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Digital halftoning is the process by which a continuous-tone image is converted

to a binary image, or halftone, for printing or display on binary devices. Error

di�usion is a halftoning method which employs feedback to preserve the local

image intensity and reduce low frequency quantization noise. It is a highly

nonlinear process, and it is therefore di�cult to analyze mathematically. In

this work, a linear gain model for the quantizer is presented which accurately

predicts the edge sharpening and noise shaping e�ects of error di�usion. The

model is used to construct a residual image that has a low correlation with

the original image. By weighting this residual with a model of the human

visual system, a measure of the subjective e�ect of the quantization noise

on the viewer is obtained. A distortion metric for the halftoning scheme is

also computed. By characterizing the edge sharpening, noise shaping, and

distortion of an error di�usion scheme, objective measures of subjective quality

of halftones are obtained. This permits the comparison of halftoning schemes.
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A new, e�cient inverse halftoning scheme for error di�used halftones

is presented that produces results comparable to the best current methods,

but at a fraction of the computational cost. A method of modeling inverse

halftoning schemes is demonstrated, and is used to generate residual images,

which are weighted with the human visual system model. An e�ective transfer

function for the inverse halftoning scheme is also computed. By characterizing

the degree of blurring and the noise content, objective measures of subjective

quality of inverse halftones are obtained. This allows competing inverse half-

toning algorithms to be compared. The linear gain model is further used to

design and analyze the performance of applications which include error di�u-

sion. The model of the human visual system is again used to obtain objective

measures of the quality of images produced by these applications.
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Chapter 1

Introduction

Since the advent of the printing press, it has been desirable to reproduce

grayscale (multi-bit) imagery on inherently binary (one-bit) media. Simple

truncation of the grayscale image gives visually unacceptable results; instead,

a specialized binarization procedure must be used that attempts to preserve

image features and graylevels. This process is known in the printing industry

as halftoning. By judiciously applying dots to the paper in patterns of varying

density, it is possible to achieve the illusion of grayscale.

Many digital halftoning methods exist, each with its own strengths and

weaknesses. In this chapter, an overview of the more common schemes is pre-

sented, and their advantages and disadvantages are described. The focus is

on error di�usion, and important concepts and mathematical results are in-

troduced that will be used throughout the rest of this work. The delta-sigma

modulator, which is the one-dimensional equivalent of error di�usion, is dis-

cussed, as is inverse halftoning; that is, the process by which a grayscale image

can be estimated from its halftone representation. Finally, the organization of

the rest of the dissertation is presented.

1
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1.1 Common halftoning methods

Devices such as printing presses, ink jet printers and laser printers cannot print

in shades of gray. They can only apply (or not apply) ink to the paper at every

point. Low-cost liquid crystal displays (LCDs) have the same limitation. To

reproduce grayscale imagery using these devices, it is necessary to halftone

the grayscale image to produce a binary image that gives the impression of

grayscale when viewed by a human being. In this section, the four most

common halftoning methods in current use are examined.

1.1.1 Classical screening

The oldest and simplest halftoning method is screening, also known as ordered

dithering [1]. A periodic mask of thresholds, or \screen", is constructed, which

is of the same size as the grayscale image. Pixels with intensities below the

corresponding screen threshold become zero (black) in the halftone, whereas

pixels with intensities higher than the threshold become one (white).

Figure 1.1 shows two classical screens. The thin dark lines represent

the borders between image pixels. The area surrounded by the thick black

line is the screen itself; areas surrounded by thick gray lines are replications of

the screen. The screen thresholds range linearly from 0 to 1, but to simplify

the �gure, the ordering of the thresholds is shown, rather than their grayscale

values. For instance, in Figure 1.1(a), the threshold labeled `1' has a value

of 1/19, the threshold labeled `2' has a value of 2/19, and so on, up to the

threshold labeled `18', whose value is 18/19. If this screen were used to halftone

a constant image of graylevel 1/2, then the pixels covered by thresholds 1 to
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(a) 19-level, clustered-dot. (b) 16-level, dispersed-dot.

Figure 1.1: Threshold masks for two common screening methods. The ordering

of the threshold values is shown, not their actual values. Shaded pixels show

the screened output for a uniform input of 1/2.

9 would be dark in the �nal image, and the pixels covered by thresholds 10 to

18 would be light. The halftone would be perceived as having a graylevel of

1/2. This is indicated by the shaded pixels.

If a screen is of size N pixels, it can support N + 1 graylevels, since

any integer number of pixels in the screen from zero to N can be made dark.

The di�erence between the two screens in Figure 1.1 (apart from the minor

di�erence in the number of graylevels they can support) is that the clustered-

dot screen shown in Figure 1.1(a) forms clumps, or clusters, of dots, while

the dispersed-dot screen shown in Figure 1.1(b) keeps the dots as far apart as

possible. This can be seen in the shaded pixels of Figure 1.1.

The ordering of the thresholds in the screen determines the character-

istics of the screen, and has a large e�ect on the visual quality of the halftone.
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(a) Original castle image. (b) Fourier transform.

                        

(c) Clustered-dot halftone. (d) Fourier transform.

                        

(e) Dispersed-dot halftone. (f) Fourier transform.

Figure 1.2: Screened halftones and their discrete Fourier transforms.
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Figure 1.2(a) shows the original castle image.1 Figures 1.2(c) and 1.2(e) show

the clustered-dot and dispersed-dot halftones, respectively. Both halftones

contain noticeable artifacts, most notably contouring (false edges) due to the

low number of graylevels, and a loss of spatial resolution because of the large

screen size. The number of graylevels can be increased at the expense of a

loss of spatial resolution by using a larger screen. Both methods also su�er

from Moir�e patterns, which are caused by halftoning an image with a strong

component at a frequency close to the screen frequency.

Clustered-dot screening produces a much coarser, more visually objec-

tionable image than dispersed-dot screening. The advantage of the clustered-

dot technique is that it is more resistant to the phenomenon known as ink

spread [2]. When a laser printer applies toner to the paper, the resulting dot

is not a perfect square. It is usually round, with considerable overlap with

neighboring pixels; furthermore, the toner tends to spread out on the paper,

producing a dot that is larger than one would like. The result is that the toner

covers more area than expected, and images therefore appear darker than they

should. Knowledge of the pixel size and the ink spread function allows this to

be pre-corrected [3], but it requires individual calibration, taking into account

the characteristics of the printer, toner, and paper; a simpler solution is to

apply large blobs of toner. The e�ect of non-square pixels and ink spread

is only seen at the edges of dark areas, so the fractional increase in area,

1Images referred to as \original" have been halftoned by the printing process used to

render this work. All images are therefore of low spatial resolution (256� 256 pixels unless

otherwise stated) and have been reproduced at as large a size as possible, to mitigate the

e�ect of the printer. This produces grainy halftones. The graininess can be reduced by

holding the page further from the eye. This e�ect will be explained in Chapter 2.
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and hence the error in the graylevel, is smaller for the larger, clustered dots.

Clustered-dot screening is therefore more robust than dispersed-dot screening;

the improvement in consistency across toner and paper types outweighs the

loss in performance due to the increased dot size.

The screening process can be modeled as a pointwise multiplication of

the original image with a periodic dot pattern [4]. The result is that the Fourier

transform of the halftone consists of the spectrum of the grayscale image, and

multiple aliased copies of this spectrum spread over the entire frequency plane

[5, 6]. Figure 1.2(b) shows the discrete Fourier transform of the original castle

image, while Figures 1.2(d) and 1.2(f) show the discrete Fourier transforms of

the clustered-dot and dispersed-dot halftones, respectively. All three spectra

have similar low frequency regions, near the center of the images. However,

copies of the spectrum of the original image appear throughout the transforms

of the halftones. As will be explained in Chapter 2, the human visual system

can be modeled as a lowpass �lter. Low frequency image components are

therefore more visible than high frequency components. The fact that the

aliased spectra are higher in frequency for the dispersed-dot halftone than

for the clustered-dot halftone explains the more pleasing appearance of the

dispersed-dot halftone, since they are more strongly attenuated by the lowpass

human visual system.

The primary advantage of screening is its simplicity. It is a point pro-

cess, that is, only the graylevel of the current pixel, and not its neighbors,

is required to compute the output. A single threshold operation per output

pixel is required, and, since the screens themselves are small, little memory is
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needed. Furthermore, the resistance of clustered-dot screening to ink spread

and dot positioning errors makes it attractive for lower cost printers.

1.1.2 Dithering with blue noise

In 1987, Ulichney introduced the concepts of blue noise and principal frequency

to characterize halftoning algorithms [1]. All halftoning algorithms introduce

error into an image; this error is known as quantization error, since it is due to

reducing the wordlength from a typical value of eight bits to one bit. Under

certain circumstances, referring to this error as quantization noise is justi�ed.

Use of the term \noise" in this context implies that the quantization error has a

random character. Ulichney proposed that noise with a highpass characteristic

(\blue noise") was the ideal error from a perceptual point of view [7]. He also

showed that halftones created by error di�usion, which is described in Section

1.1.4, have such a characteristic.

Figure 1.3 shows the noise spectrum produced by halftoning a uniform

(DC) input image with a halftoning scheme that has ideal blue noise charac-

teristics. Here, fr refers to radial spatial frequency, de�ned as
q
f 2x + f 2y , where

fx and fy are the spatial frequencies in the x and y directions, respectively,

and the the noise power is assumed to be isotropic. Ulichney showed that im-

ages with isotropic noise spectra have a higher perceived quality than images

whose noise power is not isotropic. The spectral distribution is characterized

by low noise power at low radial frequencies, a sharp transition to a peak at

the principal frequency fg, and a 
at power spectrum above fg. The principal
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required than for classical screening (typically 128�128 or 256�256 pixels) so

that the periodicity of the screen is not noticeable. In psychophysical testing,

halftones generated by the blue noise mask rate much higher than halftones

created by ordered dithering, for the same computational cost [9]. Before their

work, it was assumed that the blue noise characteristic could only be achieved

by a neighborhood process, that is, one that requires knowledge of the gray-

levels of the current pixel and its neighbors to compute an output pixel. Such

processes are discussed next.

1.1.3 Direct binary search

Direct binary search (DBS) methods, �rst introduced in [10] by Analoui and

Allebach, create halftones by directly manipulating the pixels in the halftone to

minimize a distortion measure, such as the weighted mean squared error. (An

example of such a metric is discussed in detail in Chapter 2.) The modi�cation

of pixels is governed by a heuristic that allows a small number of manipulations,

such as pixel toggling and pixel swapping with a neighbor. The procedure

is iterative, and can require thousands of passes through the image if the

starting point is not chosen carefully. It is therefore very slow. Furthermore,

convergence on the optimal image is not guaranteed.

Figure 1.4(a) shows the original castle image, while Figure 1.4(c) shows

the DBS halftone. The halftone has a pleasing, isotropic arrangement of dots

in the shadow areas, with little arti�cial texture. The apparent noise level is

low, and the edges are sharp. Its discrete Fourier transform, shown in Figure

1.4(d), resembles the discrete Fourier transform of the original image at low

frequencies, but is swamped by quantization noise as the frequency increases.
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(a) Original castle image. (b) Fourier transform.

                        

(c) DBS halftone. (d) Fourier transform.

Figure 1.4: 512 � 512 direct binary search halftone and its discrete Fourier

transform. The original image and the DBS halftone were provided by Pro-

fessor Jan P. Allebach and David J. Lieberman, Purdue University. Their

assistance is gratefully acknowledged.
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The noise is almost perfectly isotropic.

Related to DBS are iterative techniques for designing stochastic half-

toning screens. In this application, the high computational cost of the search is

unimportant, because the screen is computed o�-line. A conventional screen-

ing technique is used to generate the halftone itself [11, 12]. Models can be

incorporated into the design of the screen to match the human visual system,

and to improve performance on a given printer [13].

Although DBS is slow, algorithms exist which are reasonably e�cient

for a search-based scheme. The halftones it produces are close to the best

possible; techniques such as simulated annealing can give a slight improvement,

but at enormously increased computational cost. Therefore, DBS serves a

useful function in establishing a practical upper bound on the visual quality

of a halftone. The purpose of all other halftoning schemes is to approach this

limit as closely as possible, at the lowest computational cost.

1.1.4 Error di�usion

Error di�usion was introduced in 1976 by Floyd and Steinberg [14]. It was a

completely new method of image halftoning that produced much higher quality

images than screening, though at increased computational cost. The algorithm

relies on distributing the quantization error from thresholding to neighbors of

the current pixel. As the image is scanned (usually in raster fashion, i.e., from

left to right, and top to bottom), the quantization error \di�uses" across and

down the image, giving the algorithm its name. Qualitatively speaking, error

di�usion accurately reproduces the graylevel in a local region by driving the
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x0(i; j)

e(i; j)
H(z)

�

x(i; j) y(i; j)
+

�

+

Figure 1.5: Equivalent circuit of error di�usion, also known as a noise shap-

ing feedback coder. The graylevel input image is denoted x(i; j); the one-bit

output is denoted y(i; j).

average error to zero through the use of feedback.

The equivalent circuit of error di�usion is shown in Figure 1.5. The

process is described mathematically as follows. Assume an input image x(i; j)

of size M �N pixels, with pixel values ranging from 0 to 1. As the algorithm

proceeds, each input pixel is e�ectively modi�ed by the weighted errors di�used

from previous pixels; this modi�ed input is denoted x0(i; j). For the �rst pixel

in the image, x0(i; j) = x(i; j). The modi�ed input x0(i; j) is thresholded to

produce an output pixel y(i; j):

y(i; j) =

(
0; x0(i; j) < 0:5

1; x0(i; j) � 0:5
: (1.2)

The quantization error is given by

e(i; j) = y(i; j)� x0(i; j) ; (1.3)

and is subtracted from neighboring pixels according to

x0(k; l) = x(k; l)� h(k � i; l � j) e(i; j) ;

(
0 < k < M � 1

0 < l < N � 1
; (1.4)

where h(i; j) is known as the error �lter. The �lter is denoted H(z) in Figure

1.5, where z refers to the two-dimensional vector (z1; z2) in the z-transform
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Figure 1.6: De�nition of past and future for raster ordering.

plane. The de�nition of (1.4) is general; any function h(i; j) is allowed. In

practice, h(i; j) is non-zero only for those pixels de�ned to be ahead of the

current pixel for the scan used, that is, for those pixels that have not yet been

thresholded. For instance, the raster scan de�nes an ordering shown in Figure

1.6. The scan is indicated by the dashed line. The current pixel is depicted by

the black disk; pixels de�ned to be in the past are labeled `P', while those in

the future are labeled `F' and shaded. The error �lter h(i; j) is non-zero only

for the `F' pixels. Thus the weighted quantization error is distributed only to

those pixels which have yet to be visited by the scan.

Floyd and Steinberg designed the following four-tap error �lter:

h(1; 0) = 7
16
; h(�1; 1) = 3

16
; h(�1; 0) = 5

16
; h(1; 1) = 1

16
: (1.5)

They arrived at these coe�cients \mostly by trial and error" [14]. However,

they give good visual results, and it has proved di�cult to improve on their

performance without increasing the computation required. The �lter coe�-

cients in (1.5) are indexed relative to the current pixel. The �lter is shown

schematically in Figure 1.7.

Figure 1.8 shows two examples of halftoning by error di�usion. The

original castle image is shown in Figure 1.8(a). The Floyd-Steinberg halftone
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Figure 1.7: Floyd-Steinberg error �lter. The current pixel is indicated by the

black disk.

is shown in Figure 1.8(c), while the halftone generated using a �lter due to

Jarvis et al. [15] is shown in Figure 1.8(e). The halftones show good rendition

of grayscale, sharp edges, and low apparent noise. However, artifacts due to the

raster order of processing can be seen in the dark tree in the right foreground,

and in parts of the sky. Both halftones are sharper than the original image;

this e�ect will be examined in Chapter 3.

In a similar manner to DBS halftones, the Fourier transform of an error

di�used halftone consists of the original image immersed in a bed of noise

whose power rises with increasing spatial frequency. Figure 1.8(b) shows the

discrete Fourier transform of the original image, while Figures 1.8(d) and 1.8(f)

show the discrete Fourier transforms of the two halftones. The low frequency

spectra of the halftones are almost identical to the original image. At high

frequencies, the quantization noise swamps the image power. The noise is

not completely isotropic, especially for the Jarvis image. The anisotropy is

consistent with the directional artifacts seen in the halftones.

In psychophysical tests, error di�used halftones rate higher than those

produced by screening, including screening with a blue noise mask [16]. The

improvement comes at the expense of an increase in computation, since error

di�usion is a neighborhood process. However, it produces the best images
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(a) Original castle image. (b) Fourier transform.

                        

(c) Floyd-Steinberg halftone. (d) Fourier transform.

                        

(e) Jarvis et al. halftone. (f) Fourier transform.

Figure 1.8: Error di�used halftones and their discrete Fourier transforms.
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y(t)
Z
dt

+
x(t)

�

Figure 1.9: Equivalent circuit of �rst-order delta-sigma modulator.

possible in reasonable time on printers which are capable of reliably and re-

peatably placing dots at speci�c points on the page.

1.2 Error di�usion and delta-sigma modulation

Delta-sigma modulation has become popular in the last decade as a way of

building high quality, low cost data converters in VLSI technology. It permits

the use of a low resolution converter in a high resolution application by feeding

back the quantization error to linearize the converter and reduce the in-band

quantization noise [17]. A �rst-order delta-sigma modulator is shown in Figure

1.9. The total noise power introduced by quantization is a function of the

coarseness of the quantizer. However, by spreading the noise power over a

larger range of frequencies using oversampling, the noise density is lowered,

and much of the noise power falls outside the passband [18].

Oversampling by a factor of four reduces the total noise power in the

passband by a factor of four, and therefore the noise voltage is reduced by a

factor of two, or 6 dB. This is equivalent to one extra bit of resolution [19].

This is a low rate of return; to increase the resolution of a one-bit converter

to 16 bits, for instance, an oversampling ratio of 4
15

(over one billion) would
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Figure 1.10: E�ect of oversampling on quantization noise spectrum. The

Nyquist rate is denoted fN . The oversampling ratio is eight times in this

�gure. Noise shaping is �rst order. The passband is shown shaded.

be required. The solution is to employ delta-sigma modulation, in which

the quantization noise is shaped, reducing its power at low frequencies at the

expense of the power at high frequencies.

Figure 1.10 shows the e�ect of noise shaping on the quantization noise

spectrum. The solid line shows the noise density for the Nyquist rate system,

normalized to unity. The shaded area represents the passband noise power.

Oversampling by a factor of eight (dot-dashed line) spreads the noise power

over a wider bandwidth, reducing the in-band noise density to 1=
p
8 � 0:35

of its value in the Nyquist rate system. Noise shaping (dashed line) further

reduces the in-band noise density, at the expense of out-of-band noise. In a

digital-to-analog conversion application, the oversampled bitstream is �ltered

by a low-order analog lowpass �lter to remove the out-of-band noise. By using
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a su�cient oversampling factor, and high-order noise shaping, resolution that is

limited only by the analog noise of the surrounding circuitry may be achieved.

Delta-sigma modulation has become synonymous with the use of a one-bit

converter operated at high oversampling rates, although longer wordlengths

are possible and are in common use [18].

The analogy between digital halftoning and delta-sigma modulation

was �rst made explicit by Anastassiou in 1989 [20]. He discusses features

common to both systems, including the nature of quantization error and the

e�ect of the error �lter on stability, and uses results from the literature on

delta-sigma modulation to explain e�ects seen in error di�usion. Bernard

provided further insight in 1991 [21]. However, the focus of both of these papers

is exploring e�cient halftoning methods in hardware, rather than analyzing or

improving error di�usion.

The delta-sigma modulator topology shown in Figure 1.9 is used in

analog-to-digital converters; the block labeled

Z
dt is a discrete-time analog

integrator. As explained in Chapter 3, systems employing one-bit quantiz-

ers are di�cult to analyze mathematically, because of the non-linearity of the

quantizer. However, a comparison of the time-averaged Fourier transforms of

the input and output signals of Figure 1.9 shows that the delta-sigma modula-

tor e�ectively shapes the spectrum of the quantization noise by placing a zero

at DC in the noise transfer function [18]. This reduces low frequency noise

at the expense of increased high frequency noise. In an oversampled system,

only the low frequency portion of the spectrum is of interest; noise-shaping

therefore reduces the in-band noise level.
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An alternative form of the delta-sigma modulator, known as the noise

shaping feedback coder, is used for wordlength reduction. The equivalent cir-

cuit of error di�usion, shown in Figure 1.5, is a two-dimensional, single-bit

version of this coder. The objective is to reduce the wordlength of an in-

put stream while retaining as much information as possible, without changing

the sampling rate. Simple truncation results in signals smaller than the least

signi�cant bit (LSB) being lost, and introduces correlated error. To avoid cor-

related error, dither is added to the input before wordlength reduction. Dither

is a random signal, usually with a triangular probability density function
2
,

which decorrelates the quantization noise and allows signals below the LSB to

be recovered [19]. It is an essential component of a digital audio system, and

was used by Roberts to reduce correlated quantization error in images, which

manifests itself as contouring [22].

1.3 Inverse halftoning

Inverse halftoning attempts to recover a grayscale image from its halftone

representation. It has become important now that manipulation of digital

images is possible on inexpensive embedded hardware and desktop computers.

A document which is printed and subsequently optically scanned may contain

a mixture of text, graphics, and halftones. If the scanned image is resized

or rotated, the quality of the halftones will be degraded [23]. It is necessary

to convert the halftones to grayscale before manipulating them. They can be

2Triangular pdf dither is commonly used because it perfectly linearizes the quantizer,

and results in an ideal noise 
oor, that is, one that is not modulated by the input signal. It

is believed to be the optimal dither signal in this regard [19].
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re-halftoned for printing, if needed. A side bene�t is that the re-halftoning

scheme can be tailored to the user's local printer for the best visual results.

Information is lost when converting a grayscale image to a halftone,

since the wordlength is reduced to one bit, and oversampling is not generally

used. Thus, exact recovery of a grayscale image from its halftone is impossible.

However, by using known characteristics of the halftoning scheme and typical

images, it is possible to reconstruct a visually acceptable image.

Halftones produced by error di�usion or direct binary search have a

highpass quantization noise spectrum. Since most natural images have a low-

pass spectrum [24], lowpass �ltering would appear to be the solution to inverse

halftoning. However, the image and noise spectra overlap, and it is impossible

to �nd a cuto� frequency for the lowpass �lter that suppresses noise su�-

ciently without unacceptably blurring the image. Instead, an adaptive scheme

must be used that varies the e�ective cuto� frequency of the lowpass �lter

according to the local image content. Halftones produced by screening have

strong artifacts, because aliased images of the Fourier transform appear at

low spatial frequencies, where they obscure important image components. It

is much more di�cult to achieve good grayscale reconstructions from screened

halftones than from error di�used halftones.

Several inverse halftoning algorithms have appeared in the literature.

However, those yielding high quality are computationally expensive [25, 26, 27].

There is therefore a strong motivation to devise inverse halftoning schemes

capable of high quality at a reasonable computational cost.
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1.4 Organization of the dissertation

The remainder of this dissertation focuses on error di�usion. A model that

predicts important features of error di�used halftones is presented. The im-

portance of modeling error di�usion to obtain accurate measures of halftone

visual quality is demonstrated. A new, fast inverse halftoning method for error

di�used halftones is presented, and it is shown that modeling is also important

for measuring the quality of inverse halftones. Ideas from the analysis of error

di�usion and the inverse halftoning algorithm are used to design and analyze

novel applications of forward and inverse halftoning. Finally, conclusions and

ideas for further research are presented. The work is organized as follows:

Chapter 2: Image Quality Metrics

The peak signal-to-noise ratio (PSNR) measure commonly used for image qual-

ity is inadequate for all but the simplest degradations. A model for the human

visual system that is used to derive objective measures of the subjective qual-

ity of halftones and inverse halftones is presented. The need to �rst obtain a

residual image that has low correlation with the original image before comput-

ing a weighted signal-to-noise ratio (WSNR) is demonstrated, and the WSNR

measure is used to assess the quality of halftones and inverse halftones.

Chapter 3: Error Di�usion

A mathematical analysis of error di�usion that uses a linear gain model for

the quantizer is presented. The model, whose accuracy is demonstrated in

three novel, independent ways, predicts the edge sharpening intrinsic to error

di�usion. It decouples the edge sharpening from the noise shaping, allowing
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the two e�ects to be quanti�ed independently. A distortion metric that char-

acterizes the tonality of halftoning schemes is also presented. The model also

provides a framework for the design of error �lters for speci�c applications.

The human visual system model from Chapter 2 is used to assess the quality

of halftones.

Chapter 4: Inverse Halftoning

A new inverse halftoning method is presented which produces inverse halftones

whose quality is equal to, or better than, images produced by existing methods,

but at a fraction of the computational cost. A model for inverse halftoning is

presented which decouples the intrinsic blurring from the quantization noise,

allowing each to be quanti�ed independently. The human visual system model

from Chapter 2 is used to assess the quality of inverse halftones.

Chapter 5: Applications

Results from Chapters 2, 3 and 4 are used to devise novel applications of

error di�usion. By introducing an approximation to the digital frequency,

optimum values for the sharpness parameter in modi�ed error di�usion are

derived. Rehalftoning and oversampling schemes are thereby designed, with

the emphasis on high visual quality and low computational cost.

Chapter 6: Conclusions

The original contributions of this dissertation are summarized, and ideas for

future work are presented.



Chapter 2

Image Quality Metrics

Algorithms such as halftoning, inverse halftoning, and image restoration result

in an image which visually resembles a benchmark image, commonly referred

to as the \original image". The performance of these algorithms must be

quanti�ed to allow comparison between competing schemes. Conducting psy-

chovisual tests under controlled conditions is time-consuming and error-prone.

There is therefore a strong incentive to develop a method of computationally

estimating image quality. A distance measure is required that numerically

expresses the perceived visual di�erence between an original image and a pro-

cessed version.

Traditionally, signal-to-noise ratio (SNR) and peak signal-to-noise ratio

(PSNR) have been used as distance measures. In this chapter, their de�ciencies

will be demonstrated, especially when they are used to assess halftones and

inverse halftones. A distance measure will be described that incorporates a

model of the human visual system. This measure has a higher correlation with

psychovisual data than both SNR and PSNR. It will also be shown that it is

necessary to �rst account for image distortions before computing the distance

measure, to obtain accurate results.

23
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2.1 Distance measures

Image processing algorithms often produce an image which is intended to vi-

sually resemble another image. Image restoration, for instance, attempts to

recover an image corrupted by blurring, noise, and possibly other distortions;

to test the accuracy of the restoration algorithm, the restored image is com-

pared to a known original. In lossy image compression, the aim is to compress

an image in such a way that, for a given bit rate, the processed image is as

similar as possible to the original. In digital halftoning, one attempts to create

a binary image which resembles the original image closely when viewed by a

human being. In inverse halftoning, the aim is to re-create a grayscale image

from a halftone that visually resembles the original.

To quantify the performance of such algorithms, one must de�ne a

measure of image quality. Signal-to-noise ratio (SNR) and peak signal-to-

noise ratio (PSNR) are commonly used. Both are mean-squared (l2-norm)

error metrics. For an image of size M �N pixels, SNR is given by

SNR (dB) = 10 log10

 P
i;j x(i; j)

2P
i;j(x(i; j)� y(i; j))2

!
;

(
0 < i < M � 1

0 < j < N � 1
; (2.1)

where x(i; j) denotes pixel (i; j) of the original (\clean") image, and y(i; j)

denotes pixel (i; j) of the noisy image. PSNR, being a peak measure, depends

on the wordlength of the image pixels. For 8-bit images, PSNR is given by

PSNR (dB) = 10 log10

 
D2MNP

i;j(x(i; j)� y(i; j))2

!
;

(
0 < i < M � 1

0 < j < N � 1
; (2.2)

where x and y are de�ned as before, and D is the maximum peak-to-peak

swing of the signal. For 8-bit images, D = 255 typically. SNR is de�ned as
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the ratio of the average signal power to the average noise power. PSNR is

de�ned as the ratio of the peak signal power to the average noise power.

The SNR and PSNR measures are mathematically tractable and have

historical appeal. Much work already exists to minimize the l2-norm of an

error, such as the LMS algorithm in adaptive �ltering [28] and rate-distortion

theory [29]; the attraction of the l2-norm is therefore great. However, the

correlation between SNR or PSNR and visual quality is known to be poor [30].

Nevertheless, PSNR is almost universally quoted as a �gure of merit for images.

Furthermore, despite the fact that PSNR is a noise measure, and therefore

should only be applied to images whose sole degradation is due to additive

noise, it is used in the literature to evaluate images with degradations that

are not noise-like. The blocking artifacts of the Joint Photographic Experts

Group (JPEG) compression scheme operated at high compression rates, for

instance, cannot be adequately quanti�ed by PSNR; neither can the so-called

\mosquito noise" of wavelet compression algorithms, since neither is additive

noise. Yet PSNR is still quoted for the images produced by such schemes.

Ultimately, most images are intended for human consumption (although

images processed automatically by computer vision algorithms are a notable

exception). What is therefore required is an error measure which is correlated

to visual di�erence. That is, a processed image which appears very similar to

the original should have a small error relative to it. Furthermore, as visual

quality degrades, the error should increase monotonically. Neither of these

criteria is met by either SNR or PSNR.

The lack of a good alternative to PSNR is probably due in part to the
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fact that many image distortions are possible, and characterizing each distor-

tion in terms of its e�ect on visual quality, let alone actually determining the

level of each distortion in a particular image, is daunting. Fortunately, some

image processing operations result in an image being modi�ed by a small set

of characterizable distortions. The e�ect of each operation can then be quan-

ti�ed, allowing comparison between schemes which are attempting to achieve

the same result. For instance, a block-based image compression scheme might

be characterized by the level of blocking and the degree of blurring at a given

bit rate. Block-based compression schemes could then be compared using these

two criteria. In this chapter, the degradation of halftones and inverse halftones

are separated into noise injection and frequency distortion. This allows both

e�ects to be quanti�ed, permitting comparison of competing schemes.

2.2 Human visual system

To devise a satisfactory measure of the visual quality of an image, it is nec-

essary to understand the mechanisms involved in human vision. The human

visual system (HVS) is a complicated, spatially-varying, non-linear system;

distilling its multiple characteristics into a single equation, especially one that

is linear, is a gross over-simpli�cation. Nevertheless, experiments have been

carried out that indicate that, over a limited range of inputs, the HVS can

be treated as a linear system [31]. Certain visual anomalies can be at least

partially explained by such a treatment. These include the nonlinear relation-

ship between intensity and brightness, and the Mach band e�ect, which causes

edges between large, uniform regions to appear sharper than they actually are.

Furthermore, assuming that the HVS is linear leads to the simpli�cation of
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any analysis which depends on the response of the HVS to a particular stim-

ulus. It is therefore reasonable to assess how applicable the linear model is to

halftones and inverse halftones.

The front end of the HVS consists of an optical system composed of

the cornea, iris, lens, and retina [32]. Incoming light is focused onto the retina

by the cornea and lens, whose thickness is adjusted by the ciliary muscles to

accommodate for object distance. The iris controls the amount of light entering

the eye by varying the size of the aperture through which light passes. The

retina is covered with a mosaic of photoreceptors, with the coverage being

densest in a small region close to the visual axis known as the fovea. Electrical

impulses generated by the photoreceptors in response to light are transmitted,

via synaptic connections to bipolar and ganglion cells in the retina, down the

optic nerve to the brain.

When an object is imaged by the eye, an inverted and reduced image

of the object falls on the retina. The size of the retinal image is determined

by the visual angle � subtended by the object, given approximately by

� =
l

d
radians ; (2.3)

where l is the size of the object, and d is the distance of the object from the

nodal point of the eye. (This is e�ectively equal to the distance between the

object and the observer for reasonable object distances.) The approximation

in (2.3) stems from the fact that tan(�) � � for small values of �.

As an object recedes from the viewer (i.e., as d!1), the visual angle

subtended at the eye by the object tends to zero. Consider a sine-wave grating
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situated at z = 0 in the plane formed by the x and y axes of a Cartesian co-

ordinate system. Let the intensity I of the grating be given by

I(x; y) = 1 + c sin(!gx) ; (2.4)

where c is the contrast of the grating (0 � c � 1), and !g is the angular

frequency of the grating in radians/m. It is assumed without loss of generality

that the grating intensity does not depend on y. Assume also that the observer

moves along the z axis, oriented in such a way that he or she perceives the

grating to be vertical. Since the grating is in�nite, the observer will not see

any change in the size of the grating as he or she moves; however, the angular

frequency subtended by the grating at the observer's eye will change, in a

reciprocal manner to (2.3). Speci�cally, when the observer is at a distance d

from the grating, the angular frequency at the eye is given by

fa = !gd radians=radian

=

!gd

360

cycles=degree :

(2.5)

The wavelength of light, and the quality of the human optical system, place

a limit on the resolving power of the eye, that is, on the maximum angular

frequency that can be resolved. This limit occurs at about 60 cycles/degree

[33]. Below this limit, gratings are resolved if they are of su�cient contrast.

The contrast sensitivity function (CSF) is the contrast required to resolve a

grating of a particular angular frequency. Under the assumption that the HVS

is linear, the CSF corresponds to the transfer function (angular frequency

response) of the system. It therefore determines the visibility of individual

Fourier components of an image, as seen by a human viewer.



29

The CSF is measured using a two-alternative forced-choice method un-

der threshold conditions, i.e., at signal levels which cause a response in the

ganglion cells that is asymptotically zero. The HVS can be assumed to be the

most linear at low signal levels; extrapolation of the CSF to normal (supra-

threshold) viewing conditions is somewhat di�cult to justify. However, the

success of the CSF in explaining the non-linear relationship between bright-

ness and intensity [31] suggests that the CSF model is justi�ed under certain

supra-threshold circumstances.

Several analytic approximations to the CSF have appeared in the lit-

erature [34, 35]. The CSF due to Mannos and Sakrison [34] is

H(fr) = 2:6(0:0192 + 0:114fr) exp(�(0:114fr)1:1) ; (2.6)

where fr is the radial angular frequency in cycles/degree, given by

fr =
q
f 2x + f 2y ; (2.7)

where fx and fy are angular frequencies in the x and y directions, respectively.

The CSF of (2.6) is radially symmetric. A simple modi�cation by Sullivan,

Miller, and Pios [36] accounts for the mild drop in visual sensitivity in the

diagonal directions. The angular modi�cation of fr is

f 0r =
fr

s(�)
; (2.8)

where � is the angle measured from the x axis, de�ned by � = tan
�1
(fy=fx).

The function s(�) is given by

s(�) =
1� w

2

cos(4�) +
1 + w

2

; (2.9)
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Figure 2.1: On-axis radial contrast sensitivity function. Solid: Original func-

tion due to Mannos and Sakrison [34]. Dotted: Modi�cation due to Mitsa and

Varkur [16].

where w, the symmetry parameter, is chosen to be 0.7. The s(�) function

varies from a value of 1 along the x and y axes to 0.7 along the lines de�ned

by y = �x. Thus the e�ective radial frequency is increased somewhat o�-axis,

causing a faster decrease in visual sensitivity than along the axes. Figure 2.1

shows the CSF along the x and y axes.

A further modi�cation was suggested by Mitsa and Varkur [16]. They

advocate 
attening the CSF at low angular frequencies to provide a lowpass,

rather than a bandpass, characteristic. The modi�ed CSF is shown by the

dotted line in Figure 2.1. At high angular frequencies, the unmodi�ed CSF

drops o� because of physical limitations imposed by the lens system of the

human eye. The drop-o� in contrast sensitivity for low frequencies, however,

is due to lateral inhibition [37]. In the retina, lateral connections made by
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horizontal and amacrine cells cause a reduction in the �ring rate of a ganglion

cell when its surrounding ganglion cells are exposed to the same stimulus, that

is, when the stimulus has a low angular frequency.

However, the unmodi�ed CSF is measured with the subject �xated at

one point. When examining a real image, the viewer continually changes the

point of �xation to examine features in the image. This movement introduces

a temporal factor into the contrast sensitivity. Spatio-temporal CSFs have

been published [33], and show that the CSF is 
attened at low angular fre-

quencies if the contrast of the stimulus varies slowly with time. Cornsweet

[31] demonstrates the low contrast sensitivity to low angular frequencies when

the �xation point is stationary, but also shows that even small movements of

the �xation point restore the lost sensitivity. Furthermore, sharp edges in the

image, which contain components at higher frequencies where the HVS is more

sensitive, enhance the e�ect. The result is that contrast sensitivity does not

fall o� appreciably at low angular frequencies when a viewer is not forced to

�xate at a single point. This is especially true when viewing halftones, since

they contain large amounts of high frequency quantization noise, even in areas

that were smooth in the original image [16]. Flattening the CSF at low an-

gular frequencies is therefore justi�ed. The two-dimensional CSF de�ned by

(2.6) and (2.9), together with the 
attening of Figure 2.1, is shown in Figure

2.2. The decreased sensitivity along the diagonals and the 
attening at low

angular frequencies are visible.

It is easy to demonstrate that the human CSF is not 
at. The lena

image in Figure 2.3(a) has been corrupted by Gaussian white noise, so that its
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Figure 2.2: Two-dimensional contrast sensitivity function computed according

to models of Mannos and Sakrison [34] (radial dependence) and Sullivan [36]

(angular dependence).

                        

(a) White noise. (b) Highpass noise.

Figure 2.3: E�ect of the frequency distribution of noise on its visibility. The

SNR of both images is 10.0 dB. The PSNR of both images is 15.7 dB. At

normal viewing distances, (a) is visibly noisier than (b).
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SNR relative to the original image is 10.0 dB. The image in Figure 2.3(b) has

been corrupted with highpass Gaussian noise (generated by �ltering Gaussian

white noise), so that its SNR relative to the original image is also 10.0 dB. At

normal viewing distances, Figure 2.3(a) is visibly noisier than Figure 2.3(b),

despite the fact that their SNRs are identical. This is because the bulk of the

noise power in Figure 2.3(b) falls at higher frequencies, which are attenuated

by the CSF. The subjective di�erence between the two images reduces as the

images are brought closer to the eye, as predicted by the CSF of Figure 2.2.

2.3 Weighted noise measurements

Because the CSF is a function of angular frequency, the size and viewing dis-

tance of the image must be taken into account when determining the response

of the HVS. For discretized images, such as those displayed on a computer

screen or printed on paper, one can compute the maximum angular frequency

at the retina for a given image and viewing distance. The arrangement is shown

in Figure 2.4. The following analysis refers only to the horizontal direction.

An analogous formulation applies to the vertical direction.

The angle subtended by the image at the eye in the horizontal direction

is � = 2 tan
�1
(l=2d) � l=d radians, for small values of �. The maximum

angular frequency in the discrete image is termed the Nyquist frequency; at this

frequency, neighboring pixels alternate from black to white, giving an angular

frequency of one cycle per two pixels, or � radians per pixel. Since there are

N pixels in the image horizontally, a component at the Nyquist frequency has

N=2 cycles, or N� radians, across the image. There are therefore N� cycles
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Figure 2.4: Computation of angular frequency at the eye. Horizontal (x)

direction is shown; vertical (y) direction is analogous.

contained in an angle of l=d radians; the angular frequency is given by

fa =

N�d

l
radians=radian

=

N�d

360l
cycles=degree :

(2.10)

Thus a knowledge of the number of pixels in an image, the size of the image,

and the viewing distance allows the maximum angular frequency at the eye to

be computed. As an example, for an image of size 512 � 512 pixels, printed

100 mm on a side, and held at a normal viewing distance of 400 mm, the

maximum angular frequency is approximately 18 cycles/degree.

By assuming that the HVS is linear, the e�ect on the viewer of a par-

ticular image component can be assessed using the following procedure. A

two-dimensional discrete Fourier transform (DFT) of the image is performed.

The maximum angular frequency of the image is computed using (2.10), and

an appropriate CSF is constructed using (2.6), (2.8) and (2.9). The DFT of
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the image is then multiplied point-for-point with the CSF, so that an image

component at a particular angular frequency is weighted by the value of the

CSF at that frequency. The result is the DFT of an image that would lead

to the same response when viewed by a visual system with a 
at CSF as the

original image leads to when viewed by the HVS.

Given two versions of an image of sizeM�N pixels, one clean (denoted

x) and the other corrupted by noise (denoted y), the weighted signal-to-noise

ratio (WSNR) of the noisy image is computed as follows:

WSNR (dB) = 10 log10

 P
u;v j(X(u; v)C(u; v)j2P

u;v j(X(u; v)� Y (u; v))C(u; v)j2

!
; (2.11)

where X(u; v), Y (u; v) and C(u; v) represent the DFT of the input image,

output image, and CSF, respectively, and 0 < u < M � 1, 0 < v < N � 1.

In the same way that SNR is de�ned as the ratio of average signal power

to average noise power, WSNR is de�ned as the ratio of average weighted

signal power to average weighted noise power, where the weighting is derived

from the CSF. Weighting is common in the audio industry, where the noise

performance of devices is often measured by employing \A-weighting" [38].

This de-emphasizes the noise at high and low frequencies to account for the

reduced sensitivity of the auditory system at the limits of the spectrum, giving

a better measure of the true audibility of the noise. For images, the high spatial

frequencies are de-emphasized using the CSF to give a better measure of the

true visibility of the noise.

Table 2.1 shows computed values of the WSNR for the two images

shown in Figure 2.3, for di�erent viewing distances. The �rst column lists
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Distance Maximum White Highpass

d (mm) fa (cyc/deg) WSNR (dB) WSNR (dB)

200 6.9 10.1 10.3

400 13.7 11.7 13.6

600 20.6 13.9 18.0

800 27.5 16.1 22.4

1000 34.4 17.9 26.5

Table 2.1: Weighted SNR measurements for noisy lena images of Figure 2.3,

relative to the original image. Normal viewing distance � 400 mm.

the viewing distance in mm. The second column shows the angular frequency

in cycles/degree corresponding to the Nyquist frequency for that viewing dis-

tance. The third and fourth columns list the computed WSNR measures for

Figures 2.3(a) and 2.3(b), respectively.

At the shortest viewing distance of 200 mm, both images have a WSNR

of approximately 10 dB, since the Nyquist frequency for this distance and

image size is 6.9 cycles/degree, which is almost entirely inside the 
attened

passband of the CSF. The WSNR of both images increases with viewing dis-

tance, since the noise is attenuated by the dropo� in the CSF at high angular

frequencies. However, the WSNR of the image corrupted with highpass noise

increases faster, as expected.

2.4 Accounting for other image degradations

As mentioned in Section 2.1, SNR and PSNR are commonly used as measures

of image quality. Noise-based measurements are appropriate in situations

where degradations are noise-like. For instance, a camera using a charge-

coupled device (CCD) as the light-sensing element produces a noisy image
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when operated under low-light conditions, because of the high gain needed in

the video ampli�er. It would therefore be appropriate to use a noise-based

measure, such as WSNR, to assess the quality of images from the camera.

When an image has been corrupted by other factors as well as noise, it

is necessary to account for these degradations before computing the WSNR;

otherwise, they will be erroneously incorporated into the weighted noise �gure.

Figure 2.5 shows an example. Figure 2.5(a) is the original lena image. Figure

2.5(b) has been sharpened with a �lter of size 3 � 3 pixels. (This amount of

sharpening is similar to that seen in some error di�usion halftoning algorithms,

as will be shown in Chapter 3.) Figure 2.5(c) shows the sharpened image

with highpass noise added to give an SNR of 10.0 dB relative to the clean,

sharpened image. Figure 2.5(d) shows the di�erence between Figure 2.5(c) and

Figure 2.5(a). This di�erence image is referred to as the residual. Because it

is correlated with the original image, and is therefore not signal-independent

noise, it is inappropriate to compute the SNR (or PSNR, or WSNR) of Figure

2.5(c) relative to Figure 2.5(a). However, it is appropriate to compute a noise-

based measure for Figure 2.5(c) relative to Figure 2.5(b), since the di�erence

between them is noise that is independent of the original image.

Table 2.2 lists WSNR �gures for the image in Figure 2.5(c) for �ve

viewing distances. The third column shows the WSNR relative to Figure

2.5(a), while the fourth column shows the WSNR relative to Figure 2.5(b).

As expected, the values in the third column are considerably lower than those

in the fourth column, because the residual includes power from the original

image. The WSNR �gures relative to Figure 2.5(b) are correct, because the
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(a) Original image. (b) Sharpened.                        

(c) Sharpened + highpass noise. (d) Residual (c) � (a).

Figure 2.5: E�ect of sharpening on WSNR measurement. The residual (d)

contains information from the original image (a), thereby making it unsuit-

able for use in a measurement of WSNR. The residual (c) � (b) consists of

independent noise, and therefore can be used to compute WSNR.
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Distance Maximum WSNR (dB)

d (mm) fa (cyc/deg) Ref. original Ref. sharpened

200 6.9 5.8 10.2

400 13.7 8.8 13.1

600 20.6 12.5 17.3

800 27.5 15.7 21.5

1000 34.4 18.1 25.6

Table 2.2: Measures of weighted signal-to-noise ratio computed using inappro-

priate (third column) and appropriate (fourth column) residuals for the images

in Figure 2.5. The �rst and second columns show the viewing distance and

maximum angular frequency, respectively. Figures in the third column were

generated using a residual correlated with the original image. Figures in the

fourth column were generated using an uncorrelated residual.

residual is uncorrelated with the original image. The results of Table 2.2 show

the importance of removing as much image power as possible from the residual

before computing the WSNR of an image.

2.4.1 Correlation of the residual with the original image

To quantify the degree to which a residual image R is correlated with an

original image I, a correlation measure between them must be de�ned. The

magnitude of the correlation coe�cient, CRI , is given by [39]

CRI =
jCov[R; I]j
�R �I

; (2.12)

where Cov refers to covariance, and �R and �I are the standard deviations

of images R and I, respectively. An absolute value in the numerator ensures

that 0 � CRI � 1, with 0 indicating no correlation, and 1 indicating linear

correlation. Thus CRI can be considered to be a measure of linear correlation
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between two images. The covariance is de�ned as

Cov[R; I] = E[(R� �R)(I � �I)] ; (2.13)

where E[�] denotes expectation, and �R and �I denote the means of R and I,

respectively.

Ideally, a residual image consists of independent additive noise, and

therefore has zero correlation with the original image. In practice, the corre-

lation will not be exactly zero, and noise-based measures such as WSNR may

be in error. It is therefore important to determine the e�ect on WSNR caused

by varying degrees of correlation. To this end, two images were generated:

an \original image" I, composed of lowpass �ltered noise, and a white noise

image N of the same size. A noisy, corrupted image J is created as follows:

J = � I +N ; (2.14)

where � is a gain factor. The residual image R is given by R = (�� 1)I +N .

By choosing �, one can force a prescribed linear correlation between R and

I. The correlation is measured for a given �, and the SNR and WSNR for J

relative to I are computed.

Table 2.3 shows the results for values of � ranging from 1.000 to 1.030.

As expected, the correlation CRI increases, and the SNR and WSNR decrease,

as G increases above 1. The WSNR falls by approximately 3 dB as the cor-

relation increases from zero to 0.100. This large variation underlines the im-

portance of keeping the correlation of the residual and the original image to a

minimum, preferably CRI < 0:020, for the WSNR �gure to be accurate.
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Gain � CRI SNR (dB) WSNR (dB)

1.000 0.000 28.0 31.7

1.005 0.019 27.9 31.6

1.010 0.038 27.7 31.1

1.015 0.058 27.4 30.5

1.020 0.077 27.0 29.7

1.025 0.096 26.5 28.9

1.030 0.115 26.0 28.0

Table 2.3: Variation of SNR andWSNR with correlation of the residual and the

original image, CRI . The WSNR is computed assuming a maximum angular

frequency of 20 cycles/degree. The �rst row shows the actual values of SNR

and WSNR for the given image, relative to the noiseless original. The other

rows show SNR and WSNR for increasing correlation between the residual and

the original image.

2.4.2 Application to error di�used halftones

It was shown in Chapter 1 that error di�used halftones have non-
at noise

spectra, because of the noise shaping property of error di�usion. Meaningful

perceptual noise �gures for halftones can be obtained by using WSNR. The

unweighted SNR of error di�used images is typically 1{2 dB, and the PSNR

is 6{7 dB, regardless of the scheme used. These low �gures stem from the

one-bit quantization inherent to all halftoning schemes, and give no indication

of visual quality. Di�erent error di�usion schemes have di�erent noise shaping

properties, however, and WSNR is able to distinguish between them.

It was also mentioned brie
y in Chapter 1 that an error di�used half-

tone is sharper than the original image, with the degree of sharpness being

dependent on the error di�usion scheme. This sharpening will be examined

further in Chapter 3. If the WSNR of an error di�used halftone is computed

relative to the original image, the result will be in error, because the residual
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between the sharpened halftone and the original is correlated with the original

image. It is therefore necessary to remove the sharpening before computing

the WSNR, as discussed in Section 2.4.1. In Chapter 3, a new model of error

di�usion is developed that solves this problem in one of two ways: either by

constructing a \clean" image that is sharpened in an identical way to the half-

tone, or by modifying the input image itself so that the resulting halftone is

not sharpened. Both methods produce residuals having a low correlation with

the original image. The correlation is lower for the second method, however,

and it is therefore used exclusively to determine WSNR.

In [16] it was reported that predictions of halftone quality using the low-

pass CSF presented in Section 2.2 correlated well with psychovisual measure-

ments. By removing sharpening �rst, the applicability of WSNR is extended to

halftones created by schemes that exhibit strong sharpening. To demonstrate

this, conventional (sharpened) halftones of the barbara image were computed

using the Floyd-Steinberg and Jarvis error �lters. The Jarvis �lter sharpens

more than the Floyd-Steinberg �lter, as shown in Figure 1.8(e). Unsharp-

ened halftones were also created using the same error �lters. Table 2.4 shows

computed values of WSNR for these halftones, for various viewing distances.

For the Floyd-Steinberg halftones, the correlation between the original

image and the halftone residuals was 0.030 for the sharpened halftone, and

0.001 for the unsharpened halftone. For the Jarvis images, the correlation was

0.094 for the sharpened halftone, and 0.025 for the unsharpened halftone. Ta-

ble 2.4 shows that the discrepancy in WSNR between the sharpened halftones

and the unsharpened halftones increases with maximum angular frequency,
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Maximum Floyd-Steinberg Jarvis et al.

fa (cyc/deg) WSH (dB) WNS (dB) WSH (dB) WNS (dB)

20 8.1 8.2 5.7 6.0

30 14.9 15.2 11.1 11.9

40 21.1 21.6 16.5 18.0

50 26.0 26.9 21.1 23.9

60 29.7 31.0 24.6 29.3

Table 2.4: Weighted SNR measurements for halftoned barbara images at dif-

ferent viewing distances. WSH is the WSNR between the conventional (sharp-

ened) halftone and the original image. WNS is the WSNR between the modi�ed

(non-sharpened) halftone and the original image.

and that this discrepancy is larger for the Jarvis �lter than the Floyd-Steinberg

�lter, as expected. By using an accurate model for halftoning, one ensures that

the WSNR �gures are accurate. The WSNR measure is used in Chapters 3

and 5 to assess the quality of halftones.

2.4.3 Application to inverse halftones

It was mentioned in Chapter 1 that an inverse halftone is a grayscale image cre-

ated from a halftone. It is blurred relative to the original image, and contains

quantization noise whose spectrum has been shaped by both the halftoning

and inverse halftoning processes. WSNR can be used to assess the perceptual

e�ect of the shaped noise in an inverse halftone. The fact that an inverse

halftone is blurred relative to the original image indicates that the blurring

must be taken into account before the WSNR is computed, to avoid error. In

Chapter 4, a model of inverse halftoning is presented that greatly reduces the

correlation of the residual, thereby allowing the application of WSNR.

Modi�ed Floyd-Steinberg error di�usion was used to create an unsharp-
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Maximum WSNR (dB)

fa (cyc/deg) Ref. original Ref. modeled

10 18.2 31.7

20 20.5 32.3

30 24.1 33.4

40 27.6 34.8

50 30.5 36.3

Table 2.5: Weighted SNR measurements for inverse halftoned barbara images

at di�erent viewing distances. The second column shows the WSNR relative

to the original image. The third column shows the WSNR relative to the

modeled inverse halftone.

ened halftone from the barbara image, and this halftone was then inverse half-

toned. A model inverse halftone was also created which exhibits the blurring

of the inverse halftone, but without the noise. The correlation of the original

image and the residual between the inverse halftone and the original is 0.365,

which is high enough to cause large errors in WSNR (see Table 2.3). The

correlation of the original image and the residual between the inverse halftone

and the model inverse halftone is 0.008.

Table 2.5 shows WSNR �gures for the inverse halftone at various view-

ing distances. The second column shows the WSNR relative to the original

image, while the third column shows the WSNR relative to the modeled in-

verse halftone. The large di�erence between the two WSNR �gures shows that

modeling the blur of inverse halftoning is extremely important to obtain true

weighted noise measurements. An inverse halftone, being a grayscale image,

is likely to be held closer to the eye than a halftone; halftones rely on the

lowpass �ltering action of the HVS to achieve high visual quality, whereas in-

verse halftones do not. Thus, the maximum angular frequency subtended at
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the eye by an inverse halftone is likely to be lower than that of a halftone. It

is in this region that the discrepancy between the two WSNR �gures is at its

greatest. The WSNR measure is used in Chapter 4 to assess the quality of

inverse halftones.

2.5 Summary

A contrast sensitivity function (CSF) from the literature that has been shown

to be a good predictor of visual quality for halftones has been modi�ed for

use with all error di�used halftones, including those produced by schemes that

greatly sharpen the image. The CSF has also been applied to inverse halftones,

which are blurred compared to the original image. A weighted signal-to-noise

ratio (WSNR) is thereby obtained that is a measure of the perceptual impact

on the human visual system of noise in the image. The technique relies on

modeling the frequency shaping of the process in question, thus reducing the

correlation of the residual with the original image. It was shown that this

correlation must be close to zero to obtain an accurate perceptual noise �gure,

thus allowing schemes to be compared.

WSNR is dependent on the size of an image, the number of pixels it

contains, and the viewing distance. To achieve high visual quality, halftones

must be viewed so that the Nyquist frequency fN subtends a large angular

frequency fa at the eye. The quantization noise is then greatly attenuated by

the lowpass CSF of the human visual system. Inverse halftones have no such

restriction, and typical maximum angular frequencies are likely to be lower

than for halftones. This will be taken into account in subsequent chapters.



Chapter 3

Error Di�usion

Digital halftoning quantizes a grayscale image to one bit per pixel, and is a

non-linear, spatially-varying system. In this chapter, a linear gain model for

the quantizer in error di�usion halftoning systems is presented that permits

analysis using linear methods. The model provides an accurate description of

the two primary e�ects of error di�usion: edge sharpening and noise shaping.

The accuracy of this model is demonstrated in three new ways.

As discussed in Chapter 2, it is necessary to account for distortions,

such as sharpening or blurring, before computing the weighted signal-to-noise

ratio (WSNR) of a processed image. This is important for error di�usion

schemes which greatly sharpen the image. The linear gain model accurately

quanti�es and models this sharpening. By quantifying the sharpening, one

obtains an objective measure of a subjective image enhancement; by modeling

it, one obtains an accurate WSNR measure. In addition, a distortion metric

can be computed which quanti�es the degree of tonality in the halftone. Thus,

the linear gain model permits objective measures of the subjective quality of

halftones to be made. It also makes possible the design and analysis of novel

halftoning schemes, which will be examined in Chapter 5.

46
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3.1 Previous work

As explained in Chapter 1, error di�usion is a digital halftoning method which

employs feedback to minimize the local weighted error introduced by quantiza-

tion. The image is scanned and the current pixel is quantized by thresholding.

The quantization error is subtracted from neighboring pixels in �xed propor-

tions according to the error �lter.

Error di�usion research can be classi�ed into two broad groups: work

aimed at improving the visual quality of halftones, and work aimed at ana-

lyzing the error di�usion process itself. The primary objection to the quality

of error di�used halftones is the presence of visually annoying artifacts, such

as idle tones. Section 3.1.1 describes approaches for reducing or eliminating

these artifacts at minimal computational cost. A thorough understanding of

error di�usion is essential to make improvements that are not purely ad hoc.

Section 3.1.2 describes previous analyses of error di�usion.

3.1.1 Reducing artifacts in error di�used halftones

The performance of an error di�usion scheme depends on the choice of the error

�lter. Two factors drive its design: the need for high quality halftones, and

the desire to minimize computational cost. That is, the smallest �lter which

achieves adequate visual quality is preferred. Computation can be reduced

further if the �lter coe�cients are �xed-point, or if they are dyadic, i.e., if

they can be applied using bit shifts rather than multiplications. In 1975, Floyd

and Steinberg asserted that a four-coe�cient �lter was the smallest that gave

good results [1], and this appears to have been veri�ed by later work. As a
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side bene�t, the Floyd-Steinberg �lter is dyadic.

In 1976, Jarvis, Judice and Ninke published a survey of halftoning

methods which included an error di�usion scheme with a 12-coe�cient error

�lter [15]. A similar �lter was later published by Stucki [40]. The motivation

behind these larger �lters is to improve image quality by reducing directional

artifacts in the image. These artifacts (or \worms"), which depend on the

scan, can be broken up by using a di�erent scan. For instance, the serpentine

scan, which is similar to the raster scan except that even rows are scanned from

right to left, can break up worms; however, this solution comes at the expense

of creating other worms that did not exist with the raster scan [41]. The

recursively de�ned Peano-Hilbert scan has also been used [42, 43], although

its pseudo-random nature leads to halftones with a noisy appearance.

Worms are the result of the quantization error being correlated with the

input signal. The quantization error can be decorrelated by dithering; however,

this reduces the signal-to-noise ratio (SNR) at the output. For a multi-bit

system with a large dynamic range, such as the compact disc audio standard,

the loss of a few dB of SNR because of dither is worth the improvement

in subjective quality obtained by decorrelating the quantization error [22].

For a critically sampled one-bit system such as error di�usion, the SNR is

already so low that a dithered image may appear worse than one that is not

dithered. Kolpatzik and Bouman's locally dithered error di�usion (LDED)

adds dither only in smooth regions of the image to reduce contouring without

greatly increasing the perceived noise level [44]. Because of computational

considerations, however, it is more common not to use dither in halftoning.
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Instead, the goal of a halftoning algorithm is to make the quantization error as

visually benign as possible. The direct binary search (DBS) halftone of Figure

1.4 shows what can be achieved: the quantization error is not objectionable,

and its Fourier transform is smooth and isotropic.

Ulichney showed that perturbing the weights of the error �lter in a

random fashion reduces worm artifacts and contouring [1]. Visual noise is

increased, because perturbing the error �lter is equivalent to dithering the

system [45]. A bene�cial side-e�ect of this scheme is that the size of the

error �lter can be reduced, thus lowering the cost of the algorithm. However,

unless a table of pseudo-random numbers has been pre-computed and stored

in memory, it may be more computationally expensive to generate and apply

the random weights than to use standard error di�usion with a larger �lter.

Knox and Eschbach reduced artifacts by modulating the quantizer

threshold [46]. The threshold is usually set to mid-gray; by varying it about

this point, artifacts can be reduced. Varying the threshold is equivalent to

adding dither at the quantizer. Section 3.2 shows that the transfer function

from the input of the quantizer to the output of the system is highpass. White

noise added at the quantizer therefore becomes high frequency (\blue") at

the output, thereby making it more pleasing to the eye [1]. Dithering at the

quantizer is used extensively in delta-sigma modulation for audio [18].

Fan addressed the problem of directional artifacts by using a two-pass

error di�usion technique, which distributes quantization error symmetrically in

the horizontal direction [47]. This results in a halftone with a more isotropic

distribution of dots in uniform areas of the image. The two-pass method
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doubles the computational complexity of the algorithm.

Wong and Allebach design an optimal error �lter using a model of

the human visual system [48]. They begin by assuming that the quantization

error can be modeled as additive white noise, and construct an error �lter that

minimizes its visual impact. They halftone the image with this error �lter, and

use the actual quantization error to compute a new error �lter. This procedure

is repeated until the change in the error �lter from one iteration to the next

falls below a threshold. Using a set of test images, they design a �lter that is

the same size as the Floyd-Steinberg �lter, but gives better subjective results.

Wong used an adaptive technique to improve the quality of error dif-

fused halftones [23]. At each pixel, the error �lter is updated using the least

mean squares (LMS) algorithm [28] to minimize a local error criterion. The re-

sulting images are of high quality, but computational complexity is increased.

Wong also used the technique to embed reduced-size halftones inside the half-

tone, which enables simple multiresolution rendering. This could be extended

to embed data in a halftone, e.g., for identi�cation or security purposes.

3.1.2 Analysis of error di�usion

Following the 1989 paper by Anastassiou examining the analogy between er-

ror di�usion and delta-sigma modulation [20], Knox published results in 1992

which showed that the error image (the image composed of the quantization

error at each pixel) is correlated with the input image. Section 3.2 presents a

model for the quantizer which is derived from the assumption that the quanti-

zation error is additive white noise that is uncorrelated with the input. Knox
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showed that this assumption is false, and noted that the sharpness of halftones

increased as the correlation of the error image with the input increased.

In 1993, Knox published an analysis of error di�usion using a serpen-

tine scan [49]. He showed that the serpentine scan results in a more symmetric

error spectrum than the raster scan. This coincides with the fact that artifacts

are less directional in serpentine-scanned halftones than in raster-scanned half-

tones. Fan analyzed the stability of error di�usion for generalized error �lters

[50]. Generally, the error �lter coe�cients are non-negative and sum to one

to guarantee stability. Stability is not guaranteed for all inputs if these con-

ditions are not met. One-dimensional delta-sigma modulators can su�er from

instability, and steps must be taken to ensure that the system is stable for

all expected input sequences [18]. Reducing the input level improves stability

at the expense of SNR. This is not really an option in halftoning, since the

SNR is already so low. Error di�usion schemes must therefore be stable for

full-scale inputs.

The worms mentioned in Section 3.1.1 are also seen in audio appli-

cations of delta-sigma modulation. In audio, they are known as limit cycles

or idle tones, since they result from the system cycling periodically through

a �nite set of states when the input is constant. If the period is long, then

the tones fall in the audio band, where they are easily discerned by human

listeners, even if they fall below the noise 
oor [19]. Part of audio delta-sigma

modulator design is ensuring that limit cycles either do not occur (because of

the modulator design itself, or because dither is used), or are inaudible [18].

In halftones, limit cycles appear as strong patterns. These patterns may
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(a) Original image. (b) Floyd-Steinberg halftone.                        

(c) Jarvis et al. halftone. (d) Floyd-Steinberg dithered halftone.

Figure 3.1: Limit cycles in error di�usion [51]. The original image is composed

of three constant regions of graylevel
1
4
,

1
3
, and

1
2
, from left to right. Strong

idle tones are visible in the undithered halftones (b) and (c).
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not themselves be visually annoying, but when they change (e.g., because of a

disturbance caused by noise) they are easily noticed, and can be interpreted by

the viewer as false texture. Figure 3.1(a) shows a grayscale image composed

of three constant regions. Figure 3.1(b) shows the Floyd-Steinberg halftone.

Although the average graylevel in each region is faithfully reproduced, strong

tones are visible. Two tones predominate in the leftmost region. In the middle

region, a single, diagonal idle tone dominates. In the rightmost region, the

checkerboard pattern is most common, although vertical stripes also appear.

Figure 3.1(c) shows the e�ect of the larger error �lter due to Jarvis

et al. [15]. In 1994, Fan and Eschbach analyzed the limit cycle behavior of

error di�usion [51]. They showed that the dominant tones for a particular

constant input can be predicted from the transfer function of the error �lter.

These tones can be broken up by using a larger error �lter, or by applying

dither. The limit cycles produced by the Jarvis �lter are reduced in the left-

most and rightmost regions of Figure 3.1(c), but are quite disturbing in the

center region. The boundary between the checkerboard and the more random

pattern at the top of the rightmost region is distracting. Figure 3.1(d) shows

the result of using the Floyd-Steinberg �lter, with dither having a triangular

probability distribution function added at the quantizer [39]. The limit cycles

have completely vanished, but the image is visually noisy.

3.2 Quantizer models

Quantized systems are non-linear, and are di�cult to analyze, except for re-

stricted classes of inputs. To obtain general results, it is necessary to model
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x0(i; j) Q(x0(i; j))Q(�)

(a) Quantizer.

x0(i; j) x0(i; j) + n(i; j)

n(i; j)

(b) Linear model.

Figure 3.2: Quantizer (a) and the simple linear model (b). The quantizer is

assumed to add white noise that is uncorrelated with the input signal.

the quantizer with a tractable element. In this section, two quantizer models

are examined. Section 3.2.1 discusses a simple linear model, and shows that

it fails to account for image sharpening. Section 3.2.2 introduces the linear

gain model, which overcomes this de�ciency. This model was used by Ardalan

and Paulos in the one-dimensional case [52], but has not been applied to error

di�usion previously.

3.2.1 Simple linear model

As a �rst approximation, the quantizer is treated as a linear element whose

output is equal to the sum of its input and uniformly distributed, uncorrelated

white noise, as shown in Figure 3.2. (This substitution will be referred to as the

uncorrelated white noise assumption.) Referring to the noise shaping feedback

coder shown in Figure 1.5, one obtains

e(i; j) = n(i; j) (3.1)
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x0(i; j) = x(i; j)� h(i; j) � e(i; j) (3.2)

y(i; j) = x0(i; j) + n(i; j) : (3.3)

By taking z-transforms of (3.1){(3.3), one obtains

Y (z) = X(z) +N(z)(1�H(z)) : (3.4)

This is the linearized governing equation for error di�usion. The signal transfer

function (STF), which is de�ned as

Y (z)

X(z)
, is unity. The noise transfer function

(NTF), which is de�ned as

Y (z)

N(z)
, is given by 1�H(z). This �ltering e�ect is

known as noise shaping. Since H(z) is generally lowpass, the NTF is highpass.

As was shown in Chapter 2, the human visual system can be modeled as

a lowpass �lter. By highpass �ltering the quantization noise, its visibility

is reduced, thereby improving the perceived image quality. The linearized

equations (3.1){(3.4) predict the following results:

� The di�erence, or residual, between the output image and the input

image, y(i; j)� x(i; j), is �ltered noise uncorrelated with the input;

� The error image, e(i; j), is white noise uncorrelated with the input; and

� The noise shaping function is given by 1�H(z).

These predictions are examined for two �lters: the Floyd-Steinberg �lter de-

�ned in (1.5), and the �lter due to Jarvis et al., which was introduced in [15].

The coe�cients of this �lter are shown in Figure 3.3.

The �rst prediction is tested using the bridge image. Figure 3.4(a)

shows the original image. Figures 3.4(b) and 3.4(c) show the Floyd-Steinberg

and Jarvis halftones, respectively. Figures 3.4(d) and 3.4(e) show the corre-

sponding residuals, and the correlation of these residuals with Figure 3.4(a),
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Figure 3.3: Error �lter due to Jarvis et al. [15]. The black disk indicates the

current pixel.

computed using (2.12). Both residuals are correlated with the input, because

the halftones are sharper than the original image. Thus, the �rst prediction is

not met, although the correlation is small for the Floyd-Steinberg �lter.

The second prediction is examined in Figure 3.5. The Floyd-Steinberg

error image is shown in Figure 3.5(a), while the Jarvis error image appears

in Figure 3.5(b). Both images are highly correlated with the input, as the

correlation coe�cients show. Thus, the second prediction is not met. The

correlation of the error image with the input was �rst noted by Knox [53].

The third prediction is tested as follows. A noise image is halftoned,

and the NTF is estimated by dividing the discrete Fourier transform (DFT)

of the residual by the DFT of the error image. This is repeated for N images,

and the results averaged:

NTF =

1

N

NX
n=1

DFT [(yn � xn)]

DFT [(yn � x0n)]
: (3.5)

Figure 3.6 compares the measured NTF with the prediction of 1�H(z). Fig-

ures 3.6(a) and 3.6(c) show the predicted NTFs for the Floyd-Steinberg and

Jarvis schemes, respectively. Figures 3.6(b) and 3.6(d) show the corresponding

measured NTFs. Both schemes show excellent agreement. This concurs with

data from one-dimensional quantizers [18].
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(a) Original bridge image.
                        

(b) Floyd-Steinberg halftone. (c) Jarvis et al. halftone.
                        

(d) Residual (b) � (a). CRI = 0:029. (e) Residual (c) � (a). CRI = 0:093.

Figure 3.4: Residual images from error di�used halftones.
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(a) Floyd-Steinberg. CRI = 0:309. (b) Jarvis et al. CRI = 0:438.

Figure 3.5: Error images from error di�used bridge halftones. The residual

covers the range (�0:5; 0:5); it is brought into the range (0; 1) by adding 0.5.

CRI is the correlation of the residual with the input.

Two of the three predictions of the uncorrelated white noise assumption

are therefore not met. Both of these predictions rely on the error introduced

by the quantizer being uncorrelated with the input, which is clearly not true.

The correlated nature of quantization error is in fact well known [18, 54]. One

must therefore �nd an alternative model for the quantizer.

3.2.2 Linear gain model

The error images in Figure 3.5 are correlated with the input. The error image

is given by e(i; j) = y(i; j)� x0(i; j), which can be rewritten as

e(i; j) = Q(x0(i; j))� x0(i; j) : (3.6)

Since e(i; j) is correlated with x(i; j), and x(i; j) is correlated with x0(i; j)

from (3.2), it follows that e(i; j) is correlated with x0(i; j). From (3.6), this
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(a) Floyd-Steinberg (predicted). (b) Floyd-Steinberg (measured).
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(c) Jarvis et al. (predicted). (d) Jarvis et al. (measured).

Figure 3.6: Predicted and measured noise transfer functions. The predictions

are derived from 1 � H(z), where H(z) is the z-transform of the error �lter.

The measured responses are averaged over 5000 images. Mean squared error:

0.0090 (Floyd-Steinberg), 0.0056 (Jarvis et al.).
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Kn Knn
0
(i; j) + n(i; j)

n(i; j)

n0(i; j)

(a) Noise path.

Ksx0(i; j) Ksx
0
(i; j)

(b) Signal path.

Figure 3.7: Linear gain model of the quantizer. The input to the quantizer has

been split into signal and noise. The paths are assumed to be independent.

implies that Q(x0(i; j))�x0(i; j) is correlated with x0(i; j). One can model this

correlation if one assumes that

Q(x0(i; j)) = Kx0(i; j) + n(i; j) ; (3.7)

where K is a constant to be determined, and n(i; j) is independent white

noise. As K increases above 1, the correlation between Q(x0(i; j)) and x0(i; j)

increases. The relation in (3.7) models the quantizer as a cascade of a gain

block of gain K and an additive, uncorrelated white noise source. For general-

ity, the input to the quantizer is conceptually separated into signal and noise

components, and gains Ks and Kn are assigned to the signal path and noise

path, respectively. The quantizer model is shown in Figure 3.7.

This model is inserted into the noise shaping feedback coder shown in

Figure 1.5 by using independent circuits for the signal and the noise. This idea

was used by Ardalan and Paulos to model quantizers embedded in delta-sigma
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modulators [52]. Analysis of the signal path leads to

e(i; j) = (Ks � 1)x0(i; j) (3.8)

x0(i; j) = x(i; j)� h(i; j) � e(i; j) (3.9)

ys(i; j) = Ksx
0
(i; j) ; (3.10)

where ys(i; j) refers to the component of the output due to the signal. The

signal transfer equation is obtained by taking z-transforms of (3.8){(3.10):

Ys(z) =
Ks

1 + (Ks � 1)H(z)
X(z) : (3.11)

Analysis of the noise circuit leads to

e(i; j) = (Kn � 1)n0(i; j) + n(i; j) (3.12)

n0(i; j) = �h(i; j) � e(i; j) (3.13)

yn(i; j) = Knn
0
(i; j) + n(i; j) ; (3.14)

where yn(i; j) refers to the component of the output due to the noise. The

noise transfer equation is obtained by taking z-transforms of (3.12){(3.14):

Yn(z) =
1�H(z)

1 + (Kn � 1)H(z)
N(z) : (3.15)

The transfer equation for the system is given by the sum of (3.11) and (3.15):

Y (z) =
Ks

1 + (Ks � 1)H(z)| {z }
STF

X(z) +
1�H(z)

1 + (Kn � 1)H(z)| {z }
NTF

N(z) ; (3.16)

where STF and NTF are the signal and noise transfer functions, respectively,

and constants Ks and Kn are still to be determined.

Referring to (3.15), one can see that if Kn = 1, one recovers the un-

correlated white noise result of (3.4), namely, that

Y (z)

N(z)
= 1�H(z). Section
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3.2.1 shows that the uncorrelated white noise assumption accurately predicts

the noise spectrum. Therefore, Kn = 1.

The signal gain Ks re�nes the linearization based on the uncorrelated

white noise assumption, which has been shown to be inaccurate. Physically,

the value of Ks at any pixel is given by the ratio of the output of the quan-

tizer to its input. Because the input to the quantizer may vary continuously

over a �nite range, whereas the output is binary, Ks varies with the input.

Thus a model which assumes a constant Ks must be in error to some extent.

Nevertheless, by �nding a value for Ks that minimizes the mean-squared error

between the true halftone and the output of the model, progress can be made.

A halftone is related to the quantizer input by Ks (3.10). An image

is halftoned, and the quantizer input is saved. A least-squares �t of x0(i; j)

to y(i; j) is computed; this gives the value of Ks which leads to the minimum

squared error between the halftone and the model output in a global image

sense. In the following analysis, the output of the quantizer is assumed to be

in the set f�0:5; 0:5g rather than f0; 1g to simplify the mathematics.

The quantizer output is �0:5. Consider pixels where the output is

positive. The squared error over these pixels is minimized by �nding

min
Ks

0@X
i;j

(Ksx
0
(i; j)� 0:5)2

1A 8 (i; j) s:t: y(i; j) = 0:5 : (3.17)

Di�erentiating (3.17) with respect to Ks gives

X
i;j

2 (Ksx
0
(i; j)� 0:5) x0(i; j) = 0 ; (3.18)

which leads to

Ks = 0:5

P
i;j x

0
(i; j)P

i;j x
0
(i; j)2

: (3.19)
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Input Error �lter

Image Floyd-Steinberg Jarvis et al. Stucki

barbara 2.01 3.76 3.62

boats 1.98 4.93 4.28

lena 2.09 5.32 4.49

mandrill 2.03 3.45 3.38

Average 2.03 4.37 3.94

Table 3.1: Computed values of the optimum quantizer signal gain Ks for

various error �lters and test images. Image size is 512� 512 pixels.

For values of (i; j) for which the output is negative, the sign of the numerator in

(3.19) changes. By combining (3.19) and the equivalent equation for negative

outputs, one obtains

Ks = 0:5

P
i;j jx0(i; j)jP
i;j x

0
(i; j)2

8 (i; j) : (3.20)

This can also be expressed as

Ks =
E[jx0(i; j)j]
2E[x0(i; j)2]

; (3.21)

where E[�] denotes expectation. Measurements for four test images and three

error di�usion �lters are shown in Table 3.1. The value of Ks varies somewhat

from image to image for a given error �lter, although it is quite stable for

images produced by Floyd-Steinberg error di�usion.

The STFs for two error �lters computed using (3.11) are shown in

Figure 3.8. Both have unity gain at DC; the gain rises at high frequency to

4 for the Floyd-Steinberg STF and 9 for the Jarvis STF. This qualitatively

explains the image sharpening inherent to error di�usion. It must now be

examined whether there is also good quantitative agreement.
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(a) Floyd-Steinberg. Ks = 2:00. (b) Jarvis et al. Ks = 4:37.

Figure 3.8: Signal transfer functions computed from (3.11) using average values

for the signal gain from Table 3.1.

3.3 Validation of the linear gain model

The linear gain model predicts an STF that is dependent on Ks and H(z).

Three ways of determining the accuracy of this model are presented. In Sec-

tion 3.3.1, the model is used to generate a sharpened original image, and the

correlation coe�cient of the residual and the original image, computed using

(2.12), is shown to be small. In Section 3.3.2, modi�ed error di�usion, which

introduces a sharpness parameter, is presented. The linear gain model is used

to set this parameter to give an unsharpened halftone, whose residual has a

low correlation with the original image. In Section 3.3.3, a frequency domain

approach is used to examine the reduction in correlation. Section 3.3.1 is an

extension of the work presented in [55].

3.3.1 Validation by constructing a sharpened original

Given an image and an error di�usion scheme, a halftone is constructed and

the optimal value of Ks is computed from (3.21). The original image is then
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Residual Correlation Coe�cient Coriginal;di�erence

Image barbara boats bridge lena mandrill

Halftone � Original 0.124 0.077 0.093 0.060 0.227

Halftone � Model, Ks = Kave 0.099 0.033 0.022 0.020 0.163

Halftone � Model, Ks = Kopt 0.048 0.025 0.004 0.019 0.021

Table 3.2: Correlation coe�cients for gain model residuals for the Jarvis et

al. �lter. The �rst row shows the correlation of the original image and the

(halftone � original) residual image. The next two rows show the correlation

of the original image and the (halftone � gain model) residual image, using

the average Ks for this �lter (Kave), and the optimum Ks for this �lter and

each image (Kopt).

processed using the equivalent circuit of Figure 1.5, with the signal-only gain

model substituted for the quantizer. This modi�es the image using the STF

of the error di�usion scheme without adding quantization noise. A \clean"

image is created that has the sharpness of the halftone. The residual between

this image and the halftone should therefore be quantization noise.

Figure 3.9 shows the results from this test. The original image is shown

in Figure 3.9(a). Figure 3.9(b) shows the Jarvis halftone. There is a notice-

able increase in sharpness over the original image, which is especially visible

around the masts of the boat in the foreground. Figure 3.9(c) shows the im-

age processed by the gain model. It has similar sharpness to the halftone. For

this �gure, Ks = 4:93, which is the optimal value for this image in the mean-

squared sense. Figure 3.9(d) shows the residual between the halftone and the

processed image. Figure 3.9(e) shows the image processed with Ks = 4:37,

the average value for the Jarvis �lter from Table 3.1. Figure 3.9(f) shows the

corresponding residual.

Table 3.2 shows computed values of three correlation coe�cients for �ve
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(a) Original boats image. (b) Halftone.

                        

(c) Gain model. Ks = 4:93. (d) Residual (c) � (b). CRI = 0:025.
                        

(e) Gain model. Ks = 4:37. (f) Residual (e) � (b). CRI = 0:033.

Figure 3.9: Gain model validation using the Jarvis error �lter. Ks is the

quantizer gain. CRI is the correlation coe�cient for the residual.
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test images. In terms of the images of Figure 3.9, they are, in order: between

(a) and (b) � (a), between (a) and (f), and between (a) and (d). For all �ve

test images, the correlation between the original image and the (halftone �

original) residual is higher than the correlation between the original image and

the (halftone � original modi�ed by the gain model) residual, with Kopt giving

a slightly lower correlation than Kave.

Using images sharpened by the gain model, the correlation of the orig-

inal to the residual is, on average, 0.51 that of the original to the unmodi�ed

residual when Ks = Kave. When Ks = Kopt, the average correlation of the

original to the residual falls to 0.25 that of the original to the unmodi�ed resid-

ual. The reduction in correlation of the residual indicates that sharpening is

accurately modeled by the linear gain model.

3.3.2 Validation by constructing an unsharpened halftone

In 1991, Eschbach and Knox published a method to control the sharpening of

error di�usion by means of a multiplicative parameter L [56]. Positive values

of L increase sharpening over the unmodi�ed output, while negative values

decrease sharpening. Because only an extra multiplication and addition per

input pixel are required, it is a computationally simple way to adjust sharp-

ness. Later, Knox and Eschbach published work on threshold modulation, and

included an analysis of the sharpening technique [46]. Here, the technique, re-

ferred to as modi�ed error di�usion, is analyzed using the notation of this

chapter, and used to corroborate the linear gain model.

The modi�ed error di�usion algorithm is shown in Figure 3.10. It will
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L

+

�

x(i; j)

H(z)
e(i; j)

+

�

x00(i; j)x0(i; j)
y(i; j)

Figure 3.10: Modi�ed error di�usion circuit for sharpness manipulation due to

Eschbach and Knox [56]. The parameter L controls the degree of sharpening.

The circuit reduces to standard error di�usion when L = 0.

x(i; j) G(z)
+

�

H(z)
e(i; j)

�

+

y(i; j)
x00(i; j)

Figure 3.11: Modi�ed error di�usion equivalent circuit. G(z) is a pre-equalizer

whose form is dependent on L and H(z).
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be shown to be equivalent to the circuit shown in Figure 3.11, with G(z) being

a function of L and H(z). From Figure 3.10,

e(i; j) = y(i; j)� x0(i; j) (3.22)

x0(i; j) = x(i; j)� h(i; j) � e(i; j) (3.23)

x00(i; j) = x0(i; j) + Lx(i; j) (3.24)

y(i; j) = Q(x00(i; j)) : (3.25)

Combining (3.23) and (3.24), and taking z-transforms, leads to

X 00
(z) = X(z)(1 + L)�H(z)E(z) : (3.26)

Combine (3.22) and (3.23) and taking the z-transform gives

E(z) =
Y (z)�X(z)

1�H(z)
: (3.27)

Combining (3.26) and (3.27) leads to

X 00
(z) = X(z)

 
L+

1

1�H(z)

!
| {z }

M(z)

� Y (z)

 
H(z)

1�H(z)

!
| {z }

M 0(z)

: (3.28)

Let m(i; j) and m0
(i; j) denote the inverse z-transforms of M(z) and M 0

(z),

respectively. Now take the inverse z-transform of (3.28):

x00(i; j) = m(i; j) � x(i; j)�m0
(i; j) �Q(x00(i; j)) ; (3.29)

and apply (3.25) to see that

y(i; j) = Q (m(i; j) � x(i; j)�m0
(i; j) �Q(x00(i; j))) : (3.30)

This is the output for the modi�ed system shown in Figure 3.10.
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The equivalent circuit of Figure 3.11 can be analyzed in a similar way:

e(i; j) = y(i; j)� x00(i; j) (3.31)

x0(i; j) = g(i; j) � x(i; j)� h(i; j) � e(i; j) (3.32)

y(i; j) = Q(x00(i; j)) ; (3.33)

where g(i; j) is the impulse response of the pre-equalizer G(z). Combining

(3.31) and (3.32) and taking z-transforms leads to

E(z) =
Y (z)�G(z)X(z)

1�H(z)
: (3.34)

Inserting this into the z-transform of (3.32) gives

X 00
(z) = X(z)

 
G(z)

1�H(z)

!
| {z }

N(z)

� Y (z)

 
H(z)

1�H(z)

!
| {z }

M 0(z)

: (3.35)

Let n(i; j) denote the z-transform of N(z). Take the inverse z-transform of

(3.35) and make use of (3.33) to see that

y(i; j) = Q (n(i; j) � x(i; j)� n0(i; j) �Q(x00(i; j))) ; (3.36)

which is identical to (3.30) if the impulse responses m(i; j) and n(i; j) are the

same. From (3.28) and (3.35), this condition is satis�ed when

L+

1

1�H(z)
=

G(z)

1�H(z)
; (3.37)

or, equivalently,

G(z) = 1 + L (1�H(z)) : (3.38)

Thus, halftoning an image with the modi�ed circuit is exactly equivalent to

halftoning a version of the image that has been pre-�ltered by the function

G(z) = 1 + L (1�H(z)).
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The linear gain model predicts the STF given by (3.11). If G(z) is made

equal to the reciprocal of this STF, then the composite STF of the system will

be 
at. This is achieved when

1 + L (1�H(z)) =
1 + (Ks � 1)H(z)

Ks

; (3.39)

or, equivalently,

L =

1�Ks

Ks

: (3.40)

This allows the gain model to be corroborated. Values of Ks from Table 3.1

are used to compute L from (3.40), and images are halftoned using the circuit

of Figure 3.10. If the gain model is accurate, the STF will be 
at, and the

residual between the original image and the halftone will consist solely of noise.

Figures 3.12(a) and 3.12(b) show the original image and its Jarvis half-

tone, respectively. Figure 3.12(c) shows the modi�ed halftone using L = �0:80

(Ks = 4:93). Its sharpness is similar to the original image, but its quantiza-

tion noise structure is similar to Figure 3.12(b). Figure 3.12(d) shows that

components of the original image are at a very low level in the residual (c) �

(a). Figure 3.12(e) shows the modi�ed halftone using L = �0:77, computed

from the average Ks from Table 3.1. Figure 3.12(f) shows the corresponding

residual. It also consists almost entirely of noise.

Table 3.3 shows computed values of the correlation coe�cient for var-

ious images and residuals. The trend is similar to that of Table 3.2, except

that the reduction in correlation using modi�ed error di�usion is substantially

larger than that obtained using the gain model alone. On average, the correla-

tion of the original to the residual is 0.11 that of the original to the unmodi�ed
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(a) Original boats image. (b) Halftone.

                        

(c) Mod. error di�usion. L = �0:80. (d) Residual (c) � (a). CRI = 0:005.
                        

(e) Mod. error di�usion. L = �0:77. (f) Residual (e) � (a). CRI = 0:008.

Figure 3.12: Gain model validation using modi�ed Jarvis error di�usion. L is

the sharpness parameter. CRI is the correlation coe�cient for the residual.
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Residual Correlation Coe�cient Coriginal;di�erence

Image barbara boats bridge lena mandrill

Halftone � Original 0.124 0.077 0.093 0.060 0.227

Halftone � Model, L = Lave 0.019 0.008 0.005 0.007 0.030

Halftone � Model, L = Lopt 0.010 0.005 0.003 0.002 0.020

Table 3.3: Correlation coe�cients for modi�ed halftone residuals for the Jarvis

�lter. The �rst row shows the correlation of the original image and the (half-

tone � original) residual. The next two rows show the correlation of the orig-

inal image and the (modi�ed halftone � original) residual, using the average

L for this �lter, and the optimum L for this �lter and each image.

residual when L = Lave. When L = Lopt, the average correlation of the origi-

nal to the residual falls to 0.06 that of the original to the unmodi�ed residual.

This lends strong support to the validity of the gain model.

3.3.3 Validation by using sinusoidal inputs

By applying standard and modi�ed error di�usion to a sinusoidal input image

and �nding the Fourier transform of the residuals, one can see the individual

distortion components introduced by halftoning (which have been referred to as

\noise"), and measure how strongly each is suppressed in the modi�ed residual.

Figure 3.13(a) shows a vertical sine wave grating of size 256� 256 pixels with

frequency 0:24fN , where fN refers to the Nyquist frequency. Figures 3.13(b)

and 3.13(c) show the standard and modi�ed (L = Lopt) halftones, respectively.

Each residual (b) � (a) and (c) � (a) is averaged over its rows to produce a

256-element vector, and its Fourier transform is computed.

The results are shown in Figure 3.13(d). Both spectra have been scaled

by the same factor, so that the level of the fundamental component in the un-

modi�ed residual is unity. The residual spectra consist of multiple lines; these
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(a) Input. (b) Halftone. (c) Modi�ed halftone.
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(d) Magnitude spectra of residual images (row averaged).

Figure 3.13: Gain model validation using a sinusoidal input with a horizon-

tal frequency fh = 0:24fN , halftoned with the Floyd-Steinberg error �lter.

Each row vector is Hanning windowed before computing a 501-point Fourier

transform, to obtain a sample every 0:004fN .
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lines are harmonics of the fundamental. Some have been aliased about fN ,

and therefore do not have a harmonic relationship to the fundamental. The

third harmonic, at 0:72fN , and the �fth, aliased to 0:80fN from 1:20fN , are

particularly strong, because of the symmetric distortion characteristic of the

quantizer. The form of the spectrum of a one-bit modulator with a sinusoidal

input has been rigorously analyzed by Gray, Chou and Wong [57]. Nearly all

of the harmonic products are attenuated in the modi�ed residual; the funda-

mental is attenuated by a factor of more than 10. This concurs with the large

reduction in residual correlation obtained when using modi�ed error di�usion,

and lends further weight to the accuracy of the linear gain model.

3.4 Physical reason for sharpening

The correlation of the quantization error with the input image led to the linear

gain model for the quantizer, which accurately predicts the edge sharpening

of error di�usion. However, this does not explain why sharpening occurs; it

merely models it. In fact, the means by which sharpening occurs has not been

addressed before. In this section, this e�ect is explained. Section 3.4.1 shows

that decorrelating the quantization error eliminates edge sharpening. Section

3.4.2 explains how the �nite size of the error �lter leads to sharpening. Section

3.4.3 shows how the signal gain Ks can be predicted from the error �lter.

3.4.1 Correlation of the quantization error

The linear gain model shows that sharpening results from the correlation be-

tween the quantization error and the input. This implies that if the quantiza-

tion error is decorrelated using dither, sharpening will disappear. To quantify
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(a) Step image. (b) Halftone.
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(c) Horizontal step response. (d) Vertical step response.

Figure 3.14: Measuring the step response of Jarvis error di�usion. The half-

tone shown in (b) is used to measure the horizontal step response; a halftoned,

rotated input image is used to measure the vertical response. Row-averaged

horizontal and vertical outputs are shown.
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sharpening, the e�ective step response of the halftoning scheme is measured.

A step image is generated, as shown in Figure 3.14(a). The graylevels chosen

are not rational numbers, to reduce the likelihood of idle tones in the halftone

[51]. The step image is halftoned and its rows averaged to form the one-

dimensional e�ective horizontal step response shown in Figure 3.14(c). Strong

ringing is evident, causing the step to be exaggerated, i.e., sharpened. Figure

3.14(d) shows the vertical step response. It exhibits one-sided ringing at the

step. Both responses are noisy because of the low number of averages used for

these plots (256). In practice, several thousand rows are averaged to obtain

a low-noise measurement. The di�erence between the vertical and horizontal

step responses will be explained in Section 3.4.2.

To decorrelate the quantization error, dither with a rectangular prob-

ability distribution function is added to the input image. The dither level is

varied from zero to one (a full quantization step). As dither increases, the

correlation between the quantization error and the input decreases, until zero

correlation is achieved at a level of one [19]. Figure 3.15 shows the resulting

measured step responses. The x axis denotes the distance in pixels from the

step. The y axis denotes the level of dither. In all the plots, the response

converges to an ideal, unsharpened step as the dither level increases. This

new result con�rms the hypothesis suggested by the linear gain model that

sharpening is due to correlated quantization error.

3.4.2 Finite size of the error �lter

The feedback in error di�usion acts to reduce the average graylevel error of

the halftone to zero in smooth regions of the image. Near edges, however, it
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(a) Floyd-Steinberg, horizontal. (b) Floyd-Steinberg, vertical.
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(c) Jarvis et al., horizontal. (d) Jarvis et al., vertical.

Figure 3.15: Dithered step response results. Measurements were made using

the method shown in Figure 3.14, averaging over 16384 rows.

attempts to correct for the graylevel error of pixels on the far side of the edge

that fall within the support of the �lter. This causes errors in the average

graylevel on the near side. This error sharpens the edge, as will be shown.

Consider a vertical step edge, with a graylevel of 0.4 on the left and

0.6 on the right, and assume that the Jarvis �lter is used. The upper part of

Figure 3.16(a) shows the �rst row of the input image, and the position of the

error �lter. (Most of the �lter falls outside the image and is not shown.) The
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Figure 3.16: Edge enhancement. In Stage I, the pixel to the right of the edge

is forced high. In Stage II, its neighbor is forced low to compensate. In Stage

III, the pixel to the left of the edge is forced low because the �lter extends to

the right of the edge. In Stage IV, the pixel to the right of the edge is forced to

1 because the pixels to its left and upper right outweigh the pixel above it. In

subsequent stages, the edge sharpening perpetuates and spreads horizontally.
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lower part shows the �rst row of the halftone, with the current pixel striped.

Blank pixels have not yet been quantized. The average quantization error is

driven to 0 by feedback for the pixels marked `X', whose average graylevel

is 0.4. Since the input is above the threshold, the current output is forced

to 1. (When the output is described as being forced to a state, this means

that quantization is statistically more likely to result in that state than the

opposite state.) In Figure 3.16(b), the current pixel is forced to 0 to counteract

the positive quantization error of the previous pixel. This tends to overcorrect,

forcing the next pixel to 1 to compensate. As halftoning proceeds along the

row, the ringing due to overcorrection dies away, and the average quantization

error falls to zero. Pixels marked `Y' have an average graylevel of 0.6.

In Figure 3.16(c), the current pixel is on the second row, to the left

of the edge. The error �lter covers �ve pixels to the left of the edge, whose

quantization error is close to zero, and two pixels to the right of the edge. The

nearer of these two pixels has more weight in the error �lter, making the total

quantization error positive; the output is therefore forced to 0. Figure 3.16(d)

shows that the next pixel is forced to 1 because of the 0 pixel to its left. The

clustering of zeros to the left of the edge and ones to the right continues down

the image, and spreads horizontally. The �nite �lter size therefore causes an

initial overcorrection in the output near an edge, which is then compensated

for in succeeding pixels, leading to an oscillatory step response.

The ringing in the horizontal step response (Figure 3.15) begins before

the edge; this is because the error �lter extends horizontally ahead of the cur-

rent pixel on the rows above. The vertical step response is one-sided, because
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(a) Floyd-Steinberg. (b) Jarvis et al.

Figure 3.17: Horizontal step responses using a serpentine scan. Dither in-

creases along the y axis. The responses have horizontal symmetry, as expected,

unlike those for the raster scan (Figure 3.15).

the error �lter does not extend vertically beyond the current pixel.

The serpentine scan o�ers insight into edge sharpening. Because the

direction of the scan reverses on each row, one expects the horizontal step

response to be symmetric. Figures 3.17(a) and 3.17(b) show the horizontal

step responses for the Floyd-Steinberg and Jarvis �lters, respectively. They

are indeed symmetric. Vertical step response is una�ected by the scan.

3.4.3 Predicting Ks from the error �lter

The error �lter H(z) is a lowpass �lter with a maximum gain of unity at DC.

For wideband inputs, the standard deviation of the �lter output is therefore

smaller than the standard deviation of its input. The ratio of the input and

output standard deviations is given by

R =

 R �
�� F [g(i; j)]F�

[g(i; j)] dx dyR �
�� F [g(i; j)]F�

[g(i; j)]F [h(i; j)]F�
[h(i; j)] dx dy

! 1

2

; (3.41)
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Computed Error �lter

Parameter Floyd-Steinberg Jarvis et al. Stucki

R (3.41) 1.91 3.89 3.58

Kave 2.03 4.37 3.94

Table 3.4: Comparison of error �lter ratio R and Kave. Values of R are com-

puted from (3.41). The Kave �gures are taken from Table 3.1.

where g(i; j) is the input to the error �lter, h(i; j) are the coe�cients of the

error �lter, F [x] denotes the Fourier transform of x, and �
denotes complex

conjugation. If the spectrum of the quantization error is 1�H(z), as predicted

by the linear gain model, then g(i; j) is given by

g(i; j) = F�1
[F [1� h(i; j)]] : (3.42)

The numerator in (3.41) is the signal power at the �lter input, while the

denominator is the output power. It was found empirically that computing the

Fourier transforms in (3.41) on a grid of size 6� 5 points was su�cient to give

an accurate value for R. The integrals become summations, and computation

is therefore very simple. Table 3.4 shows computed values of R for three error

�lters, together with average values of Ks from Table 3.1. There is a strong

linear correlation between R and Kave. One can de�ne

Kest = 1:17R� 0:2 ; (3.43)

to obtain an estimate for Ks that is accurate to approximately 1% for the

three schemes shown. This provides a simple way to estimate Ks from the

error �lter alone, and greatly speeds up �lter design procedures, since the

e�ect of �lter sharpening can be predicted without halftoning test images.
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Max. freq. Error WSNR (dB)

(cyc/deg) �lter barbara boats bridge lena mandrill

Floyd 15.1 16.9 15.4 16.1 16.2

30 Jarvis 11.8 13.2 11.9 12.4 12.4

Stucki 14.4 15.7 14.2 15.2 15.3

Floyd 30.0 31.6 29.2 30.8 30.8

60 Jarvis 26.3 27.3 24.5 26.8 26.9

Stucki 27.6 28.5 25.7 28.2 28.3

Floyd 36.0 37.8 34.3 36.5 36.8

90 Jarvis 30.7 31.5 28.0 30.9 31.3

Stucki 31.7 32.5 29.0 32.2 32.4

Table 3.5: WSNR measurements using three error di�usion schemes at dif-

ferent viewing distances. Modi�ed error di�usion was used to compute un-

sharpened versions of each input image, thereby creating a residual with a low

correlation to the original. `Floyd' refers to Floyd-Steinberg.

3.5 Weighted noise measurements of halftones

The weighted signal-to-noise ratio (WSNR) measure was introduced in Chap-

ter 2. Image noise is weighted according to the human contrast sensitivity

function to estimate its perceptual e�ect. It was shown that it is necessary

to �rst remove image distortions that are not additive noise. By using mod-

i�ed error di�usion with an appropriate value of L, an unsharpened halftone

is created. The low correlation of the residual with the original image allows

an accurate WSNR �gure to be determined.

Table 3.5 lists WSNR �gures for �ve test images, three error �lters, and

three values of the maximum angular frequency. For an image of size 512�512

pixels at a viewing distance of 400 mm, the three values of maximum angular

frequency listed correspond to printed image sizes of 60 mm, 30 mm, and 20

mm on a side, respectively. In Figure 3.18, the WSNR �gures for the same
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Figure 3.18: Perceptually weighted signal-to-noise �gures for three halftoning

schemes, averaged over �ve test images. Solid: Floyd-Steinberg. Dashed:

Jarvis et al. Dot-dashed: Stucki.

�ve images are averaged, for values of the maximum angular frequency from

30 to 90 cycles per degree. WSNR is plotted against maximum angular fre-

quency for the three error �lters. It is clear from both Table 3.5 and Figure

3.18 that the Floyd-Steinberg error �lter achieves consistently higher values of

WSNR than both the Jarvis and the Stucki �lters, although the Stucki scheme

is comparable at small viewing distances. This concurs with psychovisual ex-

perience: Floyd-Steinberg halftones appear less noisy than halftones produced

by the larger error �lters.

3.5.1 Quantifying the e�ect of idle tones

It was mentioned in Section 3.1.1 that the motivation for the Jarvis and Stucki

error �lters was to reduce idle tones, which result from a combination of feed-
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Dither Error �lter

Level Floyd-Steinberg Jarvis et al. Stucki

0.0 0.16 0.095 0.083

0.2 0.13 0.086 0.069

0.4 0.10 0.081 0.065

0.6 0.088 0.082 0.065

0.8 0.083 0.081 0.070

1.0 0.081 0.076 0.071

Table 3.6: Distortion D for three error �lters, with dither applied, measured

by averaging sinewave gratings over a range of frequencies: 0:05!N � !f �
0:45!N . A dither level of one corresponds to a full quantization step.

back and non-linearity in the quantizer, and thus are not taken into account

by the linear gain model. Because idle tones a�ect the visual quality of a

halftone, a method of measuring their level is presented here.

In Section 3.3.3, idle tones and distortion products were examined by

halftoning a sinusoidal grating, averaging over its rows, and computing the

Fourier transform of the resulting vector. By analogy with total harmonic

distortion (THD) [58], the total distortion T for the halftone is de�ned as

T =

24 1

Y (ej!f )Y �
(ej!f )

X
!2f!dg

Y (ej!)Y �
(ej!)

35
1

2

; (3.44)

where Y (ej!) is the discrete Fourier transform of the row-averaged grating

image y, !f is the radian frequency of the grating, and f!dg denotes the

set of frequencies of the distortion products. T is equivalent to THD if the

set f!dg contains only distortion products that are harmonically related to

the fundamental. Because some distortion products are aliased back into the

passband, they may not be harmonically related to the fundamental.

To obtain an expected distortion measure D for a halftoning scheme, T
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Figure 3.19: Computed harmonic distortion T for three error di�usion schemes,

for a range of sinusoidal input frequencies. Solid: Floyd-Steinberg. Dashed:

Jarvis et al. Dot-dashed: Stucki.

is computed for N values of the grating frequency and the results are averaged:

D =

1

N

NX
n=1

T (!n). Figure 3.19 shows the variation of T with !f for three error

di�usion schemes. The Floyd-Steinberg distortion is consistently higher than

the distortion for the larger �lters. Table 3.6 shows computed values of D for

the same schemes, with various levels of dither applied. The undithered result

con�rms that the Floyd-Steinberg error �lter is more tonal than the larger

�lters, on average. This agrees with results from the delta-sigma modulation

literature, namely, that lower-order modulators exhibit higher tonality than

higher-order systems [18]. As more dither is applied, D decreases until it

reaches the noise 
oor de�ned by the level of dither. This also agrees with

one-dimensional results [19].

Use of the serpentine scan reduces tonality to 0.12 for the Floyd-
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Steinberg scheme, compared to 0.16 for the raster scan. This was predicted

by Fan [47], and corresponds with the higher subjective quality of serpentine

scanned halftones over raster scanned halftones. The large reduction in tonal-

ity indicates that the serpentine scan should be used for small error �lters such

as the Floyd-Steinberg �lter. The serpentine scan has no measurable e�ect on

the tonality of the Jarvis and Stucki schemes.

3.6 Summary

The linear gain model of the quantizer has been shown to accurately predict

both the sharpening and the noise shaping characteristics of error di�usion.

The accuracy of the model was demonstrated in three independent ways by

measuring the correlation of residual images. The combination of modi�ed

error di�usion and the linear gain model allows unsharpened halftones to be

created with any error �lter. This allows schemes to be compared by the use

of perceptually weighted noise metrics, such as WSNR.

The physical mechanism by which edges are sharpened was explained,

and a method of predicting the e�ective quantizer signal gain Ks from the

error �lter was presented. A distortion measure that quanti�es the tonality

of halftoning schemes was also introduced. By characterizing edge sharpening,

noise shaping, and tonality separately, one is able to obtain objective measures

of the subjective quality of halftones. This allows meaningful comparisons of

the results of error di�usion schemes to be made. Sharpening has received

little attention in the literature. The new results presented here explain its

origin and permit the design of novel halftoning schemes, some of which will
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be examined in Chapter 5.

Of the three classic �lters, the Floyd-Steinberg �lter has the lowest

computational requirement, since it has four taps rather than twelve. The

results indicate that it also gives the best WSNR performance at any view-

ing distance. However, the larger �lters have lower tonality, and consequently

fewer artifacts. The serpentine scan should be used with the Floyd-Steinberg

error �lter to reduce tonality. The Floyd-Steinberg �lter gives a neutral ren-

dering, because it only mildly sharpens the image. When added sharpness is

desirable, the Stucki �lter gives results that are only slightly worse in WSNR

terms than the Floyd-Steinberg �lter, with much lower tonality.



Chapter 4

Inverse Halftoning

Inverse halftoning algorithms recover grayscale images from halftones. A

scanned document that contains halftones cannot be scaled, sharpened or

rotated without causing severe degradation to the halftones. In addition,

halftones do not compress e�ciently. Halftones are therefore converted to

grayscale by using inverse halftoning. A side bene�t is that inverse halftoning

produces images that are visually superior to their halftoned versions.

In this chapter, a new inverse halftoning scheme based on anisotropic

di�usion is presented. It produces high quality images from error di�used half-

tones at a low computational cost, and with a very small memory requirement.

The algorithm varies the trade-o� between spatial resolution and grayscale res-

olution at each pixel to obtain a sharp image with a low perceived noise level.

A model for inverse halftoning is also presented that enables objective mea-

sures of the noise content and blurring of inverse halftones to be made. The

perceptually weighted signal-to-noise ratio (WSNR) of Chapter 2 is used to

permit quantitative comparison of the results of inverse halftoning schemes.

89
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4.1 Introduction

In general, halftones and other binary images cannot be manipulated without

causing severe degradation. Exceptions include cropping, rotation through

multiples of 90
�
, and logical operations. Another exception, due to Wong [23],

is a halftoning scheme in which smaller halftones are embedded within larger

ones, thereby allowing the image to be downsampled by a pre-determined

rational factor. However, no other image manipulations can be performed.

Halftones are di�cult to compress, either losslessly or lossily; grayscale images,

on the other hand, can be compressed e�ciently [59, 60]. Inverse halftoning,

which converts a halftone to a grayscale equivalent, permits the application of

a wide range of image processing operations to halftones.

Inverse halftoning attempts to recreate a grayscale image with a typ-

ical wordlength of eight bits from a halftone with a wordlength of one bit.

The problem is therefore underdetermined; an essentially in�nite number of

possible grayscale images could have led to the given halftone, even if the half-

toning scheme were known. Several methods for inverse halftoning have been

described in the literature [25, 26, 61, 62]. They can be divided into two broad

groups: schemes designed for error di�used images, and schemes designed for

screened images. At least one published scheme makes use of a parameter that

allows it to be used with both screened and error di�used images [5]. However,

most schemes are optimized for only one type of halftone, because error di�u-

sion and screening produce outputs with greatly di�ering artifacts, as shown

in Chapter 1. In this chapter, only error di�used halftones are considered.

Section 4.2 surveys existing work in the �eld. Section 4.3 discusses the
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trade-o�s inherent to inverse halftoning. Section 4.4 presents the proposed

inverse halftoning algorithm, which uses estimated local image gradients to

vary the cuto� frequency of a variable smoothing �lter. The design of the

�lter is described in Section 4.5, and the design of the gradient estimators

is described in Section 4.6. Section 4.7 explains how the inverse halftone is

constructed, and discusses the computational requirements of the algorithm.

Section 4.8 presents results and compares them with results from existing

schemes. A model for inverse halftoning is also presented that enables objective

measures of the noise content and blurring of inverse halftones to be made.

The weighted signal-to-noise ratio (WSNR) metric presented in Chapter 2 is

used. It was shown in Chapter 2 that peak signal-to-noise ratio (PSNR) is

inadequate as a measure of visual quality of inverse halftones. However, it is

often the only metric given, and it is therefore quoted where available. Finally,

Section 4.9 summarizes the contributions of the chapter. A condensed version

of this chapter can be found in [63].

4.2 Previous work

The simplest inverse halftoning method consists of �ltering the halftone with

a �xed lowpass �lter. This removes quantization noise, but also removes im-

portant high frequency image information in the halftone, such as edges and

texture. The spectrum of the original image, which is typically lowpass, over-

laps the highpass spectrum of the quantization noise. If the cuto� frequency

of the lowpass �lter is too low, then the inverse halftone is blurry; if it is too

high, then the inverse halftone is noisy. In Chapter 5, inverse halftoning by

linear lowpass �ltering is shown to be su�cient if the inverse halftone is sub-
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sequently re-halftoned. For producing grayscale images of high visual quality,

however, it is inadequate.

Figures 4.1(a) and 4.1(b) show the barbara image and its halftone, re-

spectively. Figure 4.1(c) shows the result of inverse halftoning with a �xed,

separable, lowpass �lter with cuto� frequency fc = 0:10fN in each direction,

where fN denotes the Nyquist frequency. The image is smooth, but blurry.

Figure 4.1(d) shows the result of changing the cuto� frequency to fc = 0:40fN .

The image is sharp, but noisy. It is possible to design an optimal linear space-

invariant (Wiener) �lter for this application, but the results are poor because

of the spectral overlap of signal and noise.

Screened images, especially those dithered with clustered dot screens,

are generally of lower quality than error di�used images. Several methods

for inverse halftoning screened images have been reported in the literature

[62, 64, 65]. Fan [64] estimates the dither matrix (screen), �nds a grayscale

image that leads to the given halftone when dithered with the estimated screen,

and then constrains this image using \logic �ltering" (a form of non-linear

�lter) to provide smoothing without blurring edges. Analoui and Allebach [62]

use the theory of projection onto convex sets (POCS) to restrict the inverse

halftone to the set of all bandlimited grayscale images that lead to the given

halftone under the assumed halftoning scheme. No PSNR �gures are given.

Inverse halftoning methods designed speci�cally for error di�used im-

ages have also been published. Ting and Riskin [60] employ vector quantiza-

tion (VQ). Using a suite of test images, a 512-element codebook is constructed

which maps 3 � 3 neighborhoods of pixels in the halftone to the pixel in the
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(a) Original image. (b) Floyd-Steinberg halftone.                        

(c) Lowpass �ltered, fc = 0:10fN . (d) Lowpass �ltered, fc = 0:40fN .

Figure 4.1: Inverse halftones generated using linear space-invariant lowpass

�ltering. The original barbara image is halftoned using Floyd-Steinberg er-

ror di�usion, and inverse halftoned with a �xed lowpass �lter whose cuto�

frequency fc is shown as a fraction of the Nyquist frequency fN . The �lters

follow the design described in Section 4.5.
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inverse halftone that lies at the center of the neighborhood. Once the code-

book has been constructed, inverse halftoning proceeds by table lookup, and is

therefore extremely fast. The gray level corresponding to a particular binary

input is the most likely value of the pixel in the original image at that point,

given the values of the halftone in the surrounding neighborhood. A PSNR of

30.41 dB for the lena image is quoted.

Stevenson [66] and Schweizer and Stevenson [27] present an inverse

halftoning scheme for error di�used images that uses maximum a posteriori

(MAP) estimation. This is a Bayesian method that assumes a Markov random

�eld model for the image. Geman and Geman performed simulated annealing

for image restoration using this model [67]. With an appropriate choice of

parameters, the scheme produces good inverse halftones. However, it is slow,

because an energy function must be computed over the entire image at each

iteration, and many iterations may be required. Furthermore, the resulting

image is not guaranteed to be of high quality. No PSNR �gures are given.

Hein and Zakhor [61, 68] present a reconstruction method based on

POCS. The inverse halftoning process is subject to a spatial domain constraint

(the inverse halftone must lead to the given halftone when halftoned with the

known error di�usion kernel) and a frequency domain constraint (the inverse

halftone is bandlimited). The two intersecting sets of images satisfying these

constraints are convex. Following the theory of POCS, an image can be found

iteratively that is a member of both of these sets. The search for one of these

images is shown to be a quadratic programming problem. It is computationally

intensive, and a heuristic for terminating the process must be devised. The
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spatial constraint is academically appealing, because one can be sure that the

inverse halftone could have been the original image, but it is unnecessarily

restrictive. A PSNR of 30.40 dB is given for the lena image.

Wong [25] describes two iterative inverse halftoning methods. The �rst

method applies halfband lowpass �ltering and adaptive statistical (non-linear)

smoothing alternately to reconstruct the grayscale image. The lowpass �ltering

removes some of the quantization noise, while statistical smoothing is used to

smooth the image without excessively blurring its edges.

Wong's second method makes use of kernel (error �lter) estimation.

The error �lter that produced the original halftone is estimated by an iterative

process consisting of the following steps:

� Inverse halftone the halftone using lowpass �ltering;

� Estimate the error �lter from the halftone and inverse halftone; and

� Inverse halftone the image using the newly estimated error �lter.

The last two steps are repeated until an acceptable inverse halftone is obtained.

No proof of convergence is given, although the algorithm converges on all the

test images. The results are of high quality; as a side bene�t, one obtains

an estimate of the error di�usion kernel. However, the procedure has a high

computational cost, and a heuristic is needed to terminate the iteration. A

PSNR of 32.0 dB is quoted for the lena image after eight iterations.

Xiong, Orchard, and Ramchandran describe a scheme employing wave-

lets [26]. In this work, inverse halftoning is treated as a de-noising problem. An

overcomplete, discrete wavelet transform decomposes the image into a lowpass
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subband and two highpass subbands. Edges are extracted from the highpass

subbands using a Gaussian lowpass �lter. The lowpass subband is transformed

again, and the resulting lowpass subband is once more transformed. Noise is

removed without blurring edges by correlating the wavelet coe�cients across

the lowest two scales; edges tend to correlate across scales, whereas noise does

not [69]. A map of edge pixels is obtained by thresholding, and is used to

suppress noise in smooth regions. Finally, the inverse wavelet transform is

used to reconstruct the inverse halftone. The inverse halftones have a natural

appearance, with a good range of smooth and sharp regions. A PSNR of 31.47

dB is quoted for the lena image.

The disadvantage of the wavelet-based method is that a great deal

of computation and memory are needed to perform the overcomplete wavelet

transform, which uses large �lters and 
oating-point arithmetic. Nine 
oating-

point images equal in size to the halftone, not counting the halftone and in-

verse halftone themselves, must be in memory at one time. This makes the

wavelet method unattractive in standalone, low-cost applications. Since it has

produced arguably the best inverse halftones to date, however, its results are

used as a comparison with the scheme presented here. It will be shown that

the proposed scheme provides comparable image quality, with execution time

and memory requirements that are orders of magnitude lower.

4.3 Trade-o�s in inverse halftoning

As discussed in Chapter 3, error di�usion is equivalent to a two-dimensional

form of delta-sigma modulator [55]. The process of halftoning can be viewed as
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spatially-interactive wordlength reduction, usually from eight bits per pixel to

one bit per pixel. Inverse halftoning can therefore be interpreted as spatially-

interactive wordlength expansion. This section describes wordlength expan-

sion and the trade-o� between grayscale resolution and spatial resolution in

inverse halftoning.

In 1-D (audio) applications, such as analog-to-digital (A/D) converters,

a delta-sigma converter operating at a high sampling rate produces a one-bit

data stream whose spectrum consists of the low frequency signal of interest

and shaped quantization noise [18]. The data stream is decimated for further

processing and storage. To avoid aliasing, it is �rst lowpass �ltered to remove

images above half of the target sampling frequency; this �ltering increases the

wordlength of each output sample. Thus the wordlength is increased at the

same time that decimation is performed. Linear �ltering can be used because

the high oversampling factor (typically at least 64 times) ensures that the bulk

of the noise power falls outside the passband. Recently, more complex methods

of decoding oversampled delta-sigma modulated data streams have appeared

that give better results than simple linear �ltering [70, 71]. It is possible that

these techniques could be applied to the problem at hand.

In inverse halftoning, which is a two-dimensional extension of word-

length expansion, one generally assumes an oversampling factor of 1, that is,

the number of pixels in the halftone and the inverse halftone are equal. Thus,

no decimation is performed. When using linear �ltering, the wordlength can

only be increased by averaging over many samples, and therefore the inverse

halftone contains correlated data. This also follows from the fact that, for
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an array of size M � N pixels, there are 2
MN

possible binary images, but

256
MN

possible 8-bit images. Since, for a given deterministic inverse halfton-

ing scheme, there is at most one unique grayscale image for each halftone, a

maximum of 2
MN

grayscale images from the much larger set of 256
MN

possible

images can be produced. Each of these images is therefore highly redundant.

Wordlength is increased by averaging over a neighborhood of samples.

For instance, averaging 16 (2
4
) samples produces an output wordlength of four

bits; in general, N samples must be averaged to obtain a wordlength of log2(N)

bits. This averaging blurs out features that are within the support of the �l-

ter. Therefore, a trade-o� exists between grayscale resolution (wordlength)

and spatial resolution (detail). A simple lowpass (averaging) �lter imposes

a �xed relationship between the increase in grayscale resolution and the de-

crease in spatial resolution. By varying the trade-o� over the halftone between

increasing grayscale resolution and decreasing spatial resolution, a large im-

provement in inverse halftoning performance is obtained. In smooth regions

of the grayscale image, more pixels are included in the average, increasing the

wordlength that can be achieved. Near edges, fewer pixels are included in the

average, thus preserving the edge. Smooth regions (with many levels of gray)

and sharp edges (with fewer levels of gray) can therefore be obtained.

4.4 Proposed algorithm

The inverse halftoning algorithm described here is a form of anisotropic di�u-

sion, which is a tool introduced by Perona and Malik principally to implement

robust multi-scale edge detection [72]. Anisotropic di�usion estimates image
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Figure 4.2: Block diagram of the data
ow of the inverse halftoning algorithm.

The �lter applied at each pixel is determined by operations shown in Figure

4.3. Because all operations are local, the algorithm is well-suited for imple-

mentation in VLSI or embedded software.

gradients to compute a di�usion coe�cient that governs smoothing. A non-

linear relationship between the estimated gradient and the di�usion coe�cient

encourages smoothing inside regions, but not between them. To perform in-

verse halftoning, image gradients are estimated from the halftone, and control

functions are derived that vary the cuto� frequency of a smoothing �lter.

Figure 4.2 shows the data
ow of the algorithm. Only seven rows of the image

need to be kept in memory.

Figure 4.3 shows the algorithm in more detail. Gradient estimation
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Figure 4.3: Details of the inverse halftoning algorithm. Stages, from left to

right, are: 1. Gradient estimation; 2. Gradient correlation and �lter parameter

construction; 3. Filter construction; and 4. Lowpass �ltering.

(stage 1), gradient correlation (stage 2), and �lter construction (stages 2 and

3) dominate the computation. In the �nal stage of Figure 4.3, the halftone is

�ltered to generate the inverse halftone. The inverse halftoning is performed in

the spatial domain using local operations. This obviates the need for compu-

tationally expensive and memory-hungry transforms, as execution proceeds in

a raster fashion. Raster processing makes better use of a processor's memory

cache, since only a small number of image pixels are kept in memory at once.

This reduces execution time. Because all operations are local, the algorithm

is well-suited for implementation in VLSI or embedded software.

As described in Chapter 1, halftones have a very low signal-to-noise

ratio (SNR) because of the one-bit quantization, with most of the noise power
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falling in the high frequencies. Multiscale gradient estimation, described in

Section 4.6, is used to obtain robust estimates of the image gradients. Gra-

dients are computed at two scales in both the horizontal (x) and vertical (y)

directions. The gradient estimates are correlated to give maximum output

when a large gradient appears in both scales, such as at a sharp edge. The

correlated gradient estimates are referred to as control functions.

The control functions are used to construct a separable FIR �lter of

size 7� 7 pixels. The separability of the �lter allows it to be constructed and

applied independently in the x and y directions, thereby reducing execution

time. The smoothing ability of the �lter is designed to increase as the image

gradient decreases; thus, smoothing is greatest in smooth regions of the original

image. Near edges, smoothing is reduced. Because the gradient estimation

and �ltering occur independently in the x and y directions, smoothing occurs

parallel to horizontal and vertical edges, but not across them. Thus edges

are preserved in one direction, while grayscale resolution is increased in the

orthogonal direction.

4.5 Smoothing �lter design

The inverse halftone is constructed from the halftone using a variable smooth-

ing �lter. The general criteria for the �lter are:

� Small �xed size, FIR

� Simple to generate

� Separable

� Cuto� frequency determined by a single parameter
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� Frequency response tailored for halftones

An FIR �lter is guaranteed to be stable, and its output can be computed

quickly when its extent is small and the �lter size is �xed. Computation is re-

duced by making the �lter simple to generate. By making the �lter separable,

it can be designed, constructed and applied independently in each direction,

thereby further reducing execution time. The cuto� frequency of the �lter in

each direction is determined by one parameter, namely, the control function in

that direction. The frequency response of the �lter is constrained to account

for the particular characteristics of error di�used halftones. Section 4.5.1 de-

scribes these characteristics and derives the �lter speci�cations. Section 4.5.2

describes the �lter design procedure.

4.5.1 Filter speci�cations

Because of the reciprocal nature of the Fourier transform, a �lter with a large

region of support can be designed with a lower cuto� frequency than one with

a smaller region of support, and can therefore smooth more. Figure 4.4 shows

the e�ect of �lter size on the smoothness of an inverse halftone. The halftone

of Figure 4.4(a) is �ltered with separable lowpass �lters of size 3 � 3, 5 � 5

and 7 � 7 pixels. Each has the narrowest passband for its size, and all meet

the same passband and stopband speci�cations. Image noise reduces steadily

as the �lter size increases. Testing on a set of eight natural images showed

that a 7 � 7 �lter provided enough smoothing to give good results. Extreme

smoothness is not required because natural (rather than computer generated)

images do not generally contain large, perfectly smooth regions. For computer

generated imagery, a larger �lter might be desirable, if the penalty in execution
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(a) Floyd-Steinberg halftone. (b) Output of 3� 3 �lter.                        

(c) Output of 5� 5 �lter. (d) Output of 7� 7 �lter.

Figure 4.4: E�ect of �lter size on inverse halftoning performance. The halftone

shown in (a) is inverse halftoned using separable FIR �lters of di�erent sizes,

all with unity gain at DC and line zeros at (fN ;�) and (�; fN). Passband

ripple < �0:07. Stopband gain < 0:05.
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time can be accommodated.

Worm artifacts (limit cycles) are often present in halftones, as shown in

Figure 4.4(a). These strong tones should be suppressed in the inverse halftone,

else they will lead to undesirable texture. In Floyd-Steinberg error di�usion,

they are particularly likely to occur at (fN ; fN), (fN ; 0), and, to a lesser extent,

(0; fN) [51], where (fh; fv) denotes horizontal and vertical spatial frequency,

respectively. These tones are suppressed in the inverse halftone by placing

zeros in the smoothing �lter at these frequencies. Halftones produced using

Jarvis error di�usion are less likely to contain these tones [51].

In general, it is not possible to determine whether high frequency tones

in a halftone are caused by quantization noise or by information from the

original image. Since natural images tend to be lowpass [24], it is more likely

that these tones are artifacts of the halftoning process. It is therefore appro-

priate to suppress them. Because the smoothing �lter is separable, a zero in

the one-dimensional prototype becomes a two-dimensional (line) zero in the

two-dimensional composite �lter. By placing a zero at fN in the x �lter, for

instance, one obtains a line zero at (fN ;�) in the composite �lter.

The gain of the �lter should be unity at DC, to preserve the image

mean (brightness). The �lter is therefore constrained at DC and fN . A sym-

metric �lter ensures linear phase; it is well-known that this is critical for good

performance of image processing �lters [73]. Two parameters are free to deter-

mine the �lter response. To choose these parameters, the maximum passband

ripple and stopband gain are speci�ed.

The maximum passband ripple is constrained to ensure that the inverse
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halftone is a faithful reproduction of the original image. A �lter with an

excessively peaked passband produces falsely sharpened images. It was found

empirically that restricting the ripple to �0:07 (�0:59 dB) produced high

quality images that were not falsely sharpened. The maximum stopband gain

was speci�ed as 0.05 (�26 dB), so that the total noise power in the �lter

output decreases monotonically as the cuto� frequency of the �lter is lowered.

If the maximum stopband gain is not speci�ed, it is possible to design a �lter

a whose cuto� frequency is lower than that of �lter b, yet whose output has a

higher noise power for the same input. This produces poor inverse halftones,

since the reduction of quantization noise is no longer inversely proportional to

the local image gradient.

4.5.2 Filter design

The class of one-dimensional, linear phase �lters satisfying the criteria of unity

gain at DC and a zero at fN has the form

h(n) =
1

4(x2 + 2)

[ x2 � x1 + 2; x2; x1; 4; x1; x2; x2 � x1 + 2 ] ; (4.1)

where x1 and x2 are parameters that must be chosen so that h(n) satis�es

the passband and stopband speci�cations. (4.1) follows by assuming a �lter

of the form [a; b; c; d; c; b; a], imposing the constraints at DC and fN , and sim-

plifying to a form that requires the least computation. This class of �lters is

referred to as the one-dimensional prototype class. Two �lters from the class

are constructed at each pixel of the input image, one for each of the x and y

directions. The following analysis refers exclusively to the x �lter. The y �lter

is constructed in the same way.
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A family of lowpass �lters that met the speci�cations was designed using

the sequential quadratic programming (SQP) algorithm [74] in the Matlab

optimization toolbox. This algorithm varies parameters (x1 and x2) to mini-

mize a cost function, subject to a constraint. The passband ripple was used as

the constraint, and the maximum stopband gain as the cost function. These

de�nitions lead to equiripple �lters in principle, and near-equiripple �lters in

practice. Thus the �lters are near-optimal in achieving the lowest transition

width for the given �lter size, passband ripple, and stopband gain.

Ten �lters were designed by specifying a desired cuto� frequency fc,

�xing the passband ripple at �0:05, and adjusting the stopband edge fs to the

lowest value possible, subject to a maximum stopband gain of 0:03. That is,

the �lter with the shortest transition width which satis�ed the passband and

stopband constraints was found. The passband and stopband speci�cations

are slightly better than the targets mentioned in the previous section, to allow

for an approximation described later in this section. The actual fc and fs of

the designed �lter were then calculated. Table 4.1 shows the �lter parameters.

The cuto� frequency of the �lter should be determined by a single

parameter, as explained in Section 4.5. A functional relationship between x1

and x2 must therefore be found. Figure 4.5 plots x2 against x1 from the data

in Table 4.1, along with a best �t cubic polynomial; this was found to be the

lowest order polynomial that gave an adequate �t. The cubic function is

x2 = 0:4631x31 � 2:426x21 + 4:660x1 � 3:612 : (4.2)

The continuous set de�ned by (4.1) and (4.2) consists of �lters whose cuto�

frequencies vary from 0:066fN to 0:502fN . All the �lters have unity gain at



107

fc (speci�ed) fc (achieved) fs achieved x1 x2

0.05 0.066 0.428 3.351 2.192

0.10 0.104 0.627 2.948 0.871

0.15 0.148 0.668 2.705 0.437

0.20 0.205 0.686 2.592 0.247

0.25 0.252 0.699 2.508 0.128

0.30 0.299 0.701 2.462 0.0326

0.35 0.352 0.793 2.145 �0.199
0.40 0.400 0.906 1.707 �0.427
0.45 0.455 0.930 1.452 �0.554
0.50 0.502 0.938 1.309 �0.621

Table 4.1: Parameters of the smoothing �lters. The �rst column gives the spec-

i�ed cuto� frequency. The second column shows the actual cuto� frequency of

the designed �lter, de�ned as the lowest frequency for which the gainG < 0:95.

The third column shows the stopband edge, de�ned as the highest frequency

for which G > 0:03. The last two columns show the computed values of x1
and x2.

1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

2.5

 x
1

 x
2

Measured data 
Best fit cubic

Figure 4.5: Functional relationship between �lter parameters x1 and x2. Data

from Table 4.1 is shown solid. Best �t cubic is shown dashed.
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DC and a zero at fN . The ripple in the passband for any �lter is no greater

than �6:2% (�0:52 dB), and the maximum stopband gain is 0.045 (�27 dB).

Thus, the performance of the entire family is within the original speci�cations,

despite the approximation of (4.2).

Figure 4.6 shows the lena image �ltered with four �lters chosen from

this family. The same fc is used for the x and y directions. The suppression

of the components at (fN ; 0), and (fN ; fN) is visible above the hat (where

the checkerboard pattern at (fN ; fN) is prominent) and in the cheek (where

vertical stripes at (fN ; 0) are particularly objectionable). Also obvious is the

increasing smoothness of the �ltered image with decreasing fc. The shoulder

in Figure 4.6(d) is �ltered enough to appear smooth, while the feathers and

eyes in Figure 4.6(a) are clear and sharp. The �lter family therefore provides

a range of smoothness needed to produce good inverse halftones.

Figure 4.7 shows the magnitude responses of four two-dimensional �l-

ters from the family. Figure 4.7(a) would be used at a vertical edge, as it

smooths mainly in the y direction. Figure 4.7(b) would be used in reasonably

smooth, isotropic regions of the image. Figure 4.7(c) would be used at a rea-

sonably strong horizontal edge, while Figure 4.7(d) would be used in smooth,

isotropic regions. The line zeros at (fN ;�) and (�; fN) are evident, and the

equiripple nature of the �lters is visible in Figures 4.7(a) and 4.7(d).

4.6 Derivation of the control functions

As mentioned in Section 4.4, the amount of smoothing applied at a particular

pixel is driven by the value of the local image gradient. Because of the presence
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(a) x1 = 1:40; fc = 0:46fN . (b) x1 = 2:07; fc = 0:37fN .

(c) x1 = 2:73; fc = 0:15fN . (d) x1 = 3:40; fc = 0:065fN .

Figure 4.6: E�ect of the �lter cuto� frequency on image smoothness. The

lena halftone is �ltered with four �lters from the family, with the parameters

shown. The �lter parameter x2 is computed from x1 using (4.2).
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(a) x1 = 1:40; y1 = 3:33. (b) x1 = 2:10; y1 = 2:10.
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(c) x1 = 2:70; y1 = 1:80. (d) x1 = 3:33; y1 = 3:33.

Figure 4.7: Magnitude responses of four lowpass �lters from the possible range

of (x1; y1) 2 [1:4; 3:4].
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of high frequency noise in error di�used halftones, a robust method of gradient

estimation is required. This section describes the theory and design of the

gradient estimators used in the algorithm, and the method by which their

outputs are correlated to derive the smoothing �lter control functions.

4.6.1 Gradient estimator design

Consider a continuous image I(x; y). The gradient of the image in the x

direction is given by @I=@x. The gradient operator @=@x is a linear �lter

with frequency response j!, that is, a response that rises linearly with spatial

frequency. If the image I is discretized spatially, the continuous gradient can be

approximated by using a digital �lter with a frequency response similar to j!.

The frequency response of the discrete di�erence operator �x = I(x+ 1; y)�

I(x; y), for instance, is given by
e
�x(e

j!
) = 1 � e�j!, which is approximately

j! at low frequencies.

Gradient estimation by discrete di�erence is not robust to noise, be-

cause high frequencies are ampli�ed. This is a problem in error di�used half-

tones, where most of the noise power is at high frequencies. Perona and Malik

estimated gradients in grayscale images with discrete di�erences. They ac-

knowledged that while they obtained good results with these estimators, they

were not robust against noise [72]. Catt�e, Lions, Morel and Coll [75] address

the problem of robustness to noise by pre-smoothing the gradient estimate

with a discrete approximation to a Gaussian lowpass �lter. The reason for

using the Gaussian is as follows.

The product of the spatial domain variance (e�ective �lter size) and
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frequency domain variance (e�ective �lter bandwidth) for any �lter is subject

to the uncertainty relation

�x�! � �

4

; (4.3)

where �x;�! are the variances in the spatial and frequency domains, respec-

tively. The �lter forms a spatial average over a region of e�ective width �x;

minimizing �x therefore improves the localization of the gradient, which is

uncertain to within �x. Similarly, �! de�nes the range of scales over which

gradients are estimated; minimizing �! restricts this range [76].

For continuous signals, the relation in (4.3) is an equality only for the

Gaussian. The Gaussian is therefore the optimal pre-smoothing �lter for gra-

dient estimation in continuous signals, in the sense that it provides the best lo-

calization of image gradients for a given range of scales. In halftones, however,

large amounts of high frequency noise power and strong idle tones introduce ad-

ditional requirements of the pre-smoothing �lter. The conjoint minimization

of spatial domain and frequency domain variances is therefore not the only

factor determining the �lter response. The additional requirements are ad-

dressed by designing the pre-smoothing �lters according to the characteristics

described in Section 4.5. Although no claims are made about the optimality

of these �lters, they give better performance than Gaussians of the same size.

Their impulse responses are very similar to truncated Gaussians, however, and

the impulse responses of the resulting gradient estimators are similar to those

proposed as optimal by Canny [77].

To improve robustness to noise further, gradients are estimated at two

scales and the results are correlated across scales. Large, sharp edges appear
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across scales, whereas noise does not [69]. It was found that gradient esti-

mation at two scales gave the best performance for the test images used; the

inclusion of a third, smaller scale increased noise in the inverse halftone. The

speci�cations of the gradient estimation �lters are as follows:

� Line zeros at (�; 0), (fN ;�), and (�; fN)

� Maximum stopband gain of 0:03

� Peak passband gain of 1

� Narrowest possible passband for a given �lter size

The speci�cations on the line zeros and the maximum stopband gain arise from

considerations described in Section 4.5. The peak passband gain is de�ned to

be unity, so the bounds of the �lter output are known. The �lter passband is

made as narrow as possible to best distinguish between the two scales.

Each �lter is separable. In the direction in which gradients are esti-

mated, the �lter is bandpass, with zeros at DC and the Nyquist frequency.

The free parameters are chosen to give the narrowest passband possible, sub-

ject to the maximum stopband gain being 0.030. In the direction perpendicular

to the direction of gradient estimation, the �lter is lowpass, designed according

to the criteria of Section 4.5. The parameters are chosen to give the smallest

possible passband for the �lter size to maximize noise rejection.

Since the peak passband gain of the �lters is known, one can �nd fast

integer implementations. Each �lter is scaled and its coe�cients rounded to �t

into one byte. Since the halftone is binary, only integer additions are needed
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to compute the output of each �lter. The x �lters are given by

hsmall
x =

1
1024

26666664
�19 �32 0 32 19

�55 �92 0 92 55

�72 �120 0 120 72

�55 �92 0 92 55

�19 �32 0 32 19

37777775 ;

hlargex =
1

2048

2666666666664

�12 �27 �25 0 25 27 12

�30 �68 �64 0 64 68 30

�45 �103 �96 0 96 103 45

�54 �124 �114 0 114 124 54

�45 �103 �96 0 96 103 45

�30 �68 �64 0 64 68 30

�12 �27 �25 0 25 27 12

3777777777775
;

where the superscripts `small' and `large' refer to the scale. The y �lters are

transposes of the x �lters. The frequency responses of the four �lters are

shown in Figure 4.8. The near-linear rise of the response with frequency close

to DC conforms to the j! response of gradient estimators. The line zeros at

the band edges are evident, as is the the equiripple behavior of the large-scale

�lters shown in Figures 4.8(c) and 4.8(d).

4.6.2 Correlation across scales

At each pixel of the input image, gradients are estimated from the halftone

using the �lters hsmall
x , hsmall

y , hlargex , and hlargey to produce outputs esmall
x , esmall

y ,

elargex , and elargey , respectively. To correlate the gradients across scales, the

control functions are computed according to the products

ecfx =

���esmall
x � elargex � elargex

���1=3; ecfy =

���esmall
y � elargey � elargey

���1=3 ; (4.4)

where j � j denotes absolute value. The large-scale gradients are weighted more

heavily than the small-scale gradients to suppress small-scale noise. This pro-
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(c) hlargex . (d) hlargey .

Figure 4.8: Magnitude responses of the gradient estimation �lters. The small-

scale estimators have peak response at approximately 0:32fN , and a lowpass

cuto� frequency of approximately 0:090fN . The large-scale estimators have

peak response at approximately 0:24fN , and a lowpass cuto� frequency of

approximately 0:066fN .
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duces slightly smoother, better quality inverse halftones than if equal weighting

is used. Since each gradient estimator is linear, its output is proportional to

its input. Each product in (4.4) is therefore proportional to the cube of the

true image gradient. The cube root of the product is computed, so that the

control function varies linearly with the gradient.

To quantify the accuracy of the gradient estimates, the results of es-

timating gradients in a halftone are compared with the results of estimating

gradients in the original grayscale image. A perfect multiscale detector would

produce identical estimates from both images. The output of a practical detec-

tor, however, is contaminated by noise in the halftone. This is demonstrated

in Figure 4.9, which shows gradients estimated from the original and halftoned

versions of the peppers image. Modi�ed Floyd-Steinberg halftoning is used to

give an unsharpened halftone, as described in Section 3.3.2.

Figure 4.9(a) shows the small-scale x direction gradients computed from

the original image, while Figure 4.9(b) shows the same gradients computed

from the halftone. Figure 4.9(b) is noticeably noisier than Figure 4.9(a). Fig-

ure 4.9(c) shows the large-scale y direction gradients computed from the orig-

inal image, while Figure 4.9(d) shows the same gradients computed from the

halftone. The noise is less obvious in Figure 4.9(d) than in Figure 4.9(b),

because the large-scale �lter removes more of the quantization noise than the

small-scale �lter. Figures 4.9(e) and 4.9(f) show the x direction control func-

tions computed from the original image and the halftone, respectively.

The accuracy of the gradient images obtained from the halftone can

be quanti�ed by computing their signal-to-noise ratio (SNR) relative to the
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(a) esmall
x (original image). (b) esmall

x (halftone).

                        

(c) elargey (original image). (d) elargey (halftone).

                        

(e) ecfx (original image). (f) ecfx (halftone).

Figure 4.9: Gradients estimated from original and halftoned peppers images.
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Image Description SNR (dB)

esmall
x Small-scale x 3.25

elargex Large-scale x 12.10

ecfx Composite x 8.74

esmall
y Small-scale y 2.49

elargey Large-scale y 9.91

ecfy Composite y 7.53

Table 4.2: SNR of gradients estimated from modi�ed Floyd-Steinberg halftone,

relative to gradients estimated from original peppers image.

gradients obtained from the grayscale image. The use of SNR is justi�ed

because the di�erence between the images is �ltered noise. Table 4.2 gives

results for the peppers image. The small-scale images, esmall
x and esmall

y , have an

average SNR of approximately 2.9 dB. The large amount of quantization noise

in the small-scale images computed from the halftone leads to the low SNR

�gure; however, the images are sharp. The large-scale images, elargex and elargey ,

have an average SNR of approximately 11 dB. However, they are not as sharp

as the small-scale images. The control functions, ecfx and ecfy , have an average

SNR of approximately 8.1 dB, an improvement of more than 5 dB over the

small-scale �gure. Furthermore, they are sharp. Thus, by correlating gradients

across scales, one obtains most of the noise rejection of the large-scale gradient

image, while retaining the sharpness of the small-scale image.

4.7 Inverse halftone construction

The x and y control functions, ecfx and ecfy , determine the cuto� frequencies

of a separable smoothing �lter, whose characteristics are described in Section

4.5. Section 4.7.1 describes how the �lter is constructed and applied, and
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how computation is minimized for high speed. The computational cost of the

algorithm is presented in Section 4.7.2.

4.7.1 Filtering the halftone

Section 4.5.2 showed how the �lter parameters x1 and x2 determine the cuto�

frequency of the one-dimensional prototype �lter, and presented a relation

between x2 and x1. A relation between ecfx and x1 is now required. To reduce

computation, consider the linear relation (the y relation is analogous)

x1 = a+ b ecfx ; (4.5)

where constants a and b are yet to be determined. When the gradient mag-

nitude is low, the image is smooth, and therefore the cuto� frequency of the

�lter should be low. This requires x1 to be at the top of the allowable range:

x1 � 3:4 (see Table 4.1). When the gradient magnitude is high, x1 should be

at the bottom of the allowable range: x1 � 1:4. By varying a and b from their

starting values (a = 3:4; b = �10) and monitoring the visual quality of test

images, the optimum values a = 3:33 and b = �5:7 were obtained.

The parameter x2 is derived from x1 using Horner's form of (4.2)

x2 = �3:612 + x1(4:660 + x1(�2:426 + 0:4631x1)) ; (4.6)

which uses 3 multiplications instead of 5. A prototype �lter is then constructed

according to (4.1), ignoring for the moment the factor of 1=(4(x2 + 2)). Each

coe�cient is a 
oating-point number in the approximate range (�0:5; 4). Each

coe�cient is scaled by the factor 1024 (2
10
), and converted to an integer by

discarding the fractional part. This results in at most a 13-bit signed integer,
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apart from the �xed central coe�cient, which is 14-bit. The reason for this

conversion is to permit application of the �lter using integer arithmetic, which

is quicker than 
oating-point arithmetic on most hardware.

The x and y prototype �lters are applied separably to the 7� 7 neigh-

borhood centered on the current pixel. At the boundaries of the image, three

pixels are replicated by mirroring to simplify the �ltering. Applying the �lters

separably obviates the need to construct the equivalent two-dimensional �lter.

A two-dimensional �lter would require 49 integer multiplications for its con-

struction, and 48 integer additions for its application, per pixel. Applying the

�lters separably requires 42 integer additions in the x direction, followed by

7 integer multiplications and 6 integer additions in the y direction, per pixel.

Thus 42 integer multiplications per pixel are saved.

Each of the 7 outputs of the x �lter is at most a 16-bit signed integer;

each is multiplied by one coe�cient from the y �lter, yielding at most a 29-bit

signed integer product, apart from the central product, which may be 30-bit.

The 7 products are then summed, yielding at most a 32-bit signed result, which

is a common integer wordlength for general purpose hardware. (Fixed-point

digital signal processors typically use 16-bit or 24-bit words.) The coe�cient

quantization has no measurable e�ect on the �nal results.

The �ltered output pixel is converted to a float and scaled. The scaling

simultaneously accounts for the ignored factor 1=(4(x2 + 2)) from (4.1) (and

the corresponding factor from the y �lter), the scaling factor used in converting

the �lter coe�cients to integers, and the requirement that the output pixels be

in the range (0; 255). Clipping enforces this range, before the pixel is rounded
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to the nearest integer and converted to an unsigned char (single byte).

4.7.2 Computation and memory requirements

The following arithmetic operations are required per pixel:

� 303 increments (++)

� 30{226 integer additions

� 7 integer multiplications

� 34 
oating-point additions

� 21 
oating-point multiplications

� 5 
oating-point divisions

The number of integer additions depends on the image. A halftone composed

solely of black pixels would require 30 integer additions per pixel, whereas

an all-white halftone would require 226. A typical image is mid-gray on the

average, and therefore requires approximately 128 integer additions. The in-

crement operator is listed separately, because some hardware architectures can

perform this operation as a special addressing mode, with zero time penalty.

The number of 
oating-point operations, particularly divisions, has been kept

to a minimum to increase speed. For an image of size 512 � 512 pixels, the

entire inverse halftoning process takes 2.9 seconds to execute on a 167 MHz

Sun UltraSparc 2 machine, and 6.8 seconds on a Sparc 10.

In (4.4), it was shown that two cube roots must be computed to derive

the x and y control functions. The cube root is computed using an initial

bilinear approximation, followed by two iterations of Newton-Raphson ap-

proximation. Over the entire input range, the result is accurate to better than
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0:4%; for more than 90% of the input range, the accuracy is better than 0:01%.

A total of 4 additions, 7 multiplications, and 2 divisions (all 
oating-point)

are required to compute each cube root.

Execution proceeds in raster fashion, one row at a time. Seven image

rows are required for the �lters; they are kept in the image storage area, a

pre-allocated array of memory of size 7 (c + 6) bytes, where c is the number

of image columns. There are 6 more columns in the storage area than in

the image itself, because of the mirroring extension of 3 pixels at the image

boundaries. The image pixels themselves take up one byte each. For an image

of size 512� 512 pixels, 3626 bytes of memory are allocated for image storage.

After an entire row has been inverse halftoned, rows 2{7 of the image

storage area are moved upwards into the positions occupied by rows 1{6, and

a new image row is written into the row 7 position. If circular bu�ering were

available (as on dedicated digital signal processors), the block move could be

avoided. However, the time penalty due to the move is small, because of the

small block size, and because only one shift is needed for each row.

4.8 Results

It was mentioned in Section 4.2 that arguably the best inverse halftoning

results to date have been produced by the wavelet-based method of Xiong,

Orchard, and Ramchandran [26]. In this section, results from the proposed

algorithm and the wavelet-based algorithm are compared. In addition, a model

for inverse halftoning is presented that allows the perceptually weighted signal-

to-noise (WSNR) metric given in Chapter 2 to be applied to inverse halftones.
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The images displayed in this section, all of which are of size 512� 512 pixels,

have been reproduced at a large size to reduce the e�ect of the halftoning that

occurs in the printer used to reproduce them.

4.8.1 Visual evaluation

Figure 4.10(a) shows the original lena image, while Figure 4.10(b) shows the

Floyd-Steinberg halftone. Artifacts above the hat (containing tones close to

(fN ; fN)) and in the cheek (containing tones close to (fN ; 0)) are visible. Figure

4.11(a) shows the result of inverse halftoning the lena image using the proposed

algorithm. The image shows a range of smooth and sharp areas; compare, for

instance, the appearance of the interior of the shoulder with that of its edge

where it overlaps the mirror. Artifacts are still visible in the area above the

hat, where the Floyd-Steinberg halftone is quasi-periodic.

Figure 4.11(b) shows the result of wavelet-based algorithm. Its appear-

ance is similar to Figure 4.11(a), although its artifacts are di�erent in quality,

with the image appearing better in some areas and worse in others. Overall,

the wavelet image looks a little more natural, but it is noisier than the image

produced by the proposed algorithm, and the edges are not as sharp. The

increased noise is particularly visible in the cheek and nose.

Figure 4.12(a) shows the original peppers image, while Figure 4.12(b)

shows the Floyd-Steinberg halftone. Figures 4.13(a) and 4.13(b) show the

inverse halftones generated by the proposed scheme and the wavelet scheme,

respectively. The image produced by the proposed scheme has sharper edges:

the chile pepper at the left is more distinct, as is the stalk of the bell pepper.
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(a) Original image.

            

(b) Floyd-Steinberg halftone.

Figure 4.10: Original lena image and its halftone.
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(a) Proposed algorithm. PSNR 31.34 dB.

            

(b) Wavelet algorithm. PSNR 31.47 dB.

Figure 4.11: Inverse halftoned lena images.
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(a) Original image.

            

(b) Floyd-Steinberg halftone.

Figure 4.12: Original peppers image and its halftone.
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(a) Proposed algorithm. PSNR 31.43 dB.

            

(b) Wavelet algorithm. PSNR 30.40 dB.

Figure 4.13: Inverse halftoned peppers images.
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In the shadows, the wavelet image appears to have slightly lower noise.

Figure 4.14(a) shows the original barbara image, while Figure 4.14(b)

shows the Floyd-Steinberg halftone. Figures 4.15(a) and 4.15(b) show the

inverse halftones generated by the proposed scheme and the wavelet scheme,

respectively. The barbara image is di�cult to inverse halftone, because it

contains strong high frequencies that e�ectively cannot be recovered from the

halftone. The stripes in the trousers, for instance, have completely disappeared

from both inverse halftones. However, the image produced by the proposed

algorithm retains the sharp edges of the table leg and the books, and the skin

on the face and arms is quite smooth. The edges in the wavelet image are not

as sharp, and the smooth areas are noisier.

The preceding results have shown that inverse halftones recovered from

Floyd-Steinberg halftones tend to be blurry. As an experiment, a halftone

that was created with the �lter due to Jarvis et al. was inverse halftoned using

the proposed algorithm. Figure 4.16(a) shows the original lena image, while

Figure 4.16(b) shows the inverse halftone computed from the Jarvis halftone.

It is very similar in appearance to the original image, and in fact the two

images must be examined closely before di�erences can be discerned. The

absence of artifacts in the Jarvis halftone leads to accurate reproduction of

the smooth region above the hat; compare Figure 4.16(b) to the results of

Figure 4.11. Despite the mediocre PSNR of 28.46 dB, this result suggests that

excellent results can be achieved by using Jarvis error di�usion for images that

are likely to be subsequently inverse halftoned.
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(a) Original image.

            

(b) Floyd-Steinberg halftone.

Figure 4.14: Original barbara image and its halftone.



130

            

(a) Proposed algorithm. PSNR 24.61 dB.

            

(b) Wavelet algorithm. PSNR 24.14 dB.

Figure 4.15: Inverse halftoned barbara images.
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(a) Original image.

            

(b) Inverse halftone recovered from Jarvis et al. halftone.

Figure 4.16: Original lena image and its inverse halftone.
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Algorithm & Memory Computational PSNR (dB)

citation usage complexity lena peppers

Wavelet [26] 36N2
Medium 31.5 30.4

Kernel est. [25] 8N2
Medium 32.0 30.2

Bayes [27] 8N2
High { {

POCS [61] 8N2
High 30.4 {

Proposed 7N Low 31.3 31.4

Table 4.3: Comparison of inverse halftoning schemes. The memory require-

ments are byte estimates, assuming an image size of N � N pixels. Com-

putational complexity is estimated from algorithm information given in the

cited paper. \Low" complexity denotes fewer than 500 operations per pixel,

\medium" denotes 500{2000 operations per pixel, and \high" denotes more

than 2000 operations per pixel. PSNR �gures are taken directly from the

publications, where available.

4.8.2 Comparison with existing schemes

Table 4.3 compares the performance of four inverse halftoning schemes from the

literature with the proposed algorithm. The schemes are compared on memory

usage, computational complexity, and visual quality. Data on memory usage

and computational complexity are often not given by the authors; these �gures

are estimated from the nature of the algorithm. PSNR is usually the only

measure of image quality that is quoted, and �gures are therefore reproduced

here, despite the fact that PSNR is a poor indicator of image quality.

Table 4.3 shows that the proposed algorithm uses by far the least mem-

ory of any scheme, since it is the only scheme whose memory requirement

increases linearly with N , rather than quadratically. Furthermore, it does not

store copies of the image, as iterative schemes do. The computational com-

plexity of the proposed algorithm is also considerably lower than the other

schemes, all of which make heavy use of 
oating-point arithmetic. Neverthe-
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less, the PSNR achieved for the standard images is comparable to the best

schemes. (The large improvement in PSNR for the peppers image is due in

part to an error in the original image. This error was corrected for this work,

and was reported to the authors of the wavelet-based scheme [26].)

4.8.3 Measurements

It was discussed in Chapter 2 that noise-based metrics, such as SNR and

PSNR, are inappropriate when the image distortion is not additive noise. An

inverse halftone is not only corrupted by �ltered quantization noise from the

halftoning process, it is also blurred relative to the original image. Further-

more, the blurring is image-dependent and spatially-varying. Nevertheless,

PSNR is often quoted as a �gure of merit for inverse halftones.

A simple method of modeling the blurring of inverse halftoning was

devised, with the aim of obtaining a residual between the inverse halftone and

the modeled inverse halftone that is additive noise. This allows the level of

the noise to be determined, and the blurring to be quanti�ed. During inverse

halftoning, the �lter parameters x1 and y1 are saved, thereby keeping a record

of the �lter used at each pixel. This information is used to �lter the original

image using the same �lters that were used to create the inverse halftone.

This results in a noiseless image which has the same spatial blur as the inverse

halftone. An example is shown in Figure 4.17.

Figure 4.17(a) shows the original peppers image. Figure 4.17(b) shows

the modi�ed Floyd-Steinberg halftone, with the parameter L chosen to give

a 
at signal transfer function. The inverse halftone, shown in Figure 4.17(c),
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(a) Original image. (b) Modi�ed Floyd-Steinberg halftone.

                        

(c) Inverse halftone. (d) Residual (c) � (a). Gain of 4 applied.

                        

(e) Model inverse halftone. (f) Residual (c) � (e). Gain of 4 applied.

Figure 4.17: Result of modeling inverse halftoned peppers image.
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Di�erence Correlation Coe�cient Coriginal;di�erence

Image barbara boats lena mandrill peppers

Inverse halftone � Original 0.364 0.259 0.189 0.546 0.229

Inverse halftone � Model 0.007 0.006 0.011 0.018 0.007

Table 4.4: Correlation coe�cients for inverse halftone residuals. The �rst row

shows the correlation coe�cient between the original image and the (inverse

halftone � original) residual. The second row shows the correlation coe�cient

between the original image and the (inverse halftone � inverse halftone model)

residual.

is computed, and the �lter parameters at each pixel are saved. The residual

between the inverse halftone and the original image is shown in Figure 4.17(d).

Strong image edges can be seen, because the inverse halftone is blurred. Figure

4.17(e) shows the modeled inverse halftone, computed from Figure 4.17(a)

using the same �lter set used to create Figure 4.17(c). Figure 4.17(f) shows the

residual between the inverse halftone and the model. The image components

are greatly reduced relative to Figure 4.17(d).

The quality of the results produced by the inverse halftoning model

are evaluated using the correlation measure of (2.12). Table 4.4 shows the

correlation between the original image and two residual images: the di�erence

between the inverse halftone and the original image, and the di�erence be-

tween the inverse halftone and the modeled inverse halftone. On average, the

correlation for the actual residual is 0.317, while the correlation for the mod-

eled residual is 0.010. Image components are therefore suppressed by a factor

of 33 in the modeled residual, on average. The low correlation of the original

image and the modeled residual permits the use of modeled inverse halftones

as a basis for perceptually weighted signal-to-noise (WSNR) measurements.
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Reference WSNR (dB)

Image barbara boats lena mandrill peppers

Original 20.47 25.36 26.93 19.02 27.69

Model 32.29 33.02 32.74 31.93 31.77

Table 4.5: WSNR measures for inverse halftones, fN = 20 cycles/degree.

The �rst row shows the WSNR between the inverse halftone and the original

image. The second row shows the WNSR between the inverse halftone and

the modeled inverse halftone.

Table 4.5 shows WSNR measurements for �ve test images, assuming a

maximum spatial frequency in the x and y directions of 20 cycles/degree, which

corresponds to a typical combination of image resolution, size, and viewing

distance. The �rst row shows the WSNR of the inverse halftone relative to the

original image, while the second row shows the WSNR of the inverse halftone

relative to the modeled inverse halftone. The second of these �gures is a true

measure of the weighted noise content of the inverse halftones, since the �rst

�gure includes image distortions. As expected, WSNR is higher when the

inverse halftone is compared to the modeled inverse halftone. It is also more

stable across images, varying by 1.25 dB over the test set, compared to a

variation of over 8.5 dB when image distortion is not taken into account.

By creating a clean image whose blur is identical to that of the inverse

halftone, the blurring may be quanti�ed by computing an e�ective transfer

function for the inverse halftoning system, as follows:

� Compute the two-dimensional fast Fourier transform (FFT) of the orig-

inal image and the modeled inverse halftone;

� Divide the model FFT by the original image FFT point-for-point, for

spatial frequencies where the original image FFT is non-zero;
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Figure 4.18: Radial averaging of the transfer function of the inverse halftoning

system. The image is assumed to be square. The transfer function is averaged

over each annulus (shown wider than actual size). The average magnitude

over the shaded annulus is assigned to the radial frequency fr.

� Compute the absolute value (magnitude) of the complex quotient to �nd

the two-dimensional transfer function; and

� Radially average the transfer function over annuli of radius fr to obtain

a one-dimensional transfer function.

The radial averaging of the transfer function is depicted in Figure 4.18. The

result is a one-dimensional transfer function that indicates the degree to which

image components are suppressed in the inverse halftone.

Figure 4.19 shows the transfer functions for the lena, peppers, and bar-

bara images. All show the marked high frequency suppression that is charac-

teristic of blurring. It would be desirable to condense the transfer function

into a single number to describe its shape, to permit easy comparison between
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Figure 4.19: Radial transfer function of the proposed inverse halftoning scheme

for the lena, peppers, and barbara images. Radial frequency fr =
q
f 2x + f 2y .

The magnitude at fr is the average transfer function magnitude over an an-

nulus in the frequency domain with average radius fr.

competing inverse halftoning schemes. Possible candidates are the radial fre-

quency at which the response drops to a certain level, and the equivalent noise

bandwidth of the transfer function [58]. However, not enough test images have

been examined in this way to determine whether such a sparse description can

account for all typical transfer functions. In addition, other inverse halftoning

algorithms cannot be tested without modi�cation to the code, which may be

unavailable. Further research will show whether it is indeed possible to quan-

tify halftoning performance by WSNR and equivalent noise bandwidth, rather

than by measures such as PSNR.
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4.9 Summary

A new inverse halftoning scheme based on anisotropic di�usion has been pre-

sented that produces high quality images from error di�used halftones at low

computational cost. By combining work in gradient estimation and multiscale

edge detection, a multiscale gradient estimator designed speci�cally for half-

tones was obtained. The control functions derived from the gradient estimates

determine the cuto� frequencies of a specially-designed smoothing �lter.

Inverse halftoning is modeled by �ltering the original image and the

halftone identically. This technique can be applied to any inverse halftoning

scheme, and permits a true noise residual to be obtained, from which WSNR

can be calculated. The modeled inverse halftone can be used to compute

an e�ective transfer function for the scheme. This permits the meaningful

comparison of competing schemes based on the amount of noise suppression

and blurring they exhibit.



Chapter 5

Applications

This chapter develops and optimizes new algorithms for rehalftoning and in-

terpolated halftoning. Rehalftoning converts one halftone into another type

of halftone. Interpolated halftoning resizes an image before halftoning.

The rehalftoning algorithm presented here greatly reduces computation

over conventional inverse halftoning followed by halftoning by using a simple

inverse halftoning scheme and modi�ed error di�usion. Blurring in the inverse

halftone is corrected by designing the sharpness parameter for a 
at system

response, while noise is masked by the halftoning quantization noise. The

linear gain model described in Chapter 3, and a polynomial approximation to

the digital frequency z = ej!, are used to derive the optimum value of the

sharpness parameter. The weighted SNR metric described in Chapter 2 is

used to assess the quality of the rehalftoned images.

The interpolated halftoning algorithm uses simpli�ed interpolation to

create high quality interpolated halftones. Computation is reduced over more

complicated interpolation methods for the same visual quality. The linear

gain model and the digital frequency approximation are again used to derive

an optimum value for the sharpness parameter to 
atten the system response.

140
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5.1 Introduction

The purpose of rehalftoning is to convert a halftone created by one method to

one created by a di�erent method. For instance, a user might want to render a

scanned error di�used halftone on a printer which performs best with screened

halftones. The user may also wish to perform operations on the image at the

same time, such as rotation or scaling, in which case the halftoning scheme

used to generate the output may be the same as the one used for the input.

Rehalftoning is needed for digital copiers, facsimile machines, and other devices

which scan printed images and re-print them. Interpolation is used to resize

images. The number of pixels in an image is increased by interpolating new

pixels between existing pixels. The quality of the resulting image is strongly

dependent on the interpolation scheme used.

This chapter describes new algorithms for rehalftoning and interpo-

lated halftoning. For both applications, computation and memory usage are

reduced over conventional methods by exploiting the characteristics of error

di�used halftones. Speci�cally, the quantization noise introduced by the �nal

halftoning step is used to mask artifacts due to the previous processing. Fur-

thermore, modi�ed error di�usion, described in Chapter 3, is used to create

halftones which have a similar sharpness to the original images. The systems

are analyzed with the linear gain model so that the sharpness parameter may

be chosen to give a 
at system transfer function.

Section 5.2 describes the design and analysis of a rehalftoning system

for error di�used halftones that produces high quality results with minimal

computation. Section 5.3 presents a combined interpolation and error di�u-
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sion scheme that produces high quality interpolated halftones using simple

interpolation methods. Section 5.4 concludes the chapter.

5.2 Rehalftoning

To perform rehalftoning, the halftone must in general be inverse halftoned, and

then rehalftoned. Inverse halftoning attempts to recover a visually acceptable

grayscale image from a halftone in reasonable time. Chapter 4 presented

a new method of inverse halftoning that drastically reduces execution time

over existing methods, for the same visual quality. Nevertheless, the required

computation is still substantial. If it is known in advance that the inverse

halftone will be rehalftoned, the requirements on visual quality of the inverse

halftone can be relaxed, thereby reducing the computation.

Eschbach [78] has demonstrated a method of resizing images of arbi-

trary wordlength using printer and scanner models followed by adaptive error

di�usion. The scanner model implements crude inverse halftoning by averag-

ing pixels that fall within the assumed aperture of the scanner. The adaptive

error di�usion rehalftones the image in a way that avoids pixel clumping that

would occur with standard error di�usion.

In this section, a rehalftoning method designed for error di�used half-

tones is presented that has a far lower computational cost than conventional

inverse halftoning followed by halftoning. Section 5.2.1 introduces rehalfton-

ing. Section 5.2.2 describes the design procedure for the inverse halftoning

�lter. In Section 5.2.3, the entire rehalftoning system is analyzed by mak-

ing use of the linear gain model from Chapter 3, and by using a polynomial
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approximation to the digital frequency z = ej!. The rehalftoning quality is

rated by �rst compensating for the frequency distortion, and then applying

the perceptually weighted SNR (WSNR) metric described in Chapter 2 to the

residual image. Section 5.2.4 demonstrates examples of the processing that can

be performed on the intermediate inverse halftone, and Section 5.2.5 evaluates

the computational requirements of the algorithm.

5.2.1 Rehalftoning fundamentals

The quantization artifacts of a particular halftoning scheme can be used to

mask the de�ciencies of an inverse halftone. For instance, high frequency ar-

tifacts in an inverse halftone may be masked in the halftone by quantization

noise. Thus, the inverse and forward halftoning schemes must be designed

together to achieve optimum performance. Converting one error di�used half-

tone to another is useful in the following situations:

� When manipulation, such as rotation or scaling, must be performed on

the halftone;

� When the halftone is too sharp or too dull; or

� When the rendering device is optimized for an error �lter that di�ers

from the one used to create the halftone.

Manipulation of sharpness is listed separately from other operations, because

it can be accomplished while halftoning by using modi�ed error di�usion [56].

To produce a high quality grayscale image from a halftone, the noise in

smooth regions must be suppressed, while retaining sharpness in edge and

textured regions. As discussed in Chapter 4, the e�ective support of the
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smoothing �lter must be large in the smooth regions to provide adequate

noise suppression. Furthermore, the �lter must be adaptive, else edges will be

blurred. At the same time, one seeks computationally simple algorithms.

If a linear lowpass �lter is used to perform the inverse halftoning, the

inverse halftone will be either too smooth or too noisy, depending on the

cuto� frequency of the �lter. If the inverse halftone is subsequently halftoned

using error di�usion, however, then the quantization noise introduced partially

masks the noise that leaked through the linear lowpass �lter, and the image

is sharpened, which partially counteracts the blurring introduced by the �lter.

It is therefore possible to obtain a high quality halftone without employing an

expensive inverse halftoning scheme.

5.2.2 Filter design

If the input to an error di�usion algorithm is itself a halftone, then the output

is identical to the input, since the two input levels 0 (black) and 1 (white)

are exactly equal to the two possible quantized output levels. Similarly, if the

halftone is subject to screening, it will also be unchanged, because the input

level 0 is less than all the thresholds in the screen, and the input level 1 is

greater. In general, the output of standard error di�usion is equal to the input

at pixels where the input is 0 or 1. This is because the quantization error is in

the range (�0:5; 0:5), and the error �lter has a maximum gain of unity. Thus

the feedback error is never large enough to force the input to the quantizer to

cross the threshold when the input is 0 or 1. For any input image, therefore,

the output is pre-determined to be 0 when the input is 0, and 1 when the input

is 1. For intermediate values of the input, the output can be 0 or 1, depending
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on previous outputs.

An image quantized to a short wordlength has a greater proportion

of pixels with values 0 or 1 than if a longer wordlength is used. Thus, error

di�usion has less freedom to disperse output pixels for short wordlength in-

puts, since the output is already �xed at many pixels. The loss of the ability

to optimally disperse the output pixels leads to pixel clumping, with conse-

quent artifacts. It is therefore important to use an input image of su�cient

wordlength to obtain high quality halftones.

Figure 5.1 shows the result of using Floyd-Steinberg error di�usion to

halftone lena images which have previously been reduced in wordlength to B

bits using a Floyd-Steinberg coder with a 2
B
-level quantizer. For instance,

the grayscale original image used to obtain Figure 5.1(a) has four possible

graylevels, while the grayscale image used for Figure 5.1(f) is the original 8-bit

image. As the wordlength of the grayscale image increases, the detail in the

halftone improves, and the apparent noise level goes down. The change in

detail is especially noticeable in the eyes, lips, and feathers. Figures 5.1(e)

and 5.1(f) are nearly identical, and are slightly better visually than Figure

5.1(d). This indicates that a wordlength of approximately 6 bits is su�cient

to produce high quality error di�used halftones.

To minimize computation, a simple linear lowpass �lter is used to per-

form inverse halftoning. As stated in Chapter 4, the lowpass �lter should be

short and FIR for ease of computation. It should also be symmetric, and have

zeros at the band edges to eliminate the strong tones in halftones. In this in-

stance, separability is unnecessary because the �lter is applied non-separably.
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(a) B = 2 bits. (b) B = 3 bits.

                        

(c) B = 4 bits. (d) B = 5 bits.

                        

(e) B = 6 bits. (f) B = 8 bits.

Figure 5.1: Halftones obtained from original images of wordlength B. Key

quality di�erences are in the lips, eyes, and feathers.
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The �lter must satisfy the following requirements:

� Small, FIR

� Zeros at (fN ;�), (�; fN)

� 6-bit output resolution

The output resolution is measured by computing the �lter output for each

possible binary input (of which there are 2
(M2)

for a �lter of sizeM�M pixels),

and counting the number of distinct outputs N . The output resolution R in

bits is given by R = log2(N). For instance, a boxcar averaging �lter of size

2 � 2 pixels has �ve possible outputs, and a consequent output resolution of

log2 5 � 2:3 bits. The only 3� 3 �lter that satis�es the �rst two criteria has

a resolution of 4:1 bits.

The smallest �lter which satis�es all of the criteria is of size 4�4 pixels.

A �lter was designed separably that balances the trade-o� between sharpness

and noise suppression, to give a reasonably artifact-free, sharp inverse halftone.

The integer version of this �lter is given by

h =

1

1024

26664
10 41 41 10

41 164 164 41

41 164 164 41

10 41 41 10

37775 :

This �lter has 107 possible outputs, i.e., an average resolution of 6.74 bits.

Figure 5.2(b) shows the inverse halftone generated from the halftone of

Figure 5.2(a). It is slightly blurred and somewhat noisy, as expected. Figure

5.2(c) shows the Floyd-Steinberg halftone computed from Figure 5.2(b). It is

more blurred than the original halftone, but its noise level appears similar.
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(a) Original boats halftone. (b) Inverse halftone (4� 4 �lter).

                        

(c) Floyd-Steinberg, L = 0:0. (d) Floyd-Steinberg, L = 1:5.

                        

(e) Jarvis, L = 0:0. (f) Jarvis, L = 0:8.

Figure 5.2: 512�512 rehalftones obtained from linear lowpass inverse halftone.
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Halftone
image

Original Inverse

halftone

G(z)

halftone

Ks(1 + L (1�H(z)))

1 + (Ks � 1)H(z)

Ks

1 + (Ks � 1)H(z)

Modi�ed

Figure 5.3: Signal modi�cation in the rehalftoning chain. The dashed boxes

show the signal transfer function at each step. Ks is the e�ective signal gain,

which is dependent on the error �lter,H(z). G(z) is the transfer function of the

inverse halftoning �lter. L is a free parameter that controls edge sharpening.

Figure 5.2(d) shows the modi�ed error di�usion halftone using a sharpening

factor L = 1:5. This image is about as sharp as the original halftone. Figures

5.2(e) and 5.2(f) show Jarvis halftones computed from Figure 5.2(b), with

di�erent values of L. Both are sharper than the original halftone and exhibit

the low tonality that is characteristic of the Jarvis scheme. All four rehalftoned

images in Figure 5.2 are free of artifacts, and show no signs of pixel clumping.

5.2.3 Analysis and measurements

Figure 5.3 shows the steps of the rehalftoning chain, and the signal transfer

functions (STFs) associated with them. The linear gain model from Chapter

3 can be used to derive the STFs for the two halftoning steps. The STF of

the system is given by the product of the three STFs shown in Figure 5.3.

The following low frequency approximation for the digital frequency is used to

obtain a polynomial expression for the STF:

z = ej! � 1 + j! � !2

2

; (5.1)
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which is obtained by using the series formula ex = 1 + x +
x2

2!
+ : : : . The

expression in (5.1) is accurate to approximately 10% (real part) and 20%

(imaginary part) at ! = 1 radian/sample. Since most of the energy in natural

images falls in the lower spatial frequencies, and noise power from halftoning

swamps image noise at higher frequencies, the use of (5.1) is justi�ed.

The STFs in Figure 5.3 can be simpli�ed by assuming that Floyd-

Steinberg halftoning is used, and that Ks = 2. The transfer function of the

system is

T (ej~!) =
4G(ej~!)(1 + L(1�H(ej~!)))

(1 +H(ej~!))2
; (5.2)

where ~! = (!x; !y), the two-dimensional frequency vector. The error �lter is

given by H(ej~!) =
1

16

[7e�j!x + e�j!y(e�j!x + 5 + 7ej!x)].

T (~!) is found by inserting (5.1) into (5.2) and retaining up to quadratic

terms in (!x; !y). The reciprocal of the denominator is evaluated using the

expansion (1 + x)�1
= 1 � x + x2 + : : :, and multiplied by the numerator.

Considerable algebra leads to the intermediate result

T (~!) = G(ej~!)

�
1 +

5

16

j!x(1 + L) +
9

16

j!y(1 + L)

+

!2
x

1024

(277 + 252L) +
!2
y

1024

(45� 36L)

� !x!y

1024

(398 + 488L) +O(!3
)

�
:

(5.3)

The transfer function of the inverse halftoning �lter is

G(ej~!) =

1

1024

�
(e�j!y + e2j!y)[10(e�j!x + e2j!x) + 55(1 + ej!x)]

+ (1 + ej!y)[41(e�j!x + e2j!x) + 164(1 + ej!x)]

�
:

(5.4)
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By inserting (5.4) into (5.3) and retaining up to quadratic terms in (!x; !y),

one obtains

T (~!) = 1 +

j!x

16

(13 + 5L) +
j!y

16

(17 + 9L)

+

!2
x

1024

(�343 + 92L) +
!2
y

1024

(�703� 324L)

+

!x!y

1024

(�1102� 936L) :

(5.5)

This equation can be solved for L to achieve an approximately 
at response

in the !x and !y directions independently. When !y = 0, (5.5) becomes

T (!x) = 1 +

j!x

16

(13 + 5L) +
!2
x

1024

(�343 + 92L) ; (5.6)

which has the form T (!x) = 1 + aj!x + b !2
x. It is required that jT (!x)j = 1,

and therefore that j1 + aj!x + b !2
xj = 1. Thus

�
(1 + b !2

x)
2
+ (a!x)

2
� 1

2

= 1 ; !x � 1 : (5.7)

Squaring both sides of (5.7) and expanding it in powers of !x up to O(!2
)

gives 1 + 2b !2
x + a2!2

x = 1. The solution of (5.7) is therefore

a2 + 2b = 0 ; (5.8)

where a and b are the coe�cients of j!x and !2
x in (5.5), respectively. The

same equation holds for !y. Solving (5.8) for L, one obtains the result

L = 0:014 (x direction)

L = 0:361 (y direction)

)
L = 0:188; on average : (5.9)

Although it is not possible to choose a value of L that simultaneously 
attens

T (ej~!) in !x and !y, the average value of L in (5.9) gives good results, since

the spread of the optimum values for !x and !y is small. Figure 5.4(a) shows
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(a) Original food image. (b) Rehalftone (L = 0:188).
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(c) Transfer function T (ej~!).

Figure 5.4: 512�512 rehalftone computed using L = 0:188 to give the 
attest

spectrum around DC. Floyd-Steinberg error di�usion is used [14].
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an original image named food, while Figure 5.4(b) shows the rehalftone, com-

puted using L = 0:188. It has a similar sharpness to the original, as expected.

Figure 5.4(c) shows the magnitude response of the corresponding signal trans-

fer function T (ej~!). It is quite 
at around DC. Because the average value of

L in (5.9) is higher than the optimum value for !x, T (e
j~!
) rises slightly along

the !x axis (labeled fx). Similarly, T (e
j~!
) falls slightly along the !y (fy) axis,

because the average L is lower than the optimum value for !y.

The image can be sharpened by increasing L beyond the value for

optimum 
atness. Figure 5.5(b) shows the rehalftoning result for L = 1:5.

The image is somewhat sharper than the original. The corresponding signal

transfer function is shown in Figure 5.5(c). There are peaks in the midband

along each axis that increase the apparent sharpness of the rehalftone.

The WSNR of rehalftones is measured using a combination of the meth-

ods presented in Chapters 3 and 4. Modi�ed error di�usion with a 
at STF

(L = �0:5) is used for the two halftoning steps, and a model inverse halftone

is constructed by �ltering the original image with the inverse halftoning �lter.

The residual between this model and the rehalftone has a very low correlation

with the original image, averaging less than 0.001 for the images tested.

Table 5.1 shows measured values of WSNR for �ve rehalftoned images,

compared to the WSNR of the original halftones. For all the tested images, the

rehalftone has a slightly poorer WSNR than the direct halftone, as expected.

However, the di�erence is small, amounting to less than 3 dB at large viewing

distances. These results indicate that the �xed inverse halftoning �lter is

adequate for rehalftoning.
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(a) Original food image. (b) Rehalftone (L = 1:5).
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(c) Transfer function T (ej~!).

Figure 5.5: 512 � 512 rehalftone computed using L = 1:5 to give a sharper

image. Floyd-Steinberg error di�usion is used.
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Max. WSNR (dB)

ang. freq. boats barbara food lena mandrill
(cyc/deg) RH OH RH OH RH OH RH OH RH OH

20 10.2 10.4 8.6 8.7 11.0 11.3 9.4 9.5 9.5 9.7

40 22.1 23.0 20.6 21.3 21.7 22.5 21.6 22.4 21.7 22.5

60 29.5 31.5 28.1 29.9 28.2 29.7 29.0 31.0 28.9 30.9

80 33.3 36.1 32.0 34.5 32.0 33.9 32.7 35.4 32.7 35.4

Table 5.1: WSNR measurements of rehalftones, compared to direct halftones,

for various viewing distances. Columns labeled `RH' show the WSNR in dB of

the rehalftone, relative to the original image blurred by the inverse halftoning

�lter, G(z). Columns labeled `OH' show the WSNR in dB of the original

halftone, relative to the original image.

5.2.4 Intermediate processing

Although the intermediate inverse halftone in rehalftoning is noisy, and there-

fore not suitable for display in its own right, it has su�cient wordlength that

operations such as rotation, scaling, and contrast adjustment may be success-

fully applied. In general, these operations are not possible with halftones [23],

because they either cause wordlength expansion, or destroy the quality of the

halftone.

Figure 5.6 shows examples of operations that can be performed on the

intermediate inverse halftone. Figure 5.6(a) shows the original food halftone.

Figure 5.6(b) shows the image resized to two-thirds of its original size, Figure

5.6(c) shows a rotation of 25 degrees, and Figure 5.6(d) shows a nonlinear

contrast reduction. Although the �rst two operations can be performed on

halftones using the technique described in [78], the resulting image quality

su�ers. The contrast adjustment cannot be performed.
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(a) Original halftone, 512� 512. (b) Resized to 340� 340 pixels.

                        

(c) Rotated by 25 degrees. (d) Contrast reduced.

Figure 5.6: Halftones obtained by processing the intermediate inverse halftones

generated from the food original halftone.
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5.2.5 Computational requirements

The inverse halftoning portion of the rehalftoning algorithm has a far lower

computational requirement than even the e�cient inverse halftoning algorithm

presented in Chapter 4, since it consists solely of a small, �xed FIR �lter.

Only four rows of the image need to be stored in memory at one time. The

computational requirement of error di�usion is also small. Computation is

further reduced by exploiting the fact that some operations are common to

both parts of the algorithm, such as looping over the image and writing results

to the output. The rehalftoning algorithm requires the following number of

operations per pixel:

� 34 increments (++)

� 12{28 integer additions

� 4 integer multiplications

� 2 bit shifts

No 
oating-point operations are needed. The number of additions varies ac-

cording to the input, and is equal to 20 on the average for a mid-gray image.

For an image of size 512� 512 pixels, the entire rehalftoning process requires

approximately 16 million operations. The C implementation takes less than

0.4 seconds to execute on a 167 MHz Sun UltraSparc 2 machine, and less than

1.2 seconds on a Sparc 10, for a 512� 512 halftone. This implementation re-

quires 4(c+ 3) bytes of storage for the image, where c is the number of image

columns. Thus only 2060 bytes of memory are allocated for a 512�512 image.

Because all operations are local and use integer arithmetic, the algorithm is

ideal for implementation in embedded software.
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5.3 Interpolation

An image often needs to be resized for printing, so that it appears at the

correct size on the page. For instance, an image which is sized correctly for a

printer with a resolution of 300 dpi (dots per inch) will be half the size when

printed on a 600 dpi printer. In such instances, the image must be resized by

interpolation before halftoning. Several interpolation methods are in common

use, and are listed here in order of computational complexity [79]:

� Nearest neighbor interpolation;

� Bilinear interpolation; and

� Higher order functions, such as bicubic interpolation, lowpass �ltering,

cubic spline interpolation, etc.

Interpolation assumes that the pixel values of an image represent samples on

an integer grid of an intensity function, I(x; y), that is de�ned over the entire

plane. To resize the image, a grid of output points is constructed, and I(x; y)

is interpolated at these new points. The interpolation scheme de�nes how the

intensity at each pixel is constructed.

The interpolation method used depends on the required quality of the

resulting image, and the computation power available. If an image is intended

for printing, it makes little sense to perform a computationally expensive inter-

polation, since improvements in the resulting image will probably be masked

by the halftoning process. Furthermore, modi�ed error di�usion can be used

to sharpen images which are blurred by simple interpolation schemes. This

section shows how simultaneous design of the interpolation scheme and the

sharpness parameter in error di�usion leads to high quality images at low
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computational cost. Section 5.3.1 describes common interpolation methods,

and Section 5.3.2 presents transfer functions and example images for two of

these methods. Section 5.3.3 optimizes the design of a combined interpola-

tion and error di�usion system for two interpolation schemes. Section 5.3.4

evaluates the computational requirements of the algorithm.

5.3.1 Common interpolation methods

Nearest neighbor interpolation uses the intensity at the pixel nearest to the

new pixel; that is, it assumes that I(x; y) is constant between input pixels. It

is equivalent to replicating pixels if the image size is increased, and deleting

pixels if the image size is reduced, and is therefore very fast. However, the

interpolated image usually appears blocky, because of aliasing. Bilinear inter-

polation assumes that I(x; y) varies linearly in the x and y directions over the

rectilinear area between four neighboring input pixels; that is, the area with

an input pixel at each corner. The interpolated output I 0(x; y) is computed as

follows:

x0 = x� bxc
y0 = y � byc
I1 = y0I(bxc; byc + 1) + (1� y0)I(bxc; byc)
I2 = y0I(bxc + 1; byc+ 1) + (1� y0)I(bxc + 1; byc)

I 0(x; y) = x0I2 + (1� x0)I1 :

The intermediate intensities I1 and I2 have been interpolated in the y direc-

tion. In the last step, the intensity is interpolated in the x direction between

I1 and I2. The assumption that I(x; y) varies linearly between pixels fails

at sharp edges, and the interpolated image therefore appears smoother than
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the original. Higher order functions, such as bicubic interpolation and spline

interpolation, assume that I(x; y) is a higher order function of (x; y) than lin-

ear. This requires more neighboring pixels to be included in the estimate of

the interpolated output, thereby increasing computation time. However, the

resulting image is generally sharper than if bilinear interpolation were used.

5.3.2 One-dimensional analysis

In the special case where an image is increased in size by an integer factor along

each dimension, a proportion of the output pixels will be exactly equal to the

input pixels, and do not need to be interpolated. In this instance, interpolation

is equivalent to upsampling the original image by an integer factor in each

direction, followed by �ltering with an equivalent interpolating �lter.

In one dimension, a signal x[n] is upsampled by an integer factorM by

inserting M � 1 zeros between each sample, to produce the upsampled signal

y[n]. The two signals are related in the frequency domain by

Y (ej!) =
1

M
X(ej!M) : (5.10)

The e�ect of upsampling, apart from the gain of

1

M
, is to compress the spec-

trum of x[n] by a factor of M , so that it occupies the baseband of Y (ej!)

from DC to

fN

M
. The spectrum from

fN

M
to fN is �lled with M � 1 images of

the baseband spectrum. The ideal interpolator removes these images, while

leaving the baseband spectrum intact [54]. Linear �ltering approximates the

ideal lowpass interpolator at a reasonable computational cost.

In one dimension, nearest neighbor interpolation is equivalent to con-

volving the upsampled signal with an FIR �lter of length M with unity coef-
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(a) Nearest neighbor. (b) Linear.

Figure 5.7: Frequency responses of two common interpolation functions, for

upsampling ratios of 2, 3, and 4. The passband edges and their associated

gains are shown dashed.

�cients. Such a �lter has the frequency response

HNN(e
j!
) = 1 + e�j! + e�2j!

+ : : :+ e�(M�1)j!

=

1� e�jM!

1� ej!
:

(5.11)

The magnitude ofHNN(e
j!
), normalized by the gain at DC, is plotted in Figure

5.7(a) for M = f2; 3; 4g. There are bM
2

c zeros spaced by

2fN

M
throughout the

band, with the �rst zero being at

fN

M � 1

. The response falls o� monotonically

from DC, and is equal to 0.5 (�3 dB) at the passband edge for M = 2, where

the passband is de�ned as frequencies below

fN

M
. As M ! 1, the gain at

the passband edge approaches

2

�
� 0:637 (�3:9 dB). When the interpolator

is applied separably in two dimensions, the normalized gain at the passband

edge is halved over the one-dimensional case. The response is therefore �6 dB

for M = 2, falling to �7:8 dB as M becomes large. This leads to blurring of

the image.
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The one-dimensional linear interpolator is formed by convolving the

nearest neighbor interpolator with itself, giving it a triangular impulse re-

sponse. Its frequency response is given by

HLI(e
j!
) = 1 +

M � 1

M
(ej! + e�j!) +

M � 2

M
(e2j! + e�2j!

) + : : :

+

1

M
(e(M�1)j!

+ e�(M�1)j!
)

=

 
1� e�jM!

1� ej!

!2

:

(5.12)

This response is plotted for M = f2; 3; 4g in Figure 5.7(b). It is the square of

the nearest neighbor response. The stopband suppression is therefore greater,

at the expense of the passband gain, which is more sharply rolled o� than the

nearest neighbor response. The normalized response at the passband edge is

0.25 (�6 dB) for M = 2. As M ! 1, the gain asymptotically approaches

4

�2
� 0:405 (�7:8 dB). When the bilinear interpolator is applied separably

in two dimensions, the gain is reduced by 12 dB at the passband edge for

M = 2, and by 13.9 dB in the limit as M becomes large. The blurring

of the image is obvious, but the blocking artifacts that arise with nearest

neighbor interpolation from inadequate suppression of baseband images are

greatly reduced.

Figure 5.8(a) shows the original cameraman image. In Figures 5.8(b)

and 5.8(c), the central part of the image has been zoomed by a factor of 2,

using nearest neighbor and bilinear interpolation, respectively. Figures 5.8(d)

and 5.8(e) zoom by a factor of 3. The nearest neighbor interpolated images

are blockier than the bilinear interpolated images, but they are also sharper.

In addition, they require far less time to construct.
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(a) Original image.

                        

(b) Nearest neighbor, 2�. (c) Bilinear, 2�.
                        

(d) Nearest neighbor, 3�. (e) Bilinear, 3�.

Figure 5.8: Interpolated cameraman images. All images are 256� 256.
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5.3.3 Halftoning interpolated images

If an interpolated image is halftoned by error di�usion, the blocking artifacts

will be masked to a certain extent by the quantization noise. Furthermore, the

sharpness parameter in modi�ed error di�usion can be used to correct for the

blurring of the interpolation �lter. Here, the M = 2 case is considered, since

printer resolutions tend to be related by factors of 2 (300, 600 and 1200 dpi

being current common values of print resolution), and therefore a doubling of

image size is likely to be used more often than scaling by a di�erent factor.

The analysis is analogous for other scaling factors.

The low frequency approximation of (5.1) is used to analyze the com-

pound system of interpolation followed by modi�ed error di�usion. The STF

for modi�ed Floyd-Steinberg error di�usion, assuming that Ks = 2, is

HFS(e
j~!
) =

2(1 + L(1�H(ej~!)))

1 +H(ej~!)
; (5.13)

where L is the sharpness parameter, and ~! = (!x; !y). After applying the

approximation of (5.1) and retaining up to quadratic terms in (!x; !y), (5.13)

becomes

HFS(~!) = 1+

1 + 2L

1024

�
160j!x + 288j!y + 151!2

x + 63!2
y � 154!x!y

�
: (5.14)

Note that if L = �0:5, (5.14) reduces to HFS(~!) = 1; that is, the frequency

response is 
at. This agrees with (3.40), which is not an approximation.

The frequency response of the two-dimensional nearest neighbor inter-

polator for M = 2 is

HNN(e
j~!
) = (1 + e�j!x)(1 + e�j!y) ; (5.15)
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which becomes, after applying (5.1) and retaining up to quadratic terms in

(!x; !y),

HNN(~!) = 4� 2j(!x + !y)� !2
x � !2

y � !x!y : (5.16)

The frequency response of the bilinear interpolator for M = 2 is

HBI(e
j~!
) = (

1
2
ej!x + 1 +

1
2
e�j!x)(1

2
ej!y + 1 +

1
2
e�j!y) ; (5.17)

which approximates to

HBI(~!) = 4� !2
x � !2

y : (5.18)

The transfer functions HNN(e
j~!
) and HBI(e

j~!
) have a gain of 4 at DC to

compensate for the upsampling gain of 0.25. In the following analysis, the

upsampling gain is combined with the transfer function of the interpolator, so

the system has unity gain at DC.

The system composed of nearest neighbor interpolation followed by

error di�usion has a response given by the product of (5.14) and (5.16):

HNN�FS(~!) = 1 +

j!x

1024

(�352 + 320L) +
j!y

1024

(�224 + 576L)

+

!2
x

1024

(�25 + 462L) +
!2
y

1024

(�49 + 414L)

+

!x!y

1024

(�186 + 140L) :

(5.19)

The response of the bilinear interpolation and error di�usion system is given

by the product of (5.14) and (5.18):

HBI�FS(~!) = 1 +

5j!x

32

(1 + 2L) +
9j!y

32

(1 + 2L)

+

!2
x

1024

(�105 + 302L) +
!2
y

1024

(�193 + 126L)

+

!x!y

1024

(�154� 308L) :

(5.20)
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For each scheme, one can �nd the value of L that maximizes the 
atness of the

STF at low frequency by applying (5.8). For the nearest neighbor interpolator,

one obtains

L = �0:102 (x direction)

L = 0:0813 (y direction)

)
L = �0:0105; on average : (5.21)

For the bilinear interpolator, the result is

L = 0:254 (x direction)

L = 0:427 (y direction)

)
L = 0:340; on average : (5.22)

The combined interpolation and halftoning systems were tested by creating an

image of size 256�256 pixels by �ltering and subsampling a 512�512 original

image. The smaller image was then scaled by a factor of two in each direction

and interpolated, to obtain a 512� 512 approximation to the original image.

Since spectral energy above

fN

2

in the original image is lost when creating the

256 � 256 image, and cannot be recovered by interpolation, the interpolated

image looks blurred with respect to the original, regardless of the interpolation

scheme used. Therefore, a halfband �ltered version of the original 512 � 512

image was created for comparison by using a lowpass �lter with approximately

unity gain from DC to

fN

2

, and zero gain from

fN

2

to fN . This allows the two

interpolation schemes to be compared more easily.

Figure 5.9(b) shows the result of nearest neighbor interpolation, fol-

lowed by modi�ed error di�usion, using the average L de�ned in (5.21). Figure

5.9(a) shows the halftoned, halfband �ltered original. The two images appear

very similar. Some blockiness can be seen in the interpolated image, but the

e�ect is slight. Figure 5.9(c) shows the transfer function of the system. As

predicted by (5.21), it is substantially 
at around DC, with a slight rise along
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(a) Halftoned, �ltered food image. (b) Nearest neighbor (L = �0:0105).
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(c) Transfer function T (ej~!).

Figure 5.9: A 512 � 512 halftone with maximally 
at spectrum around DC.

It is computed by interpolating the 256� 256 original using nearest neighbor

interpolation, followed by modi�ed Floyd-Steinberg error di�usion.
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the !x axis and a slight drop along the !y axis, since L falls between the

optimum value for each direction.

Figure 5.10 shows the corresponding results for bilinear interpolation,

using the average L from (5.22). The interpolated image in Figure 5.10(b)

also has similar sharpness to the halftoned, halfband �ltered original. No

blockiness can be discerned. The system transfer function in Figure 5.10(c)

is again substantially 
at around DC, although the response falls o� quicker

than the nearest neighbor response. This gives the interpolated halftone a

slightly smoother look. However, the di�erence is small, and could be corrected

perceptually by increasing L above its optimum value.

5.3.4 Computational requirements

The computational e�ciency of interpolated halftoning stems from the use of

simple interpolation schemes. Nearest neighbor interpolation has essentially

no overhead; to convert a halftoning algorithm to an interpolated halftoning

algorithm, only the order in which image pixels are addressed need be changed.

Bilinear interpolation requires 7 additions and 6 multiplications to compute

each output pixel. For interpolation by a factor of two, this reduces to an

average of 1.67 additions and 1 bit shift per pixel. Both interpolated halftoning

methods use modi�ed error di�usion for the halftoning step. However, the

optimum value for the sharpness parameter for nearest neighbor interpolation

is so close to zero that conventional error di�usion may be used with no e�ect

on visual quality. For bilinear interpolation by a factor of two, the algorithm

requires the following number of operations per pixel:

� 2 increments (++)
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(a) Halfband �ltered food image. (b) Bilinear (L = 0:340).
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Figure 5.10: A 512�512 halftone with maximally 
at spectrum around DC. It

is computed by interpolating the 256�256 original using bilinear interpolation,
followed by modi�ed Floyd-Steinberg error di�usion.
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� 9.67 (7) integer additions

� 4 (3) integer multiplications

� 3 (2) bit shifts

where numbers in parentheses refer to nearest neighbor interpolation. No


oating point operations are needed. Two rows of the image need to be stored

for bilinear interpolation, while only one row is needed for nearest neighbor

interpolation. Because all operations are local and use integer arithmetic, the

algorithm is ideal for implementation in embedded software.

5.4 Summary

This chapter developed and optimized new, fast algorithms for rehalftoning

and interpolated halftoning. The algorithms are suitable for implementation

in embedded hardware, for use in printers, facsimile machines, scanners, and so

on. In both applications, a polynomial approximation to the digital frequency

z = ej!, together with results from Chapters 3 and 4, were used to derive

optimum values for the sharpness parameter in modi�ed error di�usion to


atten the system transfer function.

The linear gain model and the digital frequency approximation allow

the signal transfer function of an error di�usion scheme to be expressed as

a polynomial in (!x; !y). This leads to solutions for L that are quadratic in

!. It was shown that these solutions are extremely accurate in all instances.

Although the Floyd-Steinberg scheme was used for simplicity, the method can

be applied to any error �lter.

The rehalftoning scheme presented in this chapter is useful now that
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scanning, processing, and re-printing documents is common. Commercial dig-

ital copiers must perform inverse halftoning on halftones that are embedded in

documents before they can re-print them. This chapter has shown that good

results can be obtained by using a combination of simple linear �ltering and

modi�ed error di�usion. This greatly reduces the computation required. The

WSNR quality metric from Chapter 2 was applied to rehalftones generated

using the new method, and indicated that they are only slightly noisier than

the original halftones.

The interpolated halftoning scheme presented in this chapter demon-

strates that accurate images can be obtained with nearest neighbor and bilinear

interpolation, without the need to use more costly schemes. If computation

is at a premium, good results can be achieved with nearest neighbor interpo-

lation, since the blockiness is masked to a certain extent by the quantization

noise of error di�usion. Excellent quality results can be obtained at a slightly

higher cost by using bilinear interpolation, with the blurring corrected by

choosing the correct value of L. This produces halftones that are essentially

indistinguishable from those produced by the best interpolation methods.



Chapter 6

Conclusions

Although this dissertation has covered a lot of ground, two themes are com-

mon to the entire work. First, the importance of modeling the e�ects of an

image processing system to account for the distortions that it introduces has

been demonstrated. This enables a residual image to be generated that has

a low correlation with the original image, which in turn permits the use of

noise-based visual quality metrics, such as the weighted signal-to-noise ratio

(WSNR) presented in Chapter 2. Second, it has been demonstrated that the

model itself allows the distortions of the image processing system to be char-

acterized separately from the noise injected by the system. Metrics generated

from the model can then be provided along with WSNR results to quantify

the performance of the system. In other words, by modeling the system, one

is able to obtain objective measures of the subjective quality of images.

Chapter 2 demonstrates the need to model the frequency distortion

in an image before applying a weighted noise metric. The linear contrast

sensitivity function (CSF) that is used to weight the residual image is a simple

model of the human visual system. A possible way to improve the correlation

between the noise metric and visual quality would be to use a more detailed

172
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model, such as that described by Peli [80]. This model takes into account

e�ects such as local contrast and frequency masking. When combined with

models for forward and inverse halftoning, it should provide noise �gures which

are in excellent agreement with subjective results.

Chapters 3 and 4 demonstrate ways of modeling forward and inverse

halftoning so that separate �gures of merit for noise content and frequency

distortion (and tonality, for halftones) can be obtained. Other visual quality

metrics, such as that described by Lubin [81], combine all image distortions

into one �gure. However, as was shown in Chapter 3, halftoning by error

di�usion is accurately modeled as a process which sharpens an image and adds

noise, i.e., a process which introduces a small, predictable set of distortions.

Applying to halftones a quality metric that is designed for any type of image

therefore seems unnecessarily complicated, and discards information about

the process used to generate the image. Furthermore, characterizing halftone

sharpening independently is desirable, because of its highly subjective and

viewer-dependent e�ect on the quality of an image.

A similar argument applies to inverse halftones. Obtaining separate

�gures for blurring and noise content can be accomplished by modeling the

inverse halftoning process. Since these two distortions have greatly di�erent

e�ects on the human visual system, it would seem to be sensible to characterize

them separately. In Chapter 4, the blurring was characterized by computing

an e�ective transfer function for the inverse halftoning system; ideally, this

transfer function would be further reduced to a single number. It may tran-

spire that all inverse halftoning schemes can be adequately characterized by
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the bandwidth of the e�ective transfer function, by its rate of rollo�, or by

some other simple measure. However, this can only be determined by ex-

amining results from other inverse halftoning schemes, with a larger suite of

representative images.

Ultimately, one would probably desire a single �gure of merit for a for-

ward or inverse halftone, and the frequency distortion and noise �gures would

therefore have to be combined. To obtain a meaningful quality measure, it

will be necessary to determine an appropriate weighting for the two compo-

nents. This will almost certainly require psychovisual testing under controlled

conditions. It would then be possible to quantify the bene�t of using a quality

metric which separates the e�ects of frequency distortion and noise, assesses

them individually, and combines the results in a weighted fashion to produce

a single �gure of merit, over using a conventional combined measure such as

that presented in [81].

The linear gain model for the quantizer in error di�usion that was pre-

sented in Chapter 3 is a simple approximation to a di�cult non-linear problem.

The accuracy of the model is certainly high enough to obtain a residual image

that has a very low correlation with the original image, permitting the use of

WSNR to determine the visual quality of halftones. The WSNR results are

in accordance with results obtained from visual inspection of halftones. The

tonality metric provides useful additional information about halftone quality,

and itself relies on the linear gain model to obtain a low-correlation resid-

ual. However, most halftones are currently produced by clustered-dot screen-

ing, which is widely used in commercial printers, chie
y because of its speed.
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As the spatial resolution of printers increases, the relatively poor quality of

screened halftones is becoming less of a concern. The primary trade-o� in

screening is well-known [1], namely, between grayscale resolution and spatial

resolution. The designer must therefore merely decide how many shades of

gray can be obtained without allowing the screen frequency to drop too low,

which would introduce visible artifacts into the halftone. This becomes an in-

creasingly easy task as printer resolution improves. Furthermore, the quality

of a screened halftone is probably directly predictable from the screen alone;

the visual quality metric presented in this work is almost certainly unnecessary

for screened halftones.

The �eld of inverse halftoning is relatively new, and there will probably

be large improvements in the performance of algorithms in the future. Since

the primary use of inverse halftoning is in recovering grayscale images from

optically scanned halftones, it will be necessary to understand the degradations

introduced by the scanning process if high quality inverse halftones are to

be obtained. At present, all inverse halftoning schemes, including the one

presented in Chapter 4, assume that a perfect copy of the halftone is available.

In general, this will not be true. Printer ink spread, document skew, scanner

resolution, and many other factors will a�ect the quality of the halftone that

is actually available.

A scanned halftone is likely to have been screened, rather than error

di�used, because of the popularity of screening in commercial printers. Fast,

high quality algorithms are required for these halftones. Already, at least one

technique exists for inverse halftoning any type of halftone [82]; however, it
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is a wavelet-based technique, and therefore su�ers from the implementation

di�culties described in Chapter 4 in connection with [26]. A better method

would be to �rst detect the halftoning method that was used, and then apply

a fast algorithm designed speci�cally for that type of halftone. This requires

robust detection methods. However, ordered (e.g., clustered-dot screened) and

stochastic (e.g., error di�used) halftones have radically di�erent spatial prop-

erties, and it should not be di�cult to devise a simple algorithm to di�erentiate

between them.

In a rehalftoning application, the inverse halftoning problem is simpli-

�ed, as was shown in Chapter 5. It is quite di�cult to obtain high quality

grayscale images from screened halftones. However, if the inverse halftone is

subsequently re-screened (or error di�used), the artifacts are largely masked by

the halftoning error. Simple inverse halftoning methods for screened halftones

should therefore be investigated, with a view towards producing rehalftones of

acceptable quality. A comb �lter with zeros placed at multiples of the screen

frequency is a possible example. This requires knowledge of the screen period,

but this can be ascertained from the halftone by correlation methods.

Because grayscale images can be compressed much more e�ciently than

halftones [59], rehalftoning may become important in applications such as

facsimile transmission. Connection time can be reduced if the halftones in

a faxed document are converted to grayscale at the transmitter, compressed,

and rehalftoned at the receiver. An additional bene�t is that the receiver can

use a di�erent halftoning method from the one used to create the original

image, thus giving the best possible �nal image. In this case, the intermediate
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inverse halftone must be of su�cient quality that a good quality halftone can

be derived from it using several di�erent methods; the requirements on the

inverse halftone need to be ascertained. This should be performed with the

intended compression scheme in mind, so that good compression performance

and high quality can be achieved simultaneously.

In summary, separating frequency distortion from noise injection for

forward and inverse halftones appears sound, and further work will show

whether the concept can be applied to other image processing operations,

such as compression. Furthermore, it would appear that the �eld of inverse

halftoning, including rehalftoning, is currently more open than that of forward

halftoning. New problems are appearing that must be solved. It is hoped that

the ideas presented in this work will be of use to those intending to continue

work in the area.
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