 4.1: Blind multi-user channel estimation algorithm

An outline of the algorithm is given in Figure 4.1. This algorithm ex-

ploits the fact that each signature vector is a linear function of a unique spread-

ing code. Thus it is possible to determine hi using linear operations on the

noise-free data vectors. The major computational cost in the proposed algo-

rithm comes from the subspace decomposition of the data matrix. The recent

development of fast subspace decomposition techniques provides computation-

ally e�cient and easily applicable methods for data decomposition [44].

Since the implementation of some multiuser detectors, i.e. MMSE mul-

tiuser detector, requires the knowledge of the signal power with gain �2s j�ij2

and the noise power �2n, we now consider a method for estimating the received

power of the signals and the noise. We assume that both noise and symbols in

S are zero-mean i.i.d. with variance �2n and �
2
s , respectively. Note that

~RX =
1

N
(X+N) (X+N)H = G ~�2

sG
H + �2nI; (4.18)

where ~RX is the sample date covariance matrix. The noise power can be deter-

mined by the least signi�cant eigenvalue of ~RX. Using the channel estimates,
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the signal power and gains can be estimated by

0
BB@
�̂2s j�̂1j2 0

. . .

0 �̂2s j�̂P j2

1
CCA = [ĝ1; � � � ; ĝP ]y ~RX [ĝ1; � � � ; ĝP ]y

H � �̂2nI:

where y denotes the left pseudo-inverse.

4.4.2 Identi�ability

As stated earlier, the number of users P must satisfy KLc � P (K + 1) + L=2

or P � (KLc+L=2)=(K+1) in order to determine fhig. However, this is only
a necessary condition for a unique channel vector estimate. From (4.16), it is

clear that the determination of the signature vector for the noise-free case is

simply a matter of �nding a vector ĝi within the span of the kernel matrix and

the signal subspace

n
Ĝi : Ĝi ? Uo; Ĝi 2 span(Ci)

o

where span(�) denotes the column range span. The true signature vector gi (Gi)

obviously satis�es the above condition. The su�cient and necessary condition

is given by Theorem 3.

Theorem 3 gi can be uniquely determined from (4.16) if and only if the di-

mension of fspan(ci) \ span([g1; � � � ; gP ])g is equal to 1.

Proof:

The proof is immediate. Suppose gi and bkg
k
i ; k = 1; : : : ; n are a basis for

fspan(ci)\span([g1; � � � ; gP ])g, in other words they are vectors both in span(ci)
and in span([g1; � � � ; gP ]). Then, dim(fspan(ci)\ span([g1; � � � ; gP ])g) = n+1.
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The dimension of the null space of UH

o ci will be n + 1. In order to uniquely

determine gi, the condition of bk = 0; k = 1; : : : ; n must be satis�ed. 2

An interesting observation of Theorem 3 is that even if the channel

vector cannot be uniquely determined, e.g. when ci is ill-conditioned, then the

signature vector still has a unique solution provided that the if and only if

condition is satis�ed. Although ci cannot be rank de�cient, it may have a large

eigenvalue spread [11]. When ci has a large eigenvalue spread, the MSE of the

channel vector estimates becomes larger than that of the signature waveform

estimates in the noisy case. An illustrative example for this claim is given in

Section 4.7.

4.4.3 Blind Initial Synchronization

In the algorithm derivation in Section 4.4.1, we assumed that the users' delays

were known to the receiver or were estimated. The procedure for establishing

initial synchronization is critical to the algorithm performance. Therefore, the

proposed algorithm must resort to estimating the chip time delay index for

each user de�ned in Section 4.2. The problem of initial synchronization may

still be viewed as searching for the best possible gi. I denote

Qik = cHik

0
@KLc�P(K+1)X

l=1

~Ul
~UH

l

1
A cik (4.19)

where cik is the kernel matrix as in (4.6) by letting ki = k; k = 0; : : : ; Lc � 1.

The channel vector and delay of the ith user can be estimated by optimizing
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J(�̂hi; k̂i) = �hH

i

2
66664
Qi1 0 � � � 0

0 Qi2 � � � 0
...

...
. . .

...
0 � � � 0 QiLc

3
77775 �hi; (4.20)

where

�hi =

"
0 � � � 0| {z }

Lki

hH

i 0 � � � 0| {z }
L(Lc�ki�1)

#H
: (4.21)

To avoid the trivial all-zero solution, we use a power constraint khik = 1 (kĥik =
1). After acquiring the chip delay index of each user, the channel vector esti-

mation procedure can be switched to the original algorithm in Section 4.4.1.

An alternative approach for estimating the channel vectors fhig with unknown
delays is to overestimate the channel orders, i:e:, Lc+L�1. In other words, we

construct fcig the kernel matrixes with a dimension of 2Lc � (Lc + L� 1) in-

stead 2Lc�L. The drawback of this approach is that the number of unknowns
increases from L=2 to (Lc + L � 1)=2. Therefore, when K = 1, the number of

users P whose channel vectors can be estimated may not exceed Lc=4 due to

the inadequacy of the dimension of the orthogonal subspace Uo. However, as

K increases, this approach converges to the original method.

In practice, after the initial estimation of the delays, it is necessary

to update the delay estimates in a time-varying wireless communication envi-

ronment. One method of tracking delay for each user is constructing fQikg
as in (4.19) using a longer channel order Le (> L) and minimizing J(�̂hi; k̂i)

in (4.20). Let us �rst consider the noise-free case. If we use a longer channel

order Le, form fQikg in (4.19), and minimize J(�̂hi; k̂i) in (4.20), then J(�̂hi; k̂i)

has Le � L + 1 zeros. We claim that any of the following Le � L + 1 channel

vectors
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f[
lz }| {

0 : : : 0 hT

i

Le�L�lz }| {
0 : : : 0]T ; l = 0; : : : ; Le � Lg (4.22)

is a solution to J(�̂hi; k̂i), Le > L. Therefore, the chip delay index estimate may

be updated as

k̂i = k̂i + l; l = 0; : : : ; Le � L

depending upon which vector we choose from (4.22). In the presence of additive

noise, we can detect Le � L + 1 zeros by checking how many smaller values of

J(�̂hi; k̂i) are below a predetermined threshold. This subject is also related to

the channel order selection which is discussed in the next section.

4.4.4 Channel order selection

In the settings of the previous section, we assumed that (i) the channel orders

for all users are equal, (ii) the channel order L is known, and (iii) the orders of

the signature waveforms for all users L(i)
g are equal (L(i)

g = 2). While the �rst

assumption can be relaxed further, the last two conditions are only made for

convenience of presentation. These assumptions do not imply that the channels

and signature waveforms should actually be of the same length. The orders of

signature waveforms may vary from 1 to 3 depending upon the users' delays and

the channel orders. The modi�cation of the algorithm corresponding to this

variation is straightforward. If the channel order for each user is known a priori,

then the computational cost of the algorithm can be considerably reduced. In

other words, additional zeros in hi will not a�ect the signature vector estimates.

Based on this property, L should be determined by themaximum channel order

among all users. In practice, one may select the maximum channel spread

value [19] for a particular application.
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4.5 Capacity Increase via Smart Antennas

An A-CDMA system with code length Lc cannot accommodate more than

Lc users. Also in a multipath fading environment, the system performance be-

comes more sensitive to the capacity increase because the signature correlations

become signi�cant. The employment of the multiuser detector and sometimes

multiple receivers may be imperative. The increase of system capacity by us-

ing multiple receivers (antenna array) has been discussed by many researchers

[15, 45, 46].

Since the maximum number of signature waveforms is limited to P �
LcK=(K + 1) � Lc in the proposed approach, we need to adjust the algorithm

so that it can manage an overloaded system (P � Lc). The breakdown of the

proposed algorithm in an overloaded system is due to the inadequacy of (4.16),

since the dimension of the orthogonal subspace Uo reduces and may eventually

become zero as the number of users increase. To implement the subspace algo-

rithm, additional orthogonal vectors are required to guarantee more equations

than unknowns. This can be achieved by spatially oversampling by means of

multiple receivers.

Assume M receivers at the base station and denote the superscript as

the receiver index. We may stack the data vectors (matrices), the signature

vectors, and the channel vectors from all receivers as follows:

X =

2
664
X1

...
XM

3
775 =

PX
i=1

2
664
G1
i
...
GM

i

3
775

| {z }
Gi

Si(r): (4.23)

X = GS still holds, and so does the subspace space relation between X and

G. However, the number of orthogonal vectors in Uo has been substantially
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increased to MKLc � P (K + 1). The number of vectors in Us remains �xed.

The set fGig is given by the solution of the following linear equations through

a new kernel matrix

UH

o

2
664
Ci 0

. . .

0 Ci

3
775

| {z }
M blocks

Hi = 0; i = 1; � � � ; P: (4.24)

The signature vector gi is determined by the ML-channel vector hi whose

estimate can be formulated as

ĥi = arg min
khik=1

hH

i

2
664
ci 0

. . .

0 ci

3
775
H  

LoX
l=1

~Ul
~UH

l

!2664
ci 0

. . .

0 ci

3
775hi (4.25)

Because of the additional diversity provided by the multiple receivers, the num-

ber of equations vs. the number of unknowns is now MKLc � P (K + 1) vs.

ML=2, which means that in theory, P � MLc channels can be estimated and

A-CDMA systems can accomodate more users.

4.6 Algorithm Performance

The �rst-order performance of the proposed algorithm is analyzed in this sec-

tion. The analysis is based on a single receiver A-CDMA system model and

we resort to the �rst order perturbation theory introduced in [47] to derive the

bias and MSE expression of the signature waveform estimates. We have also

imported the following Lemma from [47].

Lemma 1 Let

X =
�
Us Uo

� �s 0

0 0

! 
VH

s

VH

o

!
(4.26)
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be the SVD of X, and N be an additive perturbation to X. The �rst order

approximation of the perturbation to Uo is given by

�Uo = �Us�
�1
s VH

sN
HUo = �XyNHUo (4.27)

where y denotes the pseudo-inverse. This Lemma states a general �rst-order

expression to study the perturbation of subspaces. In [37], this expression was

applied to obtain perturbation of the direction-of-arrival estimates which are

single quantities in a di�erent framework. However, we applied this expression

to our problem where the estimates are vector quantities. For simplicity of

derivation, we consider the data matrix X = [X(N) X(N � 1)]T by setting

the smoothing factor K = 2. Thus, the noise corrupted data matrix can be

written as

X+N = GS +N:

By Lemma 1, the perturbation of the orthogonal subspace Uo can be expressed

as

�Uo = �XyNHUo: (4.28)

Denote Ti = cHi Uo, it immediately follows that

�Ti = cHi �Uo = �cHi XyNHUo: (4.29)

Since in the noise free case, the hi estimate is obtained from the unitary null

vector of Ti, we can apply Lemma 1 again and obtain the perturbation term

of the channel estimate,

�hi = �Ty
i�T

H

i hi: (4.30)
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Substituting (4.29) into the above equation yields

�hi = T
y
iU

H

oNX
yH cihi|{z}

gi

: (4.31)

Consequently, the perturbation of the waveform estimate is given by

�gi = ci�hi = ciT
y
iU

H

oNX
yHgi (4.32)

Since the noise elements in N are assumed to be i.i.d. and of zero mean, and

the �gi is linear with respect to N, it is clear that the bias of the estimated

signature waveform is zero: E (�gi) = 0.

To obtain the MSE of the signature waveform estimate, denote �gi(k)

the kth element of �gi and ej a column vector with the jth element 1 and all

the rest 0, we have �gi(k) = eHk�gi. Therefore,

E (�gHi (k)�gi(k)) = E
�
keHk ciTy

iU
H

oNX
yHgik2

�
(4.33)

= �2nkeHk ciTy
ik2 (4.34)

where the second equation is due to (38) in [47] and the fact that UH

oUo = I.

In the same paper, it is shown that kgHi Xyk2 = 1
N�2s j�ij2 : Thus,

E (�gHi �gi) =
�2n

N�2s j�ij2
X
k

keHk ciTy
ik2: (4.35)

Since
P
k keHk ciTy

ik2 = kciTy
ik2, we obtain the �nal expression of the MSE for

the signature waveform estimates.

4.7 Computer Simulations

Simulation examples are presented in this section for several representative

cases to illustrate the e�ectiveness of the proposed algorithm. In all of the
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following examples, the channel response of each user was generated based

on (1.3), where the pulse function was raised-cosine with a roll-o� factor of

0:5. For each user, the user delay, the multipath delay, and the number of

multipath components were uniformly distributed within [1; Lc], [0; 3T ], and

[1; 10], respectively.

4.7.1 Single Antenna

The performance improvement due to the incorporation of signature vector

estimates in detection is showed in Figures 4.3 and 4.4. We simulated a single

receiver A-CDMA system with Lc = 16, P = 11, K = 4, and SNR= 10 dB.

The code for each user were randomly generated rather than optimizing over

deterministic sequences. We applied 100 data vectors to the proposed method

for channel estimation. L was pre-selected to be 4 unless speci�ed otherwise.

After fhig were determined, the signature vectors fgig were reconstructed. We

then constructed a zero-forcing equalizer to recover the original signal for each

user1. Figure 4.3 illustrates the channel responses used in the simulations and

processing results for one of the users. The energy distribution of the channel

suggests that most delays were within a small fraction of T , and thus the actual

channel length was close to 2T . Comparing the signal constellations using

zero-forcing equalizer and RAKE receiver [19], we can see that the proposed

method clearly accomplished satisfactory channel estimation. Figure 4.4 shows

the same results for another user. In this case, stronger and longer delay

multipath components existed, which led to a longer e�ective channel. Again,

1Here, we just used the zero-forcing equalizer to demonstrate the quality of our channel

estimates. For other detection techniques, the reader is referred to [21, 35, 33, 48, 49].
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the proposed algorithm successfully determined the signature waveform and

recovered the message signal. Another interesting observation of our algorithm

is shown in Figure 4.5 when we increase the smoothing factor K to 10. This

leads to an increase of the number of users that we can handle, P = 14. In

this example, we used 250 symbols to estimate the signature waveforms while

SNR is set to 10 dB. Moreover, we observed e�ects of the smoothing factor

(K) in Figure 4.7 via a simulation conducted with 500 trials and 10 users.

The performance improvement due to smoothing the data matrix is evident

especially when K is relatively small. This can be best explained with the

identi�ability condition that is P � (KLc + L=2)=(K + 1). Furthermore, we

performed another simulation with 500 trials, P = 8, and varying channel

length L. As shown in Figure 4.6, the average RMSE and BER seem to degrade

gradually while L increases. This indicates that the new algorithm is indeed

robust to the channel order selection up to a reasonable extent.

The next example is primarily given to demonstrate how well the the-

oretical expressions predict the performance of the signature vector estimates

under di�erent SNRs. 500 trials were conducted with SNR varying from 0 to 30

dB. The sample root MSE of the signature vector estimates was then calculated

and compared to that predicted by the corresponding theoretical expressions.

The result of the simulations for one user is plotted in Figure 4.8. The symbols

� represent the sample RMSE of the signature vector estimates, the solid line

represents the error predicted by (4.35). Note the excellent agreement between

predicted and simulated values, even for the leftmost case where the SNR is

very low. A comparison study is summarized in Table 4.1 which shows average

RMSEs of the channel vector estimates and the signature waveform estimates
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with small and large eigenvalue spread. For this simulation, 500 trials were

carried out with SNR=10 dB, P = 10, K = 3, and Lc = 16. This example

indicates that utilization of spreading code with poor autocorrelation proper-

ties does not appear to a�ect signi�cantly the performance of the proposed

algorithm for the signature waveform estimation while it appears to increase

RMSE of the channel vector estimates.

To demonstrate how close the channel estimates to the actual channels

are, we simulated two di�erent receivers. In Figure 4.9, the average BER for

A-CDMA systems applying zero-forcing (ZF) and MMSE equalizers using the

channel estimates and the actual channels is depicted versus the average SNR.

In Figure 4.10, another comparison study was mainly given to show the perfor-

mance of our method (blind) with adaptive MMSE receiver proposed in [25].

While we assumed perfect knowledge of the desired user's signature waveform

and the associated timing for the adaptive MMSE receiver, we did not make

available any of this information to the proposed method. Clearly, our method

outperforms the receiver with the prior knowledge of the signature waveform

and the associated timing for the desired user. We also assumed the adap-

tive MMSE receiver's weights already converged to the optimum values and

the results may be more optimistic than those from the adaptive algorithms.

Also, the near-far resistance of our algorithm was investigated through com-

puter simulations. We simulated the worst case scenario where all users were

close to the base station except only one user. The near-far ratio is de�ned as

20 log10(�l=�1) for l 6= 1. The RMSE of the signature waveform estimates and

BER for A-CDMA systems applying zero-forcing (ZF) using the channel esti-

mates and the time delay estimates were plotted as a function of near-far ratio
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and with SNR= 5 dB in Figure 4.11. The proposed method is indeed near-far

resistant. In these simulation examples, 500 trials were conducted with P = 9,

K = 2, Lc = 16, and N = 200.

4.7.2 Multiple Antennas

As an example of the application of our approach to an overloaded multi-

receiver system, consider the simulation results presented in Figure 4.13. Two

receiver antennas were employed in a 22-user system. The channel response

values are given in Tables 4.3 and 4.4. The rest of the setup remained the

same as in Figures 4.3 and 4.4. Comparing these four plots, we can see that

the performance of channel vector estimation and equalization is relatively

insensitive to an increase in the number of users. The average BER vs. average

SNR curves for an overloaded multi-receiver system applying ZF and MMSE

equalizers based on both channel estimates and actual channels have been

obtained by conducting a simulation with P = 18, K = 2, Lc = 16, M = 2

and N = 200. The results of the simulation are depicted in Figure 4.12.

Although the performance of our algorithm for the multi-receiver system seems

slightly worse than that for the single receiver system, the average BER for the

multi-receiver system is better than that for the single receiver system for the

same SNR values. In fact, as shown in Table 4.2 which compares the STD of

the signal constellations after equalization, the overloaded 11-user/one-receiver

system actually outperforms the original 22-user/two-receiver system, at least

in this case. To some extent, this validates the performance enhancement

promised by the multi-receiver, multi-user detection methods.
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4.8 Experimental Results

All the RF �eld experiments were conducted in a surburban setting at the

J.J. Pickle Research Campus of The University of Texas at Austin, using the

900 MHz smart antenna testbed described in the Appendix. Thus, the operat-

ing frequency is near the cellular band at approximately 900 MHz. We created

the short-delay multipath environments by positioning a remote transceiver

unit at the di�erent locations. To compensate for lack of mobile transceivers,

we collect single-user CDMA signals from di�erent locations and then sum these

signals with arbitrary time delays to arti�cially create a multiuser asynchronous-

CDMA (A-CDMA) environment. We set Lc = 16 and P = 25, and we also used

BPSK modulation scheme and employed three-element antenna array. The pro-

posed algorithm used 150 snapshots of data for signature waveform estimation.

The estimated waveforms were then used for equalization and equalized signal

phase patterns were plotted in Figures 4.14 and 4.15, which experimentally

validate the proposed approach.

4.9 Summary

A subspace based approach for blind multi-user channel estimation in A-CDMA

systems has been presented. The algorithm exploits the fact that the signature

waveform (vector) is the intersection of the signal subspace and the kernel

subspace, thus allows it to be uniquely determined without any knowledge of

the input signals. The extension of the new approach to an overloaded system

was also presented. Extensive computer simulations have been performed to

demonstrate the capacity of an A-CDMA system using the proposed approach.

RF �eld experiments have also been conducted to validate the simulation results
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Eigenvalue spread Average RMSEh Average RMSEg
<3 0.0904 0.0859
>3 0.1368 0.1005

Table 4.1: Comparison of RMSEs of channel and signature waveform estimates.

Average STD Max. STD Min. STD
11-user, 1-receiver 0.0154 0.0380 0.0049
22-user, 2-receiver 0.0137 0.0232 0.0063

Table 4.2: Comparison of a 11-user/1-receiver and a 22-user/2-receiver Sys-
tems.

using the Smart Antenna Testbed at the University of Texas at Austin.

One of the practical features of existing and emerging CDMA standards

is the use of aperiodic spreading codes. Aperiodic spreading codes distribute

the signal spectrum over the allotted bandwidth uniformly, have inherent in-

terference averaging capabilities. Since aperiodic spreading codes prevent the

use of blind channel estimation method developed here, an iterative method

to estimate multipath parameters in CDMA systems with aperiodic spreading

sequences will be developed in the next chapter.
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Figure 4.3: Channel responses and signal constellations for user #1 for BPSK
signals. RAKE receiver breaks down. Our method with MMSE equalization
exhibits robustness.

i hi(0) hi(1) hi(2) hi(3)

1 -0.2498 - 0.1614j -0.7574 - 0.4894j 0.0198 - 0.0041j 0.0198 - 0.0041j

2 0.1710 - 0.2240j 0.5183 - 0.6790j 0.0539 - 0.0399j 0.0539 - 0.0399j

Table 4.3: FIR Channel responses of user #11 for M = 2 case.

i hi(0) hi(1) hi(2) hi(3)

1 0.1290 + 0.1242j 0.4378 + 0.4141j 0.1084 + 0.0573j 0.0617 + 0.0196j

2 -0.1856 + 0.0045j -0.6404 + 0.0522j -0.0774 + 0.1502j 0.0004 + 0.1115j

Table 4.4: FIR Channel responses of user #22 for M = 2 case.
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Figure 4.4: Channel responses and signal constellations for user #11 for BPSK
signals. RAKE receiver breaks down. Our method exhibits robustness with
ZF equation.
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users transmitting BPSK signals. RAKE receiver breaks down. Our method
with ZF equalization shows robustness.
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Figure 4.6: BER and RMSE of channel estimates vs. channel length.
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Figure 4.7: BER and RMSE of channel estimates vs. smoothing factor.
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Figure 4.14: Signal constellations for user #2 with a four-element antenna
array.
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Figure 4.15: Signal constellations for user #25 with a four-element antenna
array.



Chapter 5

Uplink Channel Estimation: CDMA Systems

with Aperiodic Spreading Sequences

Wideband CDMA signals often su�er from interference due to frequency-selective

fading and signals of other users. To reduce interference, a receiver could em-

ploy multiuser channel estimation. Blind multiuser channel estimation is com-

plicated in CDMA systems, such as IS-95 and emerging third-generation sys-

tems, that use aperiodic spreading sequences. For Wideband CDMA systems,

1-D and 2-D RAKE receivers could perform blind multiuser channel estimation,

but they would not be able to exploit the code structure in Wideband CDMA

signals fully. In this chapter, we develop a robust blind multiuser channel esti-

mation method for single and multiple antenna CDMA systems with aperiodic

spreading sequences. The method jointly estimates the multipath channel pa-

rameters and transmitted symbols by using iterative least squares projection

to alternate between two steps. The �rst step computes channel parameters

given an estimate of the transmitted symbols, and the second step calculates

the transmitted symbols given an estimate of the channel parameters. For the

method, we provide a fast implementation and an extension to multirate sys-

tems. We also derive a Cram�er-Rao Bound for CDMA systems with aperiodic

spreading sequences. Simulation results show an average of 10 dB gain for

73
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channel parameter estimation, and an average of 7 dB SINR improvement at

15 dB SNR, over RAKE receivers.

5.1 Introduction

Narrowband Code-Division Multiple-Access (CDMA) systems have been suc-

cessfully deployed worldwide with millions of subscribers. With the convergence

of wireless services and the Internet, new Wideband CDMA (W-CDMA) tech-

nology for next-generation mobile systems must provide high-rate data services

in the �eld. Wideband wireless channels are subject to frequency-selective fad-

ing and multiuser interference; therefore, multiuser channel estimation is crucial

for W-CDMA communications.

In synchronous W-CDMA systems, all mobile radio signals arriving at

the base station are synchronized to within a fraction of a chip time interval.

For the synchronous case, the e�ect of mutual interference may be reduced

dramatically by using orthogonal codewords [34]. Synchronization at the base

station, however, is especially di�cult in large cells with large multipath delays,

and becomes more di�cult as the data rate increases.

W-CDMA channels from the mobile users to the base station are usu-

ally characterized as asynchronous, and hence, codewords are not guaranteed

to be orthogonal at the base station. For asynchronous W-CDMA systems

with periodic spreading sequences, it would be possible to perform blind FIR

channel estimation using subspace-based methods and avoid the need for train-

ing sequences [21, 27, 32, 31]. Although the periodicity of the spreading codes

simpli�es the use of multiuser detection techniques [25, 33], one of the practi-

cal features of existing and emerging CDMA standards is the use of aperiodic
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spreading codes.

Aperiodic spreading codes distribute the signal spectrum over the allot-

ted bandwidth uniformly, have inherent interference averaging capabilities, and

are bene�cial to the soft capacity in W-CDMA systems [34]. RAKE receivers

are commonly used to estimate channel parameters and alleviate multipath fad-

ing, but cannot fully exploit the rich structure of W-CDMA signals. Aperiodic

spreading codes prevent the use of many signal reception and blind channel

estimation methods [32, 35] that can fully exploit the structure of W-CDMA

signals.

In this chapter, we present an iterative method to estimate multipath

parameters in W-CDMA systems with aperiodic spreading sequences. This

method also applies to W-CDMA systems with periodic spreading sequences.

The proposed estimation method relies on the �nite alphabet structure of the

information symbols and the known pseudo-noise spreading codes. The �nite

alphabet structure has been previously exploited in TDMA systems [50, 51, 52].

These TDMA methods are not directly applicable to CDMA systems because

of the large number of users. For a large number of CDMA users, we can

perform �nite alphabet restoration by exploiting knowledge of the pseudo-noise

spreading codes and estimating channel parameters. The channel parameters

can be used in a receiver to extract each symbol from the received data.

The proposed estimation method alternates between two steps using

iterative least squares projection. The �rst step estimates the FIR channel

parameters at the chip level. The second step forms a joint block equalizer to

extract all of the user symbols. In simulation, the proposed method typically

converges in 4 or 5 iterations. To reduce computation, we could reduce the
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number of symbols used for each iteration. After identifying the channels, we

can jointly detect all of the symbols by using all of the packet data.

Section 5.2 models the received data. Section 5.3 introduces the two

estimation steps of the proposed estimation method. Section 5.4 describes the

proposed estimation method and a fast implementation for it. Section 5.5 ex-

tends the proposed estimation method to the multirate case in which users may

have di�erent spreading gains and consequently di�erent transmission rates.

Section 5.6 derives a Cram�er-Rao Bound for CDMA systems with aperiodic

spreading sequences, to which we compare the performance of the proposed

estimation method. Section 5.7 compares the proposed method against 1-D

and 2-D RAKE receivers. Section 5.8 concludes the paper.

5.2 Data Model

The direct sequence wideband CDMA signal transmitted by a mobile user is

given by

r(t) = c(t) s(t) ej2�fct (5.1)

where fc is the carrier frequency of the transmitted signal, s(t) is the binary

message signal and c(t) is a binary spreading sequence [34]. At the base sta-

tion in an asynchronous W-CDMA system, an array of M antennas receives P

signals through wideband frequency-selective wireless channels. The receiver

front end down-converts the in-phase and quadrature components of the re-

ceived signals to baseband. The wideband multipath channel between the ith

user and the antenna array can be characterized by a composite vector FIR
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channel [53, 54]

hi(t) =

2
664
h1;i(t)

...
hM;i(t)

3
775 =

LiX
l=1

ai(�l)p(t� �i(l)) (5.2)

where p(t) is the pulse shaping function; �i(l) and ai(�l) are the delay and array

response vector of the lth multipath signal for the ith user, respectively; and

Li is the total number of paths for the ith user. We assume that the channels

do not vary for the duration of one data frame. The proposed method does not

require knowledge of �i(l), �l, or Li.

Σ

Σ
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w

w

h

h

h

hMP

M1

1P

11

P

1

1

y
M

Figure 5.1: Channel model for a P -user CDMA System with an M -element
antenna array.

Figure 5.1 illustrates the channel model for a multiuser multi-receiver

system. The baseband signals at the antenna outputs can be written in vector

notation as

y(t) =
PX
i=1

NX
n=1

wi(n)hi(t� nTc) + v(t) (5.3)
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where Tc is the chip period; hi(t) is de�ned in (5.2); N is the number of symbols

in one frame of data;

wi(k) = si(n) ci(k � nLc � ki) (5.4)

such that Lc is the number of chips per symbol and n =

$
k � ki

Lc

%
where the chip

delay index ki (0 � ki < Lc) is assumed to be known; and v(t) is a wide sense

stationary, zero-mean noise vector random process having the autocorrelation

matrix

Rvv(t; �) = E fv(t)vH(t + �)g = �2v IM�(t� �)

such that IM is an M �M identity matrix. When we perform channel esti-

mation, we assume that the spreading codes are known and do not need to

be identi�ed. In the proposed method, the channels are initially estimated by

using the transmitted aperiodic spreading sequences as training sequences.

5.3 A Blind Iterative Channel Estimation Approach

In blind estimation, FIR channel parameters are estimated without the use of

training sequences. Many blind subspace-based methods have been developed

for multiuser FIR channel estimation in CDMA systems with periodic spreading

sequences [27, 32, 31, 21]. Periodicity of spreading sequences also simpli�es

multiuser detection [25, 33]. Many practical CDMA systems, such as IS-95

and cdma2000, use aperiodic spreading sequences to achieve a uniform signal

spectrum and identify cell cites uniquely.

Blind multiuser methods for aperiodic CDMA systems include 2-D RAKE

receivers [26, 55] and post-despreading processing [53]. RAKE receivers com-

bine the spread signal constructively and determine channel parameters by us-
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ing matched �lters. The blind 2-D RAKE receiver methods in [55, 26], however,

assume knowledge of all multipath delays and attenuations. A post-despreading

method [53] estimates the channel parameters from the post-despreading data

based on a discrete-time model of the CDMA system. The post-despreading

method o�ers considerable increase in performance over the traditional 2-D

RAKE receivers, but falls short of the performance obtained for W-CDMA

systems with periodic spreading sequences.

This section derives a new iterative two-step channel estimation algo-

rithm for W-CDMA systems with aperiodic spreading sequences. The two

steps are complementary. The �rst step, described in Section 5.3.1, estimates

the channel parameters given the transmitted symbols. The second step, de-

scribed in Section 5.3.2, estimates the transmitted symbols given the channel

parameters. Based on the two steps, we construct the proposed iterative mul-

tiuser channel estimation method in Section 5.4.

5.3.1 Step 1: Estimation of Channel Parameters Given Transmitted

Symbols

The data matrix for the received baseband signal sampled at the chip rate for

Nt symbols is

Y = HW +V =
h
h1 h2 � � � hP

i
2
66664
w1(Nt)
w2(Nt)

...
wP (Nt)

3
77775 (5.5)

where Nt << N ; hi is an M � L matrix such that hi = [hi(L � 1) hi(L �
2) � � � hi(0)] where L is the channel length and hi(n) = [h1i (l) h

2
i (l) � � � hMi (l)]T ; l =
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0; : : : ; L� 1; and

wi =

2
66664
wi(1) wi(2) � � � wi(NtLc � L+ 1)

wi(2) wi(3) � � � wi(NtLc � L+ 2)
...

... � � �

...

wi(L) wi(L+ 1) � � � wi(NtLc)

3
77775 (5.6)

such that wi(n) is computed by using (5.4), which depends on the transmitted

symbols and aperiodic spreading sequences. We assume that channel length L

is known, or that we can select it depending on the cell size and application.

We also assume that the pseudo-noise spreading sequence is known, and that

the transmitted symbols are known or estimated. We decompose W into

W = S C (5.7)

where C contains the spreading codes and S contains the transmitted symbols

such that

S =

2
666664

0
BBBBB@

s1(1) 0 � � � 0

0 s2(1)
. . .

...
...

. . . . . .
...

0 � � � 0 sP (1)

1
CCCCCA � � �

0
BBBBB@

s1(Nt) 0 � � � 0

0 s2(Nt)
. . .

...
...

. . . . . .
...

0 � � � 0 sP (Nt)

1
CCCCCA

3
777775
IL

(5.8)

where 
 denotes convolution. By minimizing the maximum likelihood criterion,

min
H
kY �HSCk2

F
(5.9)

where k � kF is the Frobenius norm [43], we obtain

Ĥ = YWy = YCHSH(SCCHSH)�1 (5.10)

where the operator (�)y denotes the pseudo-inverse. H and Ĥ are M � LP

matrices. W is an LP � (NtLc � L) matrix. Y is an M � (NtLc � L) matrix.
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5.3.2 Step 2: Estimation of Transmitted Symbols Given Channel

Parameters

We stack the spatial data samples at each antenna element 1; 2; : : : ;M to form

the data matrix

Y =
h
y1 y2 � � � yM

iT
=
h
G1 G2 � � � GP

i
| {z }

G

2
66664
sT1
sT2
...
sTP

3
77775

| {z }
s

(5.11)

where si = [si(1) � � � si(Nt)] and Gi represents the block channel impulse

response, including the spreading codes and wideband channel coe�cients, as

Gi =

2
664
Ci 0

. . .

0 Ci

3
775

| {z }
M blocks

2
664

(h1i )
H 
 INt

...
(hM

i )
H 
 INt

3
775

| {z }
Hu

(5.12)

where hmi =
h
hmi (L� 1) � � � hmi (0)

i
for sensor m. The kernel matrix Ci is

de�ned using shifted blocks of the pseudo-noise spreading sequences

Ci =

2
6666666666666666666666666664

Q
QQ Q

QQ

Q
QQ

Q
Q
QQ

. . .

. . .

Ci(1)

Ci(2)

Ci(Nt)0

0

3
7777777777777777777777777775

(5.13)

Each block covers one symbol period and has a Toeplitz structure due to the

convolution e�ect of the FIR channel. Upper and lower blocks may be also
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partial because of the asynchronous operation of the uplink. Thus, a complete

block of Ci(n) for n = 1; : : : ; Nt may be written as

Ci(n) =

2
6666666666666666664

0 � � � 0

� � � . . . � � �
ci(nLc + 1)

. . . 0
...

. . . ci(nLc + 1)

ci(nLc + Lc)
. . .

...

0
. . . ci(nLc + Lc)

... � � � 0
0 � � � 0

3
7777777777777777775

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;| {z }

L columns

2Lc rows (5.14)

If we use the same spreading code, i.e. Ci(1) = Ci(2) = � � � = Ci(Nt), then we

can use the blind channel estimation method proposed in [32] as an alternative.

If we use (5.11) to solve for s, then

s = GyY (5.15)

By using the solutions for H in (5.10) and s in (5.15), we can use both steps

to exploit the �nite alphabet structure of CDMA signals and knowledge of

spreading codes, as we discuss in more detail in the next section.

5.4 Blind Estimation Method

The proposed blind channel method given in Figure 5.2 uses iterative least

squares with projections, which was originally developed for TDMA systems

[50]. The proposed estimation method updates s iteratively under the con-

straint that the information symbols in s are from �nite alphabets, which in

turn updates W and H. Given an initial estimate of the transmitted symbols,

the proposed method uses (5.10) to estimate H. Using this estimate of H, we
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estimate G to �nd s and project s to the closest alphabet values. We continue

until either s or H converges. At each iteration, two least squares problems are

solved.

The advantages of this method are the full exploitation of the CDMA

code structure, simultaneous estimation of all channel parameters, an increase

in system performance over RAKE receivers, and the ability to handle an over-

loaded system. The disadvantage is an increase in computational complexity

over RAKE receivers. For the proposed method, Section 5.4.1 analyzes its

computational complexity, and Section 5.4.2 develops a fast implementation.

5.4.1 Complexity Analysis

The complexity of the proposed channel estimation method in Figure 5.2 is

dominated by the linear least squares equations in steps 2a and 2c. Without

structure-exploiting methods, the complexity of step 2a is

O
�
LcNt(MLP + (LP )2) + (LP )3

�

multiplications and additions. Because W is an LP � (Nt Lc�L) matrix, the
pseudo-inverse of W used to compute H in (5.10) requires that

L (P + 1) � Nt Lc (5.16)

Using (5.16), the complexity of step 2a becomes

O
�
NtLc(LP )

2 + (LP )3
�
� O

�
2(NtLc)

3
�

multiplications and additions, since LP � L(P + 1). Similarly, the complexity

of step 2c becomes

O
�
MNtLc(NtP )

2 + (NtP )
3
�
� O

�
MLP (NtP )

2 + (NtP )
3
�
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1. Randomly choose S0 and set the iteration count l = 0. The
number of chips per symbol Lc and the data frame length in
symbols N are determined by the application.

2. l = l+1 and select the number of processed symbols Nt such that&
L(P + 1)

Lc

'
� Nt < N

according to (5.16). The larger the value of Nt, the better the
estimation performance and the greater the computational com-
plexity (see Section 5.4.1). For an overloaded system, i.e. P > Lc,
we would have L � Nt < N and may have to increase Nt such

that L �
�
NtLc

P + 1

�
.

(a) Ĥ =
h
h1;l � � � hP;l

i
= YW

y
l where

Wl =

2
664
w1;l(NtLc)

...
wP;l(NtLc)

3
775 = Sl C

where wi;l(n) is computed by using (5.4) with the estimated
symbols and aperiodic spreading sequences.

(b) Construct Gl with the estimated channel parameters and
pseudo-noise sequences using (5.11), (5.12), and (5.13).

(c) Estimate sl+1 by
sl+1 = Gyl Y

(d) Project elements of sl+1 to the closest discrete values.

3. Continue until sl+1 = sl.

Figure 5.2: Proposed blind channel estimation method for wideband asyn-
chronous CDMA base stations with M antennas and P users. The amount of
computation increases with larger values of L, Nt, and P .
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multiplications and additions. So, the method in Figure 5.2 requires on the or-

der of cubic operations for L, Lc, Nt, and P , and linear operations for M . Fur-

thermore, for steps 2a and 2c, the proposed method uses 2NtLcLP +4(LP )2+

2MLP and 2MN2
t LcP +4(NtP )

2+2NtP memory locations, respectively. The

next section reduces the computational complexity by exploiting the structure

of the linear least squares equations.

5.4.2 Fast Implementation

The blind estimation method in Figure 5.2 performs matrix-vector multipli-

cations and solves systems of linear equations. This section provides a fast

implementation of the method that is on the order of linear operations for Lc,

M , and Nt, n log2 n operations for L, and cubic operations for P . The fast

implementation and the original method can be parallelized. The proposed

method jointly estimates data for all users simultaneously instead of comput-

ing separate estimates for each single user. Hence, other user signals are not

treated as noise. The solution of the data vector s is a combination of each

user's data, which can be rearranged as

�s =
h
s1(1) s2(1) : : : sP (1) : : : s1(Nt) : : : sP (Nt)

iT
(5.17)

so that G �! �G has a banded structure. Thus, the data estimation in (5.15)

can be rewritten as

�s = �GyY = ( �GH �G)�1 �G vec(Y) (5.18)

where vec(�) is an operator which stacks the columns of a matrix into a vector.

Since the data estimation in (5.18) is performed by a zero-forcing block linear

equalizer, the resulting components are unbiased estimates of s [56]. Estimation
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of �s involves an inversion of the banded matrix �GH �G. We exploit the banded

structure of �GH �G to reduce the computational complexity of (5.18) by �rst

rewriting it as

( �GH �G)�s = �GH vec(Y) (5.19)

Since we order the equations in (5.19) so that the nth unknown symbol of

the pth user, sp(n), appears in only a few neighboring equations. Regarding

R = (Ri;j) as P � P block matrices with square diagonal blocks,

RN = �GH �G =

2
666666664

R1;1 R1;2 0 � � � 0

R2;1 R2;2 R2;3
. . .

...

0 R3;2 R3;3
. . .

...
...

. . . . . . . . . RNt�1;Nt

0 � � � � � � RNt;Nt�1 RNt;Nt

3
777777775

(5.20)

We can realize substantial simpli�cation when solving banded systems because

the factorization outputs are also banded. From Theorem 4.3.1 in [43], if R =

LU is the LU factorization ofR, then L andU have the same banded structure.

After LU factorization of

RN = �GH �G =

2
666666664

I 0 � � � � � � 0

L1 I
. . . � � � ...

0
. . .

. . .
...

...
...

. . .
. . . I 0

0 � � � 0 LNt�1 I

3
777777775

2
666666664

U1 R12 0 � � � 0

0 U2 . . . � � � ...
...

. . .
. . .

... 0
...

. . .
. . . UNt�1 RNt�1;Nt

0 � � � � � � 0 UNt

3
777777775

(5.21)

the computation of �s can be reduced to solving AH z = �GH vec(Y) and AH �s =

z. 5.3.

In the fast implementation given in Figure 5.3, forward substitution

cancels inter-symbol interference from the past symbols, and back substitution

cancels inter-symbol interference from the future symbols. The complexity is
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1. Randomly choose S0 and set the iteration count l = 0.

2. l = l + 1 and select the number of symbols Nt < N as in step 2
of Figure 5.2

(a) Ĥ =
h
h1;l � � � hP;l

i
= YWH

l T where Wl is de�ned in

step 2(a) in Figure 5.2 and T = (WlW
H

l )
�1 is computed

using the fast inversion algorithm in [57]

(b) Construct �G according to step 2b in Figure 5.2 and formRjj,
Rj�1;j, and Rj;j+1 for j = 1; : : : ; Nt according to (5.20).

(c) Estimate �sl+1 using the fast algorithm in [43]:

i. Use LU decomposition

U1 = R11

For j = 2 : Nt

Solve Lj�1Uj�1 = Rj;j�1 for Lj�1
Uj = Rjj � Lj�1Rj�1;j

end

ii. Obtain the input symbols �sl+1

z1 = G(1)~(Y(1))
For j = 2 : Nt

zj = G(j)vec(Y(j))� Lj�1G(j)vec(Y(j � 1))
end

Solve UNtsl+1(Nt) = zNt for sl+1(Nt)
For j = Nt � 1 : �1 : 1

Solve Ujsl+1(j) = zj �Rj;j+1sl+1(j + 1) for sl+1(j)
end

(d) Project elements of �sl+1 to the closest discrete values

3. Continue until �sl+1 = �sl

Figure 5.3: Fast implementation of the proposed estimation method in Figure
5.2. This implementation is valid as long as the Uj matrices are nonsingular.
These matrices should be non-singular because the spreading codes have low
correlation.
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O (8NtP
3) arithmetic operations. Estimation of the channel impulse responses

are performed e�ciently by a fast algorithm since (5.10) involves solving a block

Toeplitz system of equations. We adopt a fast algorithm to invert WWH [57]

that uses the fast Fourier transform and requires O (LP log2 LP ) computations.

With common values of L = 4 and P = 8, the inversion can be easily imple-

mented on a programmable digital signal processor. Because of the banded data

structure, we can reduce the memory usage to vary linearly with Nt instead of

N2
t .

5.5 Extension to Multirate Systems

An advantage of CDMA systems is adaptability to di�erent data rates. Previ-

ous sections assumed that all users transmit at the same data rate, which is the

case for IS-95 systems. Emerging third-generation systems, however, support

di�erent data rates. This section extends the proposed estimation method to

multirate CDMA systems to handle di�erent data rates.

We assume that 
 is the number of di�erent rates supported by the

system. The number of users using the same spreading gain of L� is P�. Thus,

the total number of users in the system is P =

X
�=1

P� . We also assume that

Lc

L�
= 2t for integers t and �. We add the contributions from all users at the

same rates to obtain

y�(t) =
P�X
i=1

N�X
n=1

wi(n)hi(t� nTc) (5.22)

Adding the users at di�erent rates and noise yields

y(t) =

X
�=1

y�(t) + v(t) (5.23)
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Since we change the spreading gain while keeping the same chip rate, we allow

some users to transmit at higher data rates than other users. However, the total

number of users that a system can handle reduces. We adjust the method for

fast implementation. To preserve the same banded structure in G, we arrange
the solution of the data vector s as

h
s1(1) : : : s1(

Lc
L1
) s2(1) : : : s1((N � 1)Lc

L1
+ 1) : : : sP (N

Lc
L

)
iT

(5.24)

The rest of the fast implementation follows from Section 5.4.2.

5.6 Cram�er-Rao Bound

Section 5.4 shows that the proposed method can blindly estimate the input

symbols without the knowledge of the input statistics. This section derives a

Cram�er-Rao bound (CRB) for CDMA system with aperiodic spreading. In the

derivation, we assume that the channel noise is white complex circular Gaus-

sian with variance �2, and the input sequence is unknown and deterministic.

Based on [58, 59], this section derives the Fisher Information matrix for the

channel parameters. The CRB of the variance of each parameter is given by

the corresponding element on the diagonal of F�1. We will use the CRB for-

mula that we derive to compare the performance of the proposed method vs.

other methods. The CRB formula could also be used to compare methods for

generating aperiodic spreading codes.

Except for �2, the unknown parameters in this system are denoted by

the 2MLP � 1 vector

� =

"
�hR

�hI

#
=

"
<e fvec(H)g
=m fvec(H)g

#
(5.25)
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where H are the impulse response matrix de�ned in (5.5). In order to �nd

the Fisher Information matrix associated with �, we stack all the outputs in a

vector form and reformulate (5.5) as

X = vec(Y) = �G�s+ v (5.26)

= (IM 
 (CTST ))| {z }
W

vec(H) + v (5.27)

The likelihood function of the data is given by

L(X ) = 1

(��)M(NtLc�L+1) e
� 1
� [X� �G�s]H �[X� �G�s]

Thus, the log-likelihood function is

ln(L) = const� 1

�
[X � Gs]H � [X � Gs] (5.28)

Using the results in [59], we calculate the partial derivatives of (5.28) with

respect to � and �s:

@ln(L)
@��s

=
2

�

n
GHv

o @ln(L)
@�hR

=
2

�
Re
n
(W)Hv

o @ln(L)
@�hI

=
2

�
Im

n
(W)Hv

o
(5.29)

Using results in [58, 59], we obtain

CRB(h) =
�2

2
(FSS � FH

HS
F�1
HH
FHS)

�1 (5.30)

where

FSS =

2
4 <e

n
WHW

o
�=m

n
WHW

o
=m

n
WHW

o
<e

n
WHW

o
3
5

FHS =

2
4 <e

n
WHG

o
�=m

n
WHG

o
=m

n
WHG

o
<e

n
WHG

o
3
5

FHH =

2
4 <e

n
GHG

o
�=m

n
GHG

o
=m

n
GHG

o
<e

n
GHG

o
3
5
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The CRB on the variance of each parameter is given by a corresponding element

on the diagonal of F�1. We now have CRBs for the channel estimates. This

CRB is a function of the input sequence and the spreading codes.

5.7 Computer Simulations

We compare the performance of conventional RAKE receivers and the pro-

posed estimation method using simulation. For each user i, the number of

multipath components Li and the delay for the lth path �i(l) are uniformly dis-

tributed over [1; 10] and [0; 3T ], respectively. We employ Binary Phase Shift

Keying modulation for both symbols and spreading codes. All channel taps

are assumed to fade independently and be time-invariant during transmission

of a burst. Propagation delays for each user are uniformly distributed over

[0; Lc � L � 1]. For the purposes of generating propagation delays for simula-

tion, we assume that L < Lc, but the proposed blind estimation method does

not impose this restriction. The 1-D and 2-D RAKE receivers use the principal

components algorithm [53].

Figure refsignalConstellation:�g compares the received signal constel-

lations of the proposed estimation method with the 1-D RAKE receiver for

P = 8 users (upper two plots) and the 2-D RAKE receiver for P = 13 users

and M = 2 antennas (lower two plots). We use Lc = 16 chips/symbol, N = 40

symbols, and SNR = 15 dB. We generate the spreading code for each user

randomly and assume that the aperiodic CDMA signals are synchronous. We

set Nt to 15 symbols for the proposed estimation method and 40 symbols for

the RAKE receiver to show the performance of the proposed method for a re-

duced number of symbols. The proposed estimation method used L = 3. We
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Figure 5.4: Signal constellations for 1-D RAKE, 2-D RAKE and the proposed
estimation method for the 1-D (M = 1) and 2-D (M = 2) cases. The RAKE
receivers use the Principal Components Minimum Mean Square Error (PC-
MMSE) algorithm. The simulation uses Lc = 16, SNR = 15 dB, N = 40, and
L = 3. Nt is set to 15 symbols for the proposed estimation method and 40 for
the RAKE receivers.

ran all simulations 100 times and averaged the results. The simulation demon-

strates that an increase in the number of users has a negligible e�ect on the

performance of channel vector estimation and equalization. Table 5.1 gives the

average number of iterations for the proposed estimation method to converge

vs. the number of users in 1-D and 2-D.

Figure 5.5 compares the mean squared error (MSE) of the channel pa-

rameter estimates computed by the proposed method and the principal com-

ponents algorithm RAKE receiver, for P = 8 users. In Figure 5.6, we vary

the number of users and compare the MSE of the channel parameter estimates

computed by the proposed estimation method and RAKE receivers in both 1-

D and 2-D. The proposed estimation method o�ers better channel estimation.
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# of Antennas
# of Users M = 1 M = 2

4 3.06 2.86
6 3.83 3.19
8 4.44 3.45
10 - 3.89
12 - 4.23
14 - 4.56
16 - 5.11

Table 5.1: Average number of iterations for the proposed estimation method
to converge vs. number of antennas M and users P . We used Lc = 16, L = 3,
Nt = 15, and SNR = 15 dB, and and ran the simulation 100 times for each
setting of M and P .

The improvement, which increases with the number of users, is 10 dB for 6

users.

Figure 5.7 compares the root-mean squared error (RMSE) of the channel

parameter estimates for the CRB computed in Section 5.6, the proposed esti-

mation method for P = 8 users, and a single antenna system. We vary the SNR

from 5 to 30 dB. The RMSE of the channel estimates decreases approximately

as 1/SNR as that of the CRB.

Using results from Section 5.5, we to compare the two transmission

schemes for mobile users. In the �rst scheme, the higher date rate stream

is split into several parallel basic rate sub-streams for each frame. Each sub-

stream is then spread by one of the spreading codes. The proposed method can

be directly used at the basestation without any modi�cations. In the second

scheme, each user is assigned a single spreading code with lower spreading gain

while maintaining the chip rate on the channel. In the simulations, we use
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Figure 5.5: Comparison of the mean squared error (MSE) of the channel param-
eter estimates of the proposed estimation method and the 1-D RAKE receiver
which uses the Principal Components (PC) algorithm. We use P = 8 users,
Lc = 16, and SNR = 15 dB. The number of processed symbols Nt was 15 for
the proposed estimation method and 40 for the PC algorithm. We used L = 3
in the proposed estimation method.

Lc = 16 and P = 4. Of the four users, two transmit at the same basic rate,

one transmits at twice the basic rate, and the last transmits at four times the

basic rate. Both schemes give nearly identical results, as shown in Figure 5.8.

5.8 Summary

For W-CDMA systems with aperiodic spreading sequences, we develop a blind

multiuser method to estimate channel parameters and transmitted symbols for

single and multiple antenna systems. The method uses iterative least squares

projection to alternate between two new estimation steps that exploit the rich
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Figure 5.6: Mean-squared error of channel parameter estimates vs. number
of users for di�erent receivers: 1-D RAKE, 2-D RAKE, and the proposed
estimation method in 1-D (M = 1) and 2-D (M = 2). Results were averaged
over 200 runs using Lc = 13.

structure of W-CDMA signals. The method typically converges in 4 or 5 it-

erations in simulation. In simulation, the proposed estimation method shows

an average of 10 dB gain in the mean-squared error of the channel parameter

estimates over 1-D and 2-D RAKE receivers which use the principal compo-

nent algorithm. The primary contributions of this chapter are (1) an iterative

blind multiuser channel estimation method including a fast implementation,

an extension to the multirate case, and its performance analysis, and (2) a

Cram�er-Rao Bound for W-CDMA systems with aperiodic spreading sequences.
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Figure 5.7: Root mean-square error of the channel estimates vs. the Cram�er-
Rao Bound with varying SNR for P = 8 users and M = 1 antenna. We used
L = 3, M = 1, and Nt = 15 symbols.
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Chapter 6

Conclusion

This dissertation focuses on improving the performance of wireless communica-

tion systems by combining antenna arrays and new signal processing methods

at the basestation. I present fast methods for optimizing the downlink capac-

ity and estimating uplink CDMA channels with smart antenna systems. I also

derive a fundamental capacity measure for smart antenna systems.

6.1 Contributions

In Chapter 2, we introduce a novel approach to quantify the performance en-

hancement of the SDMA approach including increase in capacity and improve-

ment in quality. We investigate the minimum distance of the constellation of

SDMA channels under di�erent scenarios when the signals are restricted to

a �nite alphabet. We �rst derive the minimum distance formulation by con-

sidering the simple two-user case. We also discuss the minimum distance of

SDMA channels in di�erent scenarios, i.e. di�erent number of antennas, co-

channel signals and relative user positions. Then, we demonstrate that the

minimum distance provides an alternative criteria to evaluate the performance

enhancement of the SDMA approach.

As seen in Chapter 3, optimal weighting vector design is a constrained
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nonlinear optimization problem. However, we were able to improve capacity

of broadcast channels by employing multiple transmitters and exploiting the

spatial diversity among the users. We derived fast algorithms to compute

orthogonal, near-optimal, and optimal weight vectors for broadcasting message

signals to two and three users. The key innovation is that we decouple the

weight vectors in the measure of channel capacity to simplify the optimization

problem. The optimal solution reduces to a search for the maxima of a smooth

multidimensional function. For the near-optimal and orthogonal solutions, we

derive closed-form expressions that are amenable to fast implementation. Our

solutions appear in [8].

In Chapter 4, we present a subspace based method for blind multi-user

channel estimation in Asynchronous-CDMA systems. The method exploits

the fact that the signature waveform (vector) is the intersection of the sig-

nal subspace and the user's code subspace, thereby allowing it to be uniquely

determined without any knowledge of the input signals. We extend the new

method to handle an overloaded system (in which the number of users exceeds

the spreading gain).

For CDMA systems with aperiodic spreading sequences, we develop a

blind multiuser method to estimate channel parameters and transmitted sym-

bols for single and multiple antenna systems in Chapter 5. The method uses

iterative least squares projection to alternate between two new estimation steps

that exploit the rich structure of CDMA signals. The method typically con-

verges in 4 or 5 iterations in simulation. In simulation, the proposed estimation

method shows an average of 10 dB gain in the mean-squared error of the channel

parameter estimates over 1-D and 2-D RAKE receivers which use the principal
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components algorithm. The primary contributions of Chapter 5 are:

1. blind multiuser channel estimation method,

2. a fast implementation of the estimation method,

3. an extension of the estimation method to the multirate case,

4. a Cram�er-Rao Bound for CDMA systems with aperiodic spreading se-

quences.

With the convergence of wireless services and the Internet, new wideband

CDMA (W-CDMA) technology for next-generation mobile systems must pro-

vide high-rate data services in the �eld as well as voice communications to

ordinary users. The blind channel estimation method with its fast implemen-

tation and adaptability to multirate data transmission will provide the same

bene�ts of using aperiodic spreading sequences as methods for periodic spread-

ing sequences.

6.2 Future Work

Third-generation (3G) systems introduces several new problems that need to

be addressed including

� Downlink weight vector design for any number of users and any multi-

plexing method

� Downlink transmit weight FIR �lter design for wideband channels

� Complexity associated with uplink channel estimation for W-CDMA sys-

tems with periodic spreading
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� Downlink blind channel estimation for W-CDMA

� Asymptotic performance analysis for uplink channel estimation method

for CDMA systems with aperiodic spreading

� Modify the proposed methods to work with the 3G standard proposals

and assess the impact of the methods on these proposals.

Additional work is also needed in algorithm simpli�cation, propagation studies

and channel modeling, and digital signal processor implementations.
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Appendix A

Smart Antenna Testbeds

The experimental testbeds described here were developed at the Wireless Com-

munications Laboratory location on the J. J. Pickle Research Campus of The

University of Texas at Austin. Three smart antenna testbeds were completed,

with the 1.5 GHz testbed (which consisted of a receive-only base station) com-

pleted in 1993, the 900 MHz testbed (transmit and receive to enable uplink and

downlink beamforming) completed in 1994, and the 1.8 GHz test bed (capable

of real-time uplink and downlink beamforming) completed in 1997.

The 900 MHz test bed, shown in Fig. A.1 and A.2, is comprised of

the following subsystems: (1) one 8-element patch antenna array and four

1-element dipole antennas. The 8-element patch antenna array, arranged in a

linear fashion with separation of about one half wavelength, is the base station.

The dipole antennas are used by the four mobile units. (2) Twelve RF and IF

up/down converters and switches operating in the RF band at around 900

MHz and IF band at around 144 MHz. (3) Two distribution boxes providing

synthesized sources for RF and IF local oscillator signals. (4) Twelve A/D's and

24 D/A's. (5) Four digital multiplexing (MUX) and demultiplexing (DEMUX)

boards. Each MUX/DEMUX board is connected to one of two high speed

I/O boards installed in the s-bus slots of a Sparc 10 workstation. (6) Two
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bi-directional high speed I/O boards installed in a Sparc 10 workstation.

Figure A.1: Overhead view of the 900 MHz Testbed

Figure A.2: Front view of the 900 MHz Testbed

The 1.8 GHz testbed was designed much like the 900 MHz testbed as

described above. The key di�erences between the testbeds are that the 1.8 GHz

testbed can perform real-time operations. The RF band is at 1.8 GHz instead of

900 MHz, and the IF band is at 70 MHz instead of 144 MHz. The 1.8 GHz smart

antenna base site testbed consists of 8-channel transceivers, a DSP board with

two Analog Devices SHARC DSPs, a backplane with frequency synthesizers,
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RF and IF local oscillator distribution circuits, and timing generation circuits,

a PC console, and telephone handsets. Fig. A.3 is a photograph showing the

PC console and the two telephone handsets. Fig. A.4 is a photograph of a

transmit/receive board, where the copper foil provides RF shielding to the

analog circuits on the board. The transmit/receive channel operates in PCS

band around 1.8 GHz. The smart antenna testbed uses an 8-element linear

circular array on the top of 20m tower shown in Figs. A.6 and A.5. There are

vocoders in the testbed for voice communications. The 8 kbps vocoders use

Motorola DSP56166 �xed-point DSP chips plus support circuitry.

Figure A.3: Real-time smart antenna testbed base site.

In addition to the smart antenna testbed, we have also built several

handsets. Each handset consists of an RF board with a single T/R channel,

two Motorola DSP56166 chips for modem and vocoder functions. The handsets
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Figure A.4: Base site transmit/receive board.

Figure A.5: Base site tower with antenna array.
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Figure A.6: Circular antenna array

Figure A.7: A handset and emulator board
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are programmed via an emulator connected to a PC computer. Fig. A.7 is a

photograph of a handset and an emulator.
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