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Hash functions are frequently called message digest functions. Their purpose is to extract

a short binary string from a large digital message. A key feature of conventional crypto-

graphic (and other) hashing algorithms such as message digest 5 (MD5) and secure hash

algorithm 1 (SHA-1) is that they are extremely sensitive to the message; i.e., changing

even one bit of the input message will change the output dramatically. However, mul-

timedia data such as digital images undergo various manipulations such as compression

and enhancement. An image hash function should instead take into account the changes

in the visual domain and produce hash values based on the image’s visual appearance.

Such a function would facilitate comparisons and searches in large image databases.

Other applications of a perceptual hash lie in content authentication and watermarking.

This dissertation proposes a unifying framework for multimedia signal hashing. The

problem of media hashing is divided into two stages. The first stage extracts media-

dependent intermediate features that are robust under incidental modifications while
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being different for perceptually distinct media with high probability. The second stage

performs a media-independent clustering of these features to produce a final hash.

This dissertation focuses on feature extraction from natural images such that the

extracted features are largely invariant under perceptually insignificant modifications to

the image (i.e. robust). An iterative geometry preserving feature detection algorithm

is developed based on an explicit modeling of the human visual system via end-stopped

wavelets. For the second stage, I show that the decision version of the feature clustering

problem is NP-complete. Then, for any perceptually significant feature extractor, I

develop polynomial time clustering algorithms based on a greedy heuristic.

Existing algorithms for image/media hashing exclusively employ either cryptographic

or signal processing methods. A pure signal processing approach achieves robustness

to perceptually insignificant distortions but compromises security which is desirable in

applications for multimedia protection. Likewise pure cryptographic techniques while se-

cure, completely ignore the requirement of being robust to incidental modifications of the

media. The primary contribution of this dissertation is a joint signal processing and cryp-

tography approach to building robust as well as secure image hashing algorithms. The

ideas proposed in this dissertation can also be applied to other problems in multimedia

security, e.g. watermarking and data hiding.
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Chapter 1

Introduction

1.1 The Need for Image Hashing

Due to the popularity of digital technology, more and more digital images are being

created and stored every day. This introduces a problem for managing large image

databases. One cannot determine if an image already exists in a database without ex-

haustively searching through all the entries. Further complication arises from the fact

that two images that appear identical to the human eye may have different digital rep-

resentations, which makes it difficult to compare a pair of images, e.g. an original image

and its compressed version, an image stored using distinct transforms, or an image en-

hanced via common signal processing operations. This has spurred interest in developing

algorithms to generate suitable image identifiers, or image hash functions. One possi-

ble option to derive content-dependent short binary strings from the image is the use

of conventional cryptographic hashes such as message digest 5 (MD5) and secure hash

algorithm 1 (SHA-1) [3]. However, the problem associated with these is that they are

extremely sensitive to the message being hashed; i.e., changing even one bit in the input

changes the output dramatically. Instead, these identifiers must necessarily take into

account the changes in the visual domain and capture the essential perceptual attributes

of the image. For this reason, such an image identifier is termed as a perceptual image

hash.

Further need for such image descriptors arises for the purpose of integrity verification.
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Because of the easy-to-copy nature of digital media, digital data can be tampered with

and hence there exits a need to verify the content of the media to ensure its authentic-

ity. In the literature, the methods used for media verification can be classified into two

categories: digital signature-based [1], [2], [4], [5], [6], [7], [8], [9] and watermark-based

[10], [11], [12], [13], [14], [15]. A digital signature is a set of features extracted from

the media that sufficiently represents the content of the original media. Watermarking,

on the other hand, is a media authentication/protection technique that embeds invisible

(or inaudible) information into the media. For content authentication, the embedded

watermark can be extracted and used for verification purposes.

The major difference between a watermark and a digital signature is that the embed-

ding process of the former requires the content of the media to change. However, for con-

tent authentication, both the watermark-based approach and the digital signature-based

approach are expected to be sensitive to any malicious modification of the media while

being robust to incidental modifications such as JPEG compression (with compression

ratios that do not result in significant loss of perceptual quality) or image enhancement.

Fig. 1.1 illustrates this requirement with a practical example. Fig. 1.1 (b) shows the origi-

nal tiff image of a former US President and the first lady. The JPEG compressed (quality

factor (QF) = 40) version of the same image is shown in Fig. 1.1 (a). Fig. 1.1 (c) then

shows a tampered version of the image in Fig. 1.1 (a) in which a malicious change is made

to the First Lady’S face. It is desired then that the signatures (or hashes) extracted from

Fig. 1.1 (a) and (b) agree whereas those for Fig. 1.1 (b) and (c) be significantly different.

In practice, extracting content descriptors (or image features) that can guarantee the

detection of all malicious changes has proved infeasible. To a large extent, my research

has hence focused on developing randomized algorithms for media hashing (Chapters 3

and 4) that significantly enhance security against maliciously generated inputs.

2



(a) JPEG Compressed Image (b) Original Image (c) Tampered Image

Figure 1.1: Example illustrating the requirements of a hash in a content authentication
scenario. The hash values from images in (a) and (b) are required to agree, while being
different from the one extracted from the image in (c).

Other applications of perceptual image hashing have recently been conceived for con-

tent dependent key generation and synchronization in video watermarking [16, 17].

1.2 Review of Related Work and Open Issues

This section reviews the current research in content-dependent digital signature/hash

extraction from images. Open research issues are subsequently summarized.

1.2.1 Image Statistics Based Approaches

The fundamental premise underlying these approaches is:

There exists a certain class of statistics of the image that are largely invariant

under small (visually insignificant) perturbations to the image.

In one of the earliest approaches, Schneider [4] et al. use intensity histograms of image

blocks for authentication. The verification process involves computing the Euclidean dis-

tance between the histogram of the original and the candidate image to be verified. The

sum of all such distances over the image is used as a measure of image authenticity. This

approach requires storage of public key encrypted histograms which can be considerably

3



Figure 1.2: Illustration of the hash algorithm by Venkatesan et al. [1]

large. The most significant drawback of their method is that it is easy to modify an image

without altering its histogram (e.g. permuting pixels within a block). This makes the

scheme less secure. Kailasnathan et al. [5] extract a signature that is based on intensity

statistics such as mean, variance and other higher order moments of image blocks. While

simple in concept, their scheme has drawbacks similar to that in [4].

In [1] Venkatesan et al. develop an image hash based on an image statistics vector

extracted from the various sub-bands in a wavelet decomposition of the image. They

observe that statistics such as averages of coarse sub-bands and variances of other (fine

detail) sub-bands stay invariant under a large class of content-preserving modifications

to the image. The algorithm is randomized by first dividing each sub-band into random

regions by using a secret key and then extracting statistics as before from each region.

The quantized statistics are then input to the decoding stage of a Reed-Muller error-

correcting code [18] to generate the final hash value. Fig. 1.2 illustrates this scheme.

Although statistics of wavelet coefficients have been found to be far more robust than

4



intensity statistics, they do not necessarily capture content changes1 well, particularly

those that are maliciously generated.

1.2.2 Preserving Coarse Image Representations

In [8] the authors propose a robust hash based on preserving selected discrete co-

sine transform (DCT) coefficients. Their method is based on the observation that large

changes to low frequency DCT coefficients of the image are needed to change the ap-

pearance of the image significantly. To randomize the procedure (or dependent on a key)

the authors in [8] first generate several smooth and zero-mean random patterns P (i),

i = 1, 2, ..., N . Considering the DCT block B from the image and the pattern as vectors,

the image I is projected on each pattern and its absolute value is compared with the

threshold Th to obtain N bits bi, i = 1, 2, ..., N

if |B.P (i)| < Th bi = 0 (1.1)

if |B.P (i)| ≥ Th bi = 1 (1.2)

Since the patterns have a zero mean, the projections do not depend on the mean gray-

value of the block and only depend on the variations within the block itself. The hash

extracted via this method is fairly robust to JPEG compression, uniform noise addition,

and standard linear sharpening and blurring filters. However, the method is very sensitive

to even small global geometric transformations, such as rotation and scaling, and local

ones, such as random bending or shearing.

1A content change here signifies a perceptually meaningful perturbation to the image, e.g.
adding/removing an object, significant change in texture, and morphing a face. In general, a perceptual
hash should be sensitive to both incidental as well as malicious content changes. A major challenge in se-
cure image hashing is to develop algorithms that can detect (with high probability) malicious tampering
of image data.
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Mihcak and Venkatesan [2] develop another image hashing algorithm by using an

iterative approach to binarize the DC subband (lowest resolution wavelet coefficients)

of a 3-level Haar wavelet decomposition of the image. The key observation in their

work is that the significant geometric features of an image are preserved under small

perturbations to the image. Their hash algorithm is summarized below in Fig. 1.3.

The DC subband, i.e. coarse detail, carries low resolution wavelet coefficients that

represent crude image features. A thresholding of these coefficients is hence used to form

the hash. This is similar to the approach in [8] in which DCT coefficients were used

instead. The LSI filtering (Step 4) introduces blurred regions to gain robustness against

small modifications. Most significantly, the iterative nature of the algorithm repeat-

edly emphasizes (or strengthens) geometrically “strong” components while eliminating

“weaker” ones.

The aforementioned approaches implicitly make the simplifying assumption that most

robust attributes of an image’s visual appearance are captured by low spatial frequency

or equivalently low spatial resolution coefficients in a DCT/discrete wavelet transform

(DWT) version of the image. While DCT/DWT have proven to be quite effective for con-

ventional image processing applications, it is still an open question as to which mappings

(if any) from DCT/DWT coefficients preserve essential image information for perceptual

image hashing.

1.2.3 Relation Based Approaches

Relation-based approaches are also based on forming suitable content identifiers based

on a transform domain (DCT/DWT) representation of the image. However, unlike the

methods in Section 1.2.2, relation-based approaches do not preserve certain transform
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————————————–

1. Find the Discrete Wavelet Transform (DWT) of image I up to level L. Let IA be

the resulting DC subband.

2. Perform the following thresholding operation on IA to produce the binary map M

M(i, j) =





1 if IA(i, j) ≥ T,

0 otherwise

where T is a threshold that is adaptively chosen.

3. Let M1 = M, ctr = 1

4. Apply 2-D linear shift invariant (LSI) filtering on M1 via filter f to obtain M2

5. Apply a thresholding on M2 as in step 2. Let M3 be the binary output

6. If ctr ≥ C, terminate the iteration and go to Step 7. Else, find the Hamming

distance DH(M3,M1); if it is less than ρ (a user-defined value), then terminate the

iteration and go step 7 else, set M1 = M3 and go to step 3

7. H(I) = M3

————————————–

Figure 1.3: The hash algorithm by Mihcak et al. [2] based on preserving low resolution

wavelet coefficients. H(I) denotes the final hash value.

coefficients but look to identify (approximately) invariant relationships between those

coefficients.

A typical relation-based technique for image authentication tolerating JPEG compres-
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sion has been reported by Lin and Chang [6], [7]. They extract a digital signature by

using the invariant relationship between any two DCT coefficients, which are at the same

position of two different 8×8 blocks. Let Fp, Fq denote DCT coefficients of two arbitrary

non-overlapping blocks of an image, at the same position. Similarly, let F̃p and F̃q denote

the corresponding DCT coefficients of the JPEG compressed version of the image. Then,

define ∆Fp,q = Fp − Fq and ∆F̃p,q = F̃p − F̃q. Lin and Chang [7] identify the following

properties must hold true:

1. if ∆Fpq > 0 then ∆F̃pq > 0

2. else if ∆Fpq < 0 then ∆F̃pq < 0

3. else if ∆Fpq = 0 then ∆F̃pq = 0

The aforementioned differences, i.e. ∆Fpq
′s are computed (for randomly selected DCT

coefficients from the original image) and stored as the digital signature. The authentica-

tion procedure then involves deriving a new signature by computing the same differences

from a given query image and comparing with the pre-computed signature to determine

if the query image is authentic. This scheme, by virtue of its design, is very robust to

JPEG compression, i.e. the same signature results even after the image is JPEG com-

pressed. However, it still remains vulnerable to several other perceptually insignificant

modifications, e.g. where the statistical nature of distortion is different from the blur

caused by compression.

Recently, Lu et al. [9] have proposed a “structural digital signature” for image authen-

tication. They observe that in a sub-band wavelet decomposition, a parent and child node

are uncorrelated, but they are statistically dependent. In particular, they observe that

the difference of the magnitude of wavelet coefficients at consecutive scales (i.e. a parent
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Figure 1.4: Structural digital signature by Lu et al. ws,o(x, y) represents a wavelet

coefficient at scale s, orientation o and position (x, y). σ denotes a positive constant.

node and its four child nodes) remains largely preserved for several content-preserving

manipulations. Identifying such parent-child pairs and subsequently encoding the pairs

form their robust digital signature. Qualitatively hence, their approach is similar to that

of Lin and Chang [7], except that the invariant relationship is identified between wavelet

coefficients instead of DCT coefficients. Fig. 1.4 illustrates the invariant underlying their

scheme.

1.2.4 Open Research Issues

Feature points have long been used in computer vision for the purpose of object recogni-

tion and classification. Feature point detectors are attractive for their inherent sensitivity

to content changing manipulations. Current approaches based on feature points [19, 20],

however, have limited utility in perceptual hashing applications since they are sensi-

tive to several perceptually insignificant modifications as well. A robust image hashing

algorithm based on visually significant feature points remains elusive.
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Several geometric manipulations (e.g. large rotation and scaling) do not change the

image’s appearance. When comparing two images, one of which has suffered a large

geometric attack, by using one of the existing techniques, the two images will have very

different hash values. This is because the content descriptors, e.g. coarse wavelet/DCT

coefficients, do not have a geometrically invariant representation. A good feature point

detector can also yield a representation of image content that is naturally robust to local

and geometric distortions.

Section 1.1 identifies two major objectives of perceptual image hashing. First is re-

silience against non intentional or perceptually insignificant modifications to the image,

known as perceptual robustness (or simply robustness) of the hash. Second is the abil-

ity to survive intentional attacks (generated by a malicious adversary), referred to as

hash security. It has further been identified [3] that the security properties of a hash

are intimately related to the randomization scheme employed in the design of the hash

algorithm.

Table 1.1 provides a comparative summary of the image hashing algorithms surveyed

in this chapter. It can be seen from Table 1.1 that algorithms that achieve good ro-

bustness typically compromise security. Further, existing methods do not facilitate a

trade-off between the two aforementioned objectives. Another very important question

that remains to be answered is the (minimum) length of the hash required to successfully

achieve a desired level of robustness.

Finally, several researchers have identified randomization as an important ingredient

for secure hashing. A theoretical analysis of randomized media hashing algorithms, and

the quantitative relationship of randomization parameter(s) with hash security, however,

has not yet been reported in literature.
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Image Hashing Algorithm Robustness Security Remarks

Cryptographic hashes

MD5, SHA-1 Poor Good No trade-offs possible

Statistics Based

Schneider et al. [4] Poor Poor –

Kailasanathan et al. [5] Poor Poor –

Venketasan et al. [1] Fair Fair Trade-offs hard to achieve

Coarse Representations

Fridrich et al. [8] Fair Poor Sensitive to small geometric changes

Mihcak et al. [2] Good Poor Trade-offs hard to achieve

Relation Based

Lin et al. [7] Fair Poor –

Lu et al. [9] Fair Fair Sensitive to small geometric changes

Table 1.1: A comparison of the image hashing algorithms surveyed in this chapter. Note

the trade-off between hash robustness and security/randomization.

1.3 Contributions and Outline of Dissertation

The following are contributions to the theory, algorithms, and design of perceptually

based robust image hashing schemes included in this dissertation, which are described in

[21], [22], [23] [24], [25].

1. I develop a novel unifying framework for perceptual media hashing that uses a

media-dependent feature extractor followed by media-independent clustering of vec-

tors in the feature space. I introduce quantitative definitions for the goals of media

hashing algorithms which encompass requirements of perceptual robustness as well
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as hash security.

2. I develop an iterative image feature extraction algorithm based on an explicit mod-

eling of the human visual system (HVS) via end-stopped wavelets [26]. Within the

feature extractor, I enable trade-offs between perceptual robustness, fragility, and

randomization of the hash that previously proposed schemes did not address.

3. I develop a novel cost function for feature vector compression and show that the

decision version of the feature clustering problem is NP-complete. Then, for any

perceptually significant feature extractor, I develop polynomial time clustering al-

gorithms based on a greedy heuristic. The proposed algorithm automatically deter-

mines the final hash length required to satisfy a specified distortion. Unlike existing

methods for hash compression [1], [27] that are limited to binary/Euclidean vectors,

the proposed clustering is applicable to feature vectors in any metric space.

4. I develop novel randomized clustering algorithms for secure media hashing. I quan-

tify the relationship of randomization with hash security. I quantitatively as well as

qualitatively establish the virtues of randomization in compensating for the prac-

tical limitations of feature detectors.

5. Based on the feature extractor in step 2, I develop a digital signature based scheme

for image authentication under geometric attacks. I generalize the well known

Hausdorff distance [28] and bring out its efficacy in capturing visual changes in

image content. The new distance includes several earlier Hausdorff measures [28],

[29] as special cases.

Chapter 2 presents a unifying framework for perceptual media hashing. First, the

desired properties of a perceptual image hash are formally defined. Trade-offs between
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these properties are identified. Next, a novel two-stage framework is introduced for

perceptual hashing, which could be extended to other media besides images, e.g. audio,

and documents.

Chapter 3 presents a novel solution to the first stage of the image hashing problem

using visually robust feature points. Previous work on robust feature detection from

natural images is reviewed. An iterative feature extraction algorithm is then developed

that can employ a variety of feature detectors. The proposed feature detector finds low-

level robust image features based on an explicit modeling of the human visual system.

Within the feature detector, trade-offs between perceptual robustness and fragility to

visually distinct images, are facilitated.

Chapter 4 designs media independent clustering algorithms for feature vector compres-

sion. Limitations of traditional compression approaches for the hashing application are

discussed and subsequently a novel cost function is proposed for feature vector compres-

sion. It is shown that the decision version of the underlying feature clustering problem is

NP-complete. For any perceptually significant feature extractor, polynomial time clus-

tering algorithms are developed based on a greedy heuristic. The number of clusters (or

equivalently the length of the final hash) is determined naturally as an outcome of the

proposed clustering. Randomized algorithms are then developed for secure media hash-

ing. The proposed algorithms (deterministic as well as randomized) allow clustering of

vectors in any metric space with a meaningful notion of distance on image features.

Chapter 5 develops a framework for image authentication under geometric attacks

using the feature extractor in Chapter 3. A generalized Hausdorff distance measure is

developed to compare features from two different images. The new distance accounts

for occasional feature detector failure and is shown to more accurately capture visual
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changes in image content.

Chapter 6 concludes the dissertation by summarizing the contributions and provides

suggestions for future work.
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Chapter 2

A unifying framework for media hashing

2.1 Introduction

This chapter presents a unifying framework for perceptual media hashing. It also

develops a formal (quantitative) description of the desired properties of a perceptual

image hash. The key objective of this chapter is to highlight the fundamental challenges

in perceptual image hashing that solutions developed in the subsequent chapters will

address.

Section 2.2 defines the desired properties of a perceptual image hash. Trade-offs

between these properties are described. Section 2.3 then introduces a two-stage unifying

framework for media hashing. The framework consists of a perceptually meaningful

media dependent feature extractor followed by a media independent clustering of vectors

in the feature space. Section 2.4 summarizes the ideas discussed in this chapter.

2.2 Perceptual Image Hashing: Statement of Goals

In view of the discussion in Chapter 1, I will now quantify the desired properties of a

perceptual image hash.

Let I denote a set of images (e.g., all natural images of a particular size) with finite
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cardinality. Also, let K denote the space of secret keys1. Our hash function then takes

two inputs, an image I ∈ I and a secret key K ∈ K, to produce a q-bit binary hash

value h = H(I, K). Let Iident ∈ I denote an image such that Iident looks the same as

I. Likewise, an image in I that is perceptually distinct from I will be denoted by Idiff .

Let θ1, θ2 satisfy 0 < θ1, θ2 < 1. Then, three desirable properties of a perceptual hash are

identified as follows:

1. Perceptual robustness:

Probability(H(I, K) = H(Iident, K)) ≥ 1− θ1, for a given θ1

2. Fragility to visually distinct images:

Probability(H(I, K) 6= H(Idiff , K)) ≥ 1− θ2, for a given θ2

3. Unpredictability of the hash:

Probability(H(I, K) = v) ≈ 1
2q , ∀ v ∈ {0, 1}q

Let Q = {H(I, K) | I ∈ I, K ∈ K}, i.e., the set of all possible realizations of the

hash algorithm on the product space I × K. Also, for a fixed I0 ∈ I define O =

{H(I0, K) |K ∈ K}. That is, for a fixed image, O is the set of all possible realizations

of the hash algorithm over the key space K.

Note that the probability measure in the first two properties is defined over the set Q.

For example, property 1 requires that for any pair of “perceptually identical” images in I
and any K ∈ K, the hash values must be identical with high probability. The probability

1The key space in general can be constructed in several ways. A necessary but not sufficient condition

for secure hashing is that the key space should be large enough to preclude exhaustive search. For this

paper, unless specified otherwise, I will assume the key space to be the Hamming space of 32-bit binary

strings.
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measure in the third property, however, is defined on O. That is, the third property

requires that as the secret key is varied over K for a fixed input image, the output hash

value must be approximately uniformly distributed among all possible q-bit outputs.

Remark: The three desired properties as laid out above are those of an “ideal” hash

algorithm. Whether or not such hash algorithms can even be constructed (esp. in a

computationally feasible time) remains an outstanding open problem in media hashing.

I therefore do not claim to achieve these properties for arbitrarily low values of θ1, θ2 and

q, but instead provide heuristic solutions that achieve these goals with high probability.

Further, the three desirable hash properties conflict with one another. The first prop-

erty amounts to robustness under small perturbations, whereas the second one requires

the minimization of collision probabilities for perceptually distinct inputs. There is clearly

a trade-off here. For example, if very crude features were used, then they would be hard

to change (i.e., robust), but it is likely that one is going to encounter collision of percep-

tually different images. Likewise for perfect randomization, a uniform distribution on the

output hash values (over the key space) would be needed, which in general, would deter

achieving the first property. From a security viewpoint, the second and third properties

are very important; i.e., it must be extremely difficult for an adversary to manipulate

the content of an image and yet obtain the same hash value. It is desirable for the

hash algorithm to achieve these (conflicting) properties to some extent and/or facilitate

trade-offs.

2.3 Hashing Framework

I partition the problem of deriving an image hash into two steps, as illustrated in

Fig. 2.1. The first step extracts a feature vector from the image, whereas the second
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Figure 2.1: Block diagram of the hash function.

stage compresses this feature vector to a final hash value. In the feature extraction step,

the two-dimensional image is mapped to a one-dimensional feature vector. This feature

vector must capture the perceptual qualities of the image. That is, two images that

appear identical to the human visual system should have feature vectors that are close in

some distance metric. Likewise, two images that are clearly distinct in appearance must

have feature vectors that differ by a large distance. For the rest of the dissertation, I will

refer to this visually robust feature vector (or its quantized version) as the “intermediate

hash”. My proposed approach to extracting visually robust image features is detailed

later in Chapter 3.

The second step then compresses this intermediate hash vector to a final hash value.

This will involve clustering between the intermediate hash vector of an input source (im-

age) and the intermediate hash vectors of its perceptually identical versions. In Chapter

4, I develop a clustering algorithm based on the distribution of intermediate hash vectors

to address this problem.

There are are two major motivations for such a partitioning of image hashing algo-

rithm(s). First, quite naturally image hashing lends into being modeled as a clustering

problem. In particular, we are attempting to cluster visually indistinguishable images

into the same cell (or map to the same hash value). Second, the proposed framework

allows for a somewhat media independent approach; i.e. if a common solution to stage
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2 is developed, then it may be used to compress/cluster feature vectors independent of

the media that the features were derived from. Hence, the proposed framework is a uni-

fied one for media hashing. With that in view, Chapter 4 develops a family of generic

clustering algorithms that can be applied to features from an arbitrary media. This

dissertation, however, focuses exclusively on robust feature extraction techniques from

natural images.

2.4 Conclusion

This chapter introduced formal mathematical definitions for the desirable properties

of a perceptual image hash. A unified framework for hashing within which these prop-

erties would be targeted was subsequently presented. Two important observations were

made: 1) there is an inherent trade-off between the desired properties of a perceptual

hash and hashing algorithms must facilitate these, and 2) the cryptographic secret key

plays an important role in randomizing the hash and enabling security against mali-

ciously generated inputs (image pairs). In the next chapter, I will present the design of

a visually robust image feature extractor that has characteristics as desired in stage 1 of

the proposed hashing framework.
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Chapter 3

Feature Extraction

3.1 Introduction

This chapter proposes a paradigm for deriving intermediate hash (or feature) vectors from

images using visually significant feature points. The feature points should be largely in-

variant under perceptually insignificant distortions. To satisfy this, I propose an iterative

feature extractor to obtain significant geometry preserving feature points. Based on an

underlying robust feature extraction algorithm, I develop explicit randomized feature

extraction techniques to enhance hash security.

End-stopped wavelet kernels that capture essential and robust attributes of human

perception are described in Section 3.2. Section 3.3 then proposes a feature detector

based on constructing visually significant end-stopped wavelets [26]. Section 3.4 presents

a probabilistic quantization approach to binarize image feature vectors that enhances

robustness to perceptually insignificant perturbations, and at the same time, introduces

randomness. Iterative algorithms (both deterministic and randomized) that construct in-

termediate hash vectors are described in Section 3.5. Experimental results demonstrating

perceptual robustness, sensitivity to content changes, and receiver operating character-

istic (ROC) analysis across 1000 different images are reported in Section 3.6. Finally,

Section 3.7 summarizes the key ideas introduced in this chapter.
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3.2 End-Stopped Wavelets

Psychovisual studies have identified the presence of certain cells, called hypercomplex

or end-stopped cells, in the primary visual cortex [30]. For real-world scenes, these cells

respond strongly to extremely robust image features such as corner like stimuli and points

of high curvature [26], [31]. The term end-stopped comes from the strong sensitivity

of these cells to end-points of linear structures. Bhattacherjee et al. [26] construct

“end-stopped” wavelets to capture this behavior. The construction of the wavelet kernel

(or basis function) combines two operations. First, linear structures having a certain

orientation are selected. These linear structures are then processed to detect line-ends

(corners) and/or high curvature points.

Morlet wavelets can be used to detect linear structures having a specific orientation.

In the spatial domain, the two dimensional (2-D) Morlet wavelet is given by [32]

ψM(x) = (ejk0.x − e−
1
2
|k0|2)(e−

1
2
|x|2) (3.1)

where x = (x, y) represents 2-D spatial coordinates, and k0 = (k0, k1) is the wave-vector of

the mother wavelet, which determines scale-resolving power and angular-resolving power

of the wavelet [32]. The frequency domain representation, ψM(k), of a Morlet wavelet is

ψ̂M(k) = (e−
1
2
|k−k0|2 − e−

1
2
|k0|2)(e−

1
2
|k|2) (3.2)

Here, k represents the 2-D frequency variable (u, v). The Morlet function is similar

to the Gabor function, but with an extra correction term e−
1
2
(|k0|2+|x|2) to make it an

admissible wavelet [33]. The orientation of the wave-vector determines the orientation

tuning of the filter. A Morlet wavelet detects linear structures oriented perpendicular to

the orientation of the wavelet.
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In two dimensions, the end points of linear structures can be detected by applying the

first-derivative of Gaussian (FDoG) filter in the direction parallel to the orientation of

structures in question. The first filtering stage detects lines having a specific orientation

and the second filtering stage detects end-points of such lines. These two stages can be

combined into a single filter to form an “end-stopped” wavelet [26]. An example of an

end-stopped wavelet and its 2-D Fourier transform follow:

ψE(x, y) =
1

4
ye
−
(

x2+y2

4
+

k0
4

(k0−2jx)

)
(3.3)

ψ̂E(u, v) = 2π
(
e−

(u−k0)2+(v)2

2

) (
jve−

u2+v2

2

)
(3.4)

Eqn. (3.4) shows ψ̂E as a product of two factors. The first factor is a Morlet wavelet

oriented along the u−axis. The second factor is a FDoG operator applied along the

frequency-axis v, i.e. in the direction perpendicular to the Morlet wavelet. Hence, this

wavelet detects line ends and high curvature points in the vertical direction. Fig. 3.1

illustrates the behavior of the end-stopped wavelet as in (3.3)-(3.4). Fig. 3.1 (a) shows

a synthetic image with L-shaped region surrounded by a black background. Fig. 3.1 (b)

shows the raw response of the vertically oriented Morlet wavelet at scale i = 2. Note that

this wavelet responds only to the vertical edges in the input. The response of the end-

stopped wavelet is shown in Fig. 3.1 (c) also at scale i = 2. The responses are strongest

at end-points of vertical structures and negligibly small elsewhere. The local maxima of

these responses in general correspond to corner-like stimuli and high curvature points in

images.

22



(a) Synthetic L-shaped image (b) Response of a Morlet wave-

let, orientation = 0o

(c) Response of the end-

stopped wavelet

Figure 3.1: Behavior of the end-stopped wavelet on a synthetic image: note the strong

response to endpoints and corners.

3.3 Proposed Feature Detection Method

The proposed approach to feature detection computes a wavelet transform based on

an end-stopped wavelet obtained by applying the FDoG operator to the Morlet wavelet:

ψE(x, y, θ) = (FDoG) o (ψM(x, y, θ)) (3.5)

Orientation tuning is given by θ = tan−1(k1

k0
). Let the orientation range [0, π] be dis-

cretized into M intervals and the scale parameter α be sampled exponentially as αi,

i ∈ Z. This results in the wavelet family

(
ψE(αi(x, y, θk)

)
, α ∈ R, i ∈ Z (3.6)

where θk = (kπ)/M , k = 0,..., M -1. The wavelet transform is

Wi(x, y, θ) =
∫

f(x1, y1)ψE
∗ (

αi(x− x1, y − y1), θ
)
dx1dy1 (3.9)

The sampling parameter α is chosen to be 2.
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————————————–

1. Compute the wavelet transform in (3.9) at a suitably chosen scale i for several different

orientations. The coarsest scale (i = 1) is not selected as it is too sensitive to global

variations. The finer the scale, the more sensitive it is to distortions such as quantization

noise. I choose i = 3.

2. Locations (x, y) in the image that are identified as candidate feature points satisfy

Wi(x, y, θ) = max
(x′,y′)∈N(x,y)

|Wi(x′, y′, θ)| (3.7)

where N(x,y) represents the local neighborhood of (x, y) within which the search is con-

ducted.

3. From the candidate points selected in step 2, qualify a location as a final feature point if

max
θ

Wi(x, y, θ) > T (3.8)

where T is a user-defined threshold.

————————————–

Figure 3.2: Feature detection method that preserves significant image geometry feature

points of an image.

Fig. 3.2 describes the proposed feature detection method. Step 1 computes the wave-

let transform in (3.9) for each image location. Step 2 identifies significant features by

looking for local maxima of the magnitude of the wavelet coefficients in a preselected

neighborhood. I chose a circular neighborhood to avoid increasing detector anisotropy.

Step 3 applies thresholding to eliminates spurious local maxima in featureless regions of

the image.
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The method in Fig. 3.2 has two free parameters: integer scale i and real threshold T .

The threshold T is adapted to select a fixed number (user defined parameter P ) of feature

points from the image. An image feature vector is formed by collecting the magnitudes

of the wavelet coefficients at the selected feature points. The length P feature vector is

labeled as f .

3.4 Probabilistic Quantization

Once the feature vector is obtained, the next step is then to obtain a binary string

from the same that would form the intermediate hash. Previous approaches [4], [19] use

public-key encryption methods on image features to arrive at a digital (binary) signature.

Such a signature would be very sensitive to small perturbations in the extracted features

(here, the magnitude of the wavelet coefficients). I observe that under perceptually

insignificant distortions to the image, although the actual magnitudes of the wavelet

coefficients associated with the feature points may change, the “distribution” of the

magnitudes of the wavelet coefficients is still preserved.

In order to maintain robustness, I propose a quantization scheme based on the prob-

ability distribution of the features extracted from the image. In particular, I use the

normalized histogram of the feature vector f as an estimate of its distribution. The

normalized histogram appears to be largely insensitive to attacks that do not cause sig-

nificant perceptual changes. In addition, a randomization rule [34] is also specified which

adds unpredictability to the quantizer ouput.

Let L be the number of quantization levels, fq denote the quantized version of f , and

f(k) and fq(k) denote the kth elements of f and fq, respectively. The binary string obtained

from the quantized feature vector fq is hence of length P dlog2(L)e bits. If quantization
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were deterministic, then the quantization rule would be given by

li−1 ≤ f(k) < li, fq(k) = i (3.10)

where [li−1, li) is the ith quantization bin. Note, the quantized values are chosen to be

i, 1 ≤ i ≤ L. This is because unlike traditional quantization for compression, there

is no constraint on the quantization levels for the hashing problem. These may hence

be designed for convenience as long as the notion of “closeness” is preserved. Here, we

design quantization bins [li−1, li) such that

∫ li

li−1

pf (x)dx =
1

L
, 1 ≤ i ≤ L (3.11)

where pf (x) is the estimated distribution of f . This ensures that the quantization levels

are selected according to the distribution of image features. In each interval [li−1, li), I

obtain center points Ci with respect to the distribution, given by

∫ li

Ci

pf (x)dx =
∫ Ci

li−1

pf (x)dx =
1

2L
(3.12)

Then, I find deviations Pi, Qi about Ci where li−1 ≤ Pi ≤ Ci and Ci ≤ Qi ≤ li, such that

∫ Qi
Ci

pf (x)dx
∫ li
Ci

pf (x)dx
=

∫ Ci
Pi

pf (x)dx
∫ Ci
li−1

pf (x)dx
, 1 ≤ i ≤ L (3.13)

Pi, Qi are hence symmetric around Ci with respect to the distribution pf (x). By virtue

of the design of Ci’s in (3.12), the denominators in (3.13) are both equal to 1
2L

and hence

only the numerators need to be computed. The probabilistic quantization rule is then

completely given by

Pi < f(k) < Qi, fq(k) =





i with probability

∫ f(k)

Pi
pf (x)dx

∫ Qi
Pi

pf (x)dx

i− 1 with probability

∫ Qi
f(k)

pf (x)dx∫ Qi
Pi

pf (x)dx
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li−1 ≤ f(k) ≤ Pi, fq(k) = i− 1 with probability 1 (3.14)

and

Qi ≤ f(k) ≤ li, fq(k) = i with probability 1 (3.15)

The output of the quantizer is deterministic except in the interval (Pi, Qi) Note, if f(k) =

Ci for some i, k, then the assignment to levels i or i−1 takes place with equal probability,

i.e. 0.5. The quantizer output in other words is completely randomized. On the other

hand, as f(k) approaches Pi or Qi the quantization decision becomes almost deterministic.

In the next section, I present iterative algorithms that employ the feature detector in

Section 3.3, and the quantization scheme described in this section to construct binary

intermediate hash vectors.

3.5 Intermediate Hash Algorithms

3.5.1 Deterministic Intermediate Hash Algorithm

The intermediate hash function for image I is represented as h(I) and DH(·, ·) denotes

the normalized Hamming distance between its arguments (binary strings).

Mihcak et al. [2] observe that primary geometric features of the image are largely

invariant under small perturbations to the image. They propose an iterative filtering

scheme that minimizes the presence of “geometrically weak components” and enhances

“geometrically strong components” by means of region growing. I adapt the algorithm

in [2] to lock onto a set of feature-points that are largely preserved under perceptually

insignificant distortions to the image. The stopping criterion for the proposed iterative

algorithm is achieving a fixed point for the binary string obtained on quantizing the vector

of feature points f .
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————————————–

1. Get parameters MaxIter, ρ and P , and set count = 1

2. Use the feature detector in Fig. 3.2 to obtain a length P vector f .

3. Quantize f according to the rule given by (3.10) and (3.11) (i.e. deterministic quan-

tization) to obtain a binary string b1
f

4. (Perform order-statistics filtering) Let Ios = OS(I; p, q, r). For a 2-D input X,

Y = OS(X; p, q, r) where ∀i, j, Y (i, j) is equal to the rth element of the sorted set

of X(i′, j′), where i′ ∈ {i− p, i− p+1, ..., i+ p} and j′ ∈ {j− q, j− q +1, ..., j + q}.
Note, for r = (2p + 1)(2q + 1)/2 this is same as median filtering.

5. Perform low-pass linear shift invariant filtering on Ios to obtain Ilp.

6. Repeat steps (2) and (3) with Ilp to obtain b2
f

7. If (count = maxIter) go to step 8.

else if DH(b1
f ,b

2
f ) < ρ go to step 8.

else set I = Ilp and go to step 2.

8. Set h(I) = b2
f

————————————–

Figure 3.3: Deterministic intermediate hash algorithm

Fig. 3.3 describes the proposed intermediate hash algorithm. Step 4 eliminates iso-

lated significant components. Step 5 preserves the “geometrically strong” components

by low-pass filtering (which introduces blurred regions). The success of the deterministic
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algorithm relies upon the self-correcting nature of the iterative algorithm as well as the

robustness of the feature detector. The above iterative algorithm is fairly general in that

any feature detector that extracts visually robust image features may be used.

3.5.2 Randomized Intermediate Hash Algorithm

Randomizing the hash output is desirable not only for security against inputs designed

by an adversary (malicious attacks), but also for scalability, i.e. the ability to work with

large data sets while keeping the collision probability for distinct inputs in check. The

algorithm as presented in Fig. 3.3 does not make use of a secret key and hence there is

no randomness involved.

In this section, I will construct randomized intermediate hash algorithms using a

secret key K, which is used as the seed to a pseudo-random number generator for the

randomization steps in the algorithm. For this reason, I now denote the intermediate

hash vector as h(I,K), i.e. function of both the image and the secret key. I present a

scheme that employs a random partitioning of the image to introduce unpredictability

in the hash values. A step-by-step description is given in Fig. 3.4.

Qualitatively, the randomized intermediate hash algorithm enhances the security of

the hash by employing the deterministic iterative algorithm1 on randomly chosen regions

or sub-images. As long as these sub-images are sufficiently unpredictable (i.e. they differ

significantly as the secret key is varied), then the resulting intermediate hashes are also

different with high probability. Examples of random partitioning of the lena image using

Algorithm 2, are shown in Fig. 3.5. In each case, i.e. Figs. 3.5 (a), (b), and (c), a different

secret key was used.

1This would now use a probabilistic quantizer.
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————————————–

1. (Random Partitioning) Divide the image into N (overlapping) random regions. In

general, this can be done in several ways. The main criterion is that a different

partitioning should be obtained (with high probability) as the secret key is var-

ied. In our implementation, we divide the image into overlapping circular/elliptical

regions with randomly selected radii. Label, these N regions as Ci, i = 1, 2, ..., N .

2. (Rectangularization) Approximate each Ci by a rectangle using a waterfilling [35]

like approach. Label the resulting random rectangles (consistent with the labels in

Step 1) as Ri, i = 1, 2, ..., N .

3. (Feature Extraction) Apply Algorithm 1 on all Ri, and denote the binary string

extracted from each Ri as bi. Concatenate all bi’s into a single binary vector b of

length B bits.

4. (Randomized Subspace Projection) Let A < B be the desired length of h(I, K).

Randomly choose distinct indices i1, i2, ..., iA such that each im ∈ [1, B],m =

1, 2, ..., A.

5. The intermediate hash h(I, K) = {b(i1),b(i2), ...,b(iA)}

————————————–

Figure 3.4: Randomized intermediate hash algorithm

The approach of dividing the image into random rectangles for constructing hashes

was first proposed by Venkatesan et al. in [1]. However, their algorithm is based on

image statistics. In the proposed framework, by applying the feature point detector to
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(a) Secret key K1 (b) Secret key K2 (c) Secret key K3

Figure 3.5: Examples of random partitioning of the lena image into N = 13 rectangles.

The random regions vary significantly based on the secret key.

these semi-global rectangles, an additional advantage is obtained in capturing any local

tampering of image data (results presented later in Section 3.6.2). These rectangles

in Fig. 3.5 are deliberately chosen to be overlapping to further reduce vulnerability to

malicious tampering. Finally, the randomized sub-space projection step adds even more

unpredictability to the intermediate hash. Trade-offs among randomization, fragility and

perceptual robustness are analyzed later in Section 3.6.3.

3.6 Results

I compare the binary intermediate hash vectors obtained from two different images for

closeness in (normalized) Hamming distance. Recall from Section 2.2 that (I, Iident) ∈
I denote a pair of perceptually identical images, and likewise (I, Idiff ) ∈ I represent

perceptually distinct images. Then, I require

DH(h(I),h(Iident)) < ε (3.16)
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DH(h(I),h(Idiff )) > δ (3.17)

where the natural constraints 0 < ε < δ apply. For results presented in Sections 3.6.1

and 3.6.2, the following parameters were chosen for Algorithm 1: a circular (search)

neighborhood of 3 pixels was used in the feature detector, P = 64 features were extracted,

the order statistics filtering was OS(3, 3, 4) and a zero-phase 2-D FIR low-pass filter of

size 5 × 5 designed using McClellan transformations [36] was employed. For Algorithm

2, the same parameters were used except that the image was partitioned into N = 32

random regions. For this choice of parameters, I experimentally determine ε = 0.2 and

δ = 0.3. A more elaborate discussion of how to choose the best ε and δ will be given in

Section 3.6.4. All input images were resized to 512×512 using bicubic interpolation [37].

For color images, both Algorithm 1 and 2 were applied to the luminance plane since it

contains most of the geometric information.

3.6.1 Robustness Under Perceptually Insignificant Modifications

Figs. 3.6 (a)-(d) show four perceptually identical images. The extracted feature points

at algorithm convergence are overlayed on the images. The original bridge image is shown

in Fig. 3.6(a). Figs. 3.6(b), (c), and (d), respectively, are the image in (a) attacked by

JPEG compression with quality factor (QF) of 20, rotation of 2o with scaling, and the

Stirmark local geometric attack [38]. It can be seen that the features extracted from

these images are largely invariant under these attacks.

Table 3.1 then tabulates the quantitative deviation as the normalized Hamming dis-

tance between the intermediate hash values of the original and manipulated images for

various perceptually insignificant distortions. The distorted images were generated using

the Stirmark benchmark software [38].
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(a) Original Image (b) JPEG, QF = 10

(c) 2o rotation and scaling (d) Stirmark local geometric attack

Figure 3.6: Original/attacked images with feature points at algorithm convergence. Fea-

ture points overlaid on images.

The results in Table 3.1 reveal that the deviation is less than 0.2 except for large

rotation (greater than 5o) and cropping (more than 20%).
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Attack Lena Bridge Peppers

JPEG, QF = 10 0.04 0.04 0.06

AWGN, σ = 20 0.04 0.03 0.02

Contrast enhancement 0.00 0.06 0.04

Gaussian smoothing 0.01 0.03 0.05

Median filter (3 × 3) 0.02 0.03 0.07

Scaling by 60% 0.02 0.04 0.05

Shearing by 5% 0.08 0.14 0.10

Rotation by 3o 0.13 0.15 0.15

Rotation by 5o 0.18 0.20 0.19

Cropping by 10% 0.12 0.13 0.15

Cropping by 20% 0.21 0.22 0.24

Random bending 0.15 0.17 0.14

Local geometric attack 0.12 0.02 0.13

Table 3.1: Normalized Hamming distance between intermediate hash values of original

and attacked (perceptually identical) images.

3.6.2 Fragility to Content Changes

The essence of the proposed feature point based hashing scheme lies in projecting

the image onto a visually meaningful wavelet basis, and then retaining the strongest

coefficients to form the content descriptor (or hash). The particular choice of basis

functions, i.e. end-stopped type exponential kernels, yield strong responses in parts of the

image where the significant image geometry lies. It is this very characteristic that makes

the proposed scheme attractive for detecting content changing image manipulations. In
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(a) Original toys image (b) Tampered toys image

(c) Original clinton image (d) Tampered clinton image

Figure 3.7: Content changing attacks and feature extractor response. Feature points

overlayed on the images.

particular, I observe that a visually meaningful content change is effected by making a

significant change to the image geometry.

Fig. 3.7 shows two examples of malicious content changing manipulation of image data

and the response of the proposed feature extractor to those manipulations. Fig. 3.7 (a)

shows the original toys image. Fig. 3.7 (b) shows a tampered version of the image in Fig.

3.7 (a), where the tampering is being brought about by addition of a “toy bus”. In Fig.

3.7 (d), an example of malicious tampering is shown where the face of the lady in Fig.
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3.7 (c) has been replaced by a different face from an altogether different image.

Comparing Figs. 3.7 (a) and (b), and Figs. 3.7 (c) and (d), it may be seen that

several extracted features do not match. This observation is natural because the proposed

algorithm is based on extracting the P strongest geometric features from the image. In

particular, in Fig. 3.7 (d), tampering of the lady’s face is easily detected because most

differences from Fig. 3.7 (c) are seen in that region. Quantitatively, this translates into

a large distance between the intermediate hash vectors.

With complete knowledge of the iterative feature extraction algorithm, it may still be

possible for a malicious adversary to generate inputs (pairs of images) that defeat the

proposed intermediate hash algorithm, e.g. tamper content in a manner such that the

resulting features/intermediate hashes are still close. This, however, is much harder to

achieve, when the randomized intermediate hash algorithm (Algorithm 2) was used.

I also tested under several other content changing attacks including object insertion

and removal, addition of excessive noise, alteration of the position of image elements,

tampering with facial features, and alteration of a significant image characteristic such

as texture and structure. In all cases, the detection was accurate. That is, the normalized

Hamming distance between the image and its attacked version was found to be greater

than 0.3. Table 3.2 shows the normalized Hamming distance between intermediate hash

values of original and maliciously tampered images for many different content changing

attacks. Algorithm 2 with N = 32 was used for these results.

3.6.3 Performance Trade-Offs

A large search neighborhood implies that the maxima of wavelet responses are taken

over a larger set and hence the feature points are more robust to small perceptually
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Attack Lena Clinton Barbara

Object Addition 0.43 0.42 0.46

Object Removal 0.47 0.44 0.52

Excessive Noise Addition 0.53 0.45 0.38

Face Morphing 0.50 0.44 0.34

Table 3.2: Normalized Hamming Distance between intermediate hash values of original

and attacked images via content changing manipulations

insignificant perturbations. Likewise, consider selecting the feature points so that T1 <

maxθ Wi(x, y, θ) < T2. Note the feature detection scheme as described in Fig. 3.2 im-

plicitly assumes T2 to be infinity. If T1 and T2 are chosen to be large enough, then the

resulting feature points are very robust, i.e. retained in several attacked versions of the

image. Similarly, if the two thresholds are chosen to be very low, then the resulting fea-

tures tend to be easily removed by several perceptually insignificant modifications. The

thresholds and the size of the search neighborhood facilitate a perceptual robustness vs.

fragility trade-off.

When the number of random partitions N is one, and a deterministic quantization

rule is employed in Section 3.4, Algorithms 1 and 2 are the same. If N is very large,

then the random regions shrink to an extent that they do not contain significant chunks

of geometrically strong components and hence the resulting features are not robust. The

parameter N facilitates a randomness vs. perceptual robustness trade-off.

Recall from Section 3.4 that the output of the quantization scheme for binarizing the

feature vector is completely deterministic except for the interval (Pi, Qi). In general,

more than one choice of the pair (Pi, Qi) may satisfy (3.13). Trivial solutions to (3.13)
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are (a) Pi = Qi = Ci and (b) Pi = li−1, Qi = li. While (a) corresponds to the case

when there is no randomness involved, the choice in (b) entails that the output of the

quantizer is always decided by a randomization rule. In general, the greater the value

of

∫ Qi
Ci

pf (x)dx
∫ li

Ci
pf (x)dx

, the larger the amount of unpredictability in the output. This is a desired

property to minimize collision probability. However, this also increases the chance that

slight modifications to the image result in different hashes. A trade-off is hence facilitated

between perceptual robustness and randomization.

3.6.4 Statistical Analysis

In this section, I present a detailed statistical comparison of our proposed feature-point

scheme for hashing against methods based on preserving coarse image representations.

In particular, I compare the performance of the proposed intermediate hash based on the

end-stopped wavelet transform against the discrete wavelet transform (DWT) and the

discrete cosine transform (DCT).

Let U denote the family of perceptually insignificant attacks on an image I ∈ I, and

let U ∈ U be a specific attack. Likewise, let V represent the family of content changing

attacks on I, and let V ∈ V be a specific content changing attack. Then, I define the

following terms:

Probability of False Positive:

PfP (ε) = Probability(DH(h(I),h(V (I))) < ε (3.18)

Probability of False Negative:

PfN(δ) = Probability(DH(h(I),h(U(I))) > δ (3.19)

To simplify the presentation, I construct two representative attacks:
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• A strong perceptually insignificant attack in U : A composite attack was

constructed for this purpose. The complete attack (in order) is described as: (1)

JPEG compression with QF = 20, (2) 3o rotation and rescaling to the original size,

(3) 10% cropping from the edges, and (4) Additive White Gaussian Noise (AWGN)

with σ = 10 (image pixel values range in 0-255). Fig. 3.8 (a) through (e) show the

original and modified house images at each stage of this attack.

• A content changing attack in V : The content changing attack consisted of

maliciously replacing (a randomly selected) region of the image by an alternate

unrelated image. An example of this attack for the lena image is shown in Fig. 3.9.

For fixed ε and δ, the probabilities in (3.18) and (3.19) are computed by applying the

aforementioned attacks to a natural image database of 1000 images and recording the

failure cases. As ε and δ are varied, PfP (ε) and PfN(δ) describe an ROC (receiver

operating characteristic) curve.

All images were resized to 512 × 512 prior to applying the hash algorithms. For the

results to follow, the proposed intermediate hash was formed as described in Section

4.5.1 by retaining the P strongest features. The intermediate hash/feature vector in the

DWT based scheme was formed by retaining the lowest resolution sub-band in an M -level

DWT decomposition. In the DCT scheme, correspondingly, a certain percentage of the

total DCT coefficients were retained. These coefficients would in general belong to a low

frequency band (but not including DC, since it is too sensitive to scaling and/or contrast

changes).

Fig. 3.10 shows ROC curves for the three schemes for extracting intermediate features

of images: preserving low-frequency DCT coefficients, low resolution wavelet coefficients,

and the proposed scheme based on end-stopped kernels. Each point on these curves
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represents a (PfP , PfN) pair computed as in (3.18) and (3.19) for a fixed ε and δ. I used

δ = 3
2
ε in all cases. For the ROC curves in Fig. 3.10, I varied ε in the range [0.1, 0.3]. A

typical application, e.g. image authentication or indexing, will operate at a point on this

curve.

To ensure a fair comparison among the three methods, I consider two cases for each

hashing method. For the DWT, ROC curves are shown when a 6-level DWT and 5-

level DWT transform were applied. A 6-level DWT on a 512 × 512 image implies that

64 transform coefficients are retained. In a 5-level DWT, 256 coefficients are retained.

Similarly, for the DCT-based scheme two different curves are shown in Fig. 3.10, respec-

tively, corresponding to 64 and 256 low-frequency DCT coefficients. For the proposed

intermediate hash, ROC curves corresponding to P = 64 and P = 100 are shown.

In Fig. 3.10, both the false positive as well as the false negative probabilities are

much lower for the proposed intermediate hash algorithm. Predictably, as the number of

coefficients in the intermediate hash is increased for either scheme, a lower false positive

probability (i.e. fewer collisions of perceptually distinct images) is obtained at the expense

of increasing the false negative probability. Recall from Section 3.6.3 that this trade-off

can be facilitated in deriving the proposed intermediate hash even with a fixed number

of coefficients — an option that the DWT/DCT does not have.

In Fig. 3.10, with P = 64 features, the proposed algorithm based on end-stopped ker-

nels vastly outperforms the DCT as well as DWT based intermediate hashes2 in achieving

lower false positive probabilities, even as a much larger number of coefficients is used for

2All the wavelet transforms in the MATLAB wavelet toolbox version 7.0 were tested. The results

shown here are for the discrete Meyer wavelet “dmey” which gave the best results among all DWT

families in the toolbox.
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them.

3.7 Conclusion

This chapter develops a general framework for constructing intermediate hash vectors

from images via visually significant feature points. An iterative feature extraction algo-

rithm based on preserving significant image geometry is proposed. Several robust feature

detectors may be used within the iterative algorithm. Parameters in the proposed fea-

ture detector enable trade-offs between robustness and fragility of the hash, which are

otherwise hard to achieve with traditional DCT/DWT based approaches. I develop both

deterministic and randomized algorithms to prevent against guessing and forgery. ROC

analysis is performed to demonstrate the statistical advantages of the proposed algo-

rithm over existing schemes based on preserving coarse image representations. The next

chapter addresses the problem of compressing the intermediate hash (or feature) vector

derived in this chapter to a final hash value.
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(a) Original house image

(b) JPEG, QF = 20 (c) 3o rotation and scaling of (b)

(d) Image in (c) cropped 10% on the

sides and rescaled to original size

(e) Final attacked image: AWGN at-

tack on the image in (d)

Figure 3.8: Representative perceptually insignificant attack on the house image: images

after each stage of the attack.
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(a) Original Lena Image (b) Tampered lena image

Figure 3.9: Example of the representative content changing attack on the lena image:

15% of the image area is being corrupted.

Figure 3.10: ROC curves for hash algorithms based on three approaches: DCT transform,

DWT transform, and proposed intermediate hash based on end-stopped kernels. Note

that error probabilities are significantly lower for the proposed scheme.
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Chapter 4

Clustering Algorithms for Feature Vector

Compression

4.1 Introduction

In this chapter, I develop clustering algorithms to compress the feature vector (or

intermediate hash) derived in Chapter 3. I prove that the decision version of the under-

lying clustering problem is NP complete. Then, for any perceptually significant feature

extractor, I propose a polynomial-time heuristic clustering algorithm that automatically

determines the final hash length needed to satisfy a specified distortion. Based on the pro-

posed algorithm, I develop two variations to facilitate perceptual robustness vs. fragility

trade-offs. Finally, I develop randomized clustering algorithms for the purposes of secure

image hashing.

Section 4.2 formally defines the problem for the feature vector compression step of

the two-step hash function. For this second step, Section 4.3 brings out the limitations

of traditional vector quantization (VQ) based compression approaches. Section 4.4 then

proposes a new cost function for feature vector (or intermediate hash) compression for

the perceptual hashing application. Section 4.5 presents heuristic clustering algorithms

for minimizing the cost function defined in Section 4.4. I first present a deterministic

algorithm in Section 4.5.1 that attempts to retain the perceptual significance of the hash
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as best as possible. Next, a randomized clustering is proposed (based on a secret key) in

Section 4.5.2 for the purposes of secure hashing. Experimental results are presented in

Sections 4.6.1 through 4.6.3. In Section 4.6.1, I compare with traditional VQ as well as

error correction decoding approaches [1] to show the efficacy of the proposed clustering

algorithm(s) for perceptual hash compression. Section 4.6.2 presents a statistical analysis

of the algorithm using precision-recall (or receiver operating characteristic (ROC)) curves.

Section 4.6.3 then presents results that demonstrate security properties of the randomized

clustering algorithm. Section 4.7 concludes the chapter by summarizing the central ideas

governing the proposed clustering algorithm(s).

4.2 Problem Statement

I first establish notation that will be used throughout this chapter. Let V denote the

metric space of intermediate hash vectors extracted at stage 1 of the hash algorithm.

Let L ⊆ V represent a finite set of vectors {li}n
i=1 on which the clustering/compression

algorithm is applied. Let D : V ×V →R+ be the distance metric defined on the product

space. Finally, let C : L → {1, 2, ..., k} denote the clustering map. Note in a typical

application, k << n, re-emphasizing the fact that the clustering as well the overall hash

is a many-to-one mapping.

Our goal is to have all images that are visually indistinguishable map to the same

hash value with high probability. In that sense an image hash function is similar to

a vector quantization (VQ) or clustering scheme. We are attempting to cluster images

whose intermediate hash vectors are close in a metric into the same cell. In particular,

it is desired that with high probability

if D(li, lj) < ε then C(li) = C(lj) (4.1)
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if D(li, lj) > δ then C(li) 6= C(lj) (4.2)

where 0 < ε < δ. Let li, lj denote random vectors in L (following the distribution of the

intermediate hash) and let C(li), C(lj) represent the clusters to which these vectors map

after applying the clustering algorithm.

4.3 Conventional VQ based Compression Approaches

The goal of the compression step as discussed above is to achieve a clustering of the

intermediate hash vectors of an image I and the intermediate hash vectors of images that

are identical in appearance to I with high probability. In that respect, it is useful to think

of perceptually insignificant modifications or attacks on an image as “distortions” to the

image. We may then look to compress the intermediate hash vectors while tolerating

a specified distortion. The design problem for a vector quantization or compression

scheme that minimizes an average distortion is to obtain a K partioning of the space V

by designing codevectors {ck}K−1
k=0 in V such that

K−1∑

k=0

∑

l∈Sk

P (l)D(l, ck) < ε (4.3)

Here, P (l) denotes the probability of occurrence of vector l and Sk denotes the kth cluster.

Average distance minimization is a well known problem in the VQ literature and many

algorithms [39], [40], [41] have been proposed to solve it.

However, an average distance type cost function as in (4.3) is not inherently well suited

for the hashing application. First, while the design of the codebook in (4.3) ensures that

the average distortion is less than ε, there is no guarantee that perceptually distinct

vectors, i.e. intermediate hash vectors that are separated by more than δ, indeed map

to different clusters. In some applications, such as image authentication where the goal
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is to detect content changes, such guarantees may indeed be required because mapping

perceptually distinct vectors to the same final hash value would be extremely undesirable.

More generally, the nature of the cost function in (4.3) does not allow trade-offs between

desired properties (4.1) and (4.2) of the hash algorithm.

Secondly, the cost in (4.3) increases linearly as a function of the distance between

the intermediate hash vector(s) and the codebook vector(s). Intuitively though, it is

desirable to penalize some errors much more strongly than others, e.g. if vectors really

close are not clustered together, or if vectors very far apart are compressed to the same

final hash value. A linear cost function does not reflect this behavior.

Based on these observations, I propose a new cost function for the perceptual hashing

application that does not suffer from the limitations of average distance measures.

4.4 Formulation of the Cost Function

In this section, I formulate the cost function to be minimized by the proposed clustering

algorithm. First, I analyze several fundamental properties of the requirements in (4.1),

(4.2), and the intermediate hash.

An error is encountered when either (4.1) and/or (4.2) is not satisfied for any pair of

vectors (li, lj). The requirement in (4.1) is actually impossible to guarantee for every

input pair. Intuitively then, we must ensure that errors occur for vectors that are less

likely or that the clustering must necessarily be dictated by the probability mass function

of the vectors in L.

I now describe the construction of our clustering cost function. Let P : L×L → [0, 1]
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be the joint distribution matrix of intermediate hash pairs

P =




p(1, 1) p(1, 2) · · · p(1, n)
p(2, 1) p(2, 2) · · · p(2, n)

...
...

. . .
...

p(n, 1) p(n, 2) · · · p(n, n)




(4.4)

where Pij = p(i, j) = p(i)p(j). Here, p(i), p(j) respectively denote the probability of

occurrence of vectors li, lj and n is the number of vectors in L..

To estimate the probability measure introduced above, I employ a statistical model

on the intermediate hash/image feature vectors. The fundamental underlying principle

is to define rectangular blocks (or sub-images) in an image as a real two-dimensional

homogenous Markov random field (MRF) X(m1,m2) on a finite lattice (m1,m2) ∈ L ⊂
Z2. The basis for connecting such a statistical definition to perception is the hypothesis

first stated by Julesz [42] and reformulated by several other authors, e.g. [43], [44] : there

exists a set of functions φk(X), k = 1, 2, . . . N such that samples drawn from any two

MRFs that are equal in expectation over this set are visually indistinguishable.

In particular, I employ a universal parametric statistical model for natural images

developed by Portilla and Simoncelli [45] that works with a complex overcomplete wavelet

representation of the image. Recall the image features that I extract in Chapter 3 are

indeed based on such a representation. The Markov statistical descriptors, i.e. φks, are

then based on pairs of wavelet coefficients at adjacent spatial locations, orientations and

scales. In particular, we measure the expected product of the raw coefficient pairs (i.e.,

correlation), and the expected product of their magnitudes.

There is no inherent structure to the probability mass functions associated with these

random fields (except the Markov property due to spatial correlation in images). A
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mathematically attractive choice is a maximum entropy density [35] of the form

P(~x) ∝ ∏

k

e−λkφk(~x) (4.5)

where ~x ∈ R|L| corresponds to a vectorized sub-image, and λks are the Lagrange multi-

pliers. The maximum entropy density is optimal in the sense that it does not introduce

any new constraints on the MRF beyond those of perceptual equivalence under expected

values of φks. The density in (4.5) is defined on MRFs that are portions of natural im-

ages. Since features are functions of MRFs a probability density is in turn induced on

the feature vectors.

My choice of a statistical model vs. using an empirical distribution on the extracted

image features is based on the robustness of model parameters as more samples (images)

are added. By the weak law of large numbers, it can be argued that the model parameters

become nearly invariant once a sufficiently large sample set is considered (I worked with

a set of roughly 2500 natural images [46]). More details on the model parameters and

the typical distributions on image feature vectors may be found in [45].

Next, I define C1 as the joint cost matrix for violating (4.1), i.e. the cost paid if

D(li, lj) < ε, yet C(li) 6= C(lj). In particular, ∀ i, j = 1, 2, ..., n

c1(i, j) =

{
Γ−αD(li,lj) if D(li, lj) < ε, C(li) 6= C(lj)

0 otherwise
(4.6)

where α > 0 and Γ > 1 are algorithm parameters. This construction follows intuitively

because the cost for violating (4.1) must be greater for smaller distances, i.e. if the

vectors are really close and not clustered together.

Similarly, C2 is defined as the joint cost matrix for violating (4.2)

c2(i, j) =

{
ΓαD(li,lj) if D(li, lj) > δ, C(li) = C(lj)

0 otherwise
(4.7)
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In this case however, the cost is an increasing function of the distance between (li, lj).

This is also natural as we would like to increase the penalty if vectors far apart (and

hence perceptually distinct) are clustered together. An exponential cost as opposed to

linear in an average distance VQ ensures that errors associated with large distances are

penalized severely. To maintain lucidity, I specify the same parameters i.e., Γ and α in

(4.6) and (4.7). This, however, is not a constraint. In general, these parameters may be

separately chosen (optimized empirically) for both (4.6) and (4.7).

Further, let matrices S1 and S2 be defined as

s1(i, j) =

{
Γ−αD(li,lj) if D(li, lj) < ε

0 otherwise
(4.8)

s2(i, j) =

{
ΓαD(li,lj) if D(li, lj) > δ

0 otherwise
(4.9)

Note, that S1 is different from C1 in the sense that the entries of S1 include the cost

for all possible errors that can be committed, while C1 is the cost matrix for the errors

actually made by the clustering algorithm. The same holds for S2 and C2. Then, I

normalize the entries in C1 and C2 to define normalized cost matrices C̃1 and C̃2 such

that

c̃1(i, j) =
c1(i, j)∑

i

∑
j s1(i, j)

(4.10)

c̃2(i, j) =
c2(i, j)∑

i

∑
j s2(i, j)

(4.11)

This normalization ensures that c̃1(i, j), c̃2(i, j) ∈ [0, 1].

Finally, the total cost function is defined as

Perr = E[C̃1 + C̃2] (4.12)
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The expectation is taken over the joint distribution of (li, lj); i.e., (4.12) may be rewritten

as

Perr =
∑

i

∑

j

p(i)p(j) (c̃1(i, j) + c̃2(i, j)) (4.13)

At this point it is worth re-emphasizing that the distance function D(li, lj) can be any

function of li and lj that satisfies metric properties, i.e. non-negativity, symmetry and

triangle inequality. In particular, I am not restricting D(·, ·) to any class of functions

other than requiring it to be a metric. In practice, the choice of D(·, ·) is motivated by

the nature of features extracted in Stage 1 of the hash algorithm.

The two additive terms in (4.12), E[C̃1] and E[C̃2] quantify the errors resulting from

violating (4.1) and (4.2), respectively. In particular, E[C̃1] can be interpreted as the

expected cost of violating (4.1). Similarly, E[C̃2] signifies the expected cost incurred

by violating (4.2). It is this structure of the cost function in (4.12) that our proposed

clustering algorithm exploits to facilitate trade-offs between goals (4.1) and (4.2) of the

hash algorithm. Note in the special case that α = 0, E[C1] and E[C2] represent the total

probability of violating (4.1) and (4.2), respectively.

Indyk et al. [47], [48] have addressed a problem similar to the one I present in Section

4.2. They introduce the notion of locally sensitive hashing (LSH) [47] and use it to

develop sublinear time algorithms for the approximate nearest neighbor search (NNS)

problem [49] in high dimensional spaces. The key idea in their work is to use hash

functions [50], [51] such that the probability of collision is much higher for vectors that

are close to each other than for those that are far apart. However, while they prove the

existence of certain parametrized LSH families [47], they do not concern themselves with

the problem of codebook design for specific cost functions. Instead, their work focuses

on developing fast algorithms for the NNS problem based on the availability of such hash
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codebooks. My objective here is to develop a clustering algorithm or equivalently design

a codebook to minimize the cost function in (4.12) that is well suited for the perceptual

image (or media) hashing application.

4.5 Proposed Clustering Algorithms

Finding the optimum clustering that would achieve a global minimum for the cost

function in (4.12) is a hard problem. The decision version of the problem “for a fixed

number of clusters k, is there a clustering with a cost less than a constant?” is NP-

complete. I sketch a proof of NP completeness in Appendix A. Hardness results for the

search version, that actually finds the minimum cost solution, can be similarly shown. I

present a polynomial-time greedy heuristic for solving the problem.

4.5.1 Deterministic Clustering

For the following discussion, vectors in L will be referred to as “data points”. Fig.

4.1 describes the basic clustering algorithm. A visualization of the same is shown in Fig.

4.2. The data points in the input space are covered to a large extent by hyperspheres

(clusters) of radius ε
2
. For each pair of points (li, lj) ∈ Sk and cluster center lk, we have

D(li, lj) ≤ D(li, l
k) + D(lk, lj) (4.14)

This is true because D(·, ·) defines a metric. By virtue of Steps 3 and 5 of the basic

clustering algorithm, D(li, l
k) < ε

2
, D(lk, lj) < ε

2
and hence D(li, lj) < ε. The algorithm

therefore attempts to cluster data points within ε of each other and in addition the cluster

centers are chosen based on the strength of their probability mass function. This ensures

that “perceptually close” data points are clustered together with a very high likelihood.

At this stage, we make the following observations about the basic clustering algorithm:
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—————————————————————————————————-

1: Obtain user defined parameters ε and δ. Set the number of clusters k = 1.

2: Select the data point associated with the highest probability mass, and label it l1

3: Make the first cluster by including all data points lj such that D(l1, lj) < ε
2

4: k = k + 1. Select the highest probability data point lk among the unclustered points

such that minS∈C D(lk, S) ≥ 3
2
ε where S is any cluster and C denotes the set of clusters

formed up to this step of the algorithm. D(lk, S) is calculated using the notion of

distance from a set given by D(x, S) = miny∈S D(x, y)

5: Form the kth cluster Sk by including all unclustered data points lj such that

D(lk, lj) < ε
2

6: Repeat steps 4–5 until no more clusters can be formed.

—————————————————————————————————-

Figure 4.1: Basic clustering algorithm.

• The minimum distance between any two members of two different clusters has

a lower bound of ε and hence there are no errors from violating (4.1), which is

guaranteed by Step 4 of the basic clustering algorithm.

• Within each cluster the maximum distance between any two points is at most ε,

and because 0 < ε < δ, there are no violations of (4.2).

• The data points that are left unclustered are less than 3
2
ε from any member of each

of the clusters.

For perceptual robustness, i.e. achieving (4.1), we would like to minimize E[C̃1]. Like-

wise, in order to maintain fragility to visually distinct inputs, we would like E[C̃2] to be

as small as possible (ideally zero). Exclusive minimization of one would compromise the
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Figure 4.2: Visualization of the Basic clustering algorithm given by Fig. 4.1

other. Next, I present two different approaches to handle the unclustered data points so

that trade-offs may be facilitated between achieving properties (4.1) and (4.2).

4.5.1.1 Approach 1

Fig. 4.3 describes Approach 1 for handling the unclustered data points. Step 2 of the

algorithm in Fig. 4.3 looks for the set of clusters Sδ, such that every point in each of

the clusters is less than δ away from the unclustered data point l∗ under consideration.
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—————————————————————————————————-

1: Given the k clusters formed by running the basic clustering algorithm, select the data

point l∗ among the unclustered points that has the highest probability mass

2: For each existing cluster Si, i = 1, 2, ...k, compute di = maxx∈Si
D(l∗, x)

Let Sδ = {Si such that di ≤ δ}
3: IF Sδ = φ THEN k = k + 1 and Sk = l∗ is a cluster of its own

ELSE for each Si ∈ Sδ define F (Si) =
∑

l∈S̄i
p(l)p(l∗)c1(l, l

∗)

where S̄i denotes the complement of Si; i.e., all clusters in Sδ except Si. Then, l∗ is

assigned to the cluster S∗ = arg minSi
F (Si)

4: Repeat steps 1–3.

—————————————————————————————————-

Figure 4.3: Approach 1 clusters remaining data points such that ˜E[C2] = 0 where C̃2 is

defined by (4.11).

Step 3 then computes the minimum cost cluster to which to assign l∗. In essence, this

approach tries to minimize the cost in (4.12) conditioned on the fact that there are no

errors from violating (4.2). This could be useful in authentication applications in which

mapping perceptually distinct inputs to the same hash may be extremely undesirable.

4.5.1.2 Approach 2

Approach 1 clusters the remaining data points to ensure that E[C̃2] = 0. The goal

in Approach 2 is to effectively trade-off the minimization of E[C̃1] at the expense of

increasing E[C̃2] via a tuning parameter1 β (see Fig. 4.4). This can be readily observed by

1β ∈ [ 12 , 1] as opposed to [0, 1]. This is because values of β ∈ [0, 1
2 ) do not lead to meaningful
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—————————————————————————————————-

1: Given the k clusters formed by running the basic clustering algorithm, select the data

point l∗ among the unclustered points that has the highest probability mass

2: For each existing cluster Si, i = 1, 2, ...k, define

F (Si) = β
∑

l∈S̄i
p(l)p(l∗)c1(l, l

∗)+ (1− β)
∑

l∈Si
p(l)p(l∗)c2(l, l

∗)

where β ∈ [1
2
, 1], and S̄i denotes the complement of Si. Then, l∗ is assigned to the

cluster S∗ = arg minSi
F (Si). Analogous to Approach 1, this includes the case that

l∗ is a cluster by itself; in that case, k is incremented.

3: Repeat steps 1–2.

—————————————————————————————————-

Figure 4.4: Approach 2 enables trade-offs between goals (4.1) and (4.2) by varying the

real-valued parameter β.

considering extreme values of β. For β = 1
2

a joint minimization is performed. The other

extreme β = 1 corresponds to the case when the unclustered data points are assigned, so

as to exclusively minimize E[C̃1]. For δ ≥ 5
2
ε, Approaches 1 and 2 coincide because all of

the unclustered points are then necessarily within δ of the existing clusters. Finally, note

that a meaningful dual of Approach 1 does not exist. This is because requiring E[C̃1] = 0

leads to the trivial solution that all data points are collected in one big cluster.

In traditional VQ based compression approaches, the number of codebook vectors or

the rate of the vector quantizer [39] is decided in advance and an optimization is carried

out to select the best codebook vectors. In our algorithm, the length of the hash (given

clusterings. For example, β = 0 ignores the minimization of E[C̃1] which is the primary objective of the

algorithm.
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by dlog2(k)e bits) is determined adaptively for a given ε, δ and source distribution. Note,

however, that I do not claim for this to be the minimum possible number of clusters

that achieves a particular value of the cost function in (4.12). Nevertheless, the length of

the hash in bits (or alternatively the number of clusters) as determined by our proposed

clustering is enough so that the perceptual significance of the hash is not compromised.

Remark: Note that another difference from compression applications is the fact that

compression entails the design of reconstruction values as well (in addition to quantization

bins/clusters or Vornoi regions). In the hashing application, however, these may be

chosen for convenience (e.g., a straightforward enumeration using dlog2(k)e bits for k

clusters) as long as the notion of closeness is preserved.

4.5.2 Randomized Clustering

The clustering algorithm as presented in the previous subsection is a perfectly determinis-

tic map; i.e. a particular input intermediate hash vector always maps to the same output

hash value. I now present a randomization scheme to enhance the security properties of

our hash algorithm and minimize its vulnerability to malicious inputs generated by an

adversary.

Recall that the heuristic employed in the deterministic algorithm (for both Approaches

1 and 2) was to select the vector or data point with the highest probability mass among

the candidate unclustered data points as the cluster center. In other words, the data point

that has the highest probability mass is selected as the cluster center with probability

equal to one. The randomization rule that I propose modifies this heuristic to select

cluster centers in a probabilistic manner. That is, there is a non-zero probability of

selecting each candidate unclustered data point as the cluster center. This probability
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Figure 4.5: Example selection of data points as cluster centers in a probabilistic sense

in turn is determined as a function of the original probability mass associated with the

data points.

Consider the clustering algorithm with m ≥ 0 clusters already formed and i < n

points clustered. Let X ⊂ L denote the set of unclustered data points that can be

chosen as cluster centers. Note that |X | is not necessarily n − i. As described in the

basic clustering algorithm (Fig. 4.1) the set X consists of all data points l ∈ L such that

minS∈C D(l, S) ≥ 3
2
ε where S is any cluster and C denotes the set of clusters formed prior

to this step of the algorithm. When no more cluster centers can be identified in this

manner, the set X indeed consists of all unclustered data points.

Then, a probability measure on the elements of X may be defined as

π
(s)
i =

(pi)
s

∑
j∈X (pj)s

(4.15)

where s ∈ R+ is an algorithm parameter and pi denotes the probability mass associated

with data point li ∈ X . The data point li ∈ X is then chosen as a cluster center with a

probability equal to π
(s)
i [52].

Example: A hypothetical example is presented in Fig. 4.5. In the example, the set

X consists of four data points {l1, l2, l3, l4} with probability mass values of 0.4, 0.2, 0.1
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and 0.1, respectively. The normalized probabilities {π(s)
i }4

i=1 using s = 1 are given by

π
(1)
1 = 0.5, π

(1)
2 = 0.25, π

(1)
3 = 0.125, and π

(1)
4 = 0.125. A secret key K1 is used to serve

as a seed to a pseudorandom number generator that generates a uniformly distributed

number a in [0,1] which in turn is used to select one of the data points as the cluster

center. Note that the probability that a ∈ [0, 0.5] is 0.5 and hence the data point l1 is

selected with a probability of 0.5. In general, any data point li is selected with probability

π
(s)
i . This is indeed the classical approach of sampling from a distribution.

The randomization scheme can be summarized by considering extreme values of s.

Note

lim
s→∞π

(s)
i =

{
1 for the highest probability data point
0 for all other li ∈ X

In other words, s →∞ corresponds to the deterministic clustering algorithm. Similarly,

the other extreme, i.e. s = 0, implies that π
(0)
i is a uniform distribution or that any

data point in X is selected as a cluster center with the same probability equal to 1
|X | .

To enhance security, the parameter s may also be generated in random fashion using a

second secret key K2.

In general, in the absence of the secret keys K1 and K2, it is not possible to deter-

mine the mapping achieved by the randomized clustering algorithm. I demonstrate the

hardness of generating malicious inputs by means of experimental results in Section 4.6.3.

4.6 Experimental Results

As in Chapter 3, the intermediate hash (or feature) vector extracted from an image I

will be referred to as h(I). Recall further, it was determined that

D(h(I),h(Iident)) < 0.2 (4.16)
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D(h(I),h(Idiff )) > 0.3 (4.17)

In our clustering framework, the two equations above yield ε = 0.2 and δ = 0.3.

4.6.1 Deterministic Clustering Results

4.6.1.1 Comparison with Error Correction Decoding and Conventional VQ

In the following experiments, I extract a binary intermediate hash vector of length

L = 240 bits from the image. V is, therefore, the Hamming space of dimension L.

Further, for this case L = V and hence the total number of vectors to be clustered i.e.,

n = 2240. Because of space and complexity constraints it is clearly impractical to apply

the clustering algorithm to that large of a data set. Hence, I take the approach commonly

employed in space constrained VQ problems [39], i.e. divide the intermediate hash vector

into segments of length M = L
m

(where m is an integer) and apply the clustering on

each segment separately. The resulting binary strings are concatenated to form the final

hash. A similar approach for an irreversible compression of binary hash values was used

by Venkatesan et al. in [1]. They employ error control decoding using Reed-Muller codes

[18]. In particular, they break the hash vector to be compressed into segments of length

as close as possible to the length of codevectors in a Reed-Muller error correcting code.

Decoding is then performed by mapping the segments of the hash vector to the nearest

codeword using the exponential pseudo norm [1].

Tables 4.1, 4.2, and 4.3, respectively, show values of the cost function in (4.12) by

compressing the intermediate hash vector using 1) the proposed clustering scheme, 2)

error control decoding scheme as described in [1] and 3) an average distance VQ approach

[39]. The results in Table 4.1 were generated by using Approach 2 with β = 1
2
. For

the error control decoding scheme, (8,4), (16,5) and (16,11) Reed-Muller codes were
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M E[C̃1] E[C̃2] Final Hash Length

8 1.86× 10−5 2.372× 10−7 102 bits

16 1.219× 10−7 5.70× 10−9 54 bits

Table 4.1: Compression of intermediate hash vectors using the proposed clustering. M

is the segment length in bits. C̃1 and C̃2 are defined in (4.10) and (4.11), respectively.

E[C̃1] and E[C̃2] represent the measures of violating desirable hash properties in (4.1)

and (4.2), respectively.

used. Our proposed clustering algorithm as well as the average distance VQ compression

were also employed on segments of the same length to yield a meaningful comparison2.

Note that VQ compression [39] based on descent methods that gradually improve the

codebook by iteratively computing centroids cannot be applied here since the vectors to

be compressed are themselves binary (i.e., codebook vector components cannot assume

values between 0 and 1). For the results in Table 4.3, the binary VQ compression based

on “soft-centroids” proposed by Franti et al. [41] was used.

The results in Tables 4.1, 4.2 and 4.3 clearly reveal that the values for the expected

cost of violating (4.1) and (4.2), i.e. E[C̃1] and E[C̃2], are orders of magnitude lower when

using our clustering algorithm (even as better compression is achieved for the proposed

clustering). Hence, I show that the codebook as obtained from using error correcting

codes and/or conventional VQ based compression approaches does not fare as well for

2For an average distance VQ the rate or the number of codebook vectors is to be decided in advance.

This number was decided upon by determining first the number of clusters (or equivalently the hash

length in bits) that result from the application of our proposed clustering and then using a rate slightly

higher than that for the average distance VQ. This ensures a fair comparison across the two methods.
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M E[C̃1] E[C̃2] Final Hash Length

8 1.526× 10−3 5.55× 10−4 120 bits

16 9.535× 10−2 6.127× 10−3 75 bits

16 5.96× 10−4 3.65× 10−5 165 bits

Table 4.2: Compression of intermediate hash vectors using error control decoding. M

is the segment length in bits. C̃1 and C̃2 are defined in (4.10) and (4.11), respectively.

E[C̃1] and E[C̃2] represent the measures of violating desirable hash properties in (4.1)

and (4.2), respectively.

M E[C̃1] E[C̃2] Final Hash Length

8 1.44× 10−3 5.88× 10−4 120 bits

16 3.65× 10−4 7.77× 10−5 60 bits

Table 4.3: Compression of intermediate hash vectors using a conventional average dis-

tance VQ. M is the segment length in bits. C̃1 and C̃2 are defined in (4.10) and (4.11),

respectively. E[C̃1] and E[C̃2] represent the measures of violating desirable hash prop-

erties in (4.1) and (4.2), respectively.

perceptual hash compression.

Remark: The proposed clustering algorithm can be used to compress feature vectors

as long as the distance measure defined on the product space V × V satisfies metric

properties. For example, if the features were to be real valued, the number of data

points n or equivalently the set L should be chosen large enough to sufficiently represent

source (feature vector) statistics. A codebook can then be derived from the set L using

the proposed clustering and feature vectors can be mapped to the nearest vector in the
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codebook based on a minimum cost decoding rule [39].

4.6.1.2 Perceptual Robustness vs. Fragility Trade-offs

Table 4.4 compares the value of the cost function in (4.12) for the two different clus-

tering approaches. For Approach 2 (rows 2 and 3 of Table 4.4) the value of E[C̃1] is

lower than that for Approach 1. In particular, it can be shown that (via our clustering

algorithm) the lowest value of the cost function is obtained using Approach 2 with β = 1
2
.

Trade-offs are facilitated in favor of (4.1) by minimizing E[C̃1] using Approach 2 with

β ∈ (1
2
, 1] and in favor of (4.2) by employing Approach 1. For these results, the clustering

algorithm was applied to segments of length M = 20 bits.

Clustering Algorithm E[C̃1] E[C̃2]

Approach 1 7.64× 10−8 0

Approach 2, β = 1
2

7.43× 10−9 7.464× 10−10

Approach 2, β = 1 7.17× 10−9 4.87× 10−9

Table 4.4: Cost function values using Approaches 1 and 2 with trade-offs numerically

quantified.

4.6.1.3 Validating the Perceptual Significance

I applied the two-stage hash algorithm (using Approach 2 with β = 1
2
) on a natural

image database of 100 images [46]. The final hash length obtained was 46 bits. For each

image, 20 perceptually identical images were generated using the Stirmark software [38],

[53]. The attacks implemented on the images included JPEG compression with quality

factors varying from 10 to 80, adding white Gaussian noise (AWGN), enhancing contrast,
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non-linear (e.g., median) filtering, scaling and random shearing, and small rotation and

cropping. The resulting hash values for the original image and its perceptually identical

versions were the same in over 95% cases.

I also compared hash values for all possible pairings of the 100 distinct images (4950

pairs). One collision case was observed3. For all other cases the hash values (on a pairwise

basis) were very far off. In general, the performance of our hash function is limited by

the robustness of the feature detector.

For the same set of images, using an average distance VQ for feature vector compres-

sion resulted in about a 70% success rate of mapping perceptually identical versions to

the same hash value. In addition, 40 collision cases (same hash value for perceptually

distinct images) were observed.

4.6.2 Precision Recall or ROC Analysis

I now present a detailed statistical comparison of our proposed clustering with the av-

erage distance VQ and error correcting deccoding using precision-recall (or ROC) curves

[54].

The precision-recall terminology comes from document retrieval, where precision quan-

tifies (for a given query) how many of the returned documents are correct. Recall, on the

other hand, measures how many correct documents were returned. Fig. 4.6 illustrates

this scenario. In this case, recall can be improved by simply returning as large a set as

possible. This, however, will heavily compromise the precision of the search.

3The results for the randomized clustering algorithm by appropriately choosing s (detailed in Section

4.6.3) were very similar to the ones reported here. In particular, the same trend was observed over

several different choices of the secret key K1.
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Figure 4.6: Illustration of Precision and Recall in a document retrieval scenario

A precision-recall curve illustrates this trade-off and provides valuable insight espe-

cially for problems in which absolute maximization of precision and/or recall is possible

only via trivial solutions. For our problem in Section 4.2, I employ the notion of pairwise

precision [54] in the following manner

Precε =
|XS ∩XA|
|XA| (4.18)

where XS = {(li, lj) |D(li, lj) < ε} is the set of all pairs that should be in the same

cluster. XA then denotes the set of pairs that a given algorithm A puts in the same

cluster.

Similarly, pairwise recall is defined as

Recε =
|XS ∩XA|
|XS| (4.19)
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Figure 4.7: Precision-recall curves for three compression approaches: traditional VQ,

error correction decoding, and proposed clustering. Each curve results from varying

ε ∈ [0.1, 0.5], with the leftmost point corresponding to ε = 0.5.

Clearly, 0 ≤ Precε ≤ 1, 0 ≤ Recε ≤ 1 (recall may trivially be made 1 by putting all

vectors in the same cluster). Fig. 4.7 shows an analysis via precision-recall curves, of

three algorithms: 1) average distance VQ, 2) error correction decoding (ECD), and 3)

the proposed clustering. Each point on the curve(s) in Fig. 4.7 is a precision-recall pair

for a particular value of ε, i.e. the precision and recall values computed using (4.18) and

(4.19) when the algorithm is run for that ε. As indicated in Fig. 4.7, for each curve ε was

varied in the range [0.1, 0.5].

Comparing the precison-recall curves for the average distance VQ and ECD, it may

be observed that the average distance VQ affords a better recall rate at the cost of
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loosing precision which is higher for ECD. This explains partially the higher number of

collisions in the hash values for perceptually distinct images using the average distance

VQ. Note that both the precision as well as recall values are much higher using our

proposed clustering algorithm4.

Note also that there are three different curves for our proposed clustering algorithm.

These correspond to different choices of δ (as a function of ε) in our algorithm. The

average distance VQ and ECD do not have a δ parameter; hence, I present results of

the proposed clustering for different δ to ensure a fair comparison between the three

schemes. This also provides insight on how δ may be chosen for a given ε (which is

typically determined empirically from the feature space) to attain greater flexibility in

the precision-recall trade-offs.

4.6.3 Security Experiments

An important observation underlying the need for randomization is the fact that fea-

ture extraction is seldom perfect. That is by means of thorough analysis it may be

possible for an adversary to manipulate image content and yet generate vectors over the

feature space that are close. The goal of randomization is hence to make the job of

defeating the hash algorithm significantly harder.

A malicious adversary may try to accomplish the same in one of two ways:

1. The adversary may try to generate perceptually identical inputs for which the hash

4The precision-recall values plotted in Fig. 4.7 are based on a simple counting of the cardinalities of

the sets XS , XA, etc. That is there is no weighting by the probability mass of features. In practice, the

weighted precision-recall are both pretty close to 1 by using our proposed clustering as illustrated by

the results in Section 4.6.1.3.
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Figure 4.8: Clustering cost function computed over the set E. E is the set of interme-

diate hash vector pairs over which the deterministic clustering makes errors and s is the

randomization parameter.

algorithm generates different hash values, or

2. The adversary may attempt to tamper with the content so as to cause significant

perceptual changes such that the hash algorithm generates the same hash value.

I assume here that the adversary has complete knowledge of the intermediate hash (or

feature) vector extraction as well as the deterministic clustering algorithm for intermedi-

ate hash vector compression. Hence, the adversary is capable of analyzing the algorithm

and would attempt to generate inputs over the set E ⊂ U , where U represents the set

of all possible pairs of intermediate hash vectors and E is the set of intermediate hash

vector pairs over which the deterministic clustering algorithm makes errors.
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4.6.3.1 Security Via Randomization

For the results presented next, the randomized clustering algorithm in Section 4.5.2

was employed with Approach 2 and β = 1
2
. Fig. 4.8 shows a plot of the cost in (4.12)

computed over the set E against values of s decreasing from ∞ to 0. It can be seen

that the cost decreases with s (although not monotonically) and is reduced by orders of

magnitude for values of s < 1000. Decreasing s is tantamount to increasing randomness.

Hence, the plot in Fig. 4.8 reveals that as randomness is increased beyond a certain level,

the adversary meets with very little success by generating input intermediate hash pairs

over the set E.

4.6.3.2 Randomness vs. Perceptual Significance Trade-offs

Let Ē denote the complement set of E, i.e. the set of all intermediate hash vector pairs

over which no errors are made by the deterministic clustering algorithm. Fig. 4.9 (a)

then shows the plot of the clustering cost function against decreasing s as before. In this

case, the cost increases with decreasing s (again not monotonically). As s →∞, the cost

is zero since the deterministic clustering algorithm makes no errors over the set Ē.

Fig. 4.9 (b) shows a sum of the cost in the two plots in Figs. 4.8 and 4.9 (a). This plot

therefore shows the total cost computed over the set U as a function of s. Figs. 4.10 (a)

and 4.10 (b), respectively, show the same cost function plots as in Figs. 4.9 (a) and 4.9

(b) but with the y−axis in log-scale. As s approaches 0, the value of the cost is increased

significantly over the cost incurred by the deterministic algorithm. The cost achieved

by the deterministic algorithm is the value of the cost function in Fig. 4.9 (b) (or Fig.

4.10 (b)) as s → ∞ and equal to 7.43 × 10−9. At s = 0, the total cost is 6.12 × 10−5.

This increase is intuitive as complete randomness (i.e. s = 0) would affect the perceptual

69



(a)

(b)

Figure 4.9: (a) Clustering cost function over the set Ē. Ē denotes the complement set of

E, and (b) Clustering cost function over the complete set U of intermediate hash pairs.

U = E ∪ Ē. s is the randomization parameter.

qualities of the hash.

It is of interest to observe the values of the cost function in Fig. 4.10 (b) for 40 < s <
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(a)

(b)

Figure 4.10: (a) Clustering cost function over the set Ē with the vertical axis on a

log scale to show more detail of Fig. 4.9 (a), and (b) Clustering cost function over the

complete set U with the vertical axis on a log scale to show more detail of Fig. 4.9 (b).

1000. This region is zoomed into and plotted in Fig. 4.11. It can be observed from Fig.

4.11 that the total cost is of the order of the cost incurred by the deterministic algorithm.
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Figure 4.11: Clustering cost function over the set U of intermediate hash pairs in the

region 40 < s < 1000

Further, from Fig. 4.8, the cost over the set E for s < 1000 decreases to the extent that

the adversary cannot gain anything by generating input pairs on this set. By choosing

a value of s in this range, we can largely retain the perceptual qualities of the hash and

also reduce the vulnerability of the hash algorithm to malicious inputs generated by the

adversary.

4.6.3.3 Distribution of Final Hash Values

Finally, I evaluate our success in meeting the third desired property of the hash, i.e.

the closeness to uniform distribution. I employ the widely used Kullback Leibler (KL)
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Figure 4.12: Kullback-Leibler distance of the hash distribution measured with the uni-

form distribution as the reference. Here s is the randomization parameter.

distance [35] given by

D(h||u) = − ∑

x∈C

h(x) log
h(x)

u(x)
(4.20)

where C = {x : h(x) > 0} represents the support set of h(x). Here h(x) denotes the

distribution of hash values generated by our algorithm and u(x) denotes the uniform

distribution over the set C. The set C was obtained by generating the hash values for a

given image used in our experiments over the key space (of K1).

Fig. 4.12 shows the plot of the KL measure against values of s decreasing from ∞ to

0. Even as s → ∞ this value is pretty low (≈ 0.2) and for s < 1000, i.e. the desired

range for secure hashing, a near uniform distribution is achieved. Very similar results

were observed for all of the 100 images in our experiments.
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4.7 Conclusion

This chapter presents greedy heuristic based clustering algorithms for compression of

intermediate image features. A novel cost function consisting of two additive exponential

terms was developed. Such a cost better addresses the goals of perceptual hashing as

opposed to traditional average distance type distortion measures.

Hardness results were derived, and the underlying clustering problem was shown to

be NP-complete. The proposed solution to the clustering problem then proceeds by as-

signing “more likely” and close feature vectors to the same cell. A basic clustering was

developed first that makes clusters without incurring any cost. For the remaining un-

clustered vectors, two approaches were presented that facilitate robustness vs. fragility

trade-offs. The proposed clustering outperforms known compression techniques of tradi-

tional VQ and error correction decoding, for perceptual hash compression. The heuristic

in the deterministic clustering algorithms was modified to develop a randomized cluster-

ing algorithm. The proposed randomization scheme was shown to significantly enhance

security while largely retaining the robustness of the hash.

The proposed algorithms have two mathematically attractive properties: 1.) the num-

ber of clusters (or equivalently the length of the hash) is automatically determined, and

2.) the clustering can be applied to vectors in any metric space, i.e. no assumptions on

the topology of the space are made. I believe these two properties will make the proposed

algorithms valuable in hashing applications for other media, and more generally in data

compression and/or dimensionality reduction.
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Chapter 5

Image Authentication Under Geometric Attacks

5.1 Introduction

This chapter exploits the invariance properties of the feature extractor developed in

Chapter 3 to develop an image authentication scheme that survives geometric attacks.

Note that the image hashing algorithms presented in Chapters 3 and 4, and others re-

ported in the existing literature, would fail to authenticate content under severe geometric

manipulations such as large rotation and translation. I develop a generalized Hausdorff

distance measure to compare features from two images. A search strategy is further

employed to match features under a well-defined model of the geometric distortion. The

use of the novel Hausdorff distance is crucial to the robustness of the scheme, and ac-

counts for feature detector failure or occlusion, which previously proposed methods do

not address.

Section 5.2 brings out the limitations of current approaches for geometric authenti-

cation based on image watermarking. A digital signature or feature based scheme for

image authentication under geometric attacks is then proposed in Section 5.3. Within

the scheme, I model the geometric distortion via an affine transformation, which in turn

is estimated using object matching algorithms [55]. In Section 5.3.1, I propose a gener-

alized robust Hausdorff distance for comparing image features. The proposed distance

encompasses several other known Hausdorff measures as special cases. Section 5.4 shows

75



experimental results, that verify the capability of the proposed scheme to withstand both

global and local geometric distortions, as long as they are perceptually insignificant. Sec-

tion 5.5 concludes the chapter by summarizing the contributions.

5.2 Limitations of Geometrically Invariant Watermarking

Recall from Section 1.1, watermarking is the process of embedding information in an

image (or media), which can later be retrieved for authentication purposes. In robust

authentication scenarios, the watermark is required to be retained in the image under

a set of allowable distortions on the image. These distortions as described before, are

characterized as being “perceptually insignificant”.

An important subset of allowable distortions on an image is geometric manipulations.

These can further be decomposed into two classes: global transformations such as scal-

ing, rotations and translations, and local transformations such as random bending and

shearing (e.g. the StirMark attack). One major drawback of classical watermarking

[10, 11, 14, 15] as well as digital signature schemes [4, 7, 19, 20] is the lack of robustness

to geometric distortions. For this reason, significant attention has been devoted in recent

years towards developing geometrically invariant watermarking schemes. This includes

periodic insertion of the mark [56, 57, 58], template insertion [59], mark embedding in

geometrically invariant domains [60, 61], and content based watermarking schemes that

extract image feature points [62, 63, 64].

Watermarking schemes based on periodic insertion [56, 57, 58] introduce redundancy

in the mark embedding process, e.g. doing a periodic tiling of the image and embedding

the same (but randomly generated) watermark in each tile. This redundancy can be

used to localize the position of the mark and improve the watermark detection phase.

76



Template based schemes [59] embed a well defined geometric pattern in an image, which

can be easily detected after the image is rotated, scaled, and translated. It is also possible

to first transform the image to a geometrically invariant domain, e.g. the Fourier-Mellin

transform, and then embed the watermark in this domain [60, 61]. A common short-

coming of the methods in [56]-[61] is that they are not robust to local geometric trans-

formations. Further, schemes based on embedding in geometrically invariant domains

are very vulnerable to common signal processing operations, such as compression and

enhancement.

While the methods in [62] - [64] exhibit robustness to both global and local distortions,

they implicitly make very strong assumptions of the feature point detector. In other

words, feature points from the watermarked original image and a candidate image are

required to exactly match (under a model of the geometric distortion) for the mark

to be successfully detected. In practice, under arbitrary geometric distortions, such an

assumption often proves too optimistic. Also, feature detection is seldom perfect. Feature

points that are detected in the original copy may not be present in the version that has

undergone a (perceptually insignificant) geometric transformation.

The limitations of aforementioned approaches forms the motivation for the authenti-

cation scheme I develop in this chapter. Further, my proposed scheme is signature (and

not watermark) based. To the best of my knowledge there are no known digital signature

based schemes for robust authentication under geometric attacks.

5.3 Proposed Scheme for Image Authentication

The proposed image authentication scheme is illustrated in Fig. 5.3. The set of fea-

ture points N extracted from a candidate image (using the feature extractor described in
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Figure 5.1: Flow chart of the image authentication scheme

Chapter 3) is transformed by a suitable model T, of the geometric distortion. The trans-

formed set of points is then compared against the (pre-computed) set of feature points

M from a reference image using a robust distance measure D(·, ·). The transformation

T is updated using an intelligent search strategy until a local minima of the distance

function is reached. Based on the value of this minimum distance, we declare the image

to be credible or tampered. Next, I detail the particular choice of various components in

the proposed authentication framework.
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5.3.1 Distortion Modeling

I model the geometric distortion on the feature points via an affine transformation T

such that

T(x) = y = Rx + t (5.1)

where x = (x1, x2), y = (y1, y2), R is a 2× 2 matrix and t denotes a 2× 1 vector. Using

an affine transform permits an exact modeling of distortions such as rotation, scaling,

translation, and shearing effects. Also, under a robust distance measure several other

geometric distortions are well approximated via the affine transform.

5.3.2 Robust Distance Measure on Image Features

5.3.2.1 Hausdorff Distance

Given two finite point sets M = {m1, ..., mp} and N = {n1, ..., nq}, the Hausdorff

distance is defined as

H(M,N) = max(h(M,N), h(N,M)) (5.2)

where

h(M,N) = max
m∈M

min
n∈N

‖ m− n ‖ (5.3)

and ‖ · ‖ is the underlying norm on the points of M and N. The function h(M,N)

is called the directed Hausdorff distance from M to N. h(M,N) in effect ranks each

point of M based on its distance to the nearest point of N and then uses the largest

ranked such point as the distance. The Hausdorff distance H(M,N) is the maximum

of h(M,N) and h(N,M). Thus it measures the degree of mismatch between any two

shapes described by the sets M and N. The choice of Hausdorff distance is based on
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Figure 5.2: The directed Hausdorff distance is large just because of a single outlier

its relative insensitivity to perturbations in feature points, and robustness to occasional

feature detector failure or occlusion [28].

The function H(M,N) can be trivially computed in time O(pq) for two point sets of

size p and q, respectively, and this can be improved to O((p + q) log(p + q)) [65].

5.3.2.2 Modifying the Hausdorff Distance

The original Hausdorff distance in (5.2) is of limited utility in a robust authentication

application because of its sensitivity to outliers. This is illustrated in Fig. 5.2. Therefore,

I develop a generalized directed distance given by

hg(M,N) =
∑

i=1..|M|
αi min

n∈N
‖ mi − n ‖, where

∑

i

αi = 1 (5.4)

The generalized Hausdorff distance Hg(M,N) is the maximum of hg(M,N) and hg(N,M).

Note this distance is generalized1 because for the case that only one of the αi’s is equal

to one (corresponding to mi ∈ M that is farthest away from the closest point in N) and

1The αi’s in (5.4) were empirically chosen.
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rest are zero, (5.4) reduces to the directed Hausdorff distance in (5.3). Also, if each of

the αi = 1
|M| then this reduces to an average Hausdorff distance proposed by Jain et al.

[29].

5.3.3 Authentication Procedure

After extracting the feature point set N from a received image, I find the affine trans-

formation T∗ that best approximates the geometric distortion. That is,

T∗ = arg min
T

Hg(M,ToN) (5.5)

The search strategy to find T∗ is based on a divide and conquer rule and is detailed in

[55].

Finally, Hg(M,T∗oN) is compared against predefined thresholds ε and δ (where 0 <

ε < δ) to determine the credibility of image content. Note that to be able to fix ε and

δ, we need a normalized distance (between zero and a constant). However, there is no

natural way to normalize the distance in this case. For this reason, we normalize the

data sets M and N, i.e. recompute their coordinates such that the mean is zero and

variance is set to unity. Then, I determine empirically ε = 0.15 and δ = 0.2.

5.4 Experimental Results

5.4.1 Robustness under perceptually insignificant geometric manipulations

Fig. 5.3 (a) shows the original bridge image with the extracted feature points overlayed.

Three modified versions of this image under both global and local geometric distortions

are shown in Figs. 5.3 (b) though (d). From a visual inspection of Figs. 5.3 (a)-(d) it can

be ascertained that the features largely follow the geometric transformation on the image.
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This validates the capability of the feature detector to successfully capture information

about the geometric distortion on the image. For each of the distorted images, Fig. 5.3

also shows, an estimate of the geometric transformation as determined by the authen-

tication procedure, and the final generalized Hausdorff distance between image features

under this estimated transformation. Table 5.1 then tabulates this distance for three

different images across several different (allowable) geometric distortions. The distorted

images were generated using the Stirmark benchmark software [38]. The deviation is less

than 0.15 except for very large cropping (more than 25%).

Visual as well as quantitative results for some more images, and attacks are reported

in Appendix B.

Attack Lena Bridge Peppers

JPEG, QF = 10 0.0857 0.1112 0.105

Scaling by 50% 0.0000 0.0020 0.1110

Rotation by 25o 0.0030 0.1277 0.0078

Random Bending 0.0345 0.0244 0.0866

Print and Scan 0.0905 0.1244 0.1091

Cropping by 10% 0.0833 0.0025 0.1117

Cropping by 25% 0.2414 0.2207 0.2766

Table 5.1: Generalized Hausdorff distance (Hg(M,T∗oN)) between features of original

and distorted images.
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5.4.2 Security Via Randomization

I propose to enhance algorithm security by using a randomized subspace projection

scheme. In particular, I first extract a large feature set A = {a1, ..., aQ}, and then

(pseudo) randomly project it to a much smaller feature space spanned by the set B =

{b1, ..., bP}, whereP < Q, which is finally used in image comparisons. This is accom-

plished via using a secret key K to seed a cryptographically secure random number

generator. This ensures that with high probability, the features that are extracted will

not be the same unless the secret key is available. In practice, this significantly reduces

the vulnerability to attacks by an adversary who attempts to generate malicious inputs

(images) that defeat the authentication scheme.

5.5 Conclusion

This chapter introduces a framework for image authentication under geometric attacks

using visually significant feature points. Geometric distortions are modeled via an affine

transformation, and an intelligent search strategy is employed to find the best matching

transformation. The key component of the scheme that enables robustness to geometric

distortions is the use of a generalized Hausdorff distance to match geometric structures.

Experimental results show that such a distance more accurately captures visual changes

in image content, and also compensates for occasional failure of the feature detector. Fi-

nally, a randomized feature extraction scheme was presented to enhance security against

maliciously generated geometric attacks.
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(a) Original image (b) 250 rotation

(c) JPEG, QF = 10 (d) Random bending

Figure 5.3: Examples of geometrically distorted images. Feature points are overlayed.
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Chapter 6

Conclusion

The problem of multimedia (e.g. image and audio) signal hashing has assumed a lot of

importance over the last few years. Such hashes are required to be perceptual in nature;

i.e. they should represent the content of the underlying media object. Applications such

as database search impose the requirement of robustness; i.e. the hash should be invariant

under perceptually insignificant (or incidental) modifications to the media. This facili-

tates searching images and audio clips in large media databases. An example scenario

would be locating a query media file that is “perceptually” the same1 as other media

files in the database, but has a very different digital representation, e.g. a compressed

or non-compressed image stored in a different format. Further, multimedia protection

applications require the hashing algorithm to be secure. This is tantamount to requiring

the hash to survive (intentional) attacks of guessing and forgery.

This dissertation develops new mathematical techniques for the design, analysis, and

evaluation of perceptual image hash functions. Here, I summarize the contributions of

this dissertation and suggest opportunities for future work.

1The meaning of perceptually the same depends on the underlying media. For example, for images,

it means identical in visual appearance.

85



6.1 Summary of Contributions

Chapter 2 proposes a novel unifying framework for media hashing. The two-stage

framework comprises of a media dependent feature extractor followed by media inde-

pendent clustering of vectors in the feature space. I develop quantitative definitions for

the desired properties of a perceptual image hash functions. The primary contribution

of these definitions is to provide a conceptual benchmark for the evaluation of media

hashing algorithms.

Chapter 3 develops a feature extraction scheme for images based on an explicit mod-

eling of the human visual system (HVS) via end-stopped wavelets. Iterative feature ex-

traction procedures are presented based on preserving significant image geometry. I show

that the extracted features have favorable robustness properties for applications in im-

age identification and hashing. In addition, the proposed technique outperforms existing

approaches for the detection of content changing image manipulations, i.e. significantly

enhances security. I quantify trade-offs between robustness, fragility, and security of the

features via algorithm parameters.

Chapter 4 proposes clustering algorithms for compressing the features extracted in

stage 1 of the two-step hash framework to a final hash value. I propose a novel cost

function for feature vector compression and show that the decision version of the un-

derlying clustering problem is NP-complete. I then present polynomial-time clustering

algorithms based on a greedy heuristic. The proposed clustering is seen to vastly out-

perform traditional vector quantization (VQ) based compression and error correction

decoding approaches for perceptual hash compression. Finally, I develop randomized

clustering algorithms for the purposes of secure image hashing. Several researchers [1],

[2] have identified randomization as essential for secure hashing. However, to the best of
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my knowledge, this dissertation is the first to present a theoretical analysis of random-

ized media hashing algorithms and quantify the relationship of randomization with hash

security.

Table 6.1 provides a comparison of the proposed hash algorithm against several existing

image hashing paradigms reviewed earlier in Section 1.2. The perceptual image hash

developed in this dissertation has desirable robustness as well as security properties.

This is unlike previous methods, which typically compromise one at the cost of another.

This advantage is a natural result of the joint cryptographic-signal processing approach

that I adopt in the design of the proposed hash algorithm(s).

Chapter 5 addresses the problem of image authentication surviving geometric attacks.

Previous solutions developed for the same were all watermark based. I develop a passive

or signature based scheme based on the feature extraction scheme developed in Chapter

3. I model the geometric distortion on the image as an affine transformation, and employ

object matching algorithms [55] to find the best matching transformation. To compare

features from two images, I generalize the well known Hausdorff distance. The new

distance significantly enhances the robustness of the scheme and accounts for feature

detector failure, which previously proposed methods did not address.

6.2 Future Research

• Pseudo-random signal representations: It is useful to think of the binary string ex-

tracted via the randomized hash algorithm as a pseudo-random signal representa-

tion scheme for images; i.e. a different representation, each sufficient to characterize

the image content, is obtained (with high probability) as the secret key is varied.

Future work could explore alternate pseudo-random signal representations for im-
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Image Hashing Algorithm Robustness Security Remarks

Cryptographic hashes

MD5, SHA-1 Poor Good No trade-off possible

Statistics Based

Schneider et al. [4] Poor Poor –

Kailasanathan et al. [5] Poor Poor –

Venketasan et al. [1] Fair Fair Trade-off hard to achieve

Coarse Representations

Fridrich et al. [8] Fair Poor Sensitive to small geometric changes

Mihcak et al. [2] Good Poor Trade-off hard to achieve

Relation Based

Lin et al. [7] Fair Poor –

Lu et al. [9] Fair Fair Sensitive to small geometric changes

Proposed Algorithm

Monga et al. [24] Good Good Trade-off facilitated

Table 6.1: Comparison of the image hashing algorithm developed in this dissertation

against other methods in the literature. The proposed hash algorithm possesses desirable

robustness as well as security and allows for a trade-off via hash algorithm parameters.

age identification and hashing. In particular, the goal of secure image hashing can

be understood as developing the pseudo-random image representation that leaks

the minimum amount of information about the image.

• Rate-distortion analysis of hashing: In this dissertation, I provide a heuristic solu-

tion to the finding the length of the hash required to sufficiently represent a media
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set. The problem of determining the minimum hash length so as to meet a given

distortion measure is similar to an information theoretic rate-distortion problem.

In particular, for image hashing, given 0 < θ < 1, ε > 0, and a visually meaning-

ful notion of distance on images D(·, ·); the problem is to find the minimum hash

length such that

Pr(H(I) = H(Iident)) > 1− θ, if D(I, Iident) < ε (6.1)

where (I, Iident) represent a pair of perceptually identical images in some class of

images I.

• Alternate clustering algorithms with performance guarantees: I developed heuristic

clustering algorithms for compressing intermediate features of images. Although

the proposed clustering vastly outperforms traditional compression approaches such

as average distance VQ and error correction decoding, it does not come with any

performance guarantees. This means, that the particular value of the objective/cost

function achieved by the proposed clustering, is neither a local minima nor guar-

anteed to be within a constant of the global minimum. Designing clustering al-

gorithms with performance guarantees is especially valuable from the viewpoint of

hash scalability. Hierarchical clustering approaches may then be used to generate

provably optimal2 clusterings for k + 1 clusters, given the optimal clustering for k

clusters is known.

• Efficient implementation of image hashing algorithms: In the proposed hash algo-

rithm, there are several opportunities for speeding up the computation by employ-

ing parallel and/or distributed processing. For example, in the randomized inter-

2not necessarily a global optima
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mediate hash algorithm, feature extraction from each random region can proceed

independently. From a practical point of view, fast computation of the hash is very

desirable. Further, it is not unreasonable to imagine the availability of generous

computing resources, particularly for security applications, e.g. matching finger-

print images in secure databases. Efficient architectures for the implementation of

media hashing algorithms is in general, a wide-open topic. Specific techniques for

computational speed up will depend on the underlying media (e.g. images, audio

etc.) and the specifics of the hash algorithm.

• Hashing of other media: Another possible future direction is in audio hashing, or

more generally perceptual hashing of other media. Since the second step is (ap-

proximately) media independent3, an appropriate feature detector may be applied

in the first step to make the framework applicable to other media data sets.

• Game-theoretic security analysis: Finally, a very interesting direction for future

research is to analyze the secure media hashing problem formally in a game theo-

retic setting, and draw comparison with watermarking games [66]. Note that with

watermarking, the first move belongs to the embedding algorithm which is tied to

a particular watermark insertion strategy that an attacker can subsequently try to

remove. From a game theoretic point of view, hashing may infact be stronger than

watermarking, since hashing algorithms can be adapted to attacks after these occur

and without the need to modify and re-release deployed images.

3By approximately media independent, it is implied that the notion of distance on features extracted

from the media and the probability measure induced in the feature space, are determined by the under-

lying media.
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Appendix A - Proof of NP-completeness

In this section, we prove that a decision version of the clustering problem that asks if

it is possible to have a k-clustering such that the cost function in (4.13) is below a certain

constant is NP-complete. We achieve this by a reduction (details skipped for brevity)

from the decision version of the k-way weighted graph-cut problem [67].

Proof. (Sketch) Let G = (V, W (E)) be a weighted graph where V is the set of vertices,

E is the set of edges and W (E) denote the weights on the edges. It is useful to think

of V as the set of points to be clustered, and the weight W (eij) on the edge eij between

vi and vj as the distance between the points vi and vj. The k-way weighted graph-cut

problem asks if there is a subset C ⊆ E of edges with
∑

e∈C W (e) ≤ K0, where K0 is

a constant, such that the graph G′ = (V, W (E \ C)) has k pairwise disjoint subgraphs.

We sketch a log-space reduction to the clustering problem in (4.13) for a fixed k. We

construct a graph G̃ = (V, W̃ ) from G as follows: Consider each possible vertex pair

(vi, vj) with i, j = 1, . . . , n. Denote wij = W (eij). If wij < ε, w̃ij = K1c1(i, j), where

c1(i, j) is defined in (4.6) with D(li, lj) = wij, and K1 is a positive constant. If wij > δ,

then w̃ij = −K2c2(i, j), where c2(i, j) is as defined in (4.7) with D(li, lj) = wij, and K2

is a positive constant. For ε ≤ wij ≤ δ, w̃ij = 0. Consider the same k-way graph-cut

problem on G̃. Let C̃ be a subset of the edges. For edges in C̃ with positive wij, the

sum of the weights, say S1, directly correspond to the sum of the c1(i, j) terms in (4.13).

For edges in C̃ with negative weights, the sum of the weights, say S2 is negative. Let

−N, N > 0, denote the sum of all negative weights in W̃ . Now, N + S2 is the sum of

the weights in W̃ \ C̃, that exactly corresponds to the sum of the c2(i, j) terms in (4.13).

Hence, N +S1 +S2 corresponds to the cost function in (4.13) up to an additive constant,

when the p(i) is uniform. Note that only constant number of indices of the vertices,
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which need O(log n) space, must be maintained to complete the reduction. Hence, the

k-way weighted graph-cut reduces to the clustering problem in log-space.
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Appendix B - Authentication surviving geometric attacks: more

examples

Figure 6.1: Representation of various geometric distortions applied to a grid.

(a) Original house image (b) Random bending (c) Stirmark local geomet-

ric attack

Figure 6.2: Examples of geometrically distorted images. Feature points are overlayed.
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(a) Original peppers image (b) Scaling by 75% (c) Print-scan geometric distor-

tion

Figure 6.3: Examples of geometrically distorted images. Feature points are overlayed.
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Appendix C - Summary of notation

1. I: Class of images of a particular size.

2. (I, Iident): pair of perceptually identical images in I.

3. (I, Idiff ): pair of perceptually distinct images in I.

4. K: key space, K: a particular secret key in K.

5. h(I): intermediate hash vector obtained from the image I at stage 1 of the hashing

framework using the deterministic intermediate hash algorithm in Fig. 3.3.

6. h(I,K): intermediate hash vector obtained from the image I at stage 1 of the

hashing framework using the randomized intermediate hash algorithm in Fig. 3.4.

7. H(I,K): final hash value computed using the randomized two-stage hash algo-

rithm. The intermediate hash extraction and/or the clustering stages could be

randomized.

8. ψM(x, y): basis function of the Morlet wavelet.

9. ψM(x, y, θ): basis function of the End-stopped wavelet.

10. Wi(x, y, θ): end-stopped wavelet transform coefficient of image I computed at scale

i and orientation θ.

11. DH(·, ·): normalized Hamming distance.

12. D(·, ·): distance metric applicable to image feature/intermediate hash vectors.
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13. PfP (ε): probability of false positive, i.e. intermediate hash vectors separated by less

than ε for visually distinct images.

14. PfN(δ): probability of false negative, i.e. intermediate hash vectors separated by

more than δ (0 < ε < δ) for visually identical images.

15. E[C̃1]: clustering cost incurred by violating (4.1).

16. E[C̃2]: clustering cost incurred by violating (4.2).

17. Precε: precision ratio of any scheme used for feature vector compression as given

by (4.18).

18. Recδ: precision ratio of any scheme used for feature vector compression as given by

(4.19).

19. h(M,N): directed Hausdorff distance between finite point sets M and N as given

by (5.3).

20. H(M,N): Hausdorff distance between finite point sets M and N as given by (5.2).

21. hg(M,N): generalized directed Hausdorff distance between finite point sets M

and N as given by (5.4), corresponding generalized Hausdorff distance denoted by

Hg(M,N).
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