Analog-to-Digital Converter Circuit and System Design to Improve with CMOS Scaling

Yousof Mortazavi

Department of Electrical and Computer Engineering The University of Texas at Austin

PHD DEFENSE

April 16, 2015

COMMITTEE MEMBERS

Brian L. Evans Arjang Hassibi Todd E. Humphreys Earl E. Swartzlander, Jr. Ahmed H. Tewfik

Wireless Networking & Communications Group

CMOS Scaling of Digital Integrated Circuits

- Scaling CMOS transistor dimensions results in
 - exponential increase in number of transistors per chip [Moore's law]
 - lower capacitance, delay, active power dissipation, cost

CMOS Scaling of Mixed-Signal/Analog Circuits

- Analog circuits generally don't scale like digital circuits
- State-of-the art CMOS processes are digital-friendly, but analog-hostile

Good:

reduced: capacitance, active power increased: speed

Bad:

reduced: supply voltage, voltage headroom

Ugly:

increased: mismatch, noise, short-channel effects, nonlinearity reduced: intrinsic transistor gain, signal-to-noise ratio, dynamic range

Analog-to-Digital Converters

- Typical ADC: • Typical ADC: • $x_c(t)$ $x_c(t)$ f_s f_s
- Antialiasing filter (ideally) enforces band-limitedness to BW
- Sampling is lossless if f_s > 2 BW (Nyquist rate)
- Quantization is lossy, *i.e.* it adds noise

$$\sigma_q^2 = \frac{\Delta}{12} \qquad \qquad \Delta = \frac{FS}{2^N}$$

Signal-to-quantization noise ratio:
 SQNR = 6.02 N + 1.76 (dB)

Analog-to-Digital Converter Area Trend

B. Murmann, "ADC Performance Survey 1997-2015," [Online]. Available: <u>http://web.stanford.edu/~murmann/adcsurvey.html</u>.

Contributions

Analog-to-Digital Converter Circuit and System Design to Improve with CMOS Scaling

Time-Based Delta Sigma ADC Architecture & Modeling	 Novel architecture with loop delay calibration Combines time-based information processing & noise shaping
Two Prototype ADC Chips	 Prototype chips demonstrate proof of concept Among smallest area in literature
Nonlinearity Estimation and Correction	 Up to 16 dB improvement in SNDR with digital calibration Diagnostic tool for identifying linearity bottleneck

Delta Sigma Modulation (DSM)

- Idea:
 - start with low-resolution quantizer (1 to few bits)
 - use feedback to shape noise spectrum as high-pass, and
 - use oversampling and digital lowpass filtering to reduce noise

1st Order DSM

Time-Based Signal Processing

- Benefits from scaling perspective:
 - Improved timing accuracy with CMOS scaling
 - Digital implementation
 - Not thermal noise limited, no need for large capacitances

Digitally-Assisted Analog Scheme

- A trend in the literature, to improve analog circuit performance through digital methods [Murmann2010]
- The availability of cheap (power/area) digital circuits makes these methods more attractive as processes scale.

Architect low-area delta-sigma data converters that scale with CMOS technology by replacing voltage-domain with time-domain processing.

Prior Art

Voltage Controlled Oscillator (VCO)-Based Delta Sigma ADC

- Time-Based Delta Sigma ADCs
 - Using asynchronous delta sigma modulator
 - Time-to-Digital Converters (TDCs)

VCO-Based Delta Sigma ADC

- Continuous-time integration (1/s) is inherent.
- Sampling VCO phase at periodic intervals gives quantized phase.
- VCO nonlinearity (K_{VCO}) is an important limitation.
 - [Rao2011] proposes two-level PWM modulator to avoid the problem
 - [Taylor2013] uses digital calibration and post-correction to mitigate the problem

Prior Art

Time-Based Delta Sigma ADCs

- Asynchronous delta-sigma modulation

[Dhanasekaran2009, Taillefer2009, Daniels2010]

 Time Encoding Quantizer (TEQ)-based ADCs [Prefasi2009]

First Contribution

Time-Based Delta Sigma ADC Architecture & Modeling

Time-Based Processing Encoding/Operands

System Model

System Model

System Model

TDC/DTC

- TDC = Time-to-Digital Converter
- DTC = Digital-to-Time Converter

Voltage-to-Time Converter/Adder

Simulink Modeling

Simulink Modeling - DCU

Simulink Modeling

Role of DCU in Reducing Distortion

DCU Disabled

DCU Enabled

Spectrum exhibits major harmonic distortion due to non-uniform sampling

Spectrum is virtually distortion free

Role of DCU in Reducing Distortion

Effect of DTC Element Mismatch

Effect of TDC Element Mismatch

Comparison of DTC/TDC Element Mismatch

Second Contribution

Prototype ADC Chips

First Generation Chip in TSMC 180nm

TSMC = Taiwan Semiconductor Manufacturing Company

First Generation Chip Details

Parameter	Value	Units
Process	TSMC 180nm 6M 1P	-
Supply Voltage (V_{DD})	1.8	V
Oversample Frequency (f_s)	144	MHz
Quantizer (TDC) Number of Bits	3	bits
DAC (DTC) Number of Bits	3	bits
TDC LSB (Δ)	80	ps
$t_{ m d,VTC/Adder}$	2.1	ns
$t_{ m d,PhaseDetector}$	0.57	ns
$t_{ m d,DTC}$	1.24	ns
$t_{\rm d, Excess Delay}$ (Average)	2.8	ps
Area	0.0275	mm^2

Background | Architecture | Prototypes | Nonlinearity | Conclusion

Units

MHz

MHz

kHz

mV

 dB

dB

dB

bits

mW

First Generation Chip Waveforms

Input is a 146.1 kHz sinusoid

First Generation Chip Waveforms

Second Generation Chip in IBM 45nm SOI

Parameter	Value	Units
Process	IBM 45nm SOI 10M 1P	-
Supply Voltage (V_{DD})	1.8/1.0	V
Oversample Frequency (f_s)	640	MHz
Quantizer (TDC) Number of Bits	4	bits
DAC (DTC) Number of Bits	4	bits
TDC LSB (Δ)	15.8	ps
$t_{ m d,VTC/Adder}$	714	ps
$t_{ m d,PhaseDetector}$	116	ps
	302	ps
$t_{\rm d, Excess Delay}$ (Average)	400	ps
Area	0.0192	mm^2

Quantity	Value	Units
f_s	705	MHz
OSR	36	-
BW	9.8	MHz
f_{in}	500	kHz
$V_{in,pk-pk}$	600	mV
SNR	41.2	dB
SNDR	37.5	dB
ENoB	6	bits
THD	-39.6	dB
Power	8.0	mW

Second Generation Chip in IBM 45nm SOI

Input is a 500 kHz sinusoid

Second Generation Chip in IBM 45nm SOI

Test Setup

Comparison Table

	Gen1	Gen2	
Parameter	Value	Value	Units
Process	TSMC 180nm 6M 1P	IBM 45nm SOI 10M 1P	-
Supply Voltage (V_{DD})	1.8	1.8/1.0	V
Oversample Frequency (f_s)	144	640	MHz
Quantizer (TDC) Number of Bits	3	4	bits
DAC (DTC) Number of Bits	3	4	bits
TDC LSB (Δ)	80	15.8	ps
$t_{ m d,VTC/Adder}$	2.1	714	ps
$t_{ m d,PhaseDetector}$	0.57	116	ps
$t_{ m d,DTC}$	1.24	302	ps
$t_{\rm d, Excess Delay}$ (Average)	2.8	400	ps
Area	0.0275	0.0192	mm^2

Des	ign
Param	eters

	f_s	144	705	MHz
Measured Results	OSR	36	36	-
	BW	2.0	9.8	MHz
	f_{in}	146.1	500	kHz
	$V_{in,pk-pk}$	400	600	mV
	SNR	44.6	41.2	dB
	SNDR	34.6	37.5	dB
	THD	-35.0	6	bits
	ENoB	5.5	-39.6	dB
	Power	2.7	80	mW

Analog-to-Digital Converter Area Comparison

B. Murmann, "ADC Performance Survey 1997-2015," [Online]. Available: <u>http://web.stanford.edu/~murmann/adcsurvey.html</u>.

Third Contribution

Nonlinearity Calibration

Nonlinearity Due to Element Mismatch

- In the presence of DTC (DAC) element mismatch Multibit DSMs exhibit harmonic distortion.
- To lower the distortion, need
 - extremely good matching, and/or
 - dynamic element matching (DEM) schemes.
- Alternatively:
 - Lookup table (LUT) that maps each code out of the modulator to the true value of the DTC can perfectly cancel nonlinearity.
- Problem:
 - How do we estimate the DTC element mismatch?

Simulated Estimation/Calibration

15.0

1.7

-50.7

7.2

dB

bit

-50.7

7.2

THD

ENoB

-35.5

5.5

First Generation Chip Calibration

Second Generation Chip Calibration

Mismatch Coefficients

Summary of Contributions

Contribution 1:

Architect and model novel time-based delta sigma ADC

- Replace voltage-domain with time-domain processing to enable scaling
- Calibrate loop delay to reduce non-uniform sampling effects
- Reuse elements of TDC/DTC to save area
- Contribution 2:

Fabricate and test two prototype two ADC chips

- TSMC 180nm CMOS
- IBM 45nm SOI

Contribution 3:

Analyze and mitigate major nonlinearity

- Estimate element mismatch coefficients
- Perform digital post-correction

Future Work

- Reduction in DTC unit delay element mismatch by
 - utilizing (non-inverting) buffers rather than inverters, or
 - using the same structure of DTC/TDC but with feedback that truncates the LSB, or
 - using extra inverter stages and implementing a dynamic element matching scheme.
- Circuit-level improvements
 - Improve thermal/flicker noise in front-end circuits, mainly comparator
 - Reduce power consumption of front-end by removing replica of ramp generator and comparator in the VTC/Adder and replacing it with a calibrated delay cell.

Summary of Relevant Work by Presenter

- Y. Mortazavi, S. M. Mortazavi Zanjani, A. Brennan, D. Allen, M. Ranjbar, A 12.6 µW 70+ dB DR 2nd Order CT ΔΣ Audio ADC in 55nm CMOS, *2015 IEEE Custom Integrated Circuits Conference*, Sep. 28-30, 2015, San Jose, CA USA, to be submitted.
- W. Jung, Y. Mortazavi, B. L. Evans, and A. Hassibi, "An all-digital PWM-based ΔΣ ADC with an inherently matched multi-bit quantizer/DAC," 2014 IEEE Custom Integrated Circuits Conference, Sep. 15-17, 2014, San Jose, CA USA.
- Y. Mortazavi, W. Jung, B. L. Evans, and A. Hassibi, "A mostly-digital PWM-based ΔΣ ADC with an inherently matched multi-bit quantizer/DAC," *IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing*, under review.
- M. Nassar, J. Lin, Y. Mortazavi, A. Dabak, I. H. Kim and B. L. Evans, ``Local Utility Powerline Communications in the 3-500 kHz Band: Channel Impairments, Noise, and Standards", *IEEE Signal Processing Magazine, Special Issue on Signal Processing Techniques for the Smart Grid*, vol. 29, no. 5, pp. 116-127, Sep. 2012.
- M. Nassar, K. Gulati, Y. Mortazavi, and B. L. Evans, ``Statistical Modeling of Asynchronous Impulsive Noise in Powerline Communication Networks", *Proc. IEEE Global Communications Conf.*, Dec. 5-9, 2011, Houston, TX USA.
- A. G. Olson, A. Chopra, Y. Mortazavi, I. C. Wong, and B. L. Evans, ``Real-Time MIMO Discrete Multitone Transceiver Testbed", *Proc. Asilomar Conf. on Signals, Systems, and Computers*, Nov. 4-7, 2007, Pacific Grove, CA USA. [Won Best Student Paper Award for the Architecture and Implementation Track].

References

- [Murmann2010] B. Murmann, "Trends in low-power, digitally assisted A/D conversion," *IEICE Trans. on Electronics*, vol. E93-C, no. 6, pp. 718–729, 2010.
- [Rao2011] S. Rao, B. Young, A. Elshazly, W. Yin, N. Sasidhar, and P. Hanumolu, "A 71dB SFDR open loop VCO-based ADC using 2-level PWM modulation," *2011 Symp. VLSI Circuits*, pp. 270–271, June 2011.
- [Taylor2013] G. Taylor and I. Galton, "A reconfigurable mostly-digital delta-sigma ADC with a worst-case FOM of 160dB," *IEEE Journal of Solid-State Circuits*, vol. 48, no. 4, pp. 983 995, Feb. 2013.
- [Dhanasekaran2009] V. Dhanasekaran, M. Gambhir, M. Elsayed, E. Sanchez-Sinencio, J. Silva-Martinez, C. Mishra, L. Chen, and E. Pankratz, "A 20MHz BW 68dB DR CT ΔΣ ADC based on a multi-bit timedomain quantizer and feedback element," *IEEE Solid-State Circuits Conf.*, Feb 2009, pp. 174–175,175a
- [Taillefer2009] C. S. Taillefer and G. W. Roberts, "Delta–sigma A/D conversion via time-mode signal processing," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 56, no. 9, pp. 1908– 1920, 2009.
- [Daniels2010] J. Daniels, W. Dehaene, M. S. J. Steyaert, and A. Wiesbauer, "A/D conversion using asynchronous delta-sigma modulation and time-to-digital conversion," *IEEE Transactions on Circuits* and Systems I: Regular Papers, vol. PP, no. 99, pp. 1–1, 2010.

Questions?

Element Mismatch Estimation

- 1. Calculate X[k], the windowed-FFT of the modulator output (x[n]).
- 2. Repeat the following for $u \in \{1, 2, \dots, 2^{NoB} 2\}$
 - (a) Calculate $I_u[k]$, the windowed-FFT of the event that the modulator code equals u, i.e., $\mathbf{1}(x[n] = u)$.
 - (b) Correlate a predetermined set of bins (k_1, \ldots, k_j) from X[k] with the same bins from $I_u[k]$. Call the result $\epsilon[u]$.

(c) Where
$$x(n) = u$$
, replace $x(n)$ with $T(u) = u + \epsilon[u]$.

Mathematically,

$$\epsilon[u] = \frac{\sum_{k=k_1}^{k_j} \left\{ \Re(X[k]I_u[k]) + \Im(X[k]I_u[k]) \right\}}{\sum_{k=k_1}^{k_j} \left\{ \Re(I_u[k]I_u[k]) + \Im(I_u[k]I_u[k]) \right\}}$$
(7.1)

where $\Re(\cdot)$ and $\Im(\cdot)$ denote the real and imaginary parts of the argument, respectively.