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Digital halftoning is the process by which a grayscale or color continuous-

tone image is quantized to a limited number of discrete graylevels for printing

or display. In halftoning by error di�usion, the quantization error at each

image pixel is di�used to the unprocessed pixels in a neighborhood around

the current quantized pixel via an error �lter. This process aims at shaping

the quantization noise power into the high frequency regions where the human

eye is least sensitive. Such noise shaping results in a high-quality halftone

reproduction of the continuous-tone image.

This dissertation extends error di�usion halftoning to operate on vector

valued images. Vector valued images arise naturally as color images (e.g. RGB

images) or synthetically as grayscale images. Vector-valued grayscale images

have been subjected to a \blocking" operation, which divides the image into

blocks and stores each block as a vector. In each case, the quantization error at

a given component of the vector at the current location is not only di�used to
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the corresponding components of the neighboring vectors but rather to all of

their components. This requires that the error �lter is no longer a conventional

�lter with scalar-valued coe�cients but rather a \multi�lter" whose coe�cients

are matrices.

This dissertation develops a linear matrix \gain" model for the quan-

tizer for the analysis and design of vector error di�usion halftoning systems.

Design strategies for the matrix-valued error �lter are presented for both the

vector color halftoning and the block error di�usion halftoning cases to achieve

speci�c goals, such as minimizing visual quantization error in color halftoning,

and producing dot-clusters with user controllable properties in block error dif-

fusion. E�cient parallel implementations of vector error di�usion halftoning

are also described.
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Chapter 1

Introduction

Digital halftoning is the process of representing continuous-tone (a.k.a gray-

scale/color) images with a �nite number of levels, for the purpose of display

on devices with �nite reproduction palettes. The resulting images are called

halftones. In most printers, the printer is able to either place a dot on the pa-

per, or not place a dot. This means that the printer is a binary device capable

of reproducing only two levels where the presence of a dot on the paper may

be indicated by the level �1, and the absence of a dot may be indicated by

the level +1. In other applications, such as display on monochrome or color

monitors, the levels available are usually more than two, but �nite. In all

cases, the goal of digital halftoning is to produce, via an ingenious distribution

of dots, the illusion of continuous tone.

1.1 Current halftoning methods

Current halftoning methods fall into the following six categories.

1. Clustered dot dither: The continuous tone image is quantized by a

periodic array of thresholds. The thresholds are organized to promote

the formation of dot-clusters, which are robust to imperfections of the

1
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printed dot. Newspaper printing and many laser printers use clustered

dot dither. Clustered dot dither is an example of AM (amplitude mod-

ulation halftoning) where the dot size/shape is modulated according to

the underlying graylevel, but the dot centers are distributed with con-

stant frequency due to the ordered screen replication. AM halftones are

robust to printed dot imperfections due to the inability of most printers

to place �ne dots on the paper without overlap and dot distortion. Clus-

tered dot halftones su�er from periodic artifacts due to quantization by

a periodic threshold array.

2. Dispersed dot dither: The continuous tone image is quantized by a

periodic array of thresholds, but with the goal of keeping the dots from

clustering. This method leads to better halftones when dots are precisely

rendered, e.g. on monochrome monitors. An analysis of clustered and

dispersed dot dither halftoning is presented in [1]. Dispersed dot dither is

an example of FM (frequency modulation) halftoning since the dots are

dispersed according to the underlying graylevel. Dispersed dot dither

halftones, however, su�er from periodic artifacts due to the periodic

replication of an array of thresholds.

3. Error di�usion: This major 1976 advance in digital halftoning by Floyd

and Steinberg [2] di�uses the quantization error over the neighboring

continuous-tone pixels. The image would be scanned, and the unpro-

cessed pixels in a local neighborhood, around the current pixel, would

be modi�ed. Anastassiou [3] and Bernard [4] show that error di�u-

sion halftoning is two-dimensional delta-sigma modulation. Delta-sigma
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modulation is a popular method for A/D conversion in digital audio that

also employs feedback. Error di�usion feeds back a �ltered version of the

quantization error to the input. The design of the error �lter is the key

to high quality error di�usion halftoning methods. Error di�usion half-

tones have signi�cantly better quality over clustered and dispersed dot

dither halftones, because they are free from periodic artifacts and shape

the quantization noise into the high frequencies where the human eye

is least sensitive. High-frequency noise is referred to as \blue-noise";

hence, error di�usion is an example of blue noise halftoning [5]. Since

the halftone dots are of single pixel size, the illusion of continuous-tone is

created by varying the dot frequency with graylevel. Thus error di�usion

is an example of FM (frequency modulation) halftoning.

4. Blue-noise mask: In the early 1990s, Mitsa and Parker [6] and Ulich-

ney [7] produced blue-noise halftones by using a large array of thresholds

(a.k.a. blue noise mask). These methods have lower complexity than er-

ror di�usion and produce FM halftones of quality close to error di�usion.

This work represented a major advance in halftoning research.

5. Direct Binary Search : Also in the early 1990s, Analoui and Allebach

[8] produced blue noise FM halftones by iteratively searching for the

best binary pattern to match a given grayscale image by minimizing a

distortion criterion. The distortion criterion incorporates a model of the

frequency response of the human visual system as a weighting function.

This method produces the halftones with the highest visual quality to

date. Due to its complexity, it is impractical for use as a halftoning
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method in raster image halftoning systems such as desktop printers.

6. Green-noise halftoning: Levien [9] clusters dots in error di�used half-

tones by feeding a �ltered version of the output into the quantizer input

in error-di�usion. This produces halftones with mid-frequency quantiza-

tion noise (a.k.a green-noise) [10]. Green-noise halftones are also called

AM-FM halftones since the dot frequency and dot shape vary with the

underlying graylevel of the continuous-tone image. Such halftones do

not su�er from periodic artifacts, and are also robust to imperfections

in the rendering process.

Fig. 1.2 shows examples of halftones generated from the continuous-tone image

of Fig. 1.1 using current halftoning methods. 1

Figure 1.1: Continuous-tone image

1The original image and the DBS halftone were provided by Qian Lin of Hewlett-Packard

research labs. The blue noise mask was provided by C. B. Atkins of Hewlett-Packard research

labs. Their help is gratefully acknowledged.
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(a) Clustered-dot dither. (b) Dispersed-dot dither.

(c) Error di�usion. (d) Green noise.

(e) Blue noise mask. (f) Direct Binary Search.

Figure 1.2: Halftones generated with current halftoning methods.
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Figure 1.3: System block diagram for grayscale error di�usion halftoning where

H represents a �xed 2-D nonseparable FIR error �lter having scalar-valued

coe�cients.

1.2 Error di�usion

Fig. 1.3 shows conventional error di�usion. I use xi;j to denote the graylevel of

the input image at pixel (i; j), such that xi;j 2 [�1; 1]. I use bi;j to represent

the output halftone pixel, such that bi;j 2 f�1; 1g. Here, 1 is interpreted as

the absence of a printer dot and �1 is interpreted as the presence of a printer

dot. Q(�) denotes the standard quantizer function given by

Q(x) =

(
+1 x � 0

�1 x < 0
(1.1)

The linear mapH, a.k.a. the error �lter, �lters the previous quantization errors

ei;j 2 [�1; 1]:

Hei;j =
X

(k;l)2S

hk;l ei�k;j�l (1.2)

Hei;j is fed back to the input, and the set S de�nes the extent of the error

�lter coe�cient mask. Note that (0; 0) =2 S. The mask is causal with respect

to the image scan. Typical raster scan masks for the Floyd-Steinberg �lter

[2] and Jarvis �lter [11] are shown in Figs. 1.4(a) and 1.4(c), respectively. For

serpentine scans using Floyd-Steinberg �lters, the mask is shown Fig. 1.4(a) for

odd rows and Fig. 1.4(b) for even rows. To ensure that all of the quantization
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Figure 1.4: Common error �lters for error di�usion halftoning for two di�erent
image scans. In a serpentine scan for Floyd-Steinberg error di�usion, the error

�lter in (a) would be used for odd rows and (b) for even rows. The black dot
represents the current pixel being halftoned.

error is di�used, H must satisfy the constraint

X
(k;l)2S

hk;l = 1 (1.3)

This ensures that the error �lter eliminates quantization noise at DC where

the human visual system is most sensitive [12]. The quantizer input ui;j and

output bi;j are given by

ui;j = xi;j �Hei;j (1.4)

bi;j = Q(ui;j) (1.5)
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1.2.1 Analysis of grayscale error di�usion systems

Error di�used halftones su�er from several types of degradation. Knox [13]

made the �rst major contribution to the analysis of error di�usion by math-

ematically showing that halftone quality can be improved by non-standard

scanning techniques. For example, using a serpentine scan leads to a more

symmetric error distribution. Moreover, he analyzed threshold modulation,

which is the process of modulating the input of the quantizer, so as to break

up objectionable artifacts in error di�usion [14]. Objectionable artifacts in er-

ror di�usion include "worm" artifacts in the very low and high graylevels and

limit cycle artifacts in the mid-tones. The mid-tone artifacts are the analogs

of \limit cycles" in sigma-delta modulation [15]. Fan and Eschbach [16] an-

alyzed constant input limit cycles in error di�usion and were able to predict

which patterns which were most likely to occur. They also demonstrated how

the error �lter coe�cients may be manipulated in order to reduce limit cycle

behavior. Fan [17] showed that a su�cient condition for the stability of error

di�usion is satis�ed if the error �lter weights are positive and sum to one. Fan

also made the weaker conjecture that the error di�usion halftoning system is

stable if the map 1�H has only one zero at DC on the unit bicircle.

Knox [18] showed that error di�usion halftoning typically sharpens the

original image. He noted that the image sharpening was proportional to the

correlation of the input image with the error image. Recently, Kite, Evans

and Bovik [19] applied the one-dimensional work of Ardalan and Paulos [20] in

modeling quantizers in sigma-delta modulation to error di�usion. Kite, Evans

and Bovik model the quantizer as a linear gain for the signal component of
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Figure 1.5: Linear gain model of the quantizer. The input to the quantizer has
been split into signal and noise. The paths are assumed to be independent.

the input to the quantizer and a linear gain plus additive uncorrelated white

noise for the quantization noise component. This modeling is shown in Fig.

1.5. The gains are chosen to minimize the error incurred by using the model.

Kite, Evans and Bovik showed that Kn = 1, which is independent of the error

�lter. They also showed that the value of Ks is proportional to the amount of

image sharpening.

In Fig. 1.5, since the quantizer is modeled by a linear system, the

error di�usion system becomes linear and may be analyzed using z-transforms.

Using this approach, the authors of [19] derive the necessary and su�cient

conditions for the elimination of image sharpening in error di�usion. They also

derive two transfer functions for signal shaping and noise shaping, respectively,

and show that these transfer functions accurately predict the image sharpening

and noise shaping e�ects in grayscale error di�usion halftoning.
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1.2.2 Design of the error �lter in grayscale image halftoning

Floyd and Steinberg [2] designed their error �lter coe�cients by trial and error.

However these coe�cients have proved to be yield high-quality halftones, and

are used even today as the coe�cients of choice in implementing grayscale error

di�usion. Later designs of four-tap error �lters for grayscale error di�usion

by Kolpatzik and Bouman [21] use an image-independent formulation that

assumes the quantization error image is a white noise process. It turns out

that the quantization error image is highly correlated with the input image [18,

19, 22]. Another design method by Wong and Allebach [23] uses an iterative

training method which does not make use of the white noise assumption for the

error image. The methods in [21, 23] attempt to minimize the weighted mean

squared error between the grayscale image and the halftone image, where the

weighting function is a model of the frequency response of the human visual

system known as a contrast sensitivity function [12]. In this dissertation,

I suggest a di�erent approach based on our proposed halftoning model for

designing the error �lter coe�cients for color halftoning.

1.2.3 Vector color error di�usion

Recently, Akarun, Yardimci and Cetin [24] extend grayscale error di�usion to

color images, which I refer to as vector color error di�usion. They explicitly

account for the correlation between color planes by using an adaptive error

�lter with matrix-valued coe�cients. The adaptation updates all of the el-

ements of the matrix-valued error �lter coe�cients by adding the previous

estimate and normalizing the resulting coe�cients, which is computationally

intensive. Also, this approach does not incorporate any model for the human
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visual system.

It is thus desirable to design error �lters with matrix-valued coe�cients

for vector color error di�usion halftoning, that are able to provide optimum

visual performance. Also, a theoretical analysis of vector color error di�usion

has not yet been reported in literature.

1.2.4 AM-FM halftoning

Digital halftoning may be classi�ed into three categories | AM (amplitude

modulation), FM (frequency modulation) and AM-FM hybrid halftoning. In

AM halftoning, the dot size is varied depending on the graylevel value of the

underlying grayscale image while the dot frequency is held constant. A typ-

ical example of this type of halftoning is clustered-dot ordered dither. FM

halftones have a �xed dot size and shape, but the frequency of the dots varies

with the graylevel of the underlying grayscale image. Conventional digital FM

halftones have a �xed dot size of one pixel. Typical examples of FM half-

tones include halftones produced with dispersed-dot ordered dither and error

di�usion halftoning [2]. AM-FM halftones have variable dot shape/size and

variable frequency of dots depending on the graylevel value to be reproduced.

Typical examples of halftones that are in this category are the green-noise

halftones of Levien [9, 25], halftones generated by Velho and Gomez [26] using

halftoning on space �lling curves and digital halftoning with texture control

by Scheermesser and Bryngdahl [27]. AM halftones su�er from systematic

periodic artifacts due to the periodicity of the rendered dots. AM screens are

limited by the fundamental tradeo� between spatial resolution and rendered

graylevels. We require the dither array cell to be as small as possible for
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increased spatial resolution but as large as possible to reproduce more gray-

levels. Typical AM clustered-dot screens are designed to achieve a suitable

compromise among the above constraints.

FM halftones typically have increased spatial resolution due to the ape-

riodic nature of the dots although dispersed-dot ordered dither FM screens also

su�er from periodic artifacts due to the screen periodicity. Halftones produced

via error di�usion [2] and stochastic screens [6, 28] are also FM halftones. Error

di�usion di�uses quantization error to the neighboring pixels, which enables

it to represent a wide range of graylevels, even though the dot size is only one

pixel. Conventional FM halftones (single pixel halftone dots), however, su�er

from physical printer imperfections such as dot gain [29]. Dot gain is caused

from the increase in printed dot size from the intended dot size. This results

in dot overlap, which results in a reduction in tonal range that causes loss of

de�nition in the reproduced image [25]. Lau, Arce and Gallagher [25] further

note that if the size/shape variation from printed-dot to printed-dot is small,

then the e�ects of dot gain can be mitigated by dot gain compensation tech-

niques. If, however, there is a large variation in the size/shape of the printed

dots, clustering of the digital halftone dots adds robustness to the halftoning

process, and in many cases is a necessity [30].

AM-FM hybrid halftones due not su�er from periodic artifacts since

they are not realizations of periodic stochastic processes. At the same time,

the dots themselves are clustered, and hence these halftones exhibit a more

robust printed-dot. Lau, Arce and Gallagher [25] have extensively analyzed

the spatial and spectral characteristics of these methods.
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Velho and Gomez [26] produce AM-FM halftones by �rst dividing the

image into cells along a space �lling curve scan. Then, the average intensity

within a cell is computed and a suitable clustered dot pattern is generated

to approximate the average intensity. The di�erence between the intensity

of the dot pattern and the average intensity within the cell is propagated to

neighboring regions along the scan. The dot patterns are repositioned within

the cell to introduce randomness and counteract periodic artifacts. Dot size

may be controlled by controlling the number of pixels that make up a cell.

Scheermesser and Bryngdahl [27] use an optimization method based on

a cost function to determine how the dot clustering should occur. The cost

function represents a tradeo� between perceived image quality and the relative

orientation of minority pixels. Adjustable dot clustering is produced by varying

the tradeo� between the image quality and minority pixel orientation.

While the above two methods [26, 27], are signi�cantly more compu-

tationally intensive than error di�usion, Levien [9] proposed a simple modi-

�cation to error di�usion in order to promote tunable dot clustering in the

reproduced halftone. He shows that by feeding a scaled, �ltered version of

the output back into the input to the quantizer in conventional error di�usion

halftoning, halftones with clustered dots resulted. The scaling factor controls

the gross size of the dot clusters, although the size of the actual clusters is

dependent on the graylevel to some extent. However, one must use a serpen-

tine scan to generate AM-FM halftones with this method due to the strong

diagonal artifacts that appear when using conventional raster scanning. User

control of the dot shape and amplitude modulation is not possible with this
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method.

1.3 Contributions

The following are contributions to the theory, algorithms, design, and imple-

mentation of vector error di�usion included in this dissertation, which are

described in [31], [32] and [33].

1. I develop a theory for the analysis of vector error di�usion halftoning

systems. I validate the theory by using it to predict the linear distortion

and noise shaping properties of error di�usion. I generalize the linear

system model of grayscale error di�usion in [19] to vector color error

di�usion by replacing the \linear gain model" with a new \matrix gain

model" and using properties of �lters with matrix-valued coe�cients.

The new model includes the earlier models [19, 34] as special cases.

2. I use the new theory of vector error di�usion halftoning to �nd the neces-

sary and su�cient condition to eliminate linear shift-invariant frequency

distortion in vector color error di�usion halftoning via a pre-�lter.

3. I use the theory along with sophisticated color appearance modeling to

design �xed matrix-valued error �lter coe�cients for vector color error

di�usion. The new design method outperforms current design methods

since it not only incorporates the correlations between the image planes

but also minimizes the visual color quantization error.

4. I show that a �lter with matrix-valued coe�cients can be implemented

e�ciently via a parallel polyphase structure. Polyphase forms are used
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for e�cient parallel implementations of �lter banks in digital audio [35].

The implementation cost of the error �lter may be reduced by as much

as a factor of three (in the case of RGB images) because each of the three

color planes being input can be bu�ered and �ltered independently of

the other color planes. Such an implementation makes vector color error

di�usion attractive when using embedded processing, esp. because of the

low bu�er requirements and the support for raster processing.

5. I introduce a new type of error di�usion for grayscale images, by \block-

ing" the original image and performing vector error di�usion on the

resulting vectorized image. I use this type of generalized error di�usion

to produce FM halftones with user-controlled dot size and shape using

block quantization and a block �lter in the feedback loop. I call this

modi�ed quantization and feedback process block error di�usion. Us-

ing block error di�usion, FM halftones may be hierarchically embedded

into other FM halftones seamlessly, and can be generated with user con-

trolled sharpness. I also show how AM-FM halftones may be produced

within the block error di�usion framework. Further, I show that block

error di�usion may be implemented e�ciently in parallel as a polyphase

�lterbank.

Chapter 2 introduces the mathematical notation used throughout the

dissertation, reviews the basic linear theory of vector signal processing, and

shows the duality between vector error di�usion and block error di�usion. Par-

allel implementations of vector and block error di�usion are presented within

a uni�ed framework.
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Chapter 3 introduces the matrix gain model for vector color error dif-

fusion and validates the model by predicting linear frequency distortion and

noise shaping e�ects of vector color error di�usion. The necessary and su�-

cient condition to eliminate linear frequency distortion in vector color error

di�usion using a pre-�lter is derived.

Chapter 4 designs �xed error �lters design for vector color error dif-

fusion using the matrix gain model and a model for color appearance. The

model for color appearance [36] incorporates human visual sensitivity to color

patterns of di�erent spatial frequencies. The color of a pattern is de�ned

according to the model by the excitation of the fundamental cone photorecep-

tors in the visual system. Thus it is possible to obtain optimal error �lters for

calibrated imaging devices such as color monitors and printers.

Chapter 5 introduces a block error di�usion framework based on the

vector error di�usion concept for grayscale image halftoning. Error �lters to

produce user-controlled dot-clustering are designed starting with a conven-

tional scalar �lter prototype. Enhancements to the basic block error di�usion

framework in the form of dot cluster embedding, user controlled sharpening

and user controlled AM-FM halftoning are presented.

Chapter 6 concludes the dissertation by summarizing the contributions

and suggesting applications to related literature.



Chapter 2

Vector Signal Processing Theory

2.1 Introduction

This chapter introduces the mathematical notation used throughout the dis-

sertation. It also provides the basic theory relating the processing of vector-

valued signals and scalar-valued processing of spatially blocked data. Based

on the theory, a parallel implementation of multi�lters (�lters that operate

on vector-valued signals) and corresponding block �lters (�lters that operate

on scalar-valued blocked data) is presented. For simplicity, the results of this

chapter are derived for one-dimensional (1-D) signals and then extended to

two-dimensional (2-D) signals.

Section 2.2 introduces the notation used throughout the dissertation.

Section 2.3 shows the relationship between multi�lters and block �lters using

one-dimensional signals. Section 2.4 shows that multi�lters and block �lters

may take advantage of the features of conventional parallel digital signal pro-

cessors. It is shown that implementation of multi�lters on parallel digital sig-

nal processors speeds up the multi�ltering operation by the vector dimension

of the vector-valued signal being processed. Section 2.5 extends the analysis

to vector-valued signals of dimension greater than two. Finally, Section 2.6

17
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concludes the chapter by summarizing the essential concepts discussed in the

chapter.

2.2 Notation

In this chapter, x(m) represents a 1-D input N -vector valued signal to be

�ltered. X(z) represents the z-transform of the vector-valued signal sequence

X(z) =
X
m

x(m)z�m (2.1)

The multi�lter (which is assumed to be causal) will be denoted by the N �N

matrix-valued sequence ~h(�). ~H(�) represents the z-transform of the matrix-

valued multi�lter sequence de�ned by

~H(z) =
X
m

~h(m)z�m (2.2)

A multi�lter with M N � N matrix coe�cients can be expressed compactly

as the N �NM matrix

~� =
h
~h(0) j ~h(1) j : : : j ~h(M � 1)

i
(2.3)

where ~h(0) � � � ~h(M �1) are the multi�lter coe�cients. The �ltering operation

of a multi�lter is de�ned by matrix-vector convolution is given by

y(m) =
M�1X
k=0

~h(k)x(m� k) (2.4)

where y(�) represents the N -vector valued output sequence. In the z-domain,

the matrix-vector convolution becomes a linear transformation by an N � N

transformation matrix given by

Y(z) = ~H(z)x(z) (2.5)
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For a scalar signal x(m), I denote the z-transform by X(z).

Let x(m1; m2) represent an input N -vector valued image to be �ltered.

X(z1; z2) represents the z-transform of the vector-valued image sequence

X(z1; z2) =
X

m1;m2

x(m1; m2)z
�m1z�m2 (2.6)

A 2-D multi�lter may �lter a vector-valued image (e.g. a color image). The

multi�lter will be denoted by the N � N matrix-valued sequence ~h(�). ~H(�)

represents the z-transform of the matrix-valued multi�lter sequence de�ned

by

~H(z1; z2) =
X

m1;m2

~h(m1; m2)z
�m1z�m2 (2.7)

A multi�lter with an M �M support with N � N matrix-valued coe�cients

can be expressed compactly as the N �NM2 matrix

~� =
h
~h(0) j ~h(1) j : : : j ~h(M2 � 1)

i
(2.8)

where ~h(0) � � � ~h(M2�1) are the coe�cients of the matrix valued �lter ordered

by rows. The �ltering operation of a 2-D multi�lter is de�ned by matrix-vector

convolution is given by

y(m1; m2) =
X
k1;k2

~h(k1; k2)x(m1 � k1; m2 � k2) (2.9)

where y(�) represents the N -vector valued output sequence. In the z-domain

the matrix-vector convolution becomes a linear transformation by an N � N

transformation matrix given by

Y(z1; z2) = ~H(z1; z2)X(z1; z2) (2.10)

I use an m to denote a 2-D index (m1; m2).
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2.3 Parallel Block Filtering

In the multi�lter operation in (2.4), the output vector at each vector sample

location m is computed by taking N linear combinations of all of the signal

vector components in the set

Sm = fxi(m� k); i = 0 � � �N; k = 0 � � �Mg (2.11)

The overall �ltering may be expressed in terms of the matrix ~� as

y(m) = ~�x
0(m) (2.12)

where

x
0(m) = [x0(m); x1(m) � � � ; xN (m�M + 1)]T (2.13)

One can reorder the vector-valued components of x0(m) in (2.12) to create a

scalar-valued sequence x00(�) by

x00(0) = x0(0)
x00(1) = x1(0)

...

x00(r) = xrmodN(
j
r

N

k
)

In many situations, the vector-valued signals are produced in \blocks" of an

input scalar-valued signal via the process described above. The samples of the

nth component of the output signal vector sequence y(�) may be recovered

exactly by �ltering the scalar sequence x00(�) with the �lter h(n)(�), with the

additional constraint that only every Nth output be retained. The values of

h(n)(�) are formed by reversing the nth row of the matrix ~�. These operations

may be represented by

yn(m) =
MN�1X
k=0

h(n)(k)x00(Nm +N � 1� k) (2.14)
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In the frequency domain, this operation may be expressed as

Yn(z) = (# N)
�
H(n)(z)X 00(z)z(N�1)

�
(2.15)

Filtering followed by subsampling may be implemented e�ciently using a

polyphase decomposition [35, 37]. Consider each of the N components of

the input signal vector. The type-II polyphase decomposition of the �lter is

H(n)(z) =
N�1X
i=0

H
(n)
i
(zN )z�(N�1�i) (2.16)

By substituting (2.16) into (2.15), and using the Noble Identity [35, 37] to

commute the �ltering with the downsampling,

Yn(z) =
N�1X
i=0

H
(n)
i (z) (# N)X 00(z)z�(N�1�i)z(N�1) (2.17)

For i = 0; 1; � � � ; N � 1

Xi(z) = (# N)X 00(z)zi (2.18)

where Xi(z) denotes the z-transform of the ith component of the input signal

vector.

Thus, each component of the output signal vector sequence yn(�) can

be decomposed in terms of conventional scalar �ltering operations on each of

the components of the input signal vector sequence:

Yn(z) =
N�1X
i=0

H
(n)
i (z)Xi(z) (2.19)

The �ltering can be expressed in the time domain as

yn(m) =
N�1X
i=0

M�1X
k=0

h
(n)
i
(k)xi(m� k) (2.20)
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Figure 2.1: A parallel implementation of a multi�lter which computes the nth

component of the output signal N -vector sequence. N2 �lters are required for
the computation of all of the components of the output vector sequence.

This �ltering is illustrated in Fig. 2.1 where the �lters h
(n)
i
, n = 0; 1; � � � ; N�1

and i = 0; 1; � � � ; N � 1 are the polyphase components of the nth row of the

matrix ~� corresponding to the elements that multiply the ith component of

the input signal vector in (2.4).

2.4 E�ciency Analysis

Since ~� is �xed, the polyphase components of its rows may be precomputed.

The result is a set of conventional �lters with scalar coe�cients, which en-

ables the components of the input signal vector sequence to be bu�ered and

�ltered independently of the other dimensions. Since the size of a row of ~�

is N , the throughput is increased by a factor of N when the �ltering is im-
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Figure 2.2: Example multi�lter operating on an RGB image expressed as sam-

ple blocks. Three linear combinations of all samples in the mask are computed

at the current location (denoted by the circle) to compute the red, green and

blue samples of the multi�lter output. The �lter moves in a raster scan of the
blocks.

plemented in parallel. Because each �lter in the parallel �lterbank of Fig. 2.1

has M scalar coe�cients, the rate at which these �lters operate to deliver the

same throughput is divided by a factor of N over the single processor imple-

mentation of (2.4). Equation (2.4) performs MN2 multiply accumulates in

a sequential fashion to compute all of the components of the output signal

vector. When �ltering an RGB image [24], the parallel implementation would

speed up the processing by a factor of three, although the total number of

multiply-accumulates remains the same. We may utilize three low-bandwidth,

low-cost processors instead of one high-bandwidth processor to obtain the

same performance at a lower cost [35], or exploit the instruction-level paral-

lelism of a SIMD or VLIW processor such as the Intel Pentium MMX or Texas

Instruments TMS320C6000, respectively. The e�cient implementation com-

putes the output N times as fast if all of the operations are performed at the

same speed. The parallel implementation of Fig. 2.1 does not require shared

circular bu�ers. Each component of the input vector sequence is put into a

separate circular bu�er on one of the N parallel processors. This allows for
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fast, low-overhead loop code.

2.5 Extension to 2-D Vector-Valued Signals

The parallel implementation may easily be extended to the �ltering of multidi-

mensional signals such as images. The multi�lter operation on a 2-D N -vector

valued signal x(m) is given by

y(m) =
X
k2R

~h(k)x(m� k) (2.21)

where m and k are 2-D vector indices and R is the region of support of the

multi�lter.

The multi�lter is equivalent to a block �lter consisting of N samples

per block. The �lter mask is speci�ed in blocks, and the �lter moves from

block to block instead of from sample to sample. At each block, the �ltering

given by (2.21) computes N linear combinations of all of the samples within

the block mask. This �ltering is illustrated in Fig. 2.2 for the case N = 3

(RGB image) and the four matrix-coe�cient multi�lter (\error-�lter") mask

in [24]. Each component of the output N -vector is then recovered by �ltering

and downsampling the vector sequence rearranged into blocks (see Fig. 2.2)

by using the scalar 2-D �lter corresponding to the rows of the matrix ~� by

~� =
h
~h0 j ~h1 j : : : j ~hjRj�1

i
(2.22)

where j R j is the cardinality ofR and the ~hi matrices represent the coe�cients

of the multi�lter within the �lter's support given in row order. The downsam-

pling matrix for the equivalent blocked image is given by � = N~IN�N (the

blocks may need to be zero padded before using this downsampling matrix).
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With this interpretation of block �ltering in two dimensions and with (# �)

replacing (# N), essentially the same arguments as in Section 2.3 can be used

to obtain the parallel form for the multi�lter given by

yn(m) =
N�1X
i=0

X
k2R

h
(n)
i
(k)xi(m� k) (2.23)

The speedup due to parallel implementation is N which is identical to the

one-dimensional case.

2.6 Conclusion

This chapter introduced the basic notation that will be used throughout the

dissertation. The general linear system theory of �ltering vector-valued sig-

nals with matrix-valued error �lters was reviewed in the time and frequency

domains. The close relationship between the processing of vector-valued se-

quences using a multi�lter and the processing of scalar-valued blocked signals

with a block �lter was established. It was shown that multi�lters and asso-

ciated block �lters can be implemented e�ciently using parallel digital signal

processors. In the next chapter, I will apply some of the theory discussed in

this chapter to model vector color error di�usion in the frequency domain.

The error �lter in this case is a multi�lter operating on a vector-valued image

of quantization errors. The objective is to predict the signal distortion and

noise shaping behavior of vector color error di�usion based on the modeling.



Chapter 3

The Matrix Gain Model for Color Halftoning

3.1 Introduction

This chapter generalizes the linear system model of grayscale error di�usion in

[19] to vector color error di�usion by replacing the \linear gain model" with

a new \matrix gain model" and using properties of �lters with matrix-valued

coe�cients discussed in Chapter 2. The new model includes the earlier model

[19, 34] as a special case. The new model describes vector color di�usion in the

frequency domain, and predicts noise shaping and linear frequency distortion

produced by error di�usion halftoning. For vector color halftoning, I also

derive the necessary and su�cient condition for linear distortion elimination

via pre�ltering.

Section 3.2 describes how vector error di�usion may be linearized via

the proposed matrix gain model. Signal and noise shaping transfer functions

are derived based on an analysis of the linearized system. Section 3.3 validates

the predictions of the matrix gain model by halftoning test images. Section

3.3.2 shows that signal frequency distortion may be eliminated via pre-�ltering.

Further, I show that using such a pre-�lter is equivalent to a simple modi�-

cation of error di�usion. Section 3.4 comments on the invertibility of certain

26
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Figure 3.1: System block diagrams for vector color error di�usion halftoning

where H represents a �xed 2-D nonseparable FIR error �lter with matrix-

valued coe�cients.

matrices used in the matrix gain model. Finally Section 3.5 summarizes the

contributions of this chapter.

3.2 Linearizing Vector Color Error Di�usion

Fig. 3.1 shows a block diagram of vector color error di�usion halftoning. When

halftoning red-green-blue (RGB) images, the quantizer output for each color

channel at any pixel is exactly one element from the discrete set O = f�1; 1g.

Here, �1 represents a red, green or blue dot, depending on the color channel,

and 1 represents the absence of a dot for that color channel. Since the outputs

of the quantizer are constrained to lie on the corners of a cube in three-space,

nothing is gained by using a vector quantizer (in the mean squared error

sense). Therefore, we quantize each color channel using a scalar quantizer.

The quantizer Q(�) is de�ned by

Q(u) =

0
B@

Q(u1)
Q(u2)

Q(u3)

1
CA (3.1)

Q(ui) =

(
1 ui � 0

�1 ui < 0
(3.2)
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where u is a column vector and ui, i = 1; 2; 3, represents the red, green and

blue components of the color vector to be quantized.

The �lter in the feedback loop has matrix-valued coe�cients. The �lter

operates on the quantization error sequence e(m) to produce the feedback

signal sequence according to

He(m) =
X
k2S

~h(k)e(m� k) (3.3)

where m and k are two-dimensional vectors, ~h(�) is a 3 � 3 matrix-valued

sequence, and S is the �lter support. This dissertation assumes that the four-

tap �lter support de�ned by (horizontal, vertical) o�sets to the current pixel

being processed is S = f(0; 1); (1; 0); (1; 1); (1;�1)g.

I model the quantizer by a constant linear transformation denoted by

a matrix ~K plus spatially-varying additive noise n(m), as shown in Fig. 3.2.

This is a generalization of modeling the quantizers in sigma-delta modulators

[20] and grayscale error di�usion [19, 34]. Correlation among the color planes

is represented by the o�-diagonal terms in the matrix ~K. I choose the ma-

trix ~K to minimize the error in approximating the quantizer with a linear

transformation, in the linear minimum mean squared error (LMMSE) sense,

~K = argmin
~A

E[k b(m)� ~A u(m) k2] (3.4)

where b(�) represents the quantizer output process, and u(�) represents the

quantizer input process. The solution to (3.4) when b(�) and u(�) are wide

sense stationary processes is [38]

~K = ~Cbu
~C
�1
uu (3.5)
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Figure 3.2: System block diagrams for vector color error di�usion model, where
~K represents a linear transformation and n(m) is a noise process uncorrelated

with u(m).

where ~Cbu and ~Cuu are covariance matrices. As a direct consequence of this

modeling [38], the noise process n(�) due to the approximation error is un-

correlated with the input to the quantizer u(�). I will analyze error di�usion,

by assuming a matrix gain of ~K for the signal path and a matrix gain of ~I

(identity matrix) for the noise path. This corresponds to using the estimator

to estimate signal components in the output of the quantizer from signal com-

ponents at its input, and assuming an uncorrelated noise injection to model

the noise. In this way, one may treat the signal shaping and noise shaping

independently. This is similar to the analysis for grayscale error di�usion in

[19, 34].

Analyzing the linearized vector color error di�usion model of Fig. 3.2

in the frequency domain using z-transforms yields

ZfHe(m)g = ~H(z)E(z) (3.6)

By analyzing the signal path and ignoring the noise path by setting n(m) = 0

X(z) = U(z) + ~H(z)E(z) (3.7)

E(z) = (~K�~I)U(z) (3.8)
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Bs(z) = ~KU(z) (3.9)

By manipulating (3.7), (3.8), and (3.9), the response to the signal component

becomes

Bs(z) = ~K[~I+ ~H(z)(~K�~I)]�1X(z) (3.10)

By considering the contribution of the noise component B(z) to the output

Bn(z),

Bn(z) = N(z) +U(z) (3.11)

U(z) = �~H(z)E(z) (3.12)

E(z) = N(z) (3.13)

By rearranging (3.11), (3.12) and (3.13),

Bn(z) = [~I� ~H(z)]N(z) (3.14)

The overall system response is given by

B(z) = Bs(z) +Bn(z) (3.15)

Equations (3.10) and (3.14) reduce to the analogous ones for grayscale error

di�usion [19], in which the error �lter coe�cients and signal gain are scalar

valued. The next section validates the analysis given in this section, and shows

that it accurately models the linear distortion and noise shaping of vector color

error di�usion.

3.3 Validating the Matrix Gain Model

This section validates the matrix gain model by using it to predict the linear

distortion and noise shaping e�ects of vector color error di�usion. Section
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(a) 256 � 256 lenna (b) lena generated using model ~K                        

(c) Halftoned lenna (d) Residual noise image

Figure 3.3: Validation of matrix gain model by linearly distorting the original

image. Here, the residual image has been scaled using a full-scale contrast

stretch for display purposes.
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Figure 3.4: System block diagrams for vector color error di�usion halftoning

with a �xed pre-�lter G having matrix valued coe�cients.

3.3.1 shows that the signal path distortion given by (3.10) accurately models

the linear distortion to which the original color image is subjected in vector

color error di�usion. Section 3.3.2 shows that by adding a speci�ed linear

transformation of the input image to the quantizer input, the linear distortion

may be eliminated. Thus, the modeling predicts that a at frequency response

can be achieved. This will be validated through simulation.

Section 3.3.3 validates that the model accurately predicts the noise

shaping behavior of vector color error di�usion. In the validation process,

I use a �xed matrix-valued error �lter whose coe�cients were obtained by

terminating the adaptive algorithm of [24] after a �xed number of iterations.

The results hold for an arbitrary �xed set of matrix valued �lter coe�cients,

and hence, there is no loss of generality.

3.3.1 Validation by constructing a linearly distorted original

I linearly distort the original image without introducing quantization noise by

processing the original image of Fig. 3.3(a) by using (3.10). This is equivalent

to processing the original image according to Fig. 3.2, with the additive noise

ignored. Fig. 3.3(b) shows the resulting image. Fig. 3.3(c) shows the result of
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halftoning with the �xed error �lter. Figs. 3.3(b) and 3.3(c) have comparable

linear distortion. To see this, I simply form the residual image by subtracting

Fig. 3.3(b) from Fig. 3.3(c). The result is shown in Fig. 3.3(d). The residual

in Fig. 3.3(d) is uncorrelated with the original and represents quantization

noise. This is consistent with the modeling of Section 3.2. To quantify the

degree of correlation of the residual image with the original image, I introduce

a correlation matrix de�ned by

~Crx =

0
B@

�rredxred �rredxgreen �rredxblue
�rgreenxred �rgreenxgreen �rgreenxblue
�rbluexred �rbluexgreen �rbluexblue

1
CA (3.16)

where �rixj represents the correlation coe�cient [38] between the color plane

i in the residual and the color plane j in the original image. The correlation

matrix for the residual shown in Fig. 3.3(d), with respect to the original image

shown in Fig. 3.3(a), is

~Crx =

0
B@ 0:0067 0:0007 0:0051

0:0065 0:0039 0:0049

0:0082 0:0040 0:0062

1
CA

3.3.2 Validation by constructing an undistorted halftone

The model predicts that the linear distortion su�ered by the color input image

is given by (3.10). This means that if one pre�lters the input color image by

using the �lter

~G(z) = [~I+ ~H(z)(~K�~I)]~K�1 (3.17)

then the resulting halftone should exhibit a at low-frequency response with

respect to the original color image. Fig. 3.4 shows error di�usion modi�ed to

include the pre�lter. I now prove the following proposition.
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Figure 3.5: System block diagrams for modi�ed vector color error di�usion
halftoning. ~L represents a constant linear transformation.

Proposition 1: Fig. 3.4 is exactly equivalent to Fig. 3.5 when ~L =

~K
�1 �~I, whenever [~I� ~H(z)] is invertible.

Proof: By analyzing Fig. 3.4, the input to the quantizer u(m) in the

z-domain is

U(z) = ~G(z)X(z)� ~H(z)E(z) (3.18)

E(z) = B(z)�U(z) (3.19)

From (3.18) and (3.19),

E(z) = [~I� ~H(z)]�1[B(z)� ~G(z)X(z)] (3.20)

Substituting for E(z) given by (3.20) in (3.18) yields

U(z) = [~I+ ~H(z)(~I� ~H(z))�1]~G(z)X(z)� ~H(z)(~I� ~H(z))�1B(z) (3.21)

Now, by analyzing Fig. 3.5,

U(z) = X(z)� ~H(z)E(z) (3.22)
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(a) Residual image when ~L = ~0 (b) Halftone generated using optimal ~L                        

(c) Residual image using optimal ~L (d) Input to error �lter using optimal ~L

Figure 3.6: Validation of matrix gain model by creating an undistorted half-
tone. Here, the residual image and the input to the error �lter have been

scaled using a full-scale contrast stretch for display purposes.
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E(z) = B(z)�U(z) (3.23)

From (3.22) and (3.23),

E(z) = [~I� ~H(z)]�1[B(z)�X(z)] (3.24)

Also, since

X
0(z) = [~I+ ~L]X(z)� ~H(z)E(z) (3.25)

we substitute (3.24) into (3.25)

X
0(z) = [(~I+ ~L) + ~H(z)[~I� ~H(z)]�1]X(z)� ~H(z)(~I� ~H(z))�1B(z) (3.26)

Comparing (3.21) and (3.26), it follows that Fig. 3.4 and Fig. 3.5 are equivalent

in the sense that they have the same quantizer input and hence output if

[(~I+ ~L) + ~H(z)[~I� ~H(z)]�1] = [~I+ ~H(z)(~I� ~H(z))�1]~G(z) (3.27)

By using

~P(z) = ~I+ ~H(z)(~I� ~H(z))�1 (3.28)

equation (3.27) becomes

~L = ~P(z)[~G(z)�~I] (3.29)

Substituting for ~G(z) given by (3.17),

~L = ~P(z)[[~I+ ~H(z)(~K�~I)]~K�1 �~I]

= ~P(z)[~K�1 + ~H(z)� ~H(z)~K�1 �~I]

= ~P(z)[[~I� ~H(z)][~K�1 �~I]]

= ~K
�1 �~I (3.30)

This completes the proof.



37

For grayscale error di�usion, this result reduces to the result derived

in [19] in which the gain is scalar-valued and the error �lter has scalar coef-

�cients. Fig. 3.5 feeds a linear transformation ~L of the input image into the

quantizer input. The matrix gain model predicts that the linear distortion in

the halftoning process must be eliminated. To check this result, I �rst com-

pute the residual of an unmodi�ed halftone (i.e. halftoned using ~L = ~0) with

respect to the original. Fig. 3.3(a) shows the original image to be halftoned.

Fig. 3.3(c) shows the halftone image, which was halftoned with ~L = ~0 (usual

vector color error di�usion). Fig. 3.6(a) shows the residual with respect to the

original by subtracting Fig. 3.3(c) from Fig. 3.3(a). The correlation matrix for

the residual is

Crx =

0
B@ 0:3204 0:2989 0:0999

0:2787 0:3295 0:1605

0:2063 0:2952 0:1836

1
CA

Fig. 3.6(b) shows the halftone image, which was halftoned with ~L = ~K
�1 �~I

(modi�ed vector color error di�usion). Fig. 3.6(c) shows the residual with

respect to the original by subtracting Fig. 3.6(b) from Fig. 3.3(a). The corre-

lation matrix for the residual is

~Crx =

0
B@ 0:0052 0:0009 0:0040

0:0054 0:0023 0:0020
0:0058 0:0011 0:0027

1
CA

This shows that the linear distortion has been removed by modi�ed vector color

error di�usion, since the residual with respect to the original is uncorrelated

noise (signal components in the residual have been eliminated).

Knox [18] shows that the error image for grayscale error di�usion e(m)

is correlated with the input image. Knox also shows that the sharpness of half-

tones increases as the correlation of the error image with the input increases.



38

Kite, Evans and Bovik [19] show that by adding dither, the quantization error

may be decorrelated with respect to the input, and the sharpening (linear dis-

tortion) e�ects of error di�usion vanish. They also conclude [19] that image

sharpening is due to the fact that the input to the error �lter contains signal

components, which are fed back and shaped. Since the system has a highpass

response, this results in the halftone being sharper than the original image.

I will show by using the matrix gain model that in the case of modi�ed

error di�usion (Fig. 3.5), halftoning with the value of ~L which cancels linear

distortion is a su�cient condition for the error image (input to the error �lter)

to be free of signal components from the input image.

By replacing the quantizer in Fig. 3.5 with a gain matrix ~K and ana-

lyzing the signal path,

Es(z) = ~K

h
~LX(z) +U(z)

i
�U(z)

= ~K ~L X(z) +
h
~K�~I

i
U(z) (3.31)

Since

U(z) = X(z)� ~H(z) Es(z) (3.32)

we obtain h
~I+

�
~K�~I

�
~H(z)

i
Es(z) =

h
~K ~L+ ~K�~I

i
X(z) (3.33)

By substituting ~L = ~K
�1�~L into (3.33), Es(z) = 0. Hence, there are no signal

components in the error image. To check this prediction, and hence validate

our modeling, I halftone test images with ~L set to cancel linear distortion. Fig.

3.3(a) shows the original image to be halftoned. Fig. 3.6(b) shows the halftone

image by halftoning with ~L = ~K
�1 �~I (modi�ed vector color error di�usion).
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Fig. 3.6(d) shows the error image. The correlation matrix for the error image

with respect to the original is

~Cex =

0
B@

0:0455 0:0235 0:0122

0:0493 0:0144 0:0164

0:0428 0:0142 0:0150

1
CA

The low correlation of the error image was predicted by the theory and there-

fore strongly corroborates it.

3.3.3 Validation of the noise response

According to our model, the noise shaping is predicted by (3.14). To verify

the prediction, I �rst compute a residual as described in Section 3.3.1. This

residual is shaped noise. I need to verify that the noise shaping is in fact given

by (3.14). I halftone test images using the optimal linear distortion cancelling

method described in Section 3.3.2. This corresponds to halftoning with the

value of ~L = ~K
�1 � ~L. The matrix gain model predicts that the input to the

error �lter has no signal components. The input to the error �lter in this case

is N(z). I then �lter this noise image (i.e. input to the error �lter) according

to (3.14) to form a predicted residual. If the noise shaping equation is correct,

then this residual must be spectrally close to the actual residual image. This

was indeed found to be the case. Fig. 3.7 shows radially averaged spectra of the

three color planes of the actual residual noise image and the residual computed

using the noise shaping predicted from the model. The close agreement of the

spectra con�rms the predictions of the matrix gain model. The next section

analyzes the valid use of the matrix gain model by considering the existence

of matrix inverses assumed by the model.
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Figure 3.7: Predicted and actual radially averaged spectra for residual noise

image: (a) red, (b) green and (c) blue planes. Solid lines indicate actual
spectra while the dashed lines represent predicted spectra
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3.4 Invertibility of matrices used in the model

Typically, the matrix ~K is diagonally dominant with its diagonal elements

greater than 1, so it is invertible. For the same reason, the matrix [~I+ ~H(z)(~K�

~I)] in (3.10) is invertible. The proof of Proposition 1 requires that the matrix

[~I � ~H(z)] be invertible. This is typically not satis�ed at DC for �lters like

the Floyd-Steinberg �lter because [~I� ~H(1)] = ~0. However, empirical results

indicate that limz!1E(z) does not blow up [39] because B(1) � X(1) and

~G(1) = ~I. In fact, the zero at DC cancels the pole at DC, and limz!1E(z) = 0

for the block-diagram of Fig. 3.5 and equal to �~LX(1) for the block-diagram

of Fig. 3.4. This means that the two block diagrams are equivalent at DC

because they have the same input to the quantizer. This is predicted by the

matrix gain model. Consider Fig. 3.5 by noting that

[~I� ~H(z)]E(z) = B(z)�X(z)

= ~K[~I+ ~L]X(z)� ~K~H(z)E(z) (3.34)

This implies that

[~I� ~H(z) + ~K~H(z)]E(z) = [~K(~I+ ~L)�~I]X(z) (3.35)

By taking the limit as z! 1,

E(1) = [~I+ ~L� ~K
�1]X(1)

= 0 (3.36)

By analyzing Fig. 3.4 in a similar manner, limz!1 = �~L X(1)

From (3.18) and (3.25), the two block-diagrams are equivalent at DC.

At other frequencies for which [~I � ~H(z)] might not be invertible, a similar
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analysis using the matrix gain model may be applied to show that Figs. 3.4

and 3.5 are equivalent. However, the exact analysis may be in error to some

extent when [~I� ~H(z)] is not invertible.

3.5 Conclusion

This chapter introduces a new modeling approach for color error di�usion. By

regarding the quantization noise injection as the estimation error of a linear

minimum mean squared error estimator, I linearize error di�usion. Separate

matrix-valued signal shaping and noise shaping �lters are determined which

accurately predict the signal and noise shaping behavior of color error di�usion.

Using the model, I show that a linear shift-invariant pre�lter can eliminate the

signal sharpening e�ects of error di�usion. Further, I show that such a pre-

�lter can be incorporated with low-complexity by modifying the error di�usion

system to feed a linear transformation of the quantizer input. Finally, the

mathematical validity of the modeling is discussed. The next chapter designs

a matrix-valued error �lter based on the noise shaping predicted by the matrix

gain model. The error �lter is designed so that the visibility of the halftone

noise is minimized.



Chapter 4

Optimum Error Filter Design for Color Error

Di�usion Halftoning

4.1 Introduction

In designing the color error �lter coe�cients, I use the matrix gain model along

with a sophisticated model for human color vision. The formulation results in

an uncorrelated noise image replacing the highly correlated error image in the

objective function of [23]. Thus, the optimization becomes less restrictive since

I do not compensate for or try to minimize correlated signal components in

the error image. Recall from Chapter 3 that the correlated signal components

in the error image produced a sharpening e�ect which is usually desirable.

I assume the uncorrelated noise image is a white noise process as in [21]. I

minimize the visual impact of the quantization noise by incorporating the

matrix gain model into the optimization along with a linear model for human

color vision. I show that the optimal �lter may be obtained by a solution of a

matrix version of the Yule-Walker equations [40]. Because the error �lter does

not need to minimize correlated signal components, the �lter can be solely

optimized for optimal noise shaping.

Section 4.2 describes a linear color model for the human visual system

43
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and shows that it may be represented as a linear transformation followed by

spatial �ltering. Section 4.3 formulates the design problem as a quadratic op-

timization and derives the optimal solution. The optimal solution is compared

quantitatively and qualitatively to separable Floyd-Steinberg error di�usion.

Section 4.4 concludes the chapter by summarizing the central ideas governing

the design algorithm.

4.2 Linear color model for the human visual system

To obtain a true matrix linear color model, one needs to model the color

processing of the human visual system as a convolution with a matrix-valued

�lter ~v(m). The development of such a model is beyond the scope of this paper

and a topic for future research. Instead, I use a pattern-color separable model

for the human visual system based on the work of Poirson and Wandell [36,

41]. The pattern-color separable color vision model forms the basis for the S-

CIELab color space, which has become an industry standard [42]. The pattern-

color separable model �rst transforms device dependent RGB values (where R,

G and B are coe�cients of standard spectral tristimulus basis functions) into

a space with basis functions represented by the normalized color sensitivities

of the three fundamental cones responsible for human color vision. The three

cones are called the L, M and S cones respectively, to denote long (L), medium

(M), and short (S) wavelength sensitivities. Thus, at each pixel an RGB

value is transformed into the corresponding cone photoreceptor absorption

rates. The L, M and S basis functions are referred to in the literature as

the Smith-Pokorny cone fundamentals [43]. The LMS coordinates are then

transformed using a color transformation into an opponent representation [44].



45

The three opponent visual pathways are the white-black (or the luminance

pathway), red-green and blue-yellow pathways (chrominance pathways). The

\-" in red-green and blue-yellow should be read as \minus" and not confused

with a hyphen. Thus white and black are in opposition, red and green are

in opposition, and blue and yellow are in opposition. Such a representation

is very di�erent from early RGB models where it was believed that humans

respond to the three primary colors [44]. Strong support for the opponent

representation comes from the fact that humans do not perceive colors that

are reddish green or yellowish blue since the red-green and yellow-blue visual

pathways are opponent channels. Poirson and Wandell [36, 41] found that

spatial frequency sensitivity to color patterns could be modeled as spatial

frequency sensitivity of the three channels in the opponent representation.

Thus, the linear color model consists of

1. A linear transformation ~T and,

2. Separable spatial �ltering on each channel using a di�erent spatial �lter

on each channel. This operation may be regarded as a matrix multipli-

cation in the frequency domain by a diagonal matrix ~D(z).

Thus, v(m) is computed as

v(m) = ~d(m)~T (4.1)

I now describe the the computation of the model parameters for viewing

RGB images on a monitor. First, one needs to account for the fact that the

8-bit values that are put in the frame bu�er to trigger the red, green, and blue
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guns of the CRT are not the RGB tristimulus values of the colors displayed on

the monitor. This is because the CRT has a nonlinear response to frame bu�er

values. Thus, I need to pass the RGB values of the image through this non-

linearity to obtain the RGB coordinates of the colors displayed on the monitor.

This corresponds to the inverse of gamma correction. The color images are

�rst pre-processed with this point-nonlinearity before they are halftoned. This

ensures that the colors in the halftone are closest to the color actually rendered

on the monitor.

The linear transformation ~T is computed as the composition of two

linear transformations ~C and ~O. The transformation ~C is the transformation

that converts linear RGB values into Smith-Pokorny cone absorption rates. ~C

is a monitor dependent transformation. The transformation ~O that transforms

the LMS coordinates into the opponent representation is given in [36, 41, 42]

and is monitor independent.

The spatial frequency weighting functions for the three opponent visual

pathways were obtained for viewing images displayed on the monitor at 72

dpi (dots per inch) at a \normal" viewing distance of 18 inches using the

parameters given in [42].

The next section uses the visual model developed in this section to �nd

optimal matrix-valued error �lter coe�cients for vector color error di�usion.

4.3 Designing the Error Filter

This section considers the design of the matrix valued coe�cients of the error

�lter. The matrix gain model is incorporated in the optimization process. The
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noise shaping predicted by the matrix gain model is

Bn(z) = [~I� ~H(z)]N(z) (4.2)

In the spatial domain, (4.2) may be expressed as:

bn(m) = [~I� ~h(m)] � n(m) (4.3)

The �lter coe�cients ~hopt(m) must be chosen such that

E
h
k b(~v)

n
(m) k2

i
= E

h
k ~v(m) � [~I� ~h(m)] � n(m) k2

i
(4.4)

is minimized. Here, ~v(m) represents a �lter with matrix-valued coe�cients

that models the linear approximation of the human visual system response.

To ensure that all of the error is di�used (lossless error di�usion) from each

image plane I introduce the constraint

~�13M�1 = 13�1 (4.5)

where 13M�1 is a 3M � 1 column vector with all elements equal to unity, and

13�1 is a 3� 1 column vector with all of its elements equal to unity:

~� =
h
~h0 j ~h1 j : : : j ~hM�1

i
(4.6)

I assume that the cardinality of S, denoted j S j, is M . I can then order

the elements of S according to rows, from 0 : : :M � 1. ~� represents a matrix

formed by concatenating the M matrices ~h(k), k 2 S; ordered according

to rows. The matrix ~� proves useful in deriving an e�cient algorithm for

implementing the error �lter, as discussed in Section 2.4. The constraint set

may also be expressed as

C =

(
~h(i); i 2 S j

X
i

~h(i)1 = 1

)
(4.7)
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For the purpose of deriving the optimal �lter coe�cients, I will not

assume the pattern-color separable model, but instead use the most general

linear spatially-invariant weighting possible (viz: a spatial �lter with unstruc-

tured matrix-valued coe�cients). I rewrite (4.4) as

E
h
k b(~v)

n
(m) k2

i
= E

h
k ~a(m)� ~v(m) � ~h(m) � n(m) k2

i

= E

"
k ~a(m)�

X
k

X
k0

~v(k0)~h(k)n(m� k
0 � k) k2

#

= E Tr

"
~a(m)�

X
k

X
k0

~v(k0)~h(k)n(m� k
0 � k)

#

"
~a(m)�

X
k

X
k0

~v(k0)~h(k)n(m� k
0 � k)

#
T

(4.8)

where I have substituted a(m) = ~v(m) � n(m) and used the fact that for a

vector x, k x k2= Tr
h
xx

T

i
, where Tr denotes the trace operation. Also since

the trace is a linear functional, (4.8) may be further simpli�ed as

E
h
k b(~v)

n
(m) k2

i
= �1 +�2 +�3 +�4 (4.9)

where

�1 = E Tr
h
~a(m)~aT (m)

i
(4.10)

�2 = �E Tr

"
~a(m)

X
k

X
k0

n
T (m� k

0 � k)~hT (k)~vT (k0)

#
(4.11)

�3 = �E Tr

"X
k

X
k0

~v(k0)~h(k)n(m� k
0 � k)~aT (m)

#
(4.12)

�4 = E Tr

"X
p

X
q

X
r

X
s

~v(s)~h(r)n(m� s� r)nT (m� p� q)~hT (p)~vT (q)

#

(4.13)

By taking the �rst partial derivatives of (4.4) with respect to ~h(i) for all i 2 S

and setting them to zero, I obtain the �rst-order necessary conditions for an
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optimum solution. This requires that a scalar function be di�erentiated with

respect to a matrix. To do this, some results from linear algebra are required.

The following results are stated here without proof. For proofs of the

following, please see [40]:

d

d~XT
f(~X) =

 
d

d~X
f(~X)

!
T

(4.14)

d

d~X
Tr(~A~X) = ~A

T (4.15)

d

d~X
Tr(~A~X~B) = ~A

T ~B
T (4.16)

d

d~X
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Let us consider the terms �1, �2, �3 and �4.
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By using (4.16),
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By considering �4, ~h(i) only occurs in three terms �41, �42 and �43 where
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By using (4.16),
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By using (4.14) and (4.16) as in (4.20),
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To simplify d
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�43, I use (4.18) and (4.17)
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By using (4.18) in (4.25) and applying (4.17),
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Finally, combining (4.26) with (4.24) and (4.23) and combining (4.21)

and (4.20) yields the �rst-order necessary conditions for an optimum solution
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to the minimization of (4.4)
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These equations may be regarded as a generalization of the Yule-Walker equa-

tions [40] from linear prediction theory to the matrix case, with a generalized

linear spatially-invariant weighting. The above set of generalized Yule-Walker

equations may be solved for the optimal �lter subject to the constraints of

(4.5) using the steepest descent algorithm [40].

I use a white noise image as an approximation to the uncorrelated noise

image n(m). Thus, the required autocorrelation matrices are approximated

as
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where �(k) is the two-dimensional Kronecker delta function [40]. In the opti-

mization, the constraint is enforced by projection onto the convex constraint

set. The convergence behavior of this algorithm is discussed in [45]. The al-

gorithm is guaranteed to converge if the convergence parameter in the descent

algorithm is chosen to be small enough [45].

The descent algorithm may be formulated as
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where � refers to the iteration number, and P is the projection operator that

projects the iterate into the constraint set C, de�ned by (4.7). I use the

convergence parameter � = 0:005 in my simulations. The projection operator

is de�ned as [46]

P
�
~f
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�
�
= ~f

(�)(i)�
1

3 j S j

0
@X
i2S

~f
(�)(i)�~I

1
A1 (4.33)

Several random initial guesses were tried, and the descent algorithmwas

terminated when the changes in the objective function were below a prede�ned

threshold. Using this method, one may explore di�erent minimizers (solutions

that result in nearly the same objective function value). The uniformity in

the dot distributions produced by di�erent initial guesses was di�erent. It

has been shown [47, 48, 49] that frequency weighted mean squared error alone

cannot guarantee optimum dot distributions. This problem can be alleviated

by using threshold modulation [14]. For the purpose of this work, since I am

only concerned with the noise shaping behavior of error di�usion, I chose a

solution that had a reasonably uniform dot distribution.

My calibration data used a monitor display  � 2:2, and a monitor

dependent transformation matrix ~O

~O =

0
B@

2:0935 7:6018 1:1235

0:7921 7:6394 1:6264

0:0894 0:8020 7:6618

1
CA (4.34)

The optimal �lter coe�cients obtained for this monitor were

~h(0; 1) =

0
B@ 0:6316 �0:1306 0:0323
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~h(1; 1) =

0
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1
CA
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~h(1; 0) =
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The optimal �lter that was obtained based on our calibrated color mon-

itor and was tested on �ve standard color test images (lenna, peppers, pasta,

fruits, hats). In each case, to evaluate the noise shaping behavior, I produced

undistorted halftones using the color signal distortion canceling method de-

veloped in Section 3.3.2. Section 3.3.2 showed that according to the matrix

gain model, the quantization error image in the distortion canceling method is

in fact the uncorrelated noise injection into the halftoning system. Therefore,

I used the error image produced while halftoning the set of test images with

distortion canceling schemes using the optimal �lter and the Floyd-Steinberg

error �lter, respectively, as the noise image in the objective function of (4.4).

The e�ective noise shaping gain (in dB) of the optimal �lter over the separable

Floyd-Steinberg �lter may be computed as

NG = 10 log10

0
@E

h
k b

(~v)
n�fs(m) k2

i
E
h
k b

(~v)
n�opt(m) k2

i
1
A (4.35)

where the numerator and denominator in the argument of the log function are

the objective functions computed by using (4.4) for the optimal �lter and the

Floyd-Steinberg �lter, respectively. Sample averages were used to estimate

the expectations. Table 4.1 tabulates the noise gain of the optimal �lter over

using a separable Floyd-Steinberg error �lter.

Fig. 4.1(a) shows the pasta image halftoned using Floyd-Steinberg half-

toning on each color plane. Fig. 4.1(b) shows a magni�ed view of a portion
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image Noise gain

(dB)

lenna 1.8691

peppers 1.5071

fruits 0.7529

pasta 0.7161

hats 0.1442

Table 4.1: Noise gain of the optimal �lter on standard test images.

of the image. Figs. 4.2(a) and 4.2(b) show the corresponding results for half-

toning with the optimal error �lter. The optimal �lter results in less visible

halftone noise. It signi�cantly reduces color impulses when compared with

scalar error di�usion using �lters with scalar coe�cients. The halftone noise

patterns produced by conventional Floyd-Steinberg error scalar �lter were sig-

ni�cantly more visible when observed on the calibrated monitor as compared

to the noise patterns produced by the optimal �lter. However the proposed

design procedure does not guarantee that the distribution of the color dots is

the most regular possible. It must be emphasized that since the optimal �lter

coe�cients are dependent on a particular monitor con�guration, the above

design process must be applied on a case-by-case basis. These �gures must be

viewed on a monitor, rather than printed, for a fair assessment of the image

quality1. Since our color model is de�ned in a device independent color space,

our preceding discussion holds for other color spaces as well. For example, if

we are working in a Cyan Magenta Yellow (CMY) color space (for a printing

application), then we can convert CMY into corresponding CIE XYZ coordi-

nates [44] and then into the opponent representation. Thus, using a new color

1Sample images are available at http://signal.ece.utexas.edu/~damera/col-vec.html



56

transformation matrix ~T, the optimal �lter for this case can be calculated

using the method described in this section.

4.4 Conclusion

This chapter formulates the error �lter design problem as the minimization

of a quadratic objective function formed by weighting the shaped noise in the

halftone with a linear model for the human visual system. The linear model for

the human visual system was based on the Poirson and Wandell [36] opponent

representation which models human sensitivity to color patterns. Using such a

model enables one to tune the error �lter design for a speci�c calibrated display

device. This is because the excitations of the cone photoreceptors depends on

the speci�c spectral pro�le of the color being viewed. The spectral statistics of

the colors are taken into account by means of a calibration transformation ~T.

The spatial sensitivities of individual opponent pathways is incorporated by a

linear �lter ~d(m). The optimal solution was shown to satisfy a matrix version

of the Yule-Walker equations [40]. A steepest descent approach was used to

solve the system of equations and explore the design space for more regular

halftone dot distributions. The designed error �lter outperforms separable

solutions like the method using the popular Floyd-Steinberg error �lter in

terms of color halftone noise visibility both qualitatively and quantitatively.

However, it was noticed by inspection that the dot spacing between color dots

was not visually optimum.
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(a) pasta halftoned with Floyd-Steinberg �lter.

(b) Magni�ed portion of halftone.

Figure 4.1: Performance of the separable Floyd-Steinberg �lter (images avail-
able at http://signal.ece.utexas.edu/~damera/col-vec.html).
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(a) pasta halftoned with optimal �lter.

(b) Magni�ed portion of halftone.

Figure 4.2: Performance of the optimal �lter (images available at
http://signal.ece.utexas.edu/~damera/col-vec.html).



Chapter 5

Clustered Dot Error Di�usion Halftoning

5.1 Introduction

This chapter exploits the duality between a multi�lter and a block �lter as

discussed in Section 2.3 to design algorithms for FM halftoning with canonical

dot shapes and AM-FM halftoning with user de�ned dot shape and dot size

modulation. An overview of current AM-FM halftoning methods is provided

in Section 1.2.4.

This chapter generalizes conventional error di�usion halftoning to pro-

duce FM halftones with user controlled dot size and shape. Unlike conventional

FM halftones, dot clusters of more than one pixel are allowed. The generated

FM halftones can be designed to have very low dot size/shape variation, while

their spacing is modulated depending on the underlying grayscale image. This

is di�erent from the AM-FM methods discussed above that have variable dot

shape/size. FM halftones with clustered dots may be used to provide robust

printed-dots over all graylevel values. The AM-FM halftoning methods dis-

cussed in Section 1.2.4 do not have control over the dot shape, although the dot

size may be controlled to some extent. Furthermore, the method presented in

this chapter is single pass unlike [27] and uses the conventional raster scan un-

59
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like [9, 26]. Unlike the previous methods, the method presented in this chapter

has user tunable sharpness control and multiresolution embedding capability

inbuilt into the framework. Further, with minor modi�cations, I show how

AM-FM halftones with/without user controlled amplitude modulation may

be produced with this framework. Finally, I show that the framework may

be implemented e�ciently, since it can take advantage of a parallel polyphase

�lterbank implementation. I refer to the framework as block error di�usion

since the notion of a pixel in conventional error di�usion is replaced with the

concept of a pixel block in our frame work. The quantization error at each

pixel in the pixel block is di�used to suitably selected pixels in neighboring

blocks in suitably selected proportions. Thus, an entire block of quantization

error is di�used.

Section 5.2 introduces the basic framework of block error di�usion by

formulating the underlying equations. Section 5.3 demonstrates the e�ect of

designing the block error �lter from well known scalar error �lter prototypes.

I also discuss how FM halftones with user-controlled dot shape and size may

be produced. Section 5.4 shows how to modify block error di�usion to incor-

porate sharpness control and embedded multiresolution rendering capability.

I extend block error di�usion to generate AM-FM halftones with/without user

controlled AM dots in Section 5.5. Section 5.6 derives an e�cient parallel im-

plementation for block error di�usion. This implementation is more e�cient

than the general parallel implementation of a multi�lter discussed in Section

2.4 due to the special structure of the designed block error �lters. Section 5.7

concludes the chapter by summarizing the contributions.
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Figure 5.1: System block diagrams for block error di�usion halftoning where
~h represents a �xed 2-D nonseparable FIR error �lter with matrix valued

coe�cients. The vector m represents the 2-D index (m1; m2).

5.2 Block Error Di�usion

Fig. 5.1 shows the block diagram illustrating block error di�usion. Although

the basic diagram resembles conventional error di�usion halftoning, there are

key di�erences. The input is an N �N block of pixels (called a pixel-block) as

opposed to a single pixel in conventional error di�usion. Consider each block

to be ordered into an N2-element vector as discussed in Section 2.2.

The quantizer output for each pixel in a pixel-block is exactly one

element from the discrete set O = f�1; 1g. Here, �1 represents black and +1

represents white. I quantize each pixel-block using a scalar quantizer. The

quantizer Q(�) is de�ned by

Q(u) =

0
BBBB@

Q(u1)

Q(u2)
...

Q(uN2)

1
CCCCA (5.1)

Q(ui) =

(
1 ui � 0

�1 ui < 0
(5.2)

The �lter in the feedback loop has matrix-valued coe�cients. The �lter

operates on the quantization error sequence e(m) to produce the feedback
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pixel-block of
error filter mask

current pixel-block

Figure 5.2: Block error �lter operating on pixel-blocks of 2 � 2 pixels. The
shaded circle indicates the current pixel-block. The un�lled circles indicate
the error image pixels underlying the block �lter mask. The pixels in the

output pixel-block are computed using 4 linear combinations of all 16 error
pixels within the error �lter mask.

signal sequence f(m) according to

f(m) =
X
k2S

~h(k)e(m� k) (5.3)

where m, k are two-dimensional index vectors, ~h(�) is an N2 � N2 matrix-

valued sequence, and S is the �lter support. As before, I assume a four-tap

�lter support de�ned by (horizontal, vertical) o�sets to the current pixel being

processed as S = f(0; 1); (1; 0); (1; 1); (1;�1)g unless speci�ed otherwise.

In terms of block �ltering, the operation described by (5.3) can be de-

scribed with the help of Fig. 5.2 which illustrates a block error �lter operating

on pixel-blocks of 2� 2 pixels. The output pixel-block is computed by form-

ing 4 di�erent linear combinations of all pixels in the pixel-block mask which

consists of 16 pixels. Each linear combination produces a single output pixel

of the output pixel-block.
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Section 5.3 shows how the matrix-valued coe�cients of error �lter may

be designed to promote user de�ned minority pixel clustering in the generated

halftone image.

5.3 FM halftoning via block error di�usion

The block error �lter in the feedback loop governs how quantization error is

di�used to the neighboring pixel-blocks. For conventional error di�usion, one

only needs to decide how much of the quantization error is to be di�used to

each neighboring pixel under the constraint that all of the quantization error

be di�used. The case of block error di�usion also requires that all of the

quantization error be di�used. This imposes the constraints

~�1 = 1 (5.4)

~� � 0 (5.5)

where 1 represents an N2M2 � 1 column vector with all of its elements equal

to one. These conditions correspond to the assertion that the elements of the

matrix-valued error �lter coe�cients be non-negative so that each row sums

to unity.

5.3.1 Error �lter design

In designing the coe�cients ~�, I start with the coe�cients of a conventional

error �lter and map them into corresponding block �lters. By starting with

a scalar �lter with the same support as the multi�lter or block �lter, and by

representing its coe�cients by the row vector ~, where

~ =
h
g(0) j g(1) j : : : j g(M2 � 1)

i
(5.6)
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a multi�lter ~� may be derived from ~ as follows

~� = ~
O

~D (5.7)

where
N

denotes the Kronecker product operation. ~D is an N2 �N2 matrix

which we call the di�usion matrix. Since the element of ~ are the coe�cients

of a conventional error �lter they are non-negative and sum to one. Thus to

satisfy the constraints imposed by equation (5.4), the di�usion matrix must

satisfy the constraints

~D1 = 1 (5.8)

~D � 0 (5.9)

where again 1 represents an N2�1 column vector with all its elements equal to

one. Thus, by imposing structure on ~�, one only needs to design the N2�N2

di�usion matrix ~D.

I will now show that the decomposition of (5.7) is a natural and intu-

itive way of designing suitable error �lters to generate FM halftones via block

error di�usion. The physical meaning of deriving the block �lter from a given

conventional error �lter via (5.7) is that the quantization error incurred at

the current pixel block is di�used to the neighboring pixel-blocks in the same

proportions that a conventional error �lter di�uses error to its neighboring

pixels. The di�usion matrix ~D governs the proportions in which errors are

to be distributed within the pixels of a block. According to our proposed

structure, these proportions are constant independent of the relative position

of the pixel-blocks to which errors are di�used. This enforces a local isotropy

constraint. The constraints on the di�usion matrix simply indicate that all
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Figure 5.3: Halftone generated by pixel replication induced block clustering.
Here the original image is �ltered (to prevent aliasing) and downsampled. The
downsampled image is then halftoned using conventional error di�usion. Pixel

clustering is then induced by replicating each pixel to form a pixel-block. Note
the loss of high frequency information and blurred appearance.

of the quantization error that is di�used to a pixel block must be di�used

among pixels that make up the block. Thus the pixel-blocks in the block-error

di�usion framework are made to behave like pixels in conventional error di�u-

sion and the block errors are di�used in much the same way as pixel errors in

conventional error di�usion.

5.3.2 FM halftoning

This subsection will attempt to produce FM-halftones with dot clusters greater

than one pixel. One method of achieving dot-clustering would be to halftone

a downsampled version of the grayscale image and then using pixel replication

to get a halftone of the same size as the grayscale image. For 2� 2 minority
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pixel dot clusters, one could �lter the original grayscale image with a halfband

�lter, downsample the original grayscale image by retaining every alternate

sample in the horizontal and vertical directions, halftone the downsampled

grayscale image, and interpolate it to the resolution of the original grayscale

image by pixel replication. This process is identical to halftoning the �ltered

image after replicating the leftmost uppermost sample in each block to all

samples and using the identity di�usion matrix ~D = ~I4�4. Fig. 5.3 shows a

sample halftone obtained using a halfband pre-�lter followed by block error

di�usion with the identity di�usion matrix. Clearly, the spatial resolution of

the image su�ers due to the pixel replication and pre-�ltering.

My approach to FM halftoning relies on forming minority pixel dot

clusters by di�using the quantization error from each pixel block equally to all

of the samples within a pixel block. The error di�used to each block within

the block error �lter mask will, however, be unequal since it is governed by the

corresponding conventional error �lter coe�cients ~. Thus, I use the di�usion

matrix

~D =
1

4

0
BBB@

1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

1
CCCA (5.10)

The motivation for this is that the error at any sample within the current

pixel-block that is di�used to an adjacent pixel-block will be spread to all

the samples within the pixel-block equally. This means that the quantization

decisions of all pixels within the modi�ed pixel-block will be biased in the

same direction. Intuitively, this should result in the halftoned samples of that

pixel-block organizing themselves into a pixel-block cluster.
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Figs. 5.4(a) and (b) show sample halftones obtained using block er-

ror di�usion with the above di�usion matrix and using ~ =
h
1
16

5
16

3
16

7
16

i
and

~ =
h
1
48

3
48

5
48

3
48

1
48

3
48

5
48

7
48

5
48

3
48

5
48

7
48

i
, respectively. This corresponds to the

well known Floyd-Steinberg [2] and Jarvis [11] error �lters, respectively, with

support shown in Fig. 1.4. For the rest of the chapter, I �x ~ =
h
1
16

5
16

3
16

7
16

i
.

There is no need to use a pre-�lter to prevent spatial aliasing. By visual in-

spection of Fig. 5.4 the spatial resolution of the grayscale image is not compro-

mised. The halftones even exhibits sharpening, characteristic of conventional

Floyd-Steinberg and Jarvis error di�usion [19]. From visual inspection, the

dots are clustered into 2� 2 blocks.

Using the method described above, it is possible to cluster the halftone

dots into user de�ned shapes and sizes. Halftones with dot clusters of 3 � 3

and 4� 4 are produced using 9� 9 and 16� 16 di�usion matrices having all

of their elements equal to 1
9
and 1

16
, respectively. Figs. 5.5(a) and (b) show

halftones with non-rectangular dot clusters.

Figs. 5.5(a) and (b) were produced using the di�usion matrix 1
9
~19�9

similar to square block clustered dot FM halftones described earlier. However,

I quantize the minority pixel-blocks by replacing them with the desired dot

shape, while the majority pixel-blocks are quantized as usual by using (5.2).

Figs. 5.6(a) and 5.6(b) show the pixels within a pixel-block (shaded) that

are part of the dot shapes corresponding to the halftones of Figs. 5.5(a) and

(b). The shaded pixels are to be interpreted as having a value �1, while the

unshaded pixels are to be interpreted as having a value +1. The quantization

error is computed at each pixel-block location as the vector di�erence between
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(a) Floyd-Steinberg (b)Jarvis

Figure 5.4: Block error di�usion with block error �lters derived from conven-
tional Floyd-Steinberg and Jarvis �lters. Note the improved performance over

pixel replication induced block clustering.

the output shape (if we are quantizing a minority pixel) or the standard output

pixel-block (if we are quantizing a majority pixel). Thus, at each pixel-block

location one needs to determine if the current pixel-block to be quantized will

form a minority pixel-block or a majority pixel-block. This may be estimated

by comparing the majority pixel type (+1 or �1) in the current pixel-block

quantized at mid-gray against the majority pixel type in the corresponding

pixel-block in the original grayscale image that is quantized at mid-gray. If

the two are not equal, then the pixel-block is a minority block and the output

pixel-block is replaced with the desired dot-shape. If the two are equal, then

the current pixel-block is a majority pixel-block and the output pixel block is

simply the quantization of the current pixel-block at mid-gray.
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(a) "multiply" dots (b)"plus" dots

Figure 5.5: Block error di�used halftones with user controlled dot shapes.

5.4 Enhancements to FM-halftoning via block error dif-

fusion

This section shows that one may modify block error di�usion to produce

1. FM halftones with user-de�ned sharpness (Section 5.4.1) and

2. Embedded multiresolution FM halftones (Section 5.4.2).

5.4.1 FM halftoning with user-de�ned sharpness control

Eschbach and Knox [50] show that the sharpness of a halftone may be changed

by adding a fraction L of the input image to the quantizer input. Kite, Evans

and Bovik [19] showed that conventional error di�usion halftoning modi�ed as

described above is equivalent to pre-�ltering the original image with a tunable

�lter. I extend these results to block error di�usion, and hence, show that

FM halftones with user controlled sharpness may be be generated with low

complexity using the framework described in Section 5.2.
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(a) "multiply" dot (b)"plus" dot

Figure 5.6: FM halftone dot shapes. The shaded pixels indicate the pixels in
the pixel-blocks that are part of the halftone dot shape.

Fig. 5.7 shows the block diagram for block error di�usion with user-

de�ned sharpness control. Here, I add a linear transformation of the pixels in

the input pixel-block to the input to the quantizer. This section will show that

this approach is equivalent to pre-�ltering the original image with a tunable

block �lter ~g as shown in Fig. 5.8. This is similar to the claims of Proposition

1 of Chapter 3. However, I do not need to invoke the matrix gain model for

the following discussion.

By analyzing Fig. 5.8, the input to the quantizer u(m) in the z-domain

is

U(z) = ~G(z)X(z)� ~H(z)E(z) (5.11)

E(z) = B(z)�U(z) (5.12)

From (5.11) and (5.12),

E(z) = [~I� ~H(z)]�1[B(z)� ~G(z)X(z)] (5.13)
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Figure 5.7: System block diagram for modi�ed block error di�usion halftoning.
~L represents a constant linear transformation.
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Figure 5.8: System block diagram for block error di�usion halftoning with a

�xed pre-�lter ~g with matrix valued coe�cients.

Substituting for E(z) into (5.11) yields

U(z) = [~I+ ~H(z)(~I� ~H(z))�1]~G(z)X(z)� ~H(z)(~I� ~H(z))�1B(z) (5.14)

By analyzing Fig. 5.7,

U(z) = X(z)� ~H(z)E(z) (5.15)

E(z) = B(z)�U(z) (5.16)
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From (5.15) and (5.16),

E(z) = [~I� ~H(z)]�1[B(z)�X(z)] (5.17)

Also, since

X
0(z) = [~I+ ~L]X(z)� ~H(z)E(z) (5.18)

By substituting (5.17) into (5.18)

X
0(z) = [(~I+ ~L) + ~H(z)[~I� ~H(z)]�1]X(z)� ~H(z)(~I� ~H(z))�1B(z) (5.19)

By comparing (5.14) and (5.19), we conclude that Figs. 5.8 and 5.7 are equiv-

alent in the sense that they have the same quantizer input and hence output

if

[(~I+ ~L) + ~H(z)[~I� ~H(z)]�1] = [~I+ ~H(z)(~I� ~H(z))�1]~G(z) (5.20)

Thus, if ~G(z) = [~I+ ~H(z)(~I� ~H(z))�1]�1~L+~I, Figs. 5.8 and 5.7 are equivalent.

This means that the pre-�lter ~g is tunable by varying ~L. This produces varying

sharpness in the output halftone. For reduced complexity, ~L is taken to be a

diagonal matrix of the form ~L = l~I. Figs. 5.9(a) and (b) show the e�ect of

tuning the parameter l on the sharpness of the resulting FM-halftones. As l

increases, the sharpness of the halftone increases.

5.4.2 Embedded multiresolution FM halftoning

Conventional embedded multiresolution halftoning [49] generates halftones at

successively lower resolutions from a given grayscale image x. The goal of

embedded multiresolution halftoning is to generate the embedded set E of

halftones bj

E =
n
b(j); j � 0 : b(j+1) = b(j) #M

o
(5.21)
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(a) l = 0:2 (b) l = 0:6

Figure 5.9: Block error di�used halftones with user controlled sharpness.

where #M denotes downsampling by M . Wong [49] generates the set of half-

tones E from x by adapting the error �lter. Suitably downsampled versions

of x are halftoned subject to the constraint that some of the pixels of the

output at that resolution were already determined by the halftone at a lower

resolution by the condition b(j+1) = b(j) #M .

I embed low-resolution halftones with smaller dot clusters into higher

resolution halftones with larger dot clusters. The reduction in dot cluster

size compensates for the loss in spatial resolution due to subsampling. The

embedding may be accomplished by designing the di�usion matrix directly.

Thus, block error di�usion using the new di�usion matrix will yield the desired

embedding. Without loss of generality, I will assume a separable subsampling

matrix � of the form

� =

 
M 0
0 M

!
(5.22)

I will also assume without loss of generality that M = 2.
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Let Shigher = diag(~Dhigher) represent the ordered set of the diagonal

elements of ~Dhigher ordered according to increasing rows, where ~Dhigher rep-

resents the di�usion coe�cients of the halftone at a higher resolution. The

location of the non-zero elements of Shigher indicates the shape of the higher

resolution halftone dot clusters. The embedding process requires that the dot

shape of the halftone at the lower resolution be such that, when upsampled to

the higher resolution, the location of the non-zero elements of Slower denoted

by NZ((" 2)Slower) is a proper subset of NZ(Shigher). Thus

NZ((" 2)Slower) � NZ(Shigher) (5.23)

This requirement is illustrated in Fig. 5.10 where a 2�2 dot cluster is embedded

into a 4� 4 dot cluster.

The di�usion matrix that will perform the embedding is designed as

follows. First the di�usion matrices of the multiresolution halftones are de-

signed subject to the constraint given by (5.23). The embedding matrix has

the same dimensions as the di�usion matrix of the highest resolution halftone.

The highest resolution halftone pixel locations that are also present in the

lower resolution halftone are considered. The quantization error at these pix-

els is not di�used equally to all of the pixels in the higher resolution dot shape

as with usual FM halftoning. Instead, the di�usion matrix does not have all

of its elements equal. The quantization error at a given pixel location is only

di�used equally to all of the pixels that will be included in the lowest resolution

halftone containing the given pixel. Thus, the quantization error at the pixel

location LMH in Fig. 5.10 is exclusively di�used to pixels of the neighboring

pixel-blocks that are marked L. The usual constraints on the di�usion matrix
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LMH   H MH

  H  H   H  H

  H

MH MH  H   H

  H   H   H   H

Figure 5.10: Halftone dot shape embedding. Pixels belonging to the highest
resolution halftone (4 � 4 pixel dot shape) are indicated with the letter H.
Pixels belonging to the medium resolution halftone (2�2 pixel dot shape) are

indicated with the letter M. Pixels belonging to the lowest resolution halftone
(1 � 1 pixel dot shape) are indicated with the letter L. Note that a pixel
belonging to a lower resolution dot shape also belongs to the higher resolution

dot shapes.

as de�ned by (5.8) still apply. Thus, when the output halftone is subsampled,

the resulting dots will again cluster together into dots of the lower resolution

halftone.

An example of the embedding process is illustrated in Fig. 5.10. In this

case

~D3 =
1

16

�
~116�16

�
~D2 =

1
4

�
~14�4

�
~D1 = (1) (5.24)

where ~1n�n denotes an n � n matrix with each element equal to one. The
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(a) 512� 512 halftone with 4� 4 dot clusters.

(b)256� 256 halftone with 2� 2 dot clusters.

(c) 128� 128 halftone with 1� 1 dot clusters.

Figure 5.11: FM halftones embedded in halftones with a larger dot size.
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di�usion matrix that performs the embedding is

~Dembed =
�
l h m h h h h h m h m h h h h h

�
T

(5.25)

where

l =
�
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�
T

(5.26)

m =
�
0 0 1

3
0 0 0 0 0 1

3
0 1

3
0 0 0 0 0

�
T

(5.27)

h =
�
0 1

12
0 1

12
1
12

1
12

1
12

1
12

0 1
12

0 1
12

1
12

1
12

1
12

1
12

�
T

(5.28)

Fig. 5.11 shows the e�ect of halftoning using the di�usion matrix ~Dembed.

Fig. 5.11(a) shows the highest resolution halftone with 4 � 4 block clusters,

while Figs. 5.11(b) and (c) show successively downsampled versions of (a) by

the downsampling matrix �. Typically, the lowest resolution thumbnail image

could be displayed on a monitor, and the higher resolution halftones could be

used to print the higher resolution versions of the thumbnail image.

5.5 AM-FM halftoning via block error di�usion

With a given block size, two di�erent methods may be employed to produce

AM-FM halftones by allowing user control of dot shape and dot size, respec-

tively, as discussed next in Sections 5.5.1 and 5.5.2.

5.5.1 AM-FM halftoning with variable dot shape

AM-FM halftoning varies the shape/size of the dot clusters are varied depend-

ing on the graylevel value to be rendered. The dot shape is varied with user

control. This is similar to amplitude modulation in communication theory, in
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(a) AM dot modulation with array (b)AM dot modulation with array
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Figure 5.12: Block error di�used AM-FM halftones. The AM dot modulation

is induced by a user de�ned dither mask. However the AM dots are distributed
as with usual FM halftoning.

which the amplitude of the carrier sinusoid is modulated in accordance with a

message signal [51].

An array of thresholds is used to introduce AM modulation while quan-

tizing each pixel-block. Thus the shape of the dot at each pixel-block is not

predetermined as in the case of FM halftoning, but depends on the graylevel

values of the pixels in the pixel-block. The AM dot clusters must be dis-

tributed using FM. This can be accomplished using the block error di�usion

framework.

The key to producing user-controlled AM dot clusters is to allow the

user to de�ne a clustered-dot dither mask as the AM modulating array. Thus



79

the quantizer function of (5.2) is modi�ed as follows.

Q+
m
(ui) =

(
1 ui � Ti;

�1 ui < Ti
(5.29)

Q�
m
(ui) =

(
1 ui � �Ti;

�1 ui < �Ti
(5.30)

where Q+
m
(�) and Q�

m
(�) are used depending on whether the minority pixel-

block is white (+1) or black (�1) respectively. Ti is a user de�ned threshold.

The AM dot modulation is only applied in pixel-block locations where a mi-

nority dot cluster is to be formed. Using the quantizer function de�ned in

(5.29) on majority pixel-block locations results in undesirable dot modulation

at the majority pixel-block locations, which causes periodic artifacts similar

to those observed with screened halftones. In order to apply the dot modula-

tion selectively, one needs to determine if the current pixel block will give rise

to a minority pixel-block cluster. This may be estimated by comparing the

majority pixel type (+1 or �1) in a pixel-block quantized at mid-gray against

the majority pixel type in the corresponding pixel-block in the original gray-

scale image that is quantized at mid-gray. If the two are not equal, then the

pixel-block is a minority block and the current pixel-block is requantized using

(5.29). If the two are equal, then the current pixel-block is a majority pixel-

block, and no requantization is necessary. In either case, the quantization

error is di�used as with usual FM halftoning as described in Section 5.3.

Figs. 5.12(a) and (b) show example images halftoned using the method

described above with two di�erent AM modulation threshold arrays. The de-

sired variation in the minority pixel dot clusters that are themselves frequency

modulated is exhibited. The limit cycle artifacts above the hat region of the
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Figure 5.13: Block green noise error di�usion halftoning with hysteresis 2-D
block FIR �lter ~f , and scalar gain g.

images are a characteristic of Floyd-Steinberg error �lter which was used to

derive the block error �lters we used. By viewing the images from a distance,

one can a�rm that the gray tones of the original image are indeed reproduced

by block AM-FM error di�usion halftoning.

5.5.2 AM-FM halftoning with user de�ned dot size

A method to generate AM-FM halftones with user-de�ned dot size but uncon-

trollable dot shape is an extension of conventional error di�usion with output

dependent feedback due to Levien [9] to the case of block error di�usion. The

resulting structure is a blocked version of green noise error di�usion. Fig.

5.13 shows the block diagram for block green noise error di�usion. Here a

linear transformation of the output vector is �ltered using a multi�lter and

fed back into the input to the quantizer. A scaling factor applied to the feed-

back from the output determines the size of the dots as in [25]. This promotes
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(a) AM dot modulation with g = 0:2 (b)AM dot modulation with g = 0:75

Figure 5.14: Block error di�used AM-FM halftones. The AM dot modulation
is induced by output dependent feedback. This results in smaller pixel clusters

further clustering together to form "super" pixel-block clusters. The user
cannot control the AM dot modulation although control of the gross dot size

is possible.

the clustering of dot pixel-blocks into super pixel-blocks which are a collection

of minority dot pixel-blocks. The scaling parameter controls the pixel-block

clustering. The feedback hysteresis �lter is designed by deriving it from a con-

ventional scalar �lter via methods described in Section 5.3. Fig. 5.14(a) and

Fig. 5.14(b) show sample halftones halftoned with scaling parameter g = 0:2

and g = 0:75, respectively. The increased dot clustering with increase in g is

evident.

5.6 E�cient parallel implementation of block error dif-

fusion

In this section, I show that an error �lter with matrix-valued coe�cients has

a parallel implementation, which can increase throughput by a factor N2 for a

block size ofN�N . A �lter with matrix valued coe�cients can be implemented
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with conventional �ltering operations applied in parallel to each component of

the vector sequence being �ltered [32]1.

While it is possible to derive the parallel implementation directly from

space domain block �ltering considerations as discussed in [32] so as to ex-

plicitly incorporate the relationship between multi�ltering and block �ltering

I derive the parallel implementation from a multi�lter perspective only.

By converting (5.3) to the frequency domain,

0
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1
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(5.31)

I represent the �ltering using Fig. 5.15. Each of the �lters H i

j
, for i; j =

0; 1; � � � ; N2 � 1, represents a conventional scalar �lter that can be derived

from the �lter coe�cients of the multi�lter ~� using the polyphase decompo-

sition [32]. Since ~� is �xed, the polyphase components of its rows may be

precomputed. N4 polyphase �lters are required for the implementation.

The result is a set of conventional �lters with scalar coe�cients, which

enables the components of the input signal vector sequence to be bu�ered and

�ltered independently of the other components. Since each �lter H i

j
has fewer

coe�cients than a row of ~� by a factor N2, the throughput is increased by a

factor of N2 when the �ltering is implemented in parallel on N2 processors.

Due to the redundancy in the di�usion matrix further savings in com-

1The corrected version of this paper is available at

http://www.ece.utexas.edu/~bevans/papers/2000/multifilter/index.html
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putation can be achieved. This is because in the case where the di�usion

matrix has all of its elements equal (e.g. for block FM and block AM-FM

halftoning), F0(z) = F1(z) = � � � = FN2�1(z). Thus, only one set of parallel

scalar �ltering operations is required. In fact, each parallel �lter is identical to

the scalar error �lter prototype used to design the block �lter. By neglecting

the cost of determining if the current pixel-block is a minority pixel block or

not, then the block error di�usion could be up to N2 times faster than conven-

tional error di�usion. This is because each scalar polyphase �lter operates on

an image of 1
N2 times smaller than the image a conventional scalar error �lter

operates on in regular error di�usion halftoning. If the number of pixels in a

block N2 is a power of two, then the summation of the outputs of the parallel

�lters can be accomplished with a single shift operation.

5.7 Conclusion

This chapter introduces a general framework called block error di�usion for

producing FM and AM-FM halftones with user controlled shape, size and

sharpness. The framework is also able to embed FM halftones in other FM/AM-

FM halftones. Further, owing to the structure of the block error �lter, I give

a parallel implementation for block error di�usion. The structure imposed on

the block error �lter encapsulates the properties of conventional scalar error

�lters. Thus, improved grayscale error �lters with reduced artifacts would re-

sult in better block error �lters. Block error di�usion may be considered a

natural extension of scalar grayscale error di�usion to FM halftoning with dot

clusters of more than one pixel.
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Figure 5.15: A parallel implementation of a multi�lter which computes the nth

component of the output signal N2-vector sequence. N4 �lters are required
for the computation of all of the components of the output vector sequence.



Chapter 6

Conclusion

This dissertation has develops new tools for the analysis, design, and imple-

mentation of vector error di�usion halftoning systems. Here, I summarize the

contributions of the dissertation and suggest opportunities for future work in

this area.

Chapter 2 introduces the general theory of �ltering vector-valued sig-

nals. I show the duality that exists between the processing of vector-valued

signals and scalar-valued \blocked" signals. In both cases, the generalized lin-

ear spatially invariant �ltering may be accomplished via a convolution using

a �lter with matrix-valued coe�cients. These �lters, when put into polyphase

form, have an e�cient parallel implementation. I also show that such an imple-

mentation was especially valuable when using conventional embedded digital

signal processor architectures. Since the error �lter in vector error di�usion has

matrix-valued coe�cients, the results of this chapter apply directly to e�cient

implementations of vector error di�usion.

Chapter 3 formalizes and generalizes the idea that error di�usion may

be approximated as a system that produces frequency distortion and adds

additive noise [52]. The modeling approach generalizes modeling methods for

85
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scalar error di�usion [19] to the vector case. I linearize vector error di�usion

based on a \matrix gain model" for the quantizer that accounts for correlations

among the components of the vector error being di�used. I use this modeling

to predict the linear signal distortion and noise shaping e�ects of vector error

di�usion. Based on the model, I derive a low-complexity compensation method

to eliminate signal frequency distortion in vector error di�usion. The model

could potentially be used for color halftone compression, in which one may

decide to allocate bits according to the signal distortion and noise injection

pro�les predicted by the model. Spatially varying extensions of the model

could be used to optimize our inverse halftoning approach of [53, 54] and extend

it to color images. Spatially varying extensions to the distortion canceling

method presented in Chapter 3 have been analyzed in our work on optimal

threshold modulation [55] for the speci�c case of grayscale image halftoning.

Chapter 4 develops a model-based error �lter design method in which

the objective is to minimize the visual e�ect of the additive noise injection

produced by vector error di�usion. I cast the optimal error �lter design prob-

lem as a generalized weighted linear prediction problem and derived the set

of equations that may be regarded as a generalization of the Yule-Walker

equations. The solution of the generalized set of equations results in color

error �lters with visually optimum noise shaping. The explicit modeling for

the human visual system incorporates a generalized linear spatially invariant

matrix-valued weighting and is not restricted to the pattern-color separable

model [36] that is used to obtain our �lters. Thus, more general linear vi-

sual models could be used if they were available. Future work could explore

the role of the constraints in designing optimal color error �lters. Better re-
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sults were obtained when the lossless di�usion constraints were not strictly

observed. Symbolic optimization such as the approach of [56] could be used to

explore constrained design spaces in an automated framework where the error

�lter can be simultaneously optimized to satisfy several constraints.

Chapter 5 exploits the idea that error di�usion on \blocked" grayscale

images is equivalent to vector error di�usion. The objective of this \block er-

ror di�usion" is to produce FM halftones with clustered dots. The error �lter

in this case was derived from a conventional error �lter prototype. Several

extensions to basic FM halftoning were suggested including halftoning with

user-controlled dot shapes, embedded mutiresolution halftoning, halftoning

with user-controlled sharpness and AM-FM halftoning with and without dot

shape and dot size control. Since the block error �lter has a well structured and

redundant form, I show that a vector error di�usion implementation of block

error di�usion may be accomplished at a fraction of the computational com-

plexity of regular vector error di�usion. Possible extensions of this work are

to design optimal error �lters depending on the dot shape or AM modulation

and extend the framework to color halftoning.

Future research in vector color error di�usion could focus on using the

matrix gain model to solve practical halftoning problems. In this dissertation

I suggested a few applications such as sharpness control and error �lter design

for optimal noise shaping. Future applications of the matrix gain model in

the area of color halftone compression, inverse halftoning of color halftones

and optimal spatially varying sharpness control seem promising. For example,

JPEG quantization tables or subband quantizer bit allocations in JPEG 200
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may be optimized based on the signal and noise transfer functions and the

visual model developed in this thesis. One may allocate fewer bits to image

frequencies where the color halftoning introduces high distortion. A method to

design JPEG quantization tables based on empirically determined frequency

distortions for grayscale image halftoning is described in [57]. In color error

�lter design there are two major open problems which need to be addressed by

future research. First, the constraints that are necessary for good image qual-

ity in terms of color smoothness (reduced irregularity in the halftone noise) and

halftone dot spacing need to be formulated. Second, a exible su�cient condi-

tion for the numerical stability of vector error di�usion needs to be established.

The design process suggested for color halftoning in this dissertation does not

guarantee optimal dot distributions or numerical stability. The stability of the

nonlinear feedback system governed by the error di�usion equations requires

that the quantization error be bounded for all input colors in the input color

gamut. For block error di�usion, one may be able to design optimal error �l-

ters that are appropriate for a given shape. However, the speed and e�ciency

of using the structured error �lters proposed in this dissertation will be com-

promised. The design of optimal AM screens to perform the AM modulation

in block error di�usion is also an open issue. The AM modulation may be

performed with di�erent screens depending on the graylevel being rendered.

Finally, the framework could be extended to halftone color images using color

clustered-dots.
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