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With the growing demand for higher date rates and more reliable ser-

vice capabilities, wireless communication systems continue to grow in popu-

larity and importance. In order to enable higher data rate via broader band-

width, millimeter wave (mmWave) systems are deployed for modern and future

communication systems. Due to the high transmission loss of the mmWave

frequency bands, a massive number of antennas are employed to focus trans-

mitted power in narrow radio frequency (RF) beams. However, associating one

RF chain with two high-resolution data converters for each antenna element

would consume a prohibitively large amount of power. Furthermore, challeng-

ing service requirements can be handled by machine learning techniques in a

variety of application spaces.

The goal of this dissertation is to propose communication systems that

are not only reliable and high-performing, but also power-efficient as well as in-

telligent. Two possible ways to alleviate the huge power consumption problem
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are 1) low-resolution data converters, and 2) hybrid analog-digital beamform-

ing architectures since the former tries to reduce the power consumption of

each individual RF chain and the latter directly scales down the number of

RF chains. Additionally, intelligent communication systems that can adapt

to changing network conditions and user requirements are crucial for ensuring

reliable and efficient communication. In either case, these solutions introduce

severe non-convexity and non-linearity to the entire system. In this regard,

I propose new solutions that can respond to future communication systems

requiring a fundamental re-design of current communication systems based on

a power-efficient and intelligent framework.

First, I investigate a coordinated multipoint (CoMP) beamforming and

power control problem for base stations (BSs) with a massive number of

antenna arrays under coarse quantization by low-resolution analog-to-digital

converters (ADCs) and digital-to-analog converters (DACs). I first formu-

late total power minimization problems of both uplink (UL) and downlink

(DL) systems subject to signal-to-quantization-plue-interference-and-noise ra-

tio (SQINR) constraints. I then show strong duality for the UL and DL prob-

lems under the coarse quantization condition when channel reciprocity holds

with time-division duplexing (TDD) assumption. Leveraging the duality, I

propose a framework that is directed toward a twofold aim: to discover the op-

timal transmit powers in UL by developing iterative algorithm in a distributed

manner and to obtain the optimal precoder in DL as a scaled instance of UL

combiner. Under homogeneous transmit power and SQINR constraints per
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cell, I further derive a deterministic solution for the UL CoMP problem by

analyzing the lower bound of the SQINR. Lastly, I extend the derived result

to wideband orthogonal frequency-division multiplexing (OFDM) systems to

optimize transmit power and beamformer for all subcarriers. Simulation re-

sults validate the theoretical results and proposed algorithms in terms of total

transmit power, duality gap, and convergence.

Second, I aim to find the DL beamformer that minimizes the maximum

power on transmit antenna array of each BS under received SQINR constraints

while minimizing per-antenna transmit power for a more realistic deployment.

I first formulate formulating the quantized DL OFDM antenna power mini-

max problem and deriving its associated dual problem. With proving strong

duality, I use the associated UL dual solution to compute the DL beamformer.

Subsequently, the DL beamformer is used in updating the covariance matrix

of the uplink noise signals. The series of processes builds an efficient algorithm

to find a numerical solution. Simulations validate the proposed algorithm in

terms of the maximum antenna transmit power and peak-to-average-power

ratio.

Third, I propose a learning-based maximum likelihood detection frame-

work with an acceptable learning length for uplink massive multiple-input-

multiple-output (MIMO) systems with one-bit ADCs. The learning-based

detection only requires counting the occurrences of the quantized outputs at

each antenna. The learning in the high signal-to-noise ratio (SNR) regime,

however, needs excessive training to estimate the extremely small likelihood
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probabilities. To address this drawback, I utilize a dithering signal to arti-

ficially decrease the SNR and then remove the impact of the dithering noise

via post processing. I evolve the technique by developing an adaptive dither-

and-learning method that updates the dithering power according the patterns

observed in the quantized dithered signals. Lastly, the computed likelihood

probabilities are utilized in deriving log-likelihood ratio to enable state-of-the-

art channel coding schemes. I compare the uncoded and coded detection per-

formance of the proposed algorithm with other learning-based frameworks and

show that the proposed algorithm shows the performance closest to optimal

performance.

Fourth, I propose a deep reinforcement learning (DRL)-based solution

for joint hybrid beamforming (HB) and power control problems when multi-

ple massive MIMO BSs are communicating with multiple users in the uplink

mmWave band. The HB method requires both digital and analog beamform-

ers, with the latter using discrete phase shifters to project high-dimensional

antenna ports to low-dimensional logical ports and scale down the number of

RF chains. However, this results in non-convexity, making the problem dif-

ficult to solve using existing algorithms. In multicell uplink communication

systems, I aim to jointly design the HB at each BS and transmit power control

of the associated users while ensuring that the received signal-to-interference-

and-noise ratio (SINR) constraints are satisfied. Considering the use of the

DRL-based approach and the primal problem, I formulate the RL basics. To

handle the combination of discrete and continuous inputs, I use the DDPG RL
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algorithm, which outputs a valid action that maps to the design factors. In

particular, I aim to control each phase shifter individually by introducing an

intermediate vector and applying a differentiable argmax function to estimate

the phase angle index. The proposed method is evaluated through simulation

results based on the achieved SINR.

The four contributions could make a worthwhile enhancement to the

development of power-efficient and intelligent wireless communication systems

by meeting the communication needs of modern society while minimizing en-

ergy consumption and maximizing the use of available resources.
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Chapter 1

Introduction

As the need for faster data rates and more dependable service features

increases, wireless communication systems are becoming increasingly popu-

lar and significant. The potential of the mmWave frequency band lies in the

development of communication systems that can facilitate high-speed data

transmission in wireless local area networks and fifth-generation (5G) cellu-

lar networks. The mmWave holds promise for achieving its potential via its

large transmission bandwidths and the small carrier wavelengths that make

it possible to create an array of antennas that features a substantial number

of antenna elements. These arrays can generate the required array gain for

establishing high-quality communication links and achieve huge beamforming

gain by creating a narrow beam to a desired direction. The employment of

massive antenna arrays, however, gets into trouble due to high power con-

sumption caused by a number of radio frequency (RF) components. In this

regard, low-power solutions need to be explored while maintaining challeng-

ing requirements. In this dissertation, I present prospective solutions for the

design of communication functions such as beamforming, power control, and

data detection when considering non-linear yet non-convex system distortion

caused by the low-power system architecture.
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In this introductory chapter, I provide relevant information, the moti-

vation behind the research problems handled in this dissertation, and a sum-

mary of my contributions. In Section 1.1, I start with providing an overview

of the contextual information that pertains to my research. In Section 1.2, I

present the motivation behind the proposed research. Section 1.3 summarizes

the contributions of the proposed research. In Section 1.4, the notation and

abbreviations are provided for clarity and ease of understanding.

1.1 Background

In this section, I provide a brief overview of the background that is

relevant to my research.

1.1.1 Wireless Communication Systems

A cellular network is based on the concept of dividing the geographic

area into smaller regions where user devices in each region are covered by

at least one base station (BS). Cellular networks consist of numerous users

who utilize mobile devices, such as tablets and mobile phones, and a vast

number of fixed BSs that are organized to provide users with coverage within

their respective cells. The wireless link that enables data transmission from

a BS to mobile users is referred to as the downlink system, while the signal

directed from mobile users to the BS is called the uplink system. To divide the

uplink and downlink in wireless communication, two methods are used: time

division duplex (TDD) and frequency division duplex (FDD). TDD separates
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the two domains in the time domain, while FDD separates them using different

frequency bands.

Wireless communications encounter two major issues, namely fading

and interference, which are not present in wireline communications. Fading is

caused by fluctuations in channel strengths over time, which result from the

effects of multi-path fading, path loss, and shadowing. Unlike thermal noise,

interference appears when signals are disrupted or weakened by the presence of

other wireless signals. Inter-symbol interference occurs at the receiver due to

delays caused by multiple paths from the transmitter to the receiver, resulting

in interference for subsequent transmissions. When multiple users communi-

cate with the same BS using the same time and frequency resource, there exists

a significant amount of interference in the link, which is referred to as inter-user

interference. In a wireless communication environment with multiple coexist-

ing cells, incoming signals from neighboring cells can cause interference with

the co-channel signals of the current cell, known as inter-cell interference. De-

signing wireless communication systems that effectively manage interference

is one of the most significant challenges.

1.1.2 Multiple-Input Multiple-Output System

The typical error event occurs when the channel is in a deep fade. As

one of the techniques that combat deep fading, multiple antennas are em-

ployed at the transmitters and/or receivers to achieve spatial diversity. When

having multiple antenna ports at both transmitters and receivers, the system
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is called a multiple-input-multiple-output (MIMO) system. By leveraging the

full potential of many antennas, MIMO communication systems can achieve in-

creased data rates via multiplexing gain and increased reliability via enhanced

diversity gain.

Employing many antennas can also provide beamforming gain. Beam-

forming is a technique used in wireless communications to enhance signal

strength in a specific direction by having individually controllable phase and

amplitude. By focusing the signal in a specific direction, beamforming can

improve signal quality, reduce interference, and increase the coverage of the

wireless signal. Channel State Information (CSI) is typically used to help the

antenna arrays form the beam pointing at the transceiver. This information

includes the strength and quality of the received signal, as well as the distance

and location of the receiver. Beamforming is a key technology in modern

wireless communication systems and can be used in a variety of applications,

including cellular networks, Wi-Fi, and satellite communications.

1.1.3 Millimeter Wave Signals

Modern and future wireless communication systems regard a millimeter

wave (mmWave) spectrum that extends from 10 to 300 GHz as a promising

technology to provide a remarkable increase in both data rates and energy-

efficiency [4, 91]. However, radio signals with high frequencies are known to

experience significant power attenuation as propagation distance increases.

In comparison to traditional MIMO communication systems that operate at

24



sub-3 GHz frequencies and have a limited number of antennas, mmWave sys-

tems can accommodate a larger number of antennas in the transceivers due

to the smaller wavelength of the mmWave spectrum. Large antenna arrays

in mmWave systems can enable the use of directional beamforming, which is

crucial in achieving high beamforming gain. This is necessary to overcome the

significant free-space pathloss of mmWave signals and achieve an adequate

strength of received signal-to-noise ratio (SNR).

1.1.4 Low-Resolution Data Converters

Increasing the number of antenna chains results in the increased num-

ber of RF chains, thereby locating a plethora of analog-to-digital converters

(ADCs) and digital-to-analog converters (DACs). ADCs and DACs are the

power-hungry component in the transceiver. Since the power consumption of

an RF chain exponentially increases with the number of quantization bits b,

i.e., P ∝ 2b [94], replacing high-resolution data converters with low-resolution

data converters (typically 1-4 bits) can significantly reduce power consump-

tion. The general illustration of low-resolution systems is shown in Fig. 1.1.

However, the reduction in resolution results in non-negligible and non-linear

quantization error which degrades the overall performance and makes it diffi-

cult to directly apply existing methods. It is unavoidable to experience per-

formance degradation when using coarse quantization; however, lots of recent

efforts show that the loss can be reduced by carefully analyzing and designing

low-resolution systems.
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Figure 1.1: A receiver with low-resolution analog-to-digital converter and/or
digital-to-analog converter.

In order to properly handle the severe nonlinearities in low-resolution

ADCs, many studies have re-engineered essential wireless communication func-

tions such as channel estimation and data detection [17, 22, 39, 89, 97, 98]. For

downlink transmission, a number of works have reduced hardware cost using

low-resolution DACs [38, 51, 71].

1.1.5 Hybrid Analog-Digital Beamforming Architecture

In conventional MIMO communication systems, each antenna element

is connected to its dedicated RF chain which owns two power-hungry data

converters. This architecture is called an all-digital beamforming architecture,

which is highly flexible but also expensive and power-intensive. Therefore,

the power consumption generally scales with the number of antennas at a BS.

Because of the problem caused by having too many RF chains, the notion of

hybrid analog-digital beamforming architecture (HB) appears. As shown in

Fig. 1.2, the HB aims to cut down the number of RF chains by separating the
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Figure 1.2: A receiver with hybrid analog-digital beamforming architecture.

combining process into two parts: analog beamforming and digital beamform-

ing. To produce high beamforming gain and immunize against large free-space

pathloss, the analog beamformer manipulates directional propagation paths

via the array of phase shifters. Afterward, the digital beamformer carries out

multi-stream baseband processing on the low-dimensional input produced by

the analog beamformer. The analog beamformer is newly introduced con-

sidering the propagation characteristics of mmWave systems; however, the

analog beamformer introduces non-convex behavior due to the unit-modulus

constraint of the phase shifters. Therefore, beamforming-related signal pro-

cessing functions need to be revised for the HB systems.

1.1.6 Machine Learning

Machine learning is a method of data analysis that automates analytical

model building by enabling machines to learn and estimate complex functions

on specific tasks, without requiring explicit one-on-one programming. Machine
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learning algorithms aim to build a black box using sampled data points, to

make decisions or predictions of new observations. Although machine learning

is related to computational statistics, mathematical optimization also plays a

vital role in this field. The learner splits all available data points into three

disjoint groups, which are the training dataset, validation dataset, and test

dataset. The training dataset is the collection of data points which are di-

rectly used to fit the model. The validation dataset is the sample of data to

be utilized to offer an assessment of the trained model while tuning model

hyperparameters and modifying model complexity. The test dataset is private

during the training stage to provide a final evaluation of the trained model.

There exist three types of machine learning strategies: 1) supervised learning,

2) unsupervised learning, and 3) reinforcement learning.

Supervised learning can be applied to problems where labeled data, i.e.,

ground truth, is included in the training data set along with feature vectors.

The primary objective of supervised learning algorithms is to learn a function

that can successfully infer an estimated label using a given feature vector. A

supervised classification problem aims to predict the probability or likelihood

that the test data belongs to one of the predefined discrete categories. In

contrast, a supervised regression problem tries to plot a best-fit curve of the

training data set and to predict the continuous outcome of feature vectors.

Typically, the learning stage of supervised learning is minimizing or optimizing

a loss function where binary cross-entropy and mean-squared error are used

for the classification problem and the regression problem, respectively.
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Unsupervised learning is a type of data-driven problem that involves ex-

amining unlabeled datasets and identifying hidden patterns or clusters without

the involvement of human intervention. The primary feature that sets unsu-

pervised learning apart is the absence of ground truth. For example, clustering

and autoencoder fall under this category. Clustering refers to the task of orga-

nizing a set of similar data points into the same cluster. Autoencoder aims to

encode high-dimensional unlabeled data into a low-dimensional latent space

and use the compressed feature to decode the original data. This framework

needs to make sure that the encoded latent representation is rich enough to

minimize reconstruction error.

Last but not least, reinforcement learning (RL) is a machine learning

technique that facilitates an agent’s learning in an interactive environment by

utilizing trial and error and feedback derived from its own actions and experi-

ences. The objective is to develop an effective action model that maximizes the

agent’s total cumulative reward. The agent-environment feedback loop of a

generic RL model is illustrated in Fig. 1.3. Since the RL approach learns from

experiences and mistakes, it is crucial to strike a balance between exploitation

and exploration.

1.2 Motivation

There exist two potential low-power architectures: 1) low-resolution

data converters and 2) HB architecture. The implementation of wireless com-

munication systems using low-power architectures necessitates modifications
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Figure 1.3: An agent-environment feedback loop of a generic reinforcement
learning.

to core signal processing operations. The low-power structures naturally in-

troduce severe impairments to the system due to the coarse quantization and

the analog beamformer of the HB. However, it is unclear whether the previous

findings in prior research are still applicable in low-resolution ADC and DAC

systems or the HB due to these impairments. Therefore, I take into account

those negative impacts for the thorough investigation of key communication

functions such as beamformer, power control, and data detection when con-

sidering either low-resolution data converters or the HB.

1.3 Dissertation Summary

In summary, I have made a commitment to the development of ad-

vanced power-efficient and intelligent solutions for beamforming and detec-

tion, which in turn minimize power consumption, enable near-optimal error

probability, and guarantee signal strength requirements.
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1.3.1 Thesis Statement

In this dissertation, I define the following statement:

Advanced power-efficient and intelligent communication techniques have

the ability to satisfy challenging requirements and improve key performance in-

dicators despite the presence of severe distortion and non-linearity caused by

low-power architectures.

1.3.2 Overview of Contributions

The main contributions of this dissertation are summarized as follows:

• Chapter 2: Coordinated Beamforming and Power Control for

Low-Resolution Systems: Total Power Minimization

1. I propose an optimal coordinated multipoint (CoMP) beamform-

ing algorithm for the wireless communication systems equipped

with low-resolution ADCs or DACs to achieve the desired signal-to-

quantization-and-interference-plus-noise ratio (SQINR) with mini-

mum total transmit power.

2. I formulate total power minimization problems for both uplink

(UL) and downlink (DL) systems, while taking into account non-

negligible quantization noise and interference, subject to SQINR

constraints. I derive strong duality between the UL and DL prob-

lems, with coarse quantization systems being taken into considera-

tion.
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3. I propose a framework that aims to determine the optimal UL

transmit power and DL precoder using the aforementioned duality.

Moreover, I extend the results obtained to wideband orthogonal

frequency-division multiplexing (OFDM) systems.

4. I derive a deterministic solution for the UL CoMP problem by ana-

lyzing the lower bound of the SQINR under homogeneous transmit

power and SQINR constraints per cell.

• Chapter 3: Coordinated Per-Antenna Maximum Power Mini-

mization for Low-Resolution Systems

1. I propose a multicell-coordinated beamforming solution for the max-

imum power minimization problem with per-antenna power con-

straints to place less burden on power amplifiers and other elec-

tronics.

2. I formulate the quantized DL OFDM antenna power minimax prob-

lem with per-antenna constraints and deriving its associated dual

problem which is interpreted as a virtual UL OFDM problem pow-

ered by unknown yet tunable covatiance matrices. I manipulate the

constraints to show that strong duality holds between the aforemen-

tioned DL and UL problems.

3. I develop an iterative minimax algorithm to identify a feasible so-

lution for the dual problem. This particular problem involves the
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joint optimization of virtual UL transmit power and noise covari-

ance matrices To tackle this issue, I begin by determining the op-

timal dual solution of the UL problem for given noise covariance

matrices. I then utilize the solution to compute the associated DL

beamformer. Finally, the UL noise covariance matrices are updated

using subgradient projection based on the DL beamformer.

• Chapter 4: Learning-Based Maximum Likelihood Detection

with One-Bit ADCs

1. I propose a learning-based maximum likelihood detection frame-

work for the uplink systems with one-bit ADCs to complete the

learning stage within acceptable training length.

2. To facilitate the acquisition of the small probabilities that appear

at the high SNR regime, I propose a dither-and-learning technique

that adds a dithering signal with known statistics to artificially

decrease the SNR and removes the impact of the artificial noise

from the inferred likelihood functions.

3. I propose how to adjust the dithering power according to the ob-

served patterns of the quantized and dithered signals. I compute

a bit-wise and user-wise log-likelihood ratio from the refined likeli-

hood probabilities to enable state-of-the-art channel coding schemes.

• Chapter 5: Joint Hybrid Beamforming and Power Control Us-

ing Deep Reinforcement Learning:
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1. I propose a DRL-based solution for joint hybrid beamforming and

power control problems when multiple massive MIMO BSs with

hybrid beamforming architecture are communicating with multiple

users in the uplink mmWave band.

2. I formulate the main problem that jointly design the HB at each

BS and transmit power control of the associated users in a way

that the total power is minimized while ensuring that the signal-to-

interference-plus-noise ratio constraints are satisfied.

3. I utilize the DDPG RL algorithm to address the combination of

discrete and continuous inputs. This algorithm produces an appro-

priate action that corresponds to the design factors. Specifically, I

aim to exert individual control over each phase shifter by introduc-

ing an intermediate vector and employing a differentiable argmax

function to estimate the phase angle index.

1.4 Notation and Abbreviations

1.4.1 Notation

A denotes a matrix and a represents a column vector. AH and AT

denote conjugate transpose and transpose, respectively. [A]i and ai indicate

the ith column vector of A. [A]i,: and indicates the ith row vector of A.

I denote ai,j as the {i, j}th element of A and ai as the ith element of a.

With mean µ and variance σ2, a real Gaussian distribution and a complex

Gaussian distribution usingN(µ, σ2) and CN(µ, σ2) are generated, respectively.
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The diagonal matrix diag(A) has {ai,i} as its diagonal entries, and diag(a)

or diag(aT) creates a diagonal matrix with {ai} as its diagonal entries. A

block diagonal matrix is denoted as blkdiag(A1, . . . ,AN). A block circulant

matrix is denoted as blkcirc(A1, . . . ,AN) with a first block-row of A1, . . . ,AN .

eigM(A) and eigm(A) denote the maximum and minimum eigenvalues of A,

respectively. The vectorization operation of a matrix A with n columns is

defined as vec(A) =
[
[A]T1 , . . . , [A]Tn

]T
. 1N and 0N are a N × 1 one vector

and zero vector, respectively. IN denotes the N ×N identify matrix. Re{A}

and Im{A} take the real and imaginary part of A, respectively. 1{A} denotes

the indicator function which outputs 1 if A is true, and 0 otherwise. ⊗ is

used to denote Kronecker product operator. ∥A∥ represents L2 norm. Matrix

inequality is denoted by ⪯. P[·] and E[·] are the probability and expectation

operators, respectively.

1.4.2 Abbreviations

5G fifth-generation

ADC analog-to-digital converter

ADL adaptive dither-and-learning

AoA angle of arrival

APP a posteriori probability

AQNM additive quantization noise model
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AWGN additive white Gaussian noise

BER bit error rate

BS base station

CDF cumulative density function

CoMP coordinated multipoint

CP cyclic prefix

CSI channel state information

DAC digital-to-analog converter

DDPG deep deterministic policy gradient

DFT discrete Fourier transformation

DL downlink

DNN deep neural network

DRL deep reinforcement learning

FER frame error rate

GoB grid-of-beams

KKT Karush-Kuhn-Tucker

LLR log-likelihood ratio
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LS least-square

MCD minimum-center-distance

MIMO multiple-input-multiple-output

ML maximum-likelihood

MMSE minimum mean-squared-error

mmWave millimeter wave

NGoB none-grid-of-beams

OFDM orthogonal frequency division multiplexing

OSS one-bit successive cancellation soft-output

PAPR peak-to-average power ratio

QAM quadrature-amplitude-modulation

Q-CoMP quantization-aware CoMP

Q-CoMP-PA quantized CoMP under per-antenna power constraints

Q-dCoMP quantization-aware deterministic CoMP

Q-iCoMP quantization-aware iterative CoMP

Q-Percell quantization-aware per-cell

RF radio frequency
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RL reinforcement learning

SER symbol error rate

SNR signal-to-noise ratio

SOCP second-order cone program

SQINR signal-to-quantization-and-interference-plus-noise ratio

TDD time-division duplexing

UL uplink

ULA uniform linear array

ZF zero-forcing
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Chapter 2

Coordinated Beamforming and Power Control

for Low-Resolution Systems: Total Power

Minimization

In this chapter1, I investigate a coordinated multipoint (CoMP) beam-

forming and power control problem for BSs with a massive number of antenna

arrays under coarse quantization at low-resolution analog-to-digital convert-

ers (ADCs) and digital-to-analog converters (DACs). Unlike high-resolution

ADC and DAC systems, non-negligible quantization noise that needs to be

considered in CoMP design makes the problem more challenging. I first for-

mulate total power minimization problems of both uplink (UL) and downlink

(DL) systems subject to signal-to-quantization-and-interference-plus-noise ra-

tio (SQINR) constraints considering non-negligible quantization noise and in-

terference. I then derive strong duality for the UL and DL problems under

coarse quantization systems. Leveraging the duality, I propose a framework

1This chapter is based on the work published in the following journal paper: J. Choi,
Y. Cho, and B. L. Evans, “Quantized Massive MIMO Systems With Multicell Coordinated
Beamforming and Power Control,” in IEEE Transactions on Communications, vol. 69, no.
2, pp.946-961, Dec. 2020. This work was published in part in the following conference
paper: Y. Cho, J. Choi, and B. L. Evans, “Coordinated Multicell Beamforming and Power
Allocation for Massive MIMO with Low-Resolution ADC/DAC,” in IEEE International
Conference on Communications (ICC), Jun. 14-23, 2021. This work was supervised by
Prof. Brian L. Evans.
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that is directed toward finding the optimal UL transmit power and the op-

timal DL precoder. I also extend the derived result to wideband orthogo-

nal frequency-division multiplexing systems to optimize transmit power and

beamformer for all subcarriers. Under homogeneous transmit power and SINR

constraints per cell, I further derive a deterministic solution for the UL CoMP

problem by analyzing the lower bound of the SQINR.

2.1 Introduction

Employing large-scale antenna arrays at the BS has been widely studied

in last decades as a potential future wireless communication technology be-

cause of its significant gain in spectral efficiency [56]. Due to the large number

of antennas followed by power-demanding high-resolution ADCs and DACs,

however, significant power consumption becomes one of the primary practi-

cal challenges in realizing the system. Accordingly, employing low-resolution

quantizers has attracted the most interest as a low-power solution in recent

years [22, 38, 48, 89]. In multicell systems, non-negligible quantization error

due to the low-resolution quantizers is a function of not only the in-cell chan-

nels and beamformers but also the inter-cell channels and beamformers. In

this regard, I investigate CoMP beamforming and power control problems in

low-resolution massive multiple-input and multiple-output (MIMO) systems

to take into account the effect of the quantization error to the beamformer

design and power control in the multicell communications.
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2.1.1 Prior Work

As modern cellular systems operate on the interference-limited regime,

the coordination between base stations (BSs) or users has shown large gain

in communication performance [8, 23, 36, 44, 65, 80, 85, 87, 88]. Due to the dif-

ficulty in designing DL BF, the DL beamforming was derived by exploiting a

virtual UL concept based on the duality between UL single-input and multiple-

output and DL multiple-input and single-output systems. In [8], relaxing and

casting the DL beamforming problem into a semidefinite optimization prob-

lem, a DL beamforming solution was efficiently computed by using interior

point methods. In addition to the semidefinite relaxation optimization for

the beamforming design, BS allocation and congestion control were further

investigated in [88], providing substantial increase in the system performance.

Assuming interference only from adjacent cells, a Kalman smoothing based

beamforming method was developed by recasting the DL beamforming prob-

lem to a virtual minimum mean-squared error (MMSE) estimation problem to

design network-wide MMSE beamforming without requiring a central process-

ing unit [65]. Linear programming-based network duality for MIMO UL and

DL with a single layer was leveraged in [87] to develop more efficient beam-

forming algorithms both in convergence and performance. Lagrangian based

duality for multiuser MIMO systems was further derived in [23] and used to

propose an distributed algorithm, requiring less synchronization and complex-

ity burden on users and BSs. Practical constraints such as limited backhaul

capacity was considered in [80], and a CoMP beamforming system was imple-
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mented in a real field testbed in [36], showing its benefits in spectral efficiency

especially for cell edge users. Improving the data rates of cell-edge users, a

CoMP beamforming problem based on interference alignment was also stud-

ied in a non-orthogonal multiple access system [85]. Recently, understanding

the benefit of employing a large antenna arrays at the BS, the performance

gain from using massive antenna arrays jointly with CoMP beamforming was

demonstrated by providing a more robust link and more localized interfer-

ence [44]. The authors in [81] proposed the efficient and reliable multiplexing

scheme in case of multi-user connectivity. Although prior findings in MIMO

CoMP systems can be naturally extended to massive MIMO systems with

high-resolution ADCs and DACs, employing low-resolution ADCs and DACs

further needs to be considered to address the excessive power consumption

problem.

Problems of minimizing transmit power for given quality of service con-

straints were often investigated [37, 76, 77]. In case of single MIMO systems,

the authors in [37] presented the generic class of optimization problems that

can embrace many wireless communication problems subject to power con-

straints. In [77], a multicell CoMP UL beamforming and power control method

was developed by utilizing a fixed point iteration method. In addition, a mul-

ticell CoMP DL beamforming and power control method was further proposed

in [76].

To achieve power-efficient communications, low-resolution ADC archi-

tectures have been extensively investigated in recent years [17–19, 22, 39, 41,
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52, 69, 89, 97, 98, 104, 110]. As an effort to realize low-resolution ADC systems,

essential wireless communication techniques such as channel estimation and

detection have been developed in low-resolution ADC systems [17, 22, 39, 41,

52, 89, 97, 98]. Unified frameworks for channel estimation and symbol detection

were developed for 1-bit ADC systems by using 1-bit maximum likelihood esti-

mation [22]. Quantized maximum a-posteriori channel estimation and data de-

tection were also developed by showing that 4-bit ADCs yield no performance

loss from infinite-resolution ADCs [89]. For orthogonal frequency-division mul-

tiplexing (OFDM) systems, a generalized turbo estimator was utilized for chan-

nel estimation and symbol detection with over-the-air experiments, showing

reasonable reliability when using low-resolution ADCs [97, 98]. In [17, 41],

learning-based detectors were proposed without requiring explicit channel es-

timation. As a special low-resolution ADC system, a detector for mixed-ADC

systems was proposed in [110]. In addition, a resolution-adaptive ADC system

was proposed with near optimal bit-allocation solutions [18]. For tractability,

linear quantization models such as Bussgang decomposition [39, 52] and an

additive quantization noise model (AQNM) [19, 69, 104] were utilized by pro-

viding insightful analytical results.

Low-resolution DAC systems have also been studied in many litera-

tures [38, 48, 95]. Achievable rates with linear precoders were derived in low-

resolution DAC systems, and a nonlinear precoder was developed for 1-bit DAC

systems, showing that using 3-4 bits offers comparable performance to infinite-

resolution DACs and that the proposed 1-bit precoder causes only 3 dB loss

43



from infinite-resolution DACs [38]. A universal precoding approach was fur-

ther developed in [95] by improving the performance and complexity trade-off

from [38]. The rate analysis in [51] showed that using 2.5× more antennas can

compensate for performance loss due to using 1-bit DACs. In addition, a con-

structive interference approach was adopted in [48] to develop a low-complexity

precoder for 1-bit DAC systems. For orthogonal frequency-division multi-

plexing (OFDM) systems, the rate and bit-error-rate (BER) analysis in [40]

demonstrated that using 3-4 bits can achieve the BER comparable to that of

infinite-resolution DAC systems. A mixed-DAC as well as mixed-ADC system

was also considered in [108] for relaying channels. Bussgang decomposition was

adopted in [38, 51, 103] to linearize the low-resolution DAC system to develop

precoder and analyze system performance. Interestingly, it was shown in [103]

that employing low-resolution DACs can offer more reliable secure communica-

tion depending on system configuration. The AQNM was also used in [24, 78].

In [78], numerical comparison among digital beamforming and hybrid analog

and digital beamforming with fully-connected and partially-connected phase

shifter networks was provided. In [24], using low-resolution ADCs and DACs

provided benefits in reducing power consumption while maintaining achievable

rate in full duplex systems.

The prior works on low-resolution ADCs and DACs disclose that using

low-resolution quantizers can significantly reduce the power consumption at

the BSs while maintaining desirable spectral efficiency. Given the benefit of

using low-resolution ADCs and DACs in the spectral efficiency and energy effi-
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ciency trade-off, it is indispensable to consider coarse quantization systems for

CoMP beamforming with massive antenna arrays. However, the non-negligible

quantization error that is a function of channels, beamformers and transmit

power makes the CoMP problem more challenging to solve. Due to the quan-

tization error, it is unknown whether previous findings in the prior works can

still be valid in the low-resolution ADC and DAC systems. Regarding the

OFDM system, the quantization effect involves the OFDM modulations as

well as beamforming and channels, which leads to highly complicated prob-

lems. Therefore, comprehensive study on CoMP for massive MIMO systems

with low-resolution ADCs and DACs is desirable.

2.1.2 Contributions

In this work, I investigate joint beamforming and power control prob-

lems in coordinated multicell networks with BSs equipped with a large number

of antenna arrays. I focus on coarse quantization systems where the BSs are

equipped with low-resolution ADCs and DACs to achieve energy-efficient com-

munications. Accordingly, the non-negligible quantization error which involves

various system functions needs to be properly manipulated. For tractability,

I adopt the AQNM for modeling the quantization system. The contributions

are summarized as follows:

• First of all, I formulate the minimum total transmit power problem sub-

ject to individual SQINR constraints for both DL and UL. Then I prove

the duality between the DL and UL problems under the coarse quanti-
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zation systems by showing that the Lagrangian dual problem of the DL

problem is equivalent to the UL problem with MMSE combiners. I fur-

ther demonstrate that there is no duality gap, i.e., strong duality holds,

by casting the DL problem into a standard second order conic problem

and by showing strict feasibility with respect to the beamformer.

• Leveraging the strong duality, I propose a fixed point iterative algorithm

to jointly solve the DL and UL problems. Using the properties of a

standard function, I show that the algorithm converges to a unique op-

timal set of transmit powers for the UL problem. I further show that

the optimal DL beamformers can be obtained by scaling the UL MMSE

combiner that includes the optimal transmit powers. I also remark that

the proposed algorithm can be implemented in a distributed manner

with in-cell channel knowledge and without requiring explicit estimation

of inter-cell channels.

• Assuming homogeneous transmit powers and SQINR constraints per cell,

a deterministic algorithm is developed to provide a closed-form solution

for the UL beamforming and power control problem. To this end, I

consider an MMSE equalizer and derive a lower bound of the minimum

SQINR for each cell. Then the solution is derived as a linear function of

the SQINR constraints and maximum eigenvalues of matrices that are

composed of channels.

• I extend the CoMP beamforming and power control problem to a wide-
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band OFDM system. I first derive DL and UL system models by in-

corporating the coarse quantization effect into the OFDM modulation.

Then I formulate the minimum total transmit power problems for UL

and DL to find the optimal beamformer and transmit power for each user

and subcarrier subject to the SQINR constraints for each user and sub-

carrier. Manipulating the quantization error that is intertwined with not

only the channels, beamformers, and transmit power but also the OFDM

modulation, I show that the strong duality also holds for the wideband

OFDM systems and the similar results as the narrowband system can

be applied.

• Simulation results validate the derived theoretical results and demon-

strate that the proposed iterative CoMP algorithm achieves the target

SQINR. The algorithm also outperforms a conventional per-cell method

in terms of accuracy and minimizing total transmit power.

2.2 System Model

I consider a multicell multiuser-MIMO network with Nc cells, Nu single-

antenna users per cell. Users are served by an associated BS with Nb antennas

(Nb ≫ Nu), i.e., users in cell i are served by a BS in cell i. I assume that

the BSs for all Nc cells are equipped with low-resolution ADCs and DACs

with equal bits, i.e., b-bit ADCs and DACs for all BSs and all BSs cooperate

as shown in Fig. 2.1. Time-division duplexing (TDD) is considered in the

system.
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Figure 2.1: Multicell multiuser-MIMO network which is incorporated with
low-resolution ADCs and DACs at the BS.

2.2.1 Uplink Narrowband System

Each user u in cell i transmits signal xuli,u =
√
λi,us

ul
i,u over a narrowband

channel, where λi,u and s
ul
i,u are transmit power and a symbol, respectively. The

narrowband channel vector between user u in cell j and the BS in cell i (BSi)

is represented as hi,j,u ∈ CNb . Then, the received baseband analog signal at

BSi is expressed as

ruli = Hi,ix
ul
i +

Nc∑
j ̸=i

Hi,jx
ul
j + nul

i

= Hi,iΛΛΛ
1/2
i suli +

Nc∑
j ̸=i

Hi,jΛΛΛ
1/2
j sulj + nul

i (2.1)

where Hi,j ∈ CNb×Nu is the channel matrix between BSi and users in cell j

whose uth column is hi,j,u, x
ul
i ∈ CNu and suli ∈ CNu are the transmit signal

and symbol vectors of the Nu users in cell i, whose uth entries are xuli,u and suli,u,

respectively, ΛΛΛi = diag(λi,1, . . . , λi,Nu) is the the transmit power matrix of the

users in cell i, and nul
i ∈ CNb is the additive white Gaussian noise (AWGN)
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vector at BSi. Throughout this chapter, I consider a normalized variance for

AWGN without loss of generality, i.e, nul
i ∼ CN(0, INb

). I further consider that

suli has a zero mean and unit variance. I can rewrite the analog received signal

(2.1) in a more compact expression as

ri = HiΛΛΛ
1/2sul + nul

i

where Hi = [Hi,1, . . . ,Hi,Nc ] ∈ CNb×NcNu , sul = [(sul1 )
T , . . . , (sulNc

)T ]T ∈ CNcNu ,

and ΛΛΛ = blkdiag(ΛΛΛ1, . . . ,ΛΛΛNc) ∈ CNcNu×NcNu .

I consider that each ADC has b quantization bits. I adopt the AQNM [29,

69] to obtain a linearized approximation of the quantization process derived

from assuming a scalar MMSE quantizer. Under the AQNM, the quantized

signal vector can be given as [29]

Q(ri) ≈ rq,i

= αHi,iΛΛΛ
1/2
i suli +α

Nc∑
j ̸=i

Hi,jΛΛΛ
1/2
j sulj +αn

ul
i + qul

i (2.2)

where Q(·) is an element-wise quantizer applied to the real and imaginary

parts. The quantization gain α is a function of the number of ADC bits and

defined as α = 1 − β, where β = E[|r−rq|2]
E[|r|2] [28, 29]. Assuming that suli is

Gaussian distributed, i.e., suli ∼ CN(0, INu),∀i, the values of β are listed in

Table 2.1 for b ≤ 5, and β is approximated as β ≈ π
√
3

2
2−2b for b > 5 [31]. The

quantization noise qul
i is uncorrelated with ri [29] and considered to follow the

complex Gaussian distribution with a zero mean and covariance of [29, 69]

Cqul
i qul

i
= α(1− α) diag

(
HiΛΛΛH

H
i + INb

)
. (2.3)
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Table 2.1: Quantization Gain α For ADC Quantization Bits b ≤ 5

b 1 2 3 4 5
β 0.3634 0.1175 0.03454 0.009497 0.002499

Once the received signals are quantized, they are combined with Fi at

BSi. Then I have

yul
i = FH

i rq,i

=αFH
i Hi,iΛΛΛ

1
2
i s

ul
i +α

Nc∑
j ̸=i

FH
i Hi,jΛΛΛ

1
2
j s

ul
j +αF

H
i n

ul
i +FH

i q
ul
i .

Accordingly, the quantized and combined received signal for user u in cell i is

given as

yuli,u = α
√
λi,uf

H
i,uhi,i,us

ul
i,u + α

Nu∑
v ̸=u

√
λi,vf

H
i,uhi,i,vs

ul
i,v

+ α

Nc,Nu∑
j ̸=i
v

√
λj,vf

H
i,uhi,j,vs

ul
j,v+αf

H
i,un

ul
i +fHi,uq

ul
i

= α
√
λi,uf

H
i,uhi,i,us

ul
i,u + α

(Nc,Nu)∑
(j,v)̸=(i,u)

√
λj,vf

H
i,uhi,j,vs

ul
j,v

+ αfHi,un
ul
i + fHi,uq

ul
i

where fi,u is the uth column of Fi.

2.2.2 Downlink Narrowband System

Similarly to the UL quantized signals, the transmit signal vector quan-

tized at low-resolution DACs of BSi with a precoder Wi ∈ CNb×Nu is expressed
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as [24, 78, 108]

xdl
i = αWis

dl
i + qdl

i ∈ CNb ,

where sdli ∼ CN(0, INu) denotes the transmit symbol vector for the Nu users

in cell i, and qdl
i ∈ CNb is a quantization noise vector with a covariance [24]

Cqdl
i qdl

i
= α(1− α)diag(WiW

H
i ). (2.4)

The same assumptions are made for the quantization as the UL system and

α is also identical to the one in the UL system with the equal quantization

resolution as the ADCs. Under TDD, the channel vector between BSj and

user u in cell i is hH
j,i,u. The received signal at user u is

ydli,u =αhH
i,i,uwi,us

dl
i,u+α

(Nc,Nu)∑
(j,v)̸=(i,u)

hH
j,i,vwj,vs

dl
j,v+

Nc∑
j=1

hH
j,i,uq

dl
j +n

dl
i,u

where wi,u is the uth column of Wi and ndl
i,u is the AWGN distributed as

ndl
i,u ∼ CN(0, 1).

2.3 Uplink and Downlink Joint Beamforming and Power
Control

In this section, I formulate transmit power minimization problems for

the UL and DL systems subject to SQINR constraints and propose algorithms

that solve the problems. Throughout this dissertation, Pa b denotes the bth

problem defined in Chapter a. First, the UL problem is formulated to minimize

the transmit power of the users in Nc cells with an individual user SQINR
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constraint as

P2 1 : min
fi,u,λi,u

Nc,Nu∑
i,u

λi,u s.t. max
fi,u

Γul
i,u ≥ γi,u, ∀ i, u (2.5)

where Γul
i,u is the UL SQINR of user u in cell i, which is computed as

Γul
i,u = (2.6)

α2λi,u|fHi,uhi,i,u|2

α2
∑(Nc,Nu)

(j,v)̸=(i,u) λj,v|fHi,uhi,j,v|2 + α2∥fi,u∥2 + fHi,uCqiqi
fi,u

.

Unlike the perfect quantization system (no quantization error), Γul
i,u has the

additional term associated with quantization error, fHi,uCqiqi
fi,u, which is a

function of the channel and the transmit power λi,u. In addition, it is also

involved with the combiner fi,u. Accordingly, the effect of coarse quantization

needs to be incorporated when solving P2 1.

Now the DL problem is formulated to minimize the transmit power of

the BSs in Nc cells with an individual user SQINR constraint as

P2 2 : min
wi,u

α

Nc,Nu∑
i,u

wH
i,uwi,u s.t. Γdl

i,u ≥ γi,u, ∀ i, u (2.7)

where

Γdl
i,u =

α2|wH
i,uhi,i,u|2

α2
∑(Nc,Nu)

(j,v)̸=(i,u) |wH
j,vhj,i,u|2 +

∑Nc

j=1 h
H
j,i,uCqdl

j qdl
j
hj,i,u + 1

. (2.8)

Note that α in the objective function is a fixed scalar which does not change

the solution of P2 2. The solution of P2 2 also needs to incorporate the effect

of the coarse quantization, i.e., quantization noise covariance Cqdl
j qdl

j
as it is a

function of Wj and involved with channels hj,i,u.
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2.3.1 Uplink and Downlink Duality

In this subsection, I extend the duality of the UL and DL power

minimization problems for infinite-resolution quantizer systems [23] to low-

resolution quantizer systems by incorporating the quantization error terms.

Exploiting the duality, I propose an iterative algorithm based on the fixed-

point iteration [105] and further prove optimality and convergence of the al-

gorithm.

Theorem 1 (Duality). The uplink transmit power minimization problem P2 1

in (2.5) is equivalent to a Lagrangian dual problem of the downlink transmit

minimization problem P2 2 in (2.7).

Proof. See Section 2.7.

This result generalizes the UL-DL beamforming duality derived in [23]

to any quantization resolution since the P2 1 and P2 2 become equivalent to

the UL and DL power minimization problem without quantization error, i.e.,

b→∞ (equivalently, α→ 1). To propose an algorithm which solves P2 1 and

P2 2, and to prove its optimality, I first show strong duality between P2 1 and

P2 2.

Corollary 1 (Strong duality). Strong duality holds for P2 2 and its Lagrangian

dual problem.

Proof. See Section 2.8.
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2.3.2 Distributed Iterative Algorithm

In this subsection, I characterize solutions by exploiting the strong du-

ality between P2 1 and P2 2, and develop an iterative algorithm that finds the

solutions for P2 1 and P2 2 simultaneously.

Corollary 2. The optimal transmit power for the uplink minimization problem

(2.5) is derived as

λi,u =
1

α
(
1 + 1

γi,u

)
hH
i,i,uK

−1
i (ΛΛΛ)hi,i,u

(2.9)

where Ki(ΛΛΛ) = INb
+ α

∑
j,v λj,vhi,j,vh

H
i,j,v + (1 − α)diag(HiΛΛΛH

H
i ) with the

MMSE receiver as

fi,u =
(
α2

∑
(j,v) ̸=(i,u)

λj,vhi,j,vh
H
i,j,v + αINb

+ α(1− α)diag(HiΛΛΛH
H
i )
)−1

hi,i,u.

(2.10)

Proof. See Section 2.9.

The solution in (2.9), however, is a function of all transmit powers

including itself. Hence the solution does not fully solve the problem; I develop

an algorithm to find an optimal set of transmit power by utilizing the solution.

Once I find the optimal transmit power, I can compute the MMSE combiner

Fi based on the transmit power. In addition, I show the linear relationship

between the optimal UL MMSE combiner and the optimal DL precoder.

Corollary 3 (DL precoder). With the scaling factor, an optimal downlink

precoder can be linearly proportional to the uplink MMSE receiver, i.e., wi,u =
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√
τi,ufi,u ∀i, u, and τi,u is derived as τ = Σ−11, where 1 is a NuNc × 1

column vector with entries of all ones, τ = [τ T
1 , τ

T
2 , · · · , τ T

Nc
]T with τ T

i =

[τi,1, τi,2, · · · , τi,Nu ]
T , and

Σ =


Σ1,1 Σ1,2 · · · Σ1,Nc

Σ2,1 Σ2,2 · · · Σ2,Nc

...
...

. . .
...

ΣNc,1 ΣNc,2 · · · ΣNc,Nc

 . (2.11)

Each element of Σi,j ∈ RNu×Nu is defined as (2.12)

[Σi,j]u,v =


α2

γi,u
|fHi,uhi,i,u|2 − α(1− α)fHi,udiag(hi,i,uh

H
i,i,u)fi,u

if i = j and u = v,

−α2|fHj,vhj,i,u|2 − α(1− α)fHj,vdiag(hj,i,uh
H
j,i,u)fj,v

otherwise.

(2.12)

Proof. See Section 2.10.

Now, I use an iterative standard power control algorithm [23, 102, 105]

to find the optimal UL transmit power by exploiting (2.9), which allows us to

compute the optimal UL MMSE combiner and DL precoder; let λ
(n)
i,u be the

UL transmit power at nth iteration. The algorithm is as follows:

Step 1. Initialize λ
(0)
i,u , ∀i, u.

Step 2. Iteratively update the transmit power λ
(n+1)
i,u until converges, using

(2.9) as

λ
(n+1)
i,u =

1

α
(
1+ 1

γi,u

)
hH
i,i,uK

−1
i (ΛΛΛ(n))hi,i,u

, ∀i, u. (2.13)
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Step 3. Find the UL MMSE combiner fi,u in (2.10) with λi,u obtained from

the Step 1 and 2.

Step 4. Compute the DL precoder wi,u based on Corollary 3.

As remarked in [23], Ki may be estimated locally at each BSi, the fixed-

point iteration in Step 2 for the optimal UL transmit power only requires

the user channel information in the associated cell at the BS without the

need for the explicit out-of-cell channel knowledge. In addition, the scaling

coefficient τi,u for each user can be considered as a DL transmit power on

the effective channel that achieves the target SQINR. According to [30], the

transmit power (equivalently, τi,u) can be obtained using a per-user power

update algorithm, whose convergence is guaranteed [105]; each step of the

algorithm computes τi,u that satisfies its target SQINR while assuming other

τi′,u′ ’s are fixed. Therefore, the proposed algorithm can be implemented in a

distributed manner.

Corollary 4 (Convergence). For any initial points λ
(0)
i,u , ∀i, u, the proposed

fixed-point iterative algorithm converges to a unique fixed point at which total

transmit power is minimized.

Proof. See Section 2.11.

Therefore, the fixed-point iteration in Step 2 always converges to an

unique fixed point that is the optimal transmit power, and the optimal solu-

tions for P2 1 and P2 2 can be obtained.
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2.3.3 Deterministic Solution for Homogeneous Transmit Power and
SQINR Constraint per Cell

In this subsection, I derive a deterministic transmit power solution for a

special case in which transmit powers and SQINR constraints are homogeneous

within each cell for UL, i.e., λi,u = λi and γi,u = γi, ∀u. I solve this problem by

forcing the minimum SQINR to satisfy the SQINR constraint; minu Γi,u ≥ γi,

∀i, u, and by relaxing the problem with the lower bound of the minimum

SQINR. With the MMSE equalizer Fi, the matrix of MSE for UL in cell i

becomes

Emmse
i =

(
α2λiH

H
i,i

(
α2

Nc∑
j ̸=i

λjHi,jH
H
i,j + α2INb

+Cqul
i qul

i

)−1

Hi,i + INu

)−1

.

(2.14)

Consequently, the SQINR of user u in cell i can be expressed as Γi,u =

1/[Emmse
i ]u,u − 1. As shown in [11], the minimum SQINR in cell i is given

as

min
u

Γi,u =
1

maxu[Emmse
i ]u,u

− 1

≥ 1

eigM (Emmse
i )

− 1

=eigm

(
αλiH

H
i,i

(
α

Nc∑
j ̸=i

λjHi,jH
H
i,j+INb

+(1−α)diag(HiΛΛΛH
H
i )

)−1

Hi,i

)
.

(2.15)

LetH†
i,i = (HH

i,iHi,i)
−1HH

i,i, Ai,j = eigM

(
H†

i,iHi,jH
H
i,jH

†H
i,i

)
, Bi = eigM

((
HH

i,iHi,i

)−1
)
,

and Ci,j = eigM

(
H†

i,idiag(Hi,jH
H
i,j)H

†H
i,i

)
. Then (2.15) further becomes (2.16)

where (a) comes from Corollary 1 in [11], and (b) is from diag(HiΛΛΛH
H
i ) =∑

j λjdiag(Hi,jH
H
i,j) due to ΛΛΛi = λiINu , ∀i and Corollary 1 in [11].
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αλi

eigM

(
H†

i,i

(
α
∑

j ̸=i λjHi,jHH
i,j + INb

+ (1− α)diag(HiΛΛΛHH
i )
)
H†H

i,i

)
(a)

≥ αλi
den

(b)

≥ αλi
α
∑

j ̸=i λjAi,j +Bi + (1−α)
∑

j λjCi,j

, (2.16)

where den = α
∑
j ̸=i

λjeigM

(
H†

i,iHi,jH
H
i,jH

†H
i,i

)
+eigM

(
H†

i,iH
†H
i,i

)
+(1−α)eigM

(
H†

i,idiag(HiΛΛΛH
H
i )H

†H
i,i

)

By setting (2.16) equal to γi for all i, the following equation can be

established:

λλλ =
1

α
ΓΓΓ(ΩΩΩλλλ+ b)

where λλλ = [λ1, . . . , λNc ]
T , ΓΓΓ = diag(γ1, . . . , γNc), b = [B1, . . . , BNc ]

T , and the

(i, j)th element of ΩΩΩ is given as

ωi,j =

{
(1− α)Ci,i if i = j

αAi,j + (1− α)Ci,j otherwise.

Finally, the deterministic UL transmit power is derived as

λλλ =
1

α
(INc −

1

α
ΓΓΓΩΩΩ)−1ΓΓΓb. (2.17)

I note that the deterministic solution in (2.17) may have negative λi

when the target SQINRs become high, i.e., the problem may easily become
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infeasible since the deterministic approach has a reduced feasible set by as-

suming homogeneous transmit powers per cell and by solving the problem for

the SQINR lower bound. I briefly introduce a possible approach to manage

this issue. Since the communication often operates in the interference-limited

regime in the multicell system, changing the signs of all transmit powers only

causes a marginal change in the SQINR according to (2.6). In this regard,

if λi < 0, ∀i, I simply take the absolute value of λi as a solution. If there

exists λi < 0 only for a subset of the cells, I can set the largest λi to zero and

re-compute (2.17) until I have λi ≥ 0, ∀i, because the cell with the large λi

can be considered to have weak channels. As a result, some of the cells can

be assigned with zero transmit power. Then those cells can be scheduled in

different time or frequency resources.

2.4 Extension to Wideband OFDM Systems

In this section, I extend the total transmit power minimization problem

to wideband OFDM systems under coarse quantization at the BSs. I first need

to derive signal models for multicell OFDM systems by taking into account

quantization error coupled with OFDM modulations.

2.4.1 Uplink OFDM System with Low-resolution ADCs

Let suli (k) ∈ CNu denote the vector of symbols of Nu users in cell i at

subcarrier k, and let

uul
i (k) = ΛΛΛi(k)

1/2suli (k),
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where ΛΛΛi(k) = diag
(
λi,1(k), . . . , λi,Nu(k)

)
is the diagonal matrix of transmit

power. Let xi(k)
ul ∈ CNu be the vector of OFDM symbols of Nu users in cell i

at time k. The OFDM symbol vectors are stacked as xul
i = [xul

i (0)
T , . . . ,xul

i (K−

1)T ]T ∈ CKNu . Then xul
i can be represented as

xul
i = (WH

DFT ⊗ INu)u
ul
i = ΨΨΨH

Nu
ΛΛΛ

1/2
i suli

where suli = [suli (0)
T , . . . , suli (K − 1)T ]T , uul

i = [uul
i (0)

T , . . . ,uul
i (K − 1)T ]T ,

ΛΛΛi = blkdiag
(
ΛΛΛi(0), . . . ,ΛΛΛi(K− 1)

)
, ΨΨΨNu = (WDFT ⊗ INu), and WDFT is a

normalized discrete Fourier transform (DFT) matrix.

Let ruli (k) ∈ CNb be the received baseband analog signal at time k af-

ter cyclic prefix (CP) removal at BSi. Staking for K-symbol time as ruli =

[ruli (0)
T , . . . , ruli (K − 1)T ]T ∈ CKNb , the stacked received baseband analog sig-

nals at BSi is expressed as

ruli = Hi,ix
ul
i +

Nc∑
j ̸=i

Hi,jx
ul
j + nul

i

where Hi,j = blkcirc
(
Hi,j,0,0, . . . ,0,Hi,j,L−1, . . . ,Hi,j,1

)
∈ CKNb×KNu repre-

sents the block circulant channel matrix, Hi,j,ℓ denotes the time domain chan-

nel matrix between BSi and users in cell j for ℓth tap, L is the channel de-

lay spread, and nul
i is the stacked AWGN vector nul

i = [nul
i (0)

T , . . . ,nul
i (K −

1)T ]T ∼ CN(0, IKNb
).

The received signals are quantized and expressed under the AQNM as

Q(ruli ) ≈ rulq,i = αHi,ix
ul
i + α

Nc∑
j ̸=i

Hi,jx
ul
j + αnul

i + qul

i
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where qul
i
= [qul

i (0)
T , . . . ,qul

i (K−1)T ]T ∈ CKNb ∼ CN(0,Cqul
i
qul
i
) is the stacked

quantization noise vector for the received signal at BSi, whose covariance ma-

trix is [29]

Cqul
i
qul
i

(2.18)

= α(1− α)diag
( Nc∑

j=1

Hi,jΨΨΨ
H
Nu
ΛΛΛjΨΨΨNuHi,j + IKNb

)
.

Now the quantized signals go through DFT operation and become

yul

i
= (WDFT ⊗ INb

)ruli

= αΨΨΨNb
Hi,iΨΨΨ

H
Nu
ΛΛΛ

1/2
i suli + α

∑
j ̸=i

ΨΨΨNb
Hi,jΨΨΨ

H
Nu
ΛΛΛ

1/2
j sulj

+ΨΨΨNb
nul
i +ΨΨΨNb

qul

i

= αGi,iΛΛΛ
1/2
i suli + α

∑
j ̸=i

Gi,jΛΛΛ
1/2
j sulj + ñul

i + q̃ul

i

whereΨΨΨNb
= WDFT⊗INb

,Gi,j = ΨΨΨNb
Hi,jΨΨΨ

H
Nu

= blkdiag
(
Gi,j(0), · · · ,Gi,j(K−

1)
)
∈ CKNb×KNu where Gi,j(k) =

∑L−1
ℓ=0 Hi,j,ℓ e

− j2πkℓ
K is the frequency domain

UL channel matrix for subcarrier k between BSi and users in cell j, ñul
i =

[ñul
i (0)

T , . . . , ñul
i (K − 1)T ]T = ΨΨΨNb

nul
i , and q̃ul

i
= [q̃ul

i (0)
T , . . . , q̃ul

i (K − 1)T ]T =

ΨΨΨNb
qul
i
.

The received signal at subcarrier k is then given as

yul
i (k) =αGi,i(k)ΛΛΛi(k)s

ul
i (k) + α

Nc∑
j ̸=i

Gi,j(k)ΛΛΛj(k)s
ul
j (k)

+ αñul
i (k) + q̃ul

i (k) (2.19)
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Γul
i,u(k) = (2.20)

α2λi,u(k)|fHi,u(k)gi,i,u(k)|2

α2
∑Nc,Nu

(j,v) ̸=(i,u)λj,v(k)|fHi,u(k)gi,j,v(k)|2 + α2|fi,u(k)|2 + fHi,u(k)Cq̃ul
i (k)q̃ul

i (k)fi,u(k)
.

and yul
i (k) is combined with an equalizer Fi(k). The combined signal for user

u at subcarrier k is now given as

fHi,u(k)y
ul
i (k) = αλ

1/2
i,u (k)f

H
i,u(k)gi,i,u(k)s

ul
i,u(k)

+ α

Nc,Nu∑
(j,v)̸=(i,u)

λ
1/2
j,v (k)f

H
i,u(k)gi,j,v(k)s

ul
i,v(k)

+ αfHi,u(k)ñi(k) + fHi,u(k)q̃
ul
i (k),

where fHi,u(k) is the uth column of Fi(k) and gi,j,v(k) is the vth column of

Gi,j(k). I note that ñul
i ∼ CN(0, IKNb

). The SQINR for user u in cell i at

subcarrier k is computed accordingly as (2.20) which is on top of the next

page. Based on (2.18), Cq̃i(k)q̃i(k) is expressed as

Cq̃ul
i (k)q̃ul

i (k) = α(1− α)ΨΨΨNb
(k)

× diag
( Nc∑

j=1

Hi,jΨΨΨ
H
Nu
ΛΛΛjΨΨΨNuHi,j + IKNb

)
ΨΨΨH

Nb
(k) (2.21)

where ΨΨΨNb
(k) =

(
[WDFT]k+1,: ⊗ INb

)
. Finally, using (2.20), the UL OFDM

transmit power minimization problem is formulated as

P2 3 : min
fi,u(k),λi,u(k)

∑
i,u,k

λi,u(k) (2.22)

s.t. max
fi,u(k)

Γul
i,u(k) ≥ γi,u,k, ∀ i, u, k.
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In addition to all users in all cells, the maximization needs to be performed

for all subcarriers.

2.4.2 Downlink OFDM System with Low-resolution DACs

The DL OFDM system with low-resolution DACs can be modeled by

following similar steps as the UL OFDM system with low-resolution ADCs.

Accordingly, I briefly explain the system model by pointing out the key dif-

ferences such as precoding and DAC quantization, and definitions of symbols

are the same as the ones used in Sec. 2.4.1 unless mentioned otherwise. Simi-

larly to the UL OFDM system, the stacked OFDM symbol vector at BSi over

K-symbol time, xdl
i ∈ CKNb , is expressed as

xdl
i = (WH

DFT ⊗ INb
)udl

i = ΨΨΨH
Nb
Wis

dl
i

where the block diagonal precoding matrix isWi = blkdiag
(
Wi(0), . . . ,Wi(K−

1)
)
∈ CKNb×KNu . Before being transmitted, xdl

i is quantized at the low-

resolution DACs as [29, 108]

xdl
q,i = αxdl

i + qdl

i

where qdl
i
∼ CN(0,Cqdl

i
qdl
i
) is the stacked quantization noise vector at BSi and

its covariance matrix is computed as [29]

Cqdl
i
qdl
i
= α(1− α)diag

(
ΨΨΨH

Nb
WiW

H
i ΨΨΨNb

)
. (2.23)

After transmitting xdl
i , Nu users in cell i receive signals from all BSs.

Stacking over K subcarriers after CP removal and DFT, the received signals
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Γdl
i,u(k) =

α2|gH
i,i,u(k)wi,u(k)|2

den
(2.25)

den = α2

Nc,Nu∑
(j,v)̸=(i,u)

|gH
j,i,u(k)wj,v(k)|2

+ α(1− α)
Nc∑
j=1

gH

j,i,u
(k)ΨΨΨNb

diag
(
ΨΨΨH

Nb
WjW

H
j ΨΨΨNb

)
ΨΨΨH

Nb
g
j,i,u

(k)+1

(2.26)

at the users in cell i becomes

ydl

i
= αGH

i,iWis
dl
i +α

Nc∑
j ̸=i

GH
j,iWjs

dl
j +

Nc∑
j=1

GH
j,iΨΨΨNb

qdl

j
+ΨΨΨNun

dl
i

= αGH
i,iWis

dl
i + α

Nc∑
j ̸=i

GH
j,iWjs

dl
j + q̃dl

j
+ ñdl

i

where q̃dl

j
=
∑Nc

j=1G
H
j,iΨΨΨNb

qdl
j

and ñdl
i = ΨΨΨNun

dl
i . Recall that the UL block-

diagonal frequency domain channel matrix between BSi and users in cell i is

defined as Gj,i = blkdiag(Gj,i(0), · · · ,Gj,i(K−1)) ∈ CKNb×KNu . Accordingly,

the DL frequency domain channel matrix is its conjugate GH
j,i in the TDD

system. The received signal at user u in cell i for subcarrier k is given as

ydli,u(k) = αgH
i,i,u(k)wi,u(k)s

dl
i,u(k)

+ α

Nc,Nu∑
(j,v)̸=(i,u)

gH
j,i,u(k)wj,v(k)s

dl
j,v(k) + q̃dli,u(k) + ñdl

i,u(k). (2.24)

Based on (2.23) and (2.24), the DL SQINR for user u in cell i at sub-

carrier k is computed as (2.25) which is on the top of the next page, where
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g
j,i,u

(k) denotes the (kNu + u)th column of Gj,i, i.e., the entire column of Gj,i

that corresponds to the channel for kth subcarrier of user u. Using (2.25), the

DL OFDM transmit power minimization problem is formulated as

P2 4 : min
wi,u(k)

α
∑
i,u,k

wH
i,u(k)wi,u(k) (2.27)

s.t. Γdl
i,u(k) ≥ γi,u,k, ∀ i, u, k.

2.4.3 Joint Beamforming and Power Control for Wideband OFDM
Systems

Unlike the narrowband system, the quantization noise terms coupled

with not only beamformers and transmit power but also OFDM modulation

are the main challenge for showing the duality. In the following theorem, I

prove the duality by handling this issue.

Theorem 2 (Duality). The duality holds between P2 3 and P2 4.

Proof. See Section 2.12.

Corollary 5 (Strong duality). Strong duality holds for P2 4 and its Lagrangian

dual problem.

Proof. See Section 2.13.

Since I have shown that the duality between P2 3 and P2 4 exists without

duality gap, the optimal solutions can be characterized via the duality. Here

I briefly describe the overall procedures as they are similar to the narrowband
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case; solving Karush-Kuhn-Tucker (KKT) conditions, I can show that the UL

ODFM problem P2 3 can be solved by the distributed iterative algorithm that

is proposed in Sec. 2.3.2 with the following solution:

λi,u(k) =
1

α
(
1 + 1

γi,u,k

)
gH
i,i,u(k)K̄

−1
i,k (ΛΛΛ)gi,i,u(k)

. (2.28)

Note that (2.28) needs to be computed over not only users but also subcar-

riers at each BS. Now let λ
(n+1)
i,u = fi,u,k

(
ΛΛΛ(n)

)
. Then, as in the proof of

Corollary 11, the convergence of the iterative method can be proved by show-

ing that fi,u,k
(
ΛΛΛ(n)

)
is a standard function. Using the obtained optimal UL

transmit power λi,u(k) from the standard fixed-point iteration, the MMSE

equalizer Fi(k) for the received signal at each subcarrier yul
i (k) is computed

as Fi(k) = C−1
zi,u(k)zi,u(k)

gi,i,u(k) where C
−1
zi,u(k)zi,u(k)

is given in (2.47). Based on

Fi(k), I can also obtain the optimal precoder Wi(k) for P2 4 from appropriate

scaling of Fi(k) as shown in Corollary 6.

Corollary 6 (Precoder). With the proper scaling coefficient in wideband case,

an optimal DL precoder can be proportional to the uplink MMSE receiver, i.e.,

wi,u(k) =
√
τ i,u(k)fi,u(k) ∀i, u, k, and τ i,u is derived as τ = Σ−11, where 1

is a NuNcK × 1 column vector, τ = [τ T (0), · · · , τ T (K − 1)]T with τ (k) =

[τ T
1 (k), τ

T
2 (k), · · · , τ T

Nc
(k)]T and τ T

i (k) = [τ i,1(k), τ i,2(k), · · · , τ i,Nu
(k)]T , and

Σ = blkdiag(Σ(0), . . . ,Σ(K − 1)) whose submatrix is composed as

Σ(k) =


Σ1,1(k) Σ1,2(k) · · · Σ1,Nc

(k)
Σ2,1(k) Σ2,2(k) · · · Σ2,Nc

(k)
...

...
. . .

...
ΣNc,1(k) ΣNc,2(k) · · · ΣNc,Nc

(k)

 , (2.29)
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and

[Σi,j(k)]u,v =



α2

γi,u(k)
|gH

i,i,u(k)fi,u(k)|2− α(1−α)
∑

n f
H
i,u(n)ΨΨΨNb

(n)

×diag
(
ΨΨΨH

Nb
g
i,i,u

(k)gH
i,i,u

(k)ΨΨΨNb

)
ΨΨΨH

Nb
(n)fi,u(n)

if i = j, u = v,

−α2|gH
j,i,u(k)fj,v(k)|2− α(1−α)

∑
n f

H
j,v(n)ΨΨΨNb

(n)

×diag
(
ΨΨΨH

Nb
g
j,i,u

(k)gH
j,i,u

(k)ΨΨΨNb

)
ΨΨΨH

Nb
(n)fj,v(n)

otherwise.

(2.30)

Proof. See Section 2.14.

Therefore, since the strong duality also holds between the UL and DL

wideband OFDM systems with low-resolution ADCs and low-resolution DACs,

respectively, I have shown that P2 4 can also be solved by using the distributed

iterative algorithm as the narrowaband case.

2.5 Simulation Results

In this section, I validate the derived theoretical results and the pro-

posed quantization-aware iterative CoMP (Q-iCoMP) algorithm and deter-

ministic CoMP (Q-dCoMP) algorithm. I also simulate the quantization-aware

per-cell (Q-Percell) based iterative algorithm by adapting the per-cell algo-

rithm in [76] to low-resolution ADC systems based on the derived SQINR

with quantization noise in (2.6). For the Q-Percell algorithm, each BS first

finds its optimal solution based on the iterative algorithm in [76] by considering

the inter-cell interference as noise and assuming it to be fixed. Once the BSs

derive solutions for the given noise power, they update the noise power and
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Figure 2.2: CDFs of the SQINRs of users in all cells for γ = 0 dB target
SQINR, b = 3 quantization bits, and Nb = 64 BS antennas with (a) Nc = 2
cells with Nu = 4 users per cell and with (b) Nc = 7 cells with Nu = 4 users
per cell.

find solutions again. These steps are repeated until the solutions converge.

For simulations, I use networks with Nc ∈ {2, 3, 4, 7} hexagonal cells. As-

suming narrowband communications, I assume Rayleigh channels with a zero

mean and unit variance or small scale fading. For large scale fading, I adopt

the log-distance pathloss model in [27]. The distance between adjacent BSs is

2 km. The minimum distance between BSs and users is 100 m. Considering

a 2.4 GHz carrier frequency with 10 MHz bandwidth, I use 8.7 dB lognormal

shadowing variance and 5 dB noise figure. For simplicity, I assume that the

target SQINR γ is equal for all users.

Fig. 2.2 shows the cumulative density function (CDF) of the UL SQINR
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of all users for γ = 0 dB, b = 3, and Nb = 64 with (a) (Nc = 2, Nu = 4)

and (b) (Nc = 7, Nu = 4). The proposed Q-iCoMP algorithm shows a step

function-like CDF at 0 dB SQINR with the least total transmit power among

the evaluated algorithms for both (a) and (b). This verifies the performance

of the Q-iCoMP algorithm that provides an optimal solution for the UL and

DL problems. Although the Q-Percell algorithm shows similar CDF, about

4% of users cannot achieve the target SQINR and the total transmit power

becomes excessive. Accordingly, the Q-Percell algorithm is only feasible when

the numbers of cooperating BSs and associated users are small. Regarding the

deterministic approach, more than 85% of users meet the target SQINR for

(a). For (b), however, about 55% of users cannot achieve the target SQINR,

and most of them have zero transmit power. Although the Q-Percell algorithm

shows better performance in satisfying the target SQINR than the Q-dCoMP

algorithm, its total transmit power easily diverges when the network becomes

denser. Therefore, the Q-iCoMP algorithm provides the best performance and

the Q-dCoMP algorithm can be more practical than the Q-Percell algorithm

for dense networks.

Fig. 2.3 shows the UL total transmit power versus the target SQINRs

for Nb = 64, Nc = 2, Nu = 2, and b ∈ {2, 3,∞}. For the considered tar-

get SQINR range, the Q-iCoMP algorithm shows the minimum total transmit

power. The increment in the transmit power due to the increased quantization

error is also small. Despite that the Q-Percell algorithm also achieves similar

performance at the low to medium target SQINR, the transmit power of the
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Figure 2.3: UL total transmit power versus the target SQINR for Nb = 64 BS
antennas, Nc = 2 cells and Nu = 2 users per cell.

algorithm diverges in the medium to high target SQINR range. The Q-dCoMP

algorithm shows a larger gap between different quantization resolutions than

that in the iterative algorithms. I note that as the target SQINR increases, the

total transmit power curves of the Q-dCoMP algorithm show larger fluctua-

tion, and there are crossing points between different resolutions; as the target

SQINR increases, more BSs are likely to assign with zero transmit power to

reduce interference to the other cells, which happens more often with a less

number of quantization bits.

In Fig. 2.4, the UL network with Nc = 7 and Nu = 4 is considered for

various b and Nb. For Nb = 16, the Q-Percell algorithm is almost infeasible
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Figure 2.4: Total transmit power versus the target SQINR for (a) the UL
network with Nb ∈ {16, 128} antennas, Nc = 7 cells, and Nu = 4 users per
cell.

and the Q-iCoMP algorithm also shows divergence in the total transmit power

at the medium to high target SQINRs with a small number of quantization

bits. Increasing Nb from 16 to 128 provides more than 10 dB SQINR gain.

Accordingly, for Nb = 128 which is considered as a massive MIMO system,

the Q-iCoMP algorithm achieves the target SQINRs for all users without di-

vergence even with b = 3, whereas the Q-Percell algorithm still suffers from

excessive power consumption in the medium to high target SQINR range.

Therefore, in massive MIMO systems, the coordinated joint beamforming and
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Figure 2.5: Total transmit power versus the target SQINR for the UL and DL
networks with Nb ∈ {16, 32, 64} BS antennas, Nc = 3 cells, Nu = 3 users per
cell, and b ∈ {3,∞} quantization bits. The overlapped lines and markers can
demonstrate the derived strong duality.

power control can provide reliable and power-efficient communications even

with a coarse quantizer.

Fig. 2.5 shows the total transmit power over a wide range of target

SQINR for both UL and DL for Nb ∈ {16, 32, 64}, Nc = 3, Nu = 3, and

b ∈ {3,∞}. I note that the total transmit power consumed by the DL case

in Fig. 2.5 matches the UL transmit power consumption, which validates the

derived theoretical results.
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2.5.1 Covariance Estimation

In this subsection, I show how Ki in (2.13) can be estimated without

the explicit inter-cell channel knowledge and its impact. I note that Ki is

indeed a scaled covariance matrix of the quantized signal rq,i by 1/α in the

uplink direction. Accordingly, I can estimate Ki as follows: the BSs compute

λ
(n−1)
i,u , ∀i, u at (n − 1)th iteration of the algorithm, and each BSi requests

the associated users to transmit pilots suli with the updated λ
(n−1)
i,u , where

|si,k| = 1 and E[si,k] = 0. Then each user transmits Np pilots per iteration

and BSi estimates K̂
(n)
i , ∀i as K̂

(n)
i = 1

αNp

∑Np

t=1 r
(n)
q,i (t)

(
r
(n)
q,i (t)

)H
. BSi only

requires local observations rq,i and in-cell channel knowledge Hi,i to compute

λi,u. To reduce the pilot overhead, I leverage the correlation with the estimated

K̂
(m)
i ,m = 1, . . . , n − 1. Since the change in λi,u tends to rapidly decrease as

the algorithm proceeds, it is reasonable to accentuate the recent estimates

when exploiting the correlation. In this regard, I compute a weighted average

of the estimates as

K̂
(n)
i =

∑n−1
m=1mK̂

(m)
i + n

αNp

∑Np

t=1 r
(n)
q,i (t)

(
r
(n)
q,i (t)

)H∑n
m=1m

,

which is used for computing λ
(n)
i,u in (2.9).

Fig. 2.6 shows the CDF of the SQINR including the results with es-

timated K̂i for γ = 0 dB, b = 3, Nb = 64, Nc = 7, and Nu = 4. The Ki

estimation cases with Np = 5 and Np = 20 are evaluated. The estimation

cases achieve the target SQINR with less than −0.5 dB margin. The result

with 20 pilots achieves the target SQINR with higher probability compared
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Figure 2.6: CDFs of the SQINRs of users in all cells for γ = 0 dB target
SQINR, b = 3 quantization bits, Nb = 64 BS antennas, Nc = 7 cells, and
Nu = 4 users per cell.

to the estimation with 5 pilots. In addition, the total transmit powers for

the Ki estimation cases show a marginal increase compared to the perfect Ki

case, whereas the Q-Percell algorithm requires excessive total transmit power

to meet the target SQINR. Here, I exploit the correlation among K̂
(n)
i ’s to

derive a more accurate estimate as one of the possible approaches. I remark

that channel time correlation and in-cell channel knowledge can be further

leveraged for improvement.

2.5.2 Complexity and Convergence

I compare complexity of the proposed and per-cell algorithm. In the

massive MIMO regime, the inversion of Ki(ΛΛΛ) dominates the complexity for
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computing λi,u. Consequently, the total complexity becomes O(TNuN
3
b ) where

T is the number of iterations of the proposed algorithm. In addition, the

per-cell algorithm also requires O(TpNuN
3
b ) where Tp denotes the number of

iterations of the per-cell algorithm. I remark that since Ki(ΛΛΛ) is a Hermitian

symmetric and positive semi-definite matrix, the number of floating point op-

erations for the inversion of Ki(ΛΛΛ) can be reduced by exploiting a Cholesky

factorization approach [45].

Fig. 2.7 shows the convergence results of the proposed method and the

per-cell method for γ ∈ {−5, 0, 5} dB, b = 3, Nb = 64, Nc = 4, and Nu = 3.

Fig. 2.7(a) shows the efficiency of the proposed algorithm by showing that

the convergence of the proposed method is faster than that of the per-cell

algorithm. In addition, a meaningful transmit power can be achieved within 3

to 10 iterations depending on the target SQINR, which is much smaller than

the per-cell algorithm.

In Fig. 2.7(b), I evaluate the proposed algorithm over time-variant chan-

nels to show how the algorithm can improve the convergence rate. Assuming

a block fading model, the channel is time-invariant during the channel co-

herence time Tc. A channel realization within nth channel coherence block,

i.e., t ∈
[
nTc, (n + 1)Tc

)
, is denoted as hi,j,u(n),∀i, j, u. I consider that the

channel model is written as hi,j,u(n) = ρi,j,uξξξi,j,u(n) where ξξξi,j,u(n) and ρi,j,u

denote small scale fading at nth block and large scale fading, respectively.

For Fig. 2.7(b), I assume that ρi,j,u is invariant as it is the long-term char-

acteristics of the channels while changing ξξξi,j,u(n) at each channel coherence
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time. To model the time varying small scale fading ξξξi,j,u(n), I use the first-

order Gauss-Markov model [10] as ξξξi,j,u(n) =
√
1− a2ξξξi,j,u(n− 1) + avi,j,u(n),

where vi,j,u(n) follows CN(0, INb
). Accordingly, the channel at time n becomes

hi,j,u(n) =
√
1− a2hi,j,u(n − 1) + aρi,j,uvi,j,u(n) where n ≥ 1 and 0 < a < 1.

I consider a = 0.9. Due to the time correlation, the solution attained for the

previous channel can be a good initial point for the current channel, thereby

achieving faster convergence as shown in Fig. 2.7(b).

2.5.3 Wideband OFDM Communications

I evaluate the proposed algorithm for the UL OFDM system. I assume

that the channel delay spread is L = 3 and the small scale fading of each

channel tap is Rayleigh fading. The large scale fading model is the same as

the one in the narrowband simulation.

Fig. 2.8 shows the OFDM results of the proposed algorithm forNb = 16,

Nc = 2, Nu = 2, b ∈ {2, 3, 4,∞}, and K = 64 subcarriers. The proposed algo-

rithm achieves the target SQINR within −0.4 dB margin with reasonable total

transmit power. Although the case of b = 2 starts to diverge for high target

SQINR, the other low-resolution ADC cases still show stable performance for

high target SQINR. In addition, the differences in the total transmit power

of low-resolution ADCs from the infinite bits are marginal. Therefore, the re-

sults demonstrate that the benefit of using low-resolution ADCs for improving

energy efficiency of the wireless network.
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2.6 Conclusion

This chapter investigated coordinated multipoint beamforming and power

control for massive MIMO systems with low-resolution ADCs and DACs. I

proved the strong duality between UL and DL total transmit power minimiza-

tion problems under target SQINR constraints in low-resolution ADC and

DAC systems based on the additive quantization noise model. Leveraging the

duality, a fixed-point CoMP algorithm was proposed to jointly solve the UL

and DL problems by incorporating the coarse quantization effect. The pro-

posed algorithm provides optimal solutions for the UL and DL problems in an

efficient and distributed manner without explicit inter-cell channel estimation.

In addition, a deterministic approach provided a closed-form solution for the

UL problem with the assumption of homogeneous transmit powers and SQINR

targets within each cell. I proved that the derived results can be extended to

wideband OFDM systems when optimizing a beamformer and transmit power

for each user and subcarrier under coarse quantizaiton. Via simulations, I

showed that the proposed algorithm can achieve high target SQINRs with-

out divergence of transmit power for low-resolution ADC and DAC systems,

whereas the per-cell algorithm suffers from excessive power consumption even

with infinite-resolution ADCs and DACs. I also observe that the deterministic

method can achieve a reasonable trade-off between total transmit power and

achieved SQINR. Overall, in massive MIMO systems integrated with coarse

quantizer, the coordinated beamforming and power control offer spectrum-

and power-efficient wireless communication systems. For future work, devel-
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oping an algorithm with lower complexity and analyzing the impact of channel

estimation error would be desirable.

2.7 Proof of Theorem 1

SQINR constraints of P2 1 can be simplified by applying MMSE equal-

izers Fi that maximize the SQINR. Let zi,u be the interference-plus-noise term

of the UL quantized signal in (2.2) whose covariance matrix is expressed as

Czi,uzi,u = α2
∑

(j,v)̸=(i,u)

λj,vhi,j,vh
H
i,j,v + α2INb

+ α(1− α)diag(HiΛΛΛH
H
i + INb

)

= α2
∑

(j,v)̸=(i,u)

λj,vhi,j,vh
H
i,j,v + αINb

+ α(1− α)diag(HiΛΛΛH
H
i ).

Then, the MMSE equalizer fi,u can be given as [92]

fi,u = C−1
zi,uzi,u

hi,i,u. (2.31)

Applying (2.31) to the UL SQINR in (2.6), the constraints in P2 1 become

α2λi,uh
H
i,i,uC

−1
zi,u

hi,i,u ≥ γi,u. Then I multiply both sides with hH
i,i,uhi,i,u and

rearrange as

hH
i,i,u(α

2λi,uhi,i,uh
H
i,i,uC

−1
zi,uzi,u

− γi,uINb
)hi,i,u ≥ 0. (2.32)
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To satisfy (2.32), I need α2λi,uhi,i,uh
H
i,i,uC

−1
zi,uzi,u

− γi,uINb
⪰ 0. Rearranging

this condition, I can rewrite P2 1 as

min
λi,u

∑
i,u

λi,u (2.33)

s.t. Ki(ΛΛΛ) ⪯ α
(
1 +

1

γi,u

)
λi,uhi,i,uh

H
i,i,u, ∀i, u. (2.34)

where Ki(ΛΛΛ) = INb
+ α

∑
j,v λj,vhi,j,vh

H
i,j,v + (1− α)diag

(
HiΛΛΛH

H
i

)
.

Now, I prove the duality between P2 1 and P2 2 by managing the quan-

tization error term and by showing that (2.33) is equivalent to the Lagrangian

dual problem of P2 2 which is given as

L(wi,u,µi,u) =
∑
i,u

αwH
i,uwi,u −

∑
i,u

µi,u

(
α2
|wH

i,uhi,i,u|2

γi,u

− α2
∑
v ̸=u

|wH
i,vhi,i,u|2 − α2

∑
j ̸=i
v

|wH
j,vhj,i,u|2

+α(1−α)
∑
j

hH
j,i,udiag

(
WjW

H
j

)
hj,i,u+1

)
(2.35)

where µi,u is a Lagrangian multiplier. Rearranging and rewriting (3.46), the

Lagrangian becomes

L(wi,u,µi,u) =
∑
i,u

µi,u + α
∑
i,u

wH
i,u

(
INb
− α

(
1 +

1

γi,u

)
× µi,uhi,i,uh

H
i,i,u + α

∑
j,v

µj,vhi,j,vh
H
i,j,v

)
wi,u

+ α(1− α)
∑
i,u

µi,u

∑
j

hH
j,i,udiag(WjW

H
j )hj,i,u. (2.36)

I need to rewrite the quantization error term in (2.36) to manipulateWj in the

diagonal matrix. LetMi = diag(µi,1, . . . , µi,Nu) andM = blkdiag(M1, . . . ,MNc) ∈
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CNcNu×NcNu . Changing the indices of
∑

i,u µi,u

∑
j h

H
j,i,udiag(WjW

H
j )hj,i,u from

(i, u, j) to (j, v, i), I have

Nc,Nu∑
j,v

µj,v

Nc∑
i

hH
i,j,vdiag

(
WiW

H
i

)
hi,j,v

=

Nc,Nu∑
i,u

wH
i,udiag

(Nc,Nu∑
j,v

µj,v|hi,j,v,1|2, . . . ,
Nc,Nu∑
j,v

µj,v|hi,j,v,Nb
|2
)
wi,u

=

Nc,Nu∑
i,u

wH
i,udiag(HiMHH

i )wi,u, (2.37)

where hi,j,v,n and wi,u,n are the nth entries of hi,j,v and wi,u, respectively,

and Hi = [Hi,1, . . . ,Hi,Nc ] as defined earlier. Applying (2.37) to (2.36), the

Lagrangian becomes (2.38), which is on top of the next page.

The dual objective function is defined as g(µi,u) = minwi,u
L(wi,u, µi,u).

To prevent an unbounded solution, I need INb
− α

(
1 + 1

γi,u

)
µi,uhi,i,uh

H
i,i,u +

α
∑

j,v µj,vhi,j,vh
H
i,j,v+(1−α)diag(HiMHH

i ) ⪰ 0. Accordingly, the Lagrangian

dual problem of P2 2 in (2.7) becomes equivalent to

max
µi,u

Nc,Nu∑
i,u

µi,u (2.39)

s.t. Ki(M) ⪰ α
(
1 +

1

γi,u

)
µi,uhi,i,uh

H
i,i,u, ∀ i, u

where Ki(M) = INb
+ α

∑
j,v µj,vhi,j,vh

H
i,j,v + (1− α)diag

(
HiMHH

i

)
.

Although the Lagrangian dual problem of P2 2 in (2.39) and the UL

problem in (2.33) have the opposite objectives (max vs. min) with the reversed

inequality in the constraints, optimal solutions of P2 1 and the Lagrangian

dual problem is obtained with active constraints, and (2.39) and (2.33) have
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the same optimal solutions with active constraints. Therefore, (2.39) and

(2.33) become equivalent by replacing µi,u in (2.39) with λi,u, ∀i, u, i.e., the

Lagrangian multiplier of P2 2, µi,u, is equivalent to the UL transmit power λi,u

in P2 1. This completes the proof.

2.8 Proof of Corollary 1

I first show that (2.7) can be represented as a standard conic opti-

mization problem. Let W be defined as W = [W1, · · · ,WNc ], then the DL

problem (2.7) is rewritten as

min
W,Po

Po (2.40)

s.t. Γdl
i,u ≥ γi,u, ∀i, u (2.41)

Tr
(
WHW

)
≤ Po (2.42)

where Po is a positive slack variable. As in [102, 106], I can take a diagonal

phase scaling on the right of each precoder as Widiag(e
jϕi,1 , . . . , ejϕi,Nu ) for

i = 1, · · · , Nc, without changing the objective nor the constraints, I can design

the precoder to be wH
i,uhi,i,u ≥ 0, ∀i, u.

Using (2.37), I rewrite the quantization term in (2.8) as∑
j

hH
j,i,uCqdl

j qdl
j
hj,i,u = α(1− α)

∑
j

hH
j,i,udiag(WjW

H
j )hj,i,u

= α(1− α)
∑
j,v

wH
j,vdiag(hj,i,uh

H
j,i,u)wj,v. (2.43)

Let Dj,i,u = diag(hj,i,uh
H
j,i,u), WBD = blkdiag(W1, . . . ,WNc), and W̃BD =

blkdiag((INb
⊗W1), . . . , (INb

⊗WNc)). Using (2.43), the SQINR constraints

81



in (2.41) can be rearranged as

α2

(
1 +

1

γi,u

)
|wH

i,uhi,i,u|2

≥

∥∥∥∥∥∥
αWH

BDvec(h1,i,u, . . . ,hNc,i,u)√
α(1− α)W̃H

BDvec(D
1/2
1,i,u, . . . ,D

1/2
Nc,i,u

)
1

∥∥∥∥∥∥
2

, ∀ i, u. (2.44)

Since I restrict the precoders to be wH
i,uhi,u ≥ 0, I can take square root

for (2.44). In addition, the power constraint (2.42) can be reformulated as

∥vec(W)∥ ≤
√
Po. Using (2.44) and ∥vec(W)∥ ≤

√
Po, the problem in (2.40)

can be cast to the standard second order conic problem (SOCP) [102].

Next, (2.7) is strictly feasible because given a solution W, it can be

always scaled by a factor of c > 1 satisfying the constraints. Thus, the strong

duality holds between (2.5) and (2.7).

2.9 Proof of Corollary 2

Here I use λi,u instead of µi,u since I showed that they are equivalent.

The derivative of the Lagrangian (2.38) with respect to wi,u is given as

∂L(wi,u, λi,u)

∂wi,u

= 2α

(
INb
− α

(
1 +

1

γi,u

)
λi,uhi,i,uh

H
i,i,u

+α
∑
j,v

λj,vhi,j,vh
H
i,j,v+(1−α)diag(HiΛΛΛH

H
i )

)
wi,u. (2.45)

Setting (2.45) equal to zero, I derive (2.9). Accordingly, λi,u’s are the La-

grangian multipliers that satisfy the stationarity condition. In addition, at

the optimal solution, all the constraints in P2 2 are active, which satisfies the
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complementary slackness condition. Therefore, (2.9) is the optimal Lagrangian

multiplier, equivalently, optimal transmit power for P2 1.

2.10 Proof of Corollary 3

To find the optimal wi,u, I set the derivative of the Lagrangian with

respect to wi,u in (2.45) to zero, and solve it for wi,u. Then I have

wi,u =

(
α2
∑

(j,v)̸=(i,u)

λj,vhi,j,vh
H
i,j,v+α(1−α)diag(HiΛΛΛH

H
i )

+αINb

)−1

α2

(
1+

1

γi,u

)
λi,uhi,i,uh

H
i,i,uwi,u

= α2

(
1 +

1

γi,u

)
λi,uh

H
i,i,uwi,ufi,u

where fi,u is in (2.10). I consider
√
τi,u = α2

(
1 + 1

γi,u

)
λi,uh

H
i,i,uwi,u and thus,

wi,u =
√
τi,ufi,u.

Based on the Lagrangian dual problem, the global optimum occurs

when the constraints satisfy equality conditions, i.e., active constraints. By

replacing wi,u in (2.8) with
√
τi,ufi,u, the constraints of the primal DL problem
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satisfy the following conditions:

1 =
α2

γi,u
|wH

i,uhi,i,u|2 − α2
∑
v ̸=u

|wH
i,vhi,i,u|2

− α2
∑
j ̸=i
v

|wH
j,vhj,i,u|2 −

∑
j

hH
j,i,uCqdl

j qdl
j
hj,i,u

(a)
=

α2

γi,u
|fHi,uhi,i,u|2τi,u − α2

∑
(j,v)̸=(i,u)

|fHj,vhj,i,u|2τj,v

− α(1−α)
∑
j,v

fHj,vdiag(hj,i,uh
H
j,i,u)fj,vτj,v (2.46)

for all i and u where (a) is from (2.43) and wi,u =
√
τi,ufi,u. I express (2.46)

for all i, u as a matrix form: 1 = Στ . Therefore, τi,u can be obtained as

τ = Σ−11.

2.11 Proof of Corollary 4

The proof is based on the standard function approach [105]. Let us

rewrite (2.13) as λ
(n+1)
i,u = Fi,u(ΛΛΛ

(n)). I need to show that Fi,u(λλλ) is a standard

function which satisfies the followings:

• (positivity) If λi,u ≥ 0 ∀i, u, then Fi,u(ΛΛΛ) > 0.

• (monotonicity) If λi,u ≥ λ′i,u∀i, u, then Fi,u(ΛΛΛ) ≥ Fi,u(ΛΛΛ
′).

• (scalability) For ρ > 1, ρFi,u(ΛΛΛ) > Fi,u(ρΛΛΛ).

It can be shown that Fi,u(ΛΛΛ
(n)) satisfies the properties by carefully following

the proof in Appendix II in [102].
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2.12 Proof of Theorem 2

Let zi,u(k) be the interference-plus-noise term of (2.19) and Fi(k) be

the MMSE equalizer Fi(k) = C−1
zi,u(k)zi,u(k)

gi,i,u(k) where

Czi,u(k)zi,u(k) = α2
∑

(j,v) ̸=(i,u)

λj,v(k)gi,j,v(k)g
H
i,j,v(k) + α2INb

+α(1−α)ΨΨΨNb
(k)diag

( Nc∑
j=1

Hi,jΨΨΨ
H
Nu
ΛΛΛjΨΨΨNuHi,j+IKNb

)
ΨΨΨH

Nb
(k). (2.47)

Noting that ΨΨΨH
Nb
Gi,j = Hi,jΨΨΨ

H
Nu

, I first rewrite the diagonal matrix in (2.47)

as

diag
( Nc∑

j=1

Hi,jΨΨΨ
H
Nu
ΛΛΛjΨΨΨNuHi,j + IKNb

)
= diag

(
ΨΨΨH

Nb
GiΛΛΛGH

i ΨΨΨNb
+ IKNb

)
(2.48)

where Gi = [Gi,1, . . . ,Gi,Nc
] and ΛΛΛ = blkdiag

(
ΛΛΛ1, . . . ,ΛΛΛNc

)
. Following the

same steps in the proof of Theorem 1 with (2.48) and ΨΨΨNb
(k)ΨΨΨH

Nb
(k) = INb

,

P2 3 with the MMSE equalizer becomes

min
∑
i,u,k

λi,u(k) (2.49)

s.t. K̄i,k(ΛΛΛ)⪯α
(
1+

1

γi,u(k)

)
λi,u(k)gi,i,u(k)g

H
i,i,u(k), ∀i, u, k

where

K̄i,k(ΛΛΛ) = INb
+ α

∑
j,v

λj,v(k)gi,j,v(k)g
H
i,j,v(k)

+ (1− α)ΨΨΨNb
(k)diag

(
ΨΨΨH

Nb
GiΛΛΛGH

i ΨΨΨNb

)
ΨΨΨH

Nb
(k). (2.50)
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It is necessary to to show that (2.49) is equivalent to the Lagrangian

dual problem of P2 4. Similarly to the proof of Theorem 1, the Lagrangian of

P2 4 is given in the rearranged form as

L̄ =
∑
i,u,k

µi,u(k) + α(1−α)
∑
i,u,k

µi,u(k)
∑
j

gH

j,i,u
(k)ΨΨΨNb

× diag
(
ΨΨΨH

Nb
WjW

H
j ΨΨΨNb

)
ΨΨΨH

Nb
g
j,i,u

(k) +
∑
i,u,k

wH
i,u(k)

×

(
αINb

−α2

(
1+

1

γi,u,k

)
µi,u(k)gi,i,u(k)g

H
i,i,u(k)

+α2
∑
j,v

µj,v(k)gi,j,v(k)g
H
i,j,v(k)

)
wi,u(k). (2.51)

I rewrite the quantization error term in (2.51) to manipulate Wj in the diag-

onal matrix. Let

QE(i, u, k, j) =
∑
i,u,k

µi,u(k)

×
∑
j

gH

j,i,u
(k)ΨΨΨNb

diag
(
ΨΨΨH

Nb
WjW

H
j ΨΨΨNb

)
ΨΨΨH

Nb
g
j,i,u

(k).

Changing the indices of QE(i, u, k, j) from (i, u, k, j) to (j, v, ℓ, i), I have

QE(j, v, ℓ, i) =
∑
j,v,ℓ,i

µj,v(ℓ)g
H

i,j,v
(ℓ)ΨΨΨNb

×diag

(∑
u,k

|ψψψH
Nb,m

(n)wi,u(k)|2,∀m,n

)
ΨΨΨH

Nb
g
i,j,v

(ℓ) (2.52)

where ψψψNb,m
(n) denotes the (m+(n−1)Nb)th column of ΨΨΨNb

, i.e., ψψψNb,m
(n) =

[wDFT,n⊗INb
]:,m form = 1, . . . , Nb, n = 1, . . . , K, andwi,u(k) is the (kNu+u)th

column of Wi, i.e., the entire column of Wi that corresponds to the precoder
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for kth subcarrier of user u. Let Mi(k) = diag(µi,1(k), . . . , µi,Nu(k)), Mi =

blkdiag
(
Mi(0), . . . ,Mi(K − 1)

)
, and M = [M1, . . . ,MNc

]. Recalling that

ΨΨΨNb
(k) =

(
[WDFT]k+1,:⊗INb

)
and Gi = [Gi,1, . . . ,Gi,Nc

], (2.52) is rewritten as

(2.53) which is on the top of the next page. Here (a) comes from wH
i,u(k)ΨΨΨNb

=

wH
i,u(k)ΨΨΨNb

(k) as wi,u(k) has nonzero elements wi,u(k) only in the place that

corresponds to the precoder for subcarrier k, and g
i,j,v,r

(ℓ) and ψNb,m,r(n) are

the rth elements of g
i,j,v

(ℓ) and ψψψNb,m
(n), respectively.

Applying (2.53) to the Lagrangian in (2.51), I have

L̄ =
∑
i,u,k

µi,u(k) +
∑
i,u,k

wH
i,u(k)

(
αINb

−α2

(
1+

1

γi,u,k

)
×µi,u(k)gi,i,u(k)g

H
i,i,u(k) + α2

∑
j,v

µj,v(k)gi,j,v(k)g
H
i,j,v(k)

+α(1−α)ΨΨΨNb
(k)diag

(
ΨΨΨH

Nb
Gi MGH

i ΨΨΨNb

)
ΨΨΨH

Nb
(k)

)
wi,u(k).

Following similar steps in the proof of Theorem 1, the Lagrangian dual problem

of P2 4 becomes

max
µi,u

∑
i,u,k

µi,u(k) (2.54)

s.t. K̄i,k(M) ⪰ α

(
1 +

1

γi,u,k

)
µi,u(k)gi,i,u(k)g

H
i,i,u(k)

where

K̄i,k(M)=INb
+α
∑
j,v

µj,v(k)gi,j,v(k)g
H
i,j,v(k)

+(1−α)ΨΨΨNb
(k)diag

(
ΨΨΨH

Nb
Gi MGH

i ΨΨΨNb

)
ΨΨΨH

Nb
(k).
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Since the problem in (2.54) has its optimal solution when the constraints are

active, it is also equivalent to (2.49). This completes the proof.

2.13 Proof of Corollary 5

I use (2.53) to manipulate the precoders Wi(k) in the diagonal matrix

of the quantization term in the SQINR (2.25), and follow similar approach as

the proof of Corollary 1. Then, P2 4 can be cast to the SOCP. In addition,

P2 4 is strictly feasible. This completes the proof.

2.14 Proof of Corollary 6

To satisfy the KKT stationarity condition with the DL constraint in

(2.27), the SQINR of subcarrier k of user u in cell i needs to fulfill the target

SQINR with equality. Let us define µi′,u′(n) where µi′,u′(n) = 1 if i′ = i, u′ = u

and n = k, and µi′,u′(n) = 0 otherwise. To compose the DL constraint in a
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tractable form, I can rewrite the quantization error term in (2.25) as

Nc∑
j=1

gH

j,i,u
(k)ΨΨΨNb

diag
(
ΨΨΨH

Nb
WjW

H
j ΨΨΨNb

)
ΨΨΨH

Nb
g
j,i,u

(k)

=
∑

i′,u′,n,j

µi′,u′(n)gH

j,i′,u′(n)ΨΨΨNb

× diag
(
ΨΨΨH

Nb
WjW

H
j ΨΨΨNb

)
ΨΨΨH

Nb
g
j,i′,u′(n)

(a)
=
∑
j,v,ℓ

wH
j,v(ℓ)ΨΨΨNb

(ℓ)diag
(
ΨΨΨH

Nb
Gj MGH

j ΨΨΨNb

)
ΨΨΨH

Nb
(ℓ)wj,v(ℓ)

(b)
=
∑
j,v,ℓ

wH
j,v(ℓ)ΨΨΨNb

(ℓ)

×diag
(
ΨΨΨH

Nb
g
j,i,u

(k)gH

j,i,u
(k)HΨΨΨNb

)
ΨΨΨH

Nb
(ℓ)wH

j,v(ℓ), (2.55)

where (a) comes from following the same steps in (2.52) and (2.53). Recalling

the definition of M defined in the proof of Theorem 2 with slight abuse of

notations, (b) follows from Gj MGH
j = g

j,i,u
(k)gH

j,i,u
(k). Replacing wi,u(n)

with
√
τ i,u(n)fi,u(n) and using (2.55), the DL SQINR constraint in (2.27) can

be rewritten, and the rest of the proof is similar to Corollary 3.
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Figure 2.7: Convergence results for Nb = 64 antennas, Nc = 4 cells, Nu = 3 per
cell, and b = 3 quantization bits. (a) shows total transmit power with respect
to the number of iterations and (b) shows the total number of iterations for
convergence with respect to time for channel realization.
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Figure 2.8: UL total transmit power versus the target SQINR for Nb = 16 BS
antennas, Nc = 2 cells, Nu = 2 users per cell, b ∈ {2, 3, 4,∞} quantization
bits, and 64 subcarriers.

L(wi,u, µi,u)=
∑
i,u

µi,u + α
∑
i,u

wH
i,u

(
INb
−α
(
1+

1

γi,u

)
µi,uhi,i,uh

H
i,i,u (2.38)

+ α
∑
j,v

µj,vhi,j,vh
H
i,j,v+(1−α)diag

(
HiMHH

i

))
wi,u.
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∑
j,v,ℓ,i

µj,v(ℓ)
∑
m,n

(∑
u,k

|ψψψH
Nb,m

(n)wi,u(k)|2 ×(∑
r

g∗
i,j,v,r

(ℓ)ψNb,m,r(n)

)(∑
r′

g
i,j,v,r′

(ℓ)ψ∗
Nb,m,r′(n)

))

=
∑
i,u,k

wH
i,u(k)

(∑
m,n

ψψψNb,m
(n)×(∑

j,v,ℓ

µj,v(ℓ)ψψψ
H
Nb,m

(n)g
i,j,v

(ℓ)gH

i,j,v
(ℓ)ψψψNb,m

(n)

)
ψψψH

Nb,m
(n)

)
wi,u(k)

=
∑
i,u,k

wH
i,u(k)

(∑
m,n

ψψψNb,m
(n)ψψψH

Nb,m
(n)Gi MGH

i ψψψNb,m
(n)ψψψH

Nb,m
(n)

)
wi,u(k)

=
∑
i,u,k

wH
i,u(k)ΨΨΨNb

diag
(
ΨΨΨH

Nb
Gi MGH

i ΨΨΨNb

)
ΨΨΨH

Nb
wi,u(k)

(a)
=
∑
i,u,k

wH
i,u(k)ΨΨΨNb

(k)diag
(
ΨΨΨH

Nb
GiMGH

i ΨΨΨNb

)
ΨΨΨH

Nb
(k)wi,u(k). (2.53)
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Chapter 3

Coordinated Per-Antenna Maximum Power

Minimization for Low-Resolution Systems

In this chapter1, I investigate multicell-coordinated beamforming for

massive multiple-input-multiple-output (MIMO) orthogonal frequency divi-

sion multiplexing (OFDM) communications with low-resolution data convert-

ers when the power restriction is added for a more realistic deployment. In par-

ticular, I aim to find the downlink (DL) beamformer that minimizes the max-

imum power on transmit antenna array of each BS under received signal-to-

quantization-and-interference-plus-noise ratio (SQINR) constraints while min-

imizing per-antenna transmit power. The primary milestones of this work are

(1) formulating the quantized DL OFDM antenna power minimax problem

and deriving its associated dual problem, (2) showing strong duality and in-

terpreting the dual as a virtual quantized uplink (UL) OFDM problem, and

(3) developing an iterative minimax algorithm to identify a feasible solution

1This chapter is based on the following submitted paper: Y. Cho, J. Choi, and B. L.
Evans, “Coordinated Per-Antenna Power Minimization for Multicell Massive MIMO Sys-
tems with Low-Resolution Data Converters,” submitted to IEEE Transactions on Commu-
nications, 2023. This work was published in part in the following conference paper: Y. Cho,
J. Choi, and B. L. Evans, “Coordinated Beamforming in Quantized Massive MIMO Sys-
tems with Per-Antenna Constraints,” in IEEE Wireless Communications and Networking
Conference (WCNC), Apr. 10-13, 2022. This work was supervised by Prof. Brian L. Evans.
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based on the dual problem with performance validation through simulations.

Specifically, the dual problem requires joint optimization of virtual UL trans-

mit power and noise covariance matrices. To solve the problem, I first derive

the optimal dual solution of the UL problem for given noise covariance ma-

trices. Then, I use the solution to compute the associated DL beamformer.

Subsequently, using the DL beamformer, I update the UL noise covariance

matrices via subgradient projection. Finally, I propose an iterative algorithm

by repeating the steps for optimizing DL beamformers. Simulations evaluate

the effectiveness of the proposed algorithm in terms of the maximum antenna

transmit power and peak-to-average-power ratio which are directly related to

hardware efficiency of large-scale MIMO OFDM communication systems..

3.1 Introduction

Massive MIMO techniques have drawn attention for future wireless

communication systems because of its remarkable gain in spectral efficiency

and capacity [56]. However, employing the massive number of power-hungry

high-resolution analog-to-digital converters (ADCs) and digital-to-analog con-

verters (DACs) attached to the antenna arrays results in prohibitively high

power consumption. Accordingly, the adoption of low-resolution data convert-

ers in communication building blocks has gathered momentum as a promis-

ing power-efficient alternative and has been widely investigated [14, 15, 17–

19, 22, 67, 89, 107].

In addition to power consumption, interference has emerged as a crit-
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ical consideration in modern wireless systems. Consequently, intra-cell and

inter-cell interference as well as quantization error must be carefully consid-

ered when analyzing and designing power-efficient multicell communication

networks to achieve a desired performance. Moreover, for practical implemen-

tations, it is desirable to impose a per-antenna power constraint that restricts

the transmit power of each antenna because the communication system can

operate with more energy-efficient power amplifiers and prevent nonlinear dis-

tortion [23, 106]. In this regard, I investigate coordinated multipoint (CoMP)

beamforming and power control problems in multicell and multiuser massive

MIMO OFDM systems with low-resolution data converters and per-antenna

level power and quality-of-service constraints.

3.1.1 Prior Work

Low-resolution ADC architectures have been the subject of extensive re-

search in recent years to provide power-efficient communications [17–19, 22, 39,

69, 89, 97, 98, 104, 110]. In order to properly handle the severe nonlinearities in

low-resolution ADCs, many studies have re-engineered essential wireless com-

munication functions such as channel estimation and data detection [17, 22,

39, 89, 97, 98]. Since low-resolution data converters destroy the orthogonality

of subcarriers in OFDM systems, novel OFDM channel estimation and symbol

detection were developed and integrated into a turbo framework, justifying its

feasibility and reliability in over-the-air experiments when using low-resolution

ADCs [97, 98]. In [22], a near maximum likelihood channel estimation and
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symbol detection were proposed for 1-bit ADCs while showing improved esti-

mation accuracy compared to expectation-maximum estimators. Maximum a-

posteriori detection and channel estimation with low-resolution ADCs showed

that 4-bit ADCs are sufficient to achieve near-optimal performance in massive

MIMO OFDM systems [89]. To facilitate the learning of likelihood probabil-

ities in 1-bit ADC maximum likelihood data detector, a robust learning with

artificial noise was presented in [17]. The authors in [53, 110] developed data

detectors for mixed-ADC systems that assign either 1-bit or infinite-resolution

depending on channel gain. In addition, a resolution-adaptive ADC system

with a bit-allocation algorithm was proposed while outperforming the conven-

tional fixed-precision low-resolution ADC systems in terms of both spectral

and energy efficiency [18]. For analytic tractability, the severe non-linearity of

the low-resolution quantizer was linearized using Bussgang decomposition [39]

and the additive quantization noise model (AQNM) [15, 19, 69, 104], while pro-

ducing useful algorithms and insightful analytical results.

For downlink transmission, a number of works have reduced power con-

sumption and hardware cost using low-resolution DACs [38, 51, 71]. Using

Bussgang decomposition, the authors in [38] demonstrated a marginal com-

munication gap in achievable rates for linear precoders with 3 to 4-bit DACs

compared to infinite-resolution DACs and further proposed a non-linear pre-

coder in 1-bit DAC systems via relaxation and sphere precoding. The use

of 2.5× more transmit antennas can compensate for the spectral efficiency

loss brought on by the use of 1-bit DACs according to the analyzed rate of
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the quantized downlink systems with matched-filter precoding [51]. Based

on constructive interference and decision regions, low-complexity symbol-level

precoding methods for 1-bit DAC systems were developed for quadrature-

amplitude-modulation constellations in [71]. The authors in [83] proposed 1-

bit and constant-envelope precoding methods. For quantized downlink OFDM

systems, the authors in [40] derived a lower bound on achievable sum-rate us-

ing linear precoding and oversampling DACs. The authors in [108] considered

massive MIMO relaying systems with mixed-DACs and mixed-ADCs at the

relay and derived exact and closed-form expressions for the achievable rate

which approach infinite-resolution performance using only 2-3 bits thanks to

strong synergy with large-scale antenna arrays. For downlink communica-

tions with low-resolution DACs, Bussgang decomposition that linearizes the

low-resolution DAC system was adopted in [38, 51, 103] to develop precoders

and analyze system performance. By applying AQNM to massive MIMO

systems with millimeter wave channels, the authors in [78] introduced fully-

connected and partially-connected hybrid beamforming architectures under

low-resolution DACs which are more energy-efficient than conventional digital-

only precoders.

As modern cellular communication systems are primarily limited by in-

terference, research efforts and later standards supported CoMP to coordinate

transmission by multiple base stations (BSs) in order to reduce inter-cell inter-

ference, thereby improving data rates and coverage [8, 23, 36, 44, 65, 76, 77, 85,

87]. The authors in [44] demonstrated that the synergy between CoMP and
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massive MIMO is advantageous to 5G communication systems due to a more

robust link, localized interference, and reduced backhaul overhead. The fea-

sibility of CoMP was demonstrated for both UL and DL in physical testbeds

with improved average throughput and cell edge throughput [36].

To improve data rate and satisfy demanding requirements of cellular

systems, many papers have contributed to beamforming design [8, 65, 85]. The

DL beamforming problem was cast as a semidefinite programming problem

and efficiently solved via interior point methods [8]. Noting that signals from

neighboring BSs have significant impact, the authors in [65] proposed a near-

optimal distributed DL beamforming algorithm based on message passing be-

tween neighboring BSs without requiring centralized processing. To improve

the data rate of cell-edge users, the CoMP beamforming problem based on

interference alignment was also studied in a non-orthogonal multiple access

system [85].

To further unleash the potential of CoMP systems, joint optimization

of beamforming and power control has been proposed [76, 77, 87, 102]. For

UL transmission, authors in [77] proposed a fixed-point algorithm that jointly

solves beamforming and power control problems and proves the existence of

at least one optimal solution. Authors in [76] formulated a virtual UL sys-

tem model whose combiner and power control solutions are used to iteratively

update the DL beamforming solution. For multiuser MIMO systems, linear

programming UL–DL duality led to centralized and decentralized algorithms

to efficiently solve the joint beamforming and power control problem [87]. Au-

98



thors in [102] derived an iterative algorithm that finds optimal UL power con-

trol and DL beamforming solutions based on Lagrangian theory and brought

insights to [23] which generalized the algorithm to multicell multiuser MIMO

systems.

Recently, a coarsely quantized CoMP beamforming and power control

problem was studied for OFDM systems in [15]. The UL-DL beamforming

duality was extended to the quantized OFDM systems, and an iterative al-

gorithm for solving the DL total transmit power minimization problems was

developed by leveraging the duality [15] without requiring explicit estimation

of inter-cell interference. It was shown that the proposed algorithm can be

performed in a distributed fashion by estimating the covariance matrix of the

received signals at local BSs. The problem considered in [15] only focused

on the power minimization with the quality-of-service constraints. However,

it is necessary to minimize the transmit power consumed at each antenna to

simplify the design of the power amplifier and avoid distortion from the non-

linearity of the power amplifier in the high power regime. Therefore, lowering

the peak power can help us scale up the multi-cell and multi-user communica-

tion network. Employing cell-free MIMO systems is considered as a scalable

way to implement CoMP [35]; however, cell-free MIMO solutions are miss-

ing either per-antenna level power restriction or the joint optimization of DL

beamformer and UL power control [9, 109]. Therefore, a thorough study on the

quantized DL CoMP beamforming and UL power control for minimizing the

transmit power with per-antenna power constraints would make a worthwhile
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contribution toward a more practical CoMP deployment.

3.1.2 Contributions

In this work, I consider downlink multicell massive MIMO OFDM com-

munications in which each BS with multiple antennas serves dedicated users

with a single antenna. The BS are equipped with low-resolution data con-

verters, i.e., DACs and ADCs, and cooperate for beamforming and PC. In

such a system, I investigate a DL antenna power minimization problem with

quality-of-service constraints. The contributions are summarized as follows:

• Formulating the DL antenna power minimax problem and de-

riving its dual. I aim to minimize the maximum transmit power over

all transmit antennas and formulate the problem with individual SQINR

constraints. As the main contribution of this chapter, I derive the La-

grangian dual of the primal DL OFDM problem, which can be consid-

ered as a virtual UL OFDM transmit power minimization problem with

uncertain noise covariance matrices. This finding extends the previous

DL-UL duality under per-antenna power constraints [106] to the quan-

tized OFDM systems. By transforming the DL OFDM problem to a

strictly feasible second-order cone program (SOCP), I show that strong

duality holds between the primal DL OFDM problem and its associated

dual, i.e., the virtual UL OFDM problem in this work.

• Developing an iterative minimax algorithm to provide a fea-

sible solution. Leveraging the strong duality, I develop an iterative
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algorithm to solve the primal DL OFDM beamforming problem; I first

solve the dual UL OFDM problem for a fixed set of UL noise covariance

matrices. I then compute the DL beamformer via linear transformation

of the obtained UL solution. Using the DL beamformer, I update the UL

noise covariance matrices via projected subgradient ascent method. Fi-

nally, I repeat the steps until the UL noise covariance matrices converge.

Although the DL beamforming problem can be cast to a semidefinite

programming, the proposed direct iterative updates are in general more

efficient and insightful.

• Validating the proposed algorithm through extensive simula-

tions. Simulation results validate the derived results and algorithm in

both wideband and narrowband scenarios. The proposed algorithm out-

performs approaches that do not impose per-antenna constraints in terms

of the maximum antenna transmit power consumption. I further show

the significant advantages of the proposed algorithm with per-antenna

constraints by comparing peak-to-average-power ratio (PAPR) which is

a paramount measure for the design of the power amplifiers and other

nonlinear electronics in OFDM communication systems.

3.2 System Model

3.2.1 Network and Signal Model

I consider a wideband multicell and multiuser MIMO network with

Nc cells, Nu single-antenna users per cell, and K subcarriers. All BSs are
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Figure 3.1: Multicell and multiuser MIMO communication configuration when
each base station (BS) is equipped with low-resolution ADCs and DACs. The
power amplifier causes nonlinear distortion in the high input power regime.

equipped with Nb antennas (Nb ≫ Nu). The BS in cell i is denoted as BSi

which serves Nu dedicated users in cell i. I assume the BSs for all Nc cells

cooperate and are equipped with low-resolution DACs with the same number

of DAC quantization bits b as shown in Fig. 3.1. Time-division duplexing

(TDD) is assumed to exploit channel reciprocity. The BSs are considered to

have perfect channel state information (CSI) for all channels as they cooperate

with each other, whereas the users are assumed to have perfect CSI only for

their own channel.

I consider a DL broadcast channel where the BSi generates si(k) ∈ CNu

that contains the dedicated symbols for Nu users in cell i ∈ {1, . . . , Nc} at sub-

carrier k ∈ {0, . . . , K−1}. In addition, I useWi(k) = [wi,1(k), . . . ,wi,Nu(k)] ∈

CNb×Nu to denote the matrix of precoders, and the uth symbol in si(k) is pre-

coded viawi,u(k). I then define the precoded frequency domain symbol for user

u in cell i at subcarrier k as ui(k) = Wi(k)si(k). Let xi(k) ∈ CNb be the vector

of OFDM symbols of Nu users in cell i at time k. I stack the OFDM symbol
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vectors at BSi over K time slots as xi = [xT
i (0), . . . ,x

T
i (K − 1)]T ∈ CKNb ,

which is given as

xi = (WH
DFT ⊗ INb

)ui (3.1)

= ΨΨΨH
Nb
Wisi, (3.2)

where WDFT ∈ CK×K represents a normalized discrete Fourier transform

(DFT) matrix, ui = [uT
i (0), . . . ,u

T
i (K − 1)]T ∈ CKNb , ΨΨΨNb

= WDFT ⊗ INb
,

Wi=blkdiag
(
Wi(0), . . . ,Wi(K−1)

)
∈CKNb×KNu , and si = [sTi (0), . . . , s

T
i (K−

1)]T ∈ CKNu .

Before transmitting the signals, xi is quantized by the low-resolution

DACs with b quantization bits. I adopt the AQNM [15, 69] to elicit a lin-

earized approximation of the quantization process derived from assuming a

scalar minimum-mean-squared-error (MMSE) quantizer with Gaussian signal-

ing. The quantized signal vector of input xi with the AQNM is represented

as

Q(xi) ≈ xq,i = αxi + q
i

(3.3)

= [xT
q,i(0), . . . ,x

T
q,i(K − 1)]T (3.4)

where Q(·) is a data quantizer applied for real and imaginary parts, q
i
=

[qT
i (0), . . . ,q

T
i (K− 1)]T ∈ CKNb denotes the stacked quantization noise vector

at BSi with qi(k) denoting the quantization noise vector for the quantization

input of xi(k), xq,i(k) = αxi(k) + qi(k) is the quantized signal transmitted

by BSi at the kth time slot, and α is the quantization gain defined as α =
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1 − β where the values of β are listed in Table 2.1 in Chapter 2 assuming

si(k) ∼ CN(0Nu , INu),∀i, k. The lower the resolution of DACs, the smaller

α is triggered, reflecting more severe quantization effects. I assume that the

quantization noise is uncorrelated with the quantization input and follows a

complex Gaussian distribution, i.e., q
i
∼ CN(0,Cq

i
q
i
) which is the worst case

in terms of the achievable rate. The covariance matrix Cq
i
q
i
is computed

as [15]

Cq
i
q
i
= α(1− α)diag

(
ΨΨΨH

Nb
WiW

H
i ΨΨΨNb

)
. (3.5)

Because of the multicell broadcast channel, Nu users in cell i receive

signals from all BSs. Stacking over K subcarriers after removing cyclic prefix

and applying the DFT, the received signals at the users in cell i become [15]

y
i
= αGH

i,iWisi + α
Nc∑
j ̸=i

GH
j,iWjsj + q̃

j
+ ñi ∈ CKNu . (3.6)

Here, the DL frequency domain channels combined accross all K subcarriers

are defined as GH
j,i = blkdiag(GH

j,i(0), · · · ,GH
j,i(K − 1)) ∈ CKNu×KNb , where

Gj,i(k) =
∑L−1

ℓ=0 Hj,i,ℓ e
− j2πkℓ

K is the individual UL frequency domain channel

for the kth subcarrier between BSj and users in cell i (by channel reciprocity,

which is an inherit feature of TDD systems, Gj,i(k) can be interpreted as the

UL frequency domain channel matrix), Hj,i,ℓ is the UL time domain chan-

nel between BSj and users in cell i for the ℓth channel tap, and L is the

delay spread. In addition, q̃
j
= [q̃T

j (0), . . . , q̃
T
j (K − 1)]T =

∑Nc

j=1 G
H
j,iΨΨΨNb

q
j

and ñi = [ñi(0), . . . , ñi(K − 1)]T = ΨΨΨNuni where ΨΨΨNu = WDFT ⊗ INu and
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ni = [nT
i (0), . . . ,n

T
i (K − 1)]T ∼ CN(0KNu , σIKNu) denotes the stacked addi-

tive white Gaussian noise (AWGN) vector over K time slots for Nu users in

cell i. I observe that the received signal at user u in cell i for subcarrier k is

expressed as

yi,u(k) =αg
H
i,i,u(k)wi,u(k)si,u(k)

+ α

Nc,Nu∑
(j,v)̸=(i,u)

gH
j,i,u(k)wj,v(k)sj,v(k) + q̃i,u(k) + ñi,u(k), (3.7)

where gj,i,u(k) indicates the uth column of Gj,i and si,u(k), q̃i,u(k), and ñi,u(k)

represent the uth element of si(k), q̃i(k), and ñi(k), respectively.

3.2.2 Problem Formulation

Based on (3.5)-(3.7), the DL SQINR for user u in cell i at subcarrier k

is represented as

Γi,u(k) =
α2|gH

i,i,u(k)wi,u(k)|2

α2
∑Nc,Nu

(j,v) ̸=(i,u)|gH
j,i,u(k)wj,v(k)|2 +Qi,u(k) +σ2

, (3.8)

whose first term in the denominator is interference and Qi,u(k) is quantization

error defined as

Qi,u(k) =
Nc∑
j=1

gH

j,i,u
(k)ΨΨΨNb

Cqjqj
ΨΨΨH

Nb
g
j,i,u

(k). (3.9)

Here, g
j,i,u

(k) denotes the (kNu + u)th column of Gj,i, i.e., the column of

Gj,i which is the channel for subcarrier k of user u. Since BSi sends xq,i(k)

at the kth time slot, the average transmit power of the mth antenna of BSi

at the kth time slot is written as
[
E[xq,i(k)x

H
q,i(k)]

]
m,m

. Using (3.8), the DL
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OFDM transmit power minimization problem with per-antenna power for each

antenna m and SQINR constraints is finally formulated as

P3 1 : minimize
wi,u(k), p0

p0 (3.10)

subject to Γi,u(k) ≥ γi,u(k) ∀i, u, k (3.11)[
E[xq,i(k)x

H
q,i(k)]

]
m,m
≤ p0 ∀i, k,m, (3.12)

where p0 denotes the peak transmit power across NbNc BS antennas. Mak-

ing p0 smaller results in a more precise and economical usage of the power

amplifiers by limiting the dynamic range.

I aim to identify the DL beamformer wi,u(k) for all i, u, k that can

minimize p0 while satisfying all SQINR constraints. Note that p0 is a free

variable, the objective function in (3.10), and the upper limit in the constraint

(3.12). As shown in (3.8)-(3.9), the fact that Γi,u(k) contains the quantization

noise as well as wi,u(k) for all i, u, k makes the problem more challenging to

solve. Since a closed-form algebraic solution is not available, I seek an efficient

algorithm to find a numerical solution. Instead of solving the optimization

problem directly, I first derive a Lagrangian dual and then solve the problem in

the dual domain with an efficient solver. I will show that the DL beamforming

solution is ultimately calculated by exploiting the dual solution.

3.3 Duality between Downlink and Uplink

In this section, I first introduce the corresponding uplink problem and

then show that the uplink and downlink problems have strong duality. The
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primary challenge in deriving a dual problem is the quantization noise terms

coupled with both beamformers and OFDM modulation.

3.3.1 Dual UL OFDM Systems with Low-Resolution ADCs

Let suli (k) ∈ CNu denote the vector of symbols from Nu users in cell i

at subcarrier k and let

uul
i (k) = ΛΛΛi(k)

1/2suli (k) (3.13)

where ΛΛΛi(k) = diag
(
λi,1(k), . . . , λi,Nu(k)

)
is the collection of transmit power.

With xul
i (k) denoting the vector of OFDM symbols of Nu users in cell i at

time k, I stack the OFDM symbol vectors as xul
i = [xul

i (0)
T , . . . ,xul

i (K− 1)T ]T

which is written as

xul
i = (WH

DFT ⊗ INu)u
ul
i (3.14)

= ΨΨΨH
Nu
ΛΛΛ

1/2
i suli , (3.15)

where the stacked components are defined as

ΨΨΨNu =(WDFT ⊗ INu), (3.16)

uul
i = [uul

i (0)
T , . . . ,uul

i (K − 1)T ]T , (3.17)

suli = [suli (0)
T , . . . , suli (K − 1)T ]T , (3.18)

ΛΛΛi=blkdiag
(
ΛΛΛi(0), . . . ,ΛΛΛi(K−1)

)
. (3.19)

I assume that the noise vector received at BSi, i.e., ñ
ul
i (k), is unknown

yet tunable by diagonal noise covariance Di, i.e. ñ
ul
i (k) ∼ CN(0Nb

,Di). After
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performing CP removal and applying DFT operation, the frequency-domain

received signal at subcarrier k is then given as

yul
i (k) =αGi,i(k)ΛΛΛi(k)s

ul
i (k) + α

Nc∑
j ̸=i

Gi,j(k)ΛΛΛj(k)s
ul
j (k) + αñul

i (k) + q̃ul
i (k).

(3.20)

The combined signal for user u at subcarrier k is now given as fHi,u(k)y
ul
i (k)

where fi,u(k) is an equalizer of subcarrier k for user u in cell i.

Accordingly, the UL SQINR for user u in cell i at subcarrier k is com-

puted as

Γul
i,u(k)= (3.21)

α2λi,u(k)|fHi,u(k)gi,i,u(k)|2

α2
∑Nc,Nu

(j,v)̸=(i,u)λj,v(k)|fHi,u(k)gi,j,v(k)|2+α2|fHi,u(k)Difi,u(k)|+fHi,u(k)Cq̃ul
i (k)fi,u(k)

.

I then define ΨΨΨNb
(k) = ([WDFT]k+1,: ⊗ INb

), Gi = [Gi,1, . . . ,Gi,Nc
], and ΛΛΛ =

blkdiag
(
ΛΛΛ1, . . . ,ΛΛΛNc

)
. Since Cq̃ul

i (k) by the AQNM is expressed as

Cq̃ul
i (k) = α(1− α) ΨΨΨNb

(k)diag
(
ΨΨΨH

Nb
GiΛΛΛG

H
i ΨΨΨNb

+Di

)
ΨΨΨH

Nb
(k), (3.22)

the UL SQINR can be rewritten as

Γul
i,u(k)=

α2λi,u(k)|fHi,u(k)gi,i,u(k)|2

fHi,u(k)Zi,u(k)fi,u(k)
, (3.23)

where

Zi,u(k) = α2
∑

(j,v)̸=(i,u)

λj,v(k)gi,j,v(k)g
H
i,j,v(k) + αDi

+ α(1− α) ΨΨΨNb
(k)diag

(
ΨΨΨH

Nb
GiΛΛΛG

H
i ΨΨΨNb

)
ΨΨΨH

Nb
(k). (3.24)
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3.3.2 Downlink-Uplink Duality

In Theorem 3, I derive a dual problem of (3.10) which is a virtual UL

OFDM problem with unknown noise covariance matrices.

Theorem 3 (Duality). The Lagrangian dual problem of the DL OFDM prob-

lem in (3.10) is equivalent to

P3 2 : max
Di

min
λi,u(k)

Nc,Nu,K∑
i,u,k

λi,u(k)σ
2 (3.25)

subject to max
fi,u(k)

Γul
i,u(k) ≥ γi,u(k), (3.26)

Di ⪰ 0, Di ∈ RNb×Nb : diagonal, (3.27)

tr(Di) ≤ Nb ∀i, u, k (3.28)

It is possible to consider the above problem as a virtual UL case where

λi,u(k) is considered as UL transmit power of virtual user u in cell i at sub-

carrier k and BSi operates with unknown noise covariance matrix Di.

Proof. See Appendix 3.7.

I remark that the Lagrangian dual problem in (3.25) is considered to

be an antenna power minimax problem with noise covariance constraints for

the virtual UL ODFM system with low-resolution ADCs at the BSs shown in

Theorem 3.

Corollary 7 (Strong Duality). There exists zero duality gap between the DL

problem formulation and its associated dual problem.

Proof. See Appendix 3.8.
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3.4 Proposed Solution for Joint Beamforming

In this section, I present the algorithm that can efficiently find the

DL beamforming solution by leveraging the strong dual problem derived in

Section 3.3. In particular, I separate the dual problem in Theorem 3 into the

inner minimization and outer maximization problems and solve the problems

in an alternating manner; upon obtaining the dual solution, I use the dual

solution to identify the primal solution and repeat through proper update and

projection onto feasible sets.

3.4.1 Optimal Downlink Precoder

I first present the linear relationship between the optimal DL precoder

and the dual solution, i.e., the virtual UL MMSE combiner in Corollary 8.

Corollary 8 (Optimal DL Beamformer). With coefficients τi,u(k)’s, an opti-

mal DL beamformer can be obtained by establishing a linear transformation of

the UL MMSE receiver, i.e., wi,u(k) =
√
τi,u(k)fi,u(k) ∀i, u, k. Here, τi,u(k)’s

are derived from solving τ = Σ−11NuNcK, where τ = [τ T (0), · · · , τ T (K − 1)]T

with τ (k) = [τ T
1 (k), · · · , τ T

Nc
(k)]T and τ T

i (k) = [τi,1(k), · · · , τi,Nu(k)]
T , and

Σ = blkdiag
(
Σ(0), . . . ,Σ(K − 1)

)
whose submatrix is defined as

Σ(k) =

 Σ1,1(k) · · · Σ1,Nc(k)
...

. . .
...

ΣNc,1(k) · · · ΣNc,Nc(k)

 , (3.29)
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and

[Σi,j(k)]u,v = (3.30)

α2

γi,u(k)
|gH

i,i,u(k)fi,u(k)|2− α(1− α)
∑

ℓ f
H
i,u(ℓ)ΨΨΨNb

(ℓ)

×diag
(
ΨΨΨH

Nb
g
i,i,u

(k)gH
i,i,u

(k)ΨΨΨNb

)
ΨΨΨH

Nb
(ℓ)fi,u(ℓ), if i = j, u = v,

−α2|gH
j,i,u(k)fj,v(k)|2− α(1− α)

∑
ℓ f

H
j,v(ℓ)ΨΨΨNb

(ℓ)

×diag
(
ΨΨΨH

Nb
g
j,i,u

(k)gH
j,i,u

(k)ΨΨΨNb

)
ΨΨΨH

Nb
(ℓ)fj,v(ℓ), otherwise.

Proof. See Appendix 3.9

By Corollary 8, the optimal DL precoder wi,u(k) can be derived by

using the virtual UL MMSE combiner fi,u(k) with a scalar weight
√
τi,u(k).

The virtual UL MMSE equalizer, however, is a function of the uncertain noise

covariance matrix Di and UL transmit power λi,u(k) as shown in (3.39). Ac-

cordingly, I further need to find the optimal virtual noise covariance matrix

and UL transmit power to update its corresponding UL MMSE equalizer and

DL precoder.

3.4.2 Iterative Algorithm via Dual Uplink Solution

In this subsection, I characterize the virtual UL solutions by exploiting

the strong duality and further adopt the fixed-point iteration with a projected

subgradient ascent [23] to maximize the objective function with respect to the

noise covariance matrix of the virtual UL problem.

Instead of directly solving the dual problem in (3.25), I can decouple it

into outer maximization and inner minimization problems where the latter is
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then written as

f(Di) = min
λi,u(k)

Nc,Nu,K∑
i,u,k

λi,u(k)σ
2 (3.31)

subject to max
fi,u(k)

Γ̂i,u(k) ≥ γi,u(k) ∀i, u, k.

I notice that the above problem is interpreted as the inner optimization on

λi,u(k) of the dual objective function g(D̃i, λi,u(k)) where MMSE equalizer in

(3.39) is used for computing fi,u(k). The virtual UL power control solution of

(3.31) derived in Corollary 9 is the solution of (3.31).

Corollary 9. For given Di, the optimal power for the virtual UL transmit

power minimization problem in (3.25) is derived as

λi,u(k) =
1

α
(
1 + 1

γi,u(k)

)
gH
i,i,u(k)K

−1
i,k (ΛΛΛ)gi,i,u(k)

, (3.32)

where Ki,k(ΛΛΛ) is defined as

Ki,k(ΛΛΛ) = (3.33)

Di + α
∑
j,v

λj,v(k)gi,j,v(k)g
H
i,j,v(k) + (1−α)ΨΨΨNb

(k)diag
(
ΨΨΨH

Nb
GiΛΛΛG

H
i ΨΨΨNb

)
ΨΨΨH

Nb
(k).

Proof. See Appendix 3.10.

Since Ki,k(Λ) is a function of λi,u(k), I iteratively update λi,u(k) until

convergence. Convergence to an global optimal point is guaranteed [15] for

given Di. Once I obtain the optimal λi,u(k) for the fixed covariance matrices, I

further need to update Di by solving the outer maximization for a fixed λi,u(k)

and alternate the inner and outer optimization until the solutions converge. I
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note that the function f(Di) is concave in Di, which directly follows from that

f(Di) is the objective function of a dual problem. Based on this observation,

a projected subgradient ascent method is utilized in order to maximize the

objective function while satisfying the constraints on Di in (3.27) and (3.28).

Corollary 10 (Subgradient). One of the subgradients of (3.31) in updating

Di is obtained as

diag
(∑

u,k

wi,k(k)w
H
i,k(k)

)
. (3.34)

Proof. See Appendix 3.11.

I can finally assemble the inner minimization and outer maximization

problems into the complete dual problem P3 2 in (3.25). Recall that P3 2

eventually becomes the minimax problem whose main objective is to maximize

the concave f(Di) by updating Di while satisfying the constraints on Di and

f(Di) wants to minimize the total transmit power of the virtual UL problem.

Upon obtaining a solution of f(Di) for fixed Di as shown in Corollary 9,

I update Di by taking a step in the direction of a positive subgradient to

establish an increment in the objective function.

Let D
(n)
i denote Di at the nth iteration. Then, the update of D

(n)
i is

performed as

D
(n+1)
i = D

(n)
i + η diag

(∑
u,k

wi,u(k)w
H
i,u(k)

)
, (3.35)
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where η > 0 is a real-valued step size. I remark that the subgradient ascent

method is guaranteed to converge to an optimal point since the UL problem

is convex. Since it is highly likely that D
(n+1)
i escapes the feasible domain, I

further project the updated Di onto the feasible set on Di in (3.27) and (3.28)

as

D
(n+1)
i =

(
tr
(
D

(n+1)
i

)
−Nb

)
∥1Nb
∥2

diag(1Nb
), (3.36)

and

D
(n+1)
i = max

(
0,D

(n+1)
i

)
, (3.37)

respectively, where max(a, b) represents an element-wise max function. As

discussed in [7], the alternating projection on (3.27) and (3.28) converges to

the intersection of the convex sets if there exists any point in the intersection.

For example, Di = INb
is one of the points in the intersection, and thus, the

intersection is not an empty set, thereby guaranteeing the convergence. I note

that (3.27) and (3.28) need to be performed in an alternating manner until

convergence. The proposed algorithm for the quantized CoMP beamforming

under per-antenna power and SQINR constraints (Q-CoMP-PA) is described

in Algorithm 1.

Remark 1 (Narrowband Communications). The considered quantized MIMO

OFDM system naturally reduces to a quantized MIMO narrowband system

with K = 1 subcarrier. Accordingly, the derived duality, optimal solutions,

and algorithm still hold for the quantized MIMO narrowband communications
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since the derived results and algorithm hold for an arbitrary K. In this case,

I omit the subcarrier index k from the system parameters and variables in

Algorithm 1.

3.4.3 Convergence of Sub-problems

The convergence of each sub-problem can be guaranteed as follows:

regarding the inner minimization problem, the fixed-point iteration for given

D
(n)
i converges as shown in Corollary 11.

Corollary 11. For any arbitrary initial points λ
(0)
i,u(k), ∀i, u, k, the proposed

fixed-point algorithm converges to a unique fixed point at which objective func-

tion of inner problem is minimized.

Proof. See Appendix 3.12.

Therefore, the fixed-point iteration always converges to a unique fixed

point that is the optimal solution of the inner optimization subproblem for a

fixed covariance matrix.

Regarding the outer maximization problem, the iterative projection of

D
(n)
i converges for given wi,u(k) as discussed in [7]: the alternating projection

on (3.27) and (3.28) converges to the intersection of the convex sets if there

exists any point in the intersection. Since Di = INb
belongs to the intersection,

the intersection is not an empty set, thereby guaranteeing the convergence.

Accordingly, I theoretically show that each sub-problem can be solved
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with guaranteed convergence. For the convergence of the entire algorithm, I

provide the numerical validation in Section 3.6.

3.4.4 Computational Complexity

The computational complexity of the proposed algorithm is governed

by the computation of λi,u(k), which is dominated by the matrix inversion

of Ki,k(ΛΛΛ). For the matrix inversion, the number of floating point opera-

tions can be reduced by taking advantage of the Hermitian symmetric and

positive semi-definite properties of Ki,k(ΛΛΛ). Consequently, the computational

complexity of the per-cell and Q-CoMP algorithms are O(T1KNcNuN
3
b ) and

O(T2KNcNuN
3
b ), respectively, where T1 and T2 denote the number of iter-

ations required for obtaining a converged λi,u(k) value. Likewise, the inner

optimization loop of the Q-CoMP-PA algorithm with T3 iterations has com-

putational complexity of O(T3KNcNuN
3
b ). Since the proposed Q-CoMP-PA

algorithm also requires an outer maximization loop with T0 iterations, the total

computational complexity of the proposed algorithm is O(T0T3KNcNuN
3
b ).

3.5 Simulation Results

I evaluate the derived results of the proposed Q-CoMP-PA algorithm.

I also simulate the quantization-aware CoMP algorithm (Q-CoMP) presented

in Chapter 2 for comparison. Both methods utilize multicell coordination

in designing DL precoders. However, Q-CoMP-PA minimizes the maximum

antenna power whereas Q-CoMP minimizes the total transmit power without
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considering the per-antenna power constraints. I compare the methods in

terms of maximum transmit antenna power, dynamic range, and PAPR for

wideband and narrowband systems. I assume the target SQINR γ is equal for

all users and subcarriers.

3.5.1 Wideband OFDM Communications

I consider the wideband OFDM systems assuming the delay spread is

L = 3 and the small scale fading follows Rayleigh fading with zero mean and

unit variance. I consider a 24 GHz carrier frequency with 100 MHz bandwidth.

The adjacent BSs are 200 m apart and the minimum distance between any

BS and user is 50m. For large scale fading, I adopt the log-distance pathloss

model in [1] with the 72 dB intercept, the pathloss exponent of 2.92, and the

shadow fading whose shadowing variance is 8.7 dB. Noise power is computed

with −174 dBm/Hz power spectral density and 5 dB noise figure. I also use

the sector antenna gain of 15 dB.

I evaluate the performance of the Q-CoMP-PA and Q-CoMP algorithms

in wideband OFDM communication systems. I also simulate the quantization-

aware per-cell based CoMP (Q-Percell) algorithm as an additional benchmark

by adapting the algorithm in [76] to the considered system. For the Q-Percell

algorithm, each BS first discovers its optimal solution by treating the inter-

cell interference as noise and assuming that it is fixed. Once the BSs derive

solutions for the given inter-cell interference, the BSs share the converged

solutions to update the interference power and compute solutions again. These
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Figure 3.2: Maximum transmit antenna power versus the target SQINR for
the multicell wideband network with Nb = 16 BS transmit antennas, Nc = 4
cells, Nu = 2 users per cell, K = 32 subcarriers, and b ∈ {2, 3,∞} bits.

steps repeat until the solutions converge. Consequently, Q-Percell is expected

to be far sub-optimal than the other algorithms.

In Fig. 3.2, I present the maximum transmit antenna power in DL di-

rection across all NcNb transmit antennas which is p0 of the primal DL problem

that I want to minimize for given target SQINRs. I consider Nb = 16 antennas,

Nc = 3 cells, Nu = 2 users per cell, K = 32 subcarriers, and b∈{2, 3,∞} DAC

bits. I see that the Q-Percell method consumes much higher transmit power

than the Q-CoMP method and proposed Q-CoMP-PA method and shows di-

vergence in the maximum transmit power as the target SQINR increases. In
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Figure 3.3: Empirical CDFs of BS antennas with respect to antenna transmit
power in the multicell network with Nb = 32 BS antennas, Nc = 4 cells, Nu = 2
users per cell, K = 64 subcarriers, b = 3 quantization bits, and γ = −1 dB
target SQINR.

contrast to the Q-Percell algorithm, the Q-CoMP and Q-CoMP-PA methods

with multicell coordination scale linearly with the target SQINR without im-

plausible power consumption or unfavorable divergence. Nevertheless, based

on the primal objective of the Q-CoMP-PA, the proposed algorithm can limit

the maximum transmit power providing around 3 dB reduction over the reg-

ular Q-CoMP. From both Q-CoMP and Q-CoMP-PA methods, when using

infinite-resolution quantizers, I have lower peak power compared to the one

with 2-bit or 3-bit data converters; however, the gap between b = 2, b = 3,
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and b =∞ cases is marginal for both Q-CoMP and Q-CoMP-PA by properly

taking the coarse quantization error and inter-cell interference into account.

I further note that transmit power higher than the saturation input

triggers RF nonlinearity, thereby causing a substantial reduction in RF out-

put power and many undesirable additional frequencies compared to the ideal

linear amplification regime of RF power amplifiers. As most of the state-of-

the-art RF power amplifiers introduced in [93] have the saturation input of

between 24 dBm and 26 dBm, I can interpret from Fig. 3.2 that the per-

cell and Q-CoMP methods escape the efficient amplification regime at around

3 dB and 8 dB target SQINR, respectively, while the proposed Q-CoMP-PA

has stable and linear amplification at the simulated target SQINR values.

Fig. 3.3 shows the empirical cumulative density function (CDF) of the

transmit power of all antennas by collecting the computed transmit power

from all NbNc BS antennas. I employ a communication network with Nb = 32,

Nc = 4, Nu = 2, K = 64, b = 3, and γ = −1 dB. When comparing the peak

power, the proposed Q-CoMP-PA method achieves around 4 dB lower maxi-

mum antenna power over Q-CoMP, which corresponds to the main purpose of

the primal problem. Furthermore, the dynamic range defined as the gap be-

tween the minimum and maximum antenna power is narrower for Q-CoMP-PA

compared to Q-CoMP, thereby showing more even power distribution across

antennas. Therefore, the proposed method increases the efficiency of power-

related components such as power amplifier.
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Figure 3.4: Maximum transmit antenna power versus target SQINR for the
communication network with Nb = 32 transmit antennas per BS, Nc = 4 cells,
Nu = 2 users per cell, b ∈ {2, 3,∞} bits, and K = 1.

3.5.2 Narrowband Communications

As a special case, I simulate over the narrowband channel, i.e. K = 1,

as stated in Remark 1. I assume that the small scale fading of each chan-

nel fading coefficient also follows Rayleigh fading with zero mean and unit

variance. For the large scale fading, I adopt the log-distance pathloss model

in [27]. The distance between adjacent BSs is 2 km. The minimum distance

between BS and user is 100m. I consider a 2.4GHz carrier frequency with

10MHz bandwidth and use the same large scale fading model as the one used

in Section 3.5.1
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Fig. 3.4 illustrates the maximum transmit antenna power across NcNb

transmit antennas. I consider Nb = 32, Nc = 4, Nu = 2, and b ∈ {2, 3,∞}

bits. The benefit of the proposed Q-CoMP-PA method identified in the wide-

band simulation can also be confirmed in the narrowband case. By properly

incorporating the quantization noise and inter-cell interference in designing

wi,u, the proposed Q-CoMP-PA method can achieve the 3 dB reduction over

Q-CoMP in peak transmit power without experiencing undesirable divergence

at the simulated target SQINR values.

Fig. 3.5 shows the CDF of the transmit power of all antennas. I use

Nb = 32, Nc = 5, Nu = 2, and b = 3. Q-CoMP-PA achieves more than

3 dB reduction in the maximum transmit antenna power and operates with

a much narrower dynamic range than Q-CoMP. This result validates that

the proposed algorithm also outperforms Q-CoMP in minimizing the transmit

antenna power under the quality-of-service constraints for the narrowband

communication system.

3.5.3 Convergence

Fig. 3.6 shows progress in maximum transmit power with respect to

the number of iterations of Q-CoMP-PA until the stopping condition is met

considering γ ∈ {−3, 0, 3} dB, b = 3, Nb = 32, Nc = 2, Nu = 3, K = 64. It

can be seen that more iterations are needed and the algorithm converges to a

higher peak power as the target SQINR is raised. Since the curve is saturated

after a certain number of iterations and the number of iterations is determined
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Figure 3.5: Empirical CDF of the transmit power of all BS transmit antennas
in the network with Nb = 32 transmit antennas per BS, Nc = 5 cells, Nu = 2
users per cell, b = 3 quantization bits, γ = 2 dB target SQINR, and K = 1.

by the stopping condition of the algorithm, I remark that the convergence can

be faster by alleviating the stopping condition.

3.5.4 Channel Estimation Error

To assess the effects of channel estimation error, I employ a Gaussian

channel estimation error model [96] that defines the estimated UL channel

between BS i and user u in cell j as

ĥi,j,u =
√

(1− e2) hi,j,u + e ei,j,u, (3.38)
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Figure 3.6: Convergence behavior for Nb = 32 antennas, Nc = 2 cells, Nu = 3
users per cell, b = 3 bits, K = 64 subcarriers, and γ ∈ {−3, 0, 3} dB.

where e determines the degree of error, and ei,j,u is an error vector whose

elements follow CN(0, ρi,j,u) in which ρi,j,u denotes large scale fading between

BSi and user u in cell j.

Fig. 3.7 shows CDFs of the achieved SQINR for channel estimation error

factor e ∈ {0, 0.1, 0.2}, γ = 3 dB, b = 3, Nb = 32, Nc = 4, and Nu = 3. As

e increases, the deviation from the target SQINR increases, resulting in less

accurate performance in achieved SQINR. The Q-CoMP algorithm is more

robust to the estimation error than the Q-Percell method, showing a smaller

deviation from the target SQINR γ = 3 dB.
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Figure 3.7: CDFs of the SQINRs of users in all cells for γ = 3 dB target
SQINR, b = 3 quantization bits, Nb = 32 BS antennas, Nc = 4 cells, and
Nu = 3 users per cell with channel estimation error factor e ∈ {0, 0.1, 0.2}.

3.5.5 Peak-to-Average-Power Ratio (PAPR)

In this subsection, I simulate the PAPR of the transmitted signals.

Since a large peak amplitude causes severe performance loss, reducing the

PAPR is considered as one of the important topics in OFDM systems. In

Table 3.1(a), I analyze a wideband communication network with Nb = 16,

Nc = 3, Nu = 2, K = 64, and b = 3 over γ ∈ {−5, 1} dB. It is observed that

Q-CoMP-PA achieves the lowest PAPR for the considered target SQINRs,

reducing it by more than 2 dB and 5 dB from Q-CoMP and Q-Percell, respec-

tively. Both Q-CoMP and Q-CoMP-PA methods exhibit more robust PAPR
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performance for different target SQINRs than Q-Percell.

In Table 3.1(b), I consider a narrowband communication network with

Nb = 32, Nc ∈ {2, 4, 6}, Nu = 2, and b = 3 over γ ∈ {−3, 2} dB. As shown

in Table 3.1(b), Q-CoMP-PA also achieves significant reduction in PAPR,

showing more than 1.8 dB gain over Q-CoMP. Furthermore, it is shown that

Q-CoMP-PA maintains similar PAPR over different SQINR targets or the dif-

ferent number of cells. Q-Percell with limited multicell coordination still de-

mands the highest PAPR, which emphasizes the significance of taking multicell

coordination into account since the decrease in PAPR is siginificant when em-

ploying the proposed Q-CoMP-PA. Therefore, Q-CoMP-PA is more favorable

for communication systems by limiting the peak power of transmit antennas.

3.6 Conclusion

In this chapter, I investigated the DL OFDM CoMP beamforming prob-

lem with low-resolution data converters and employed per-antenna power con-

straints to give a more practical power-efficient solution. The DL antenna

power minimization problem with SQINR constraints was formulated as a pri-

mal problem, and I derived the associated dual problem. I interpreted the

dual problem as a virtual UL transmit power minimization problem with re-

spect to the transmit power and noise covariance matrix. Subsequently, I

showed that strong duality holds between the primal DL and dual UL prob-

lems. Inspired by the strong duality, I proposed an iterative DL beamforming

algorithm. To this end, I addressed the inner and outer problems of the dual in
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an alternating manner by solving the inner power control problem via fixed-

point iteration and the outer noise covariance design problem via projected

subgradient ascent. Then, the DL beamforming solutions were directly ob-

tained from the UL beamforming solution through linear transformation. In

simulation, I demonstrated the proposed Q-CoMP-PA algorithm is effective by

reducing per-antenna transmit power while achieving target requirements over

a wide variety of system settings. The derived duality can provide insight for

designing power-efficient communication networks and the proposed method

can contribute to realizing highly efficient and reliable future communication

networks.

3.7 Proof of Theorem 3

Considering fi,u(k) as a combiner at subcarrier k for user u in cell i, I

let fi,u(k) be the MMSE equalizer defined as

fi,u(k) =Z−1
i,u(k)gi,i,u(k). (3.39)

Since the MMSE combiner maximizes SQINR, i.e., Γ̂i,u(k), applying

(3.39) and ΨΨΨNb
(k)ΨΨΨH

Nb
(k) = INb

to (5.5) simplify the SQINR constraint into

α2λi,u(k)g
H
i,i,uZ

−1
i,u(k)gi,i,u(k) ≥ γi,u(k). Therefore, multiplying both sides by

gH
i,i,u(k)gi,i,u(k) and rearranging the terms give

0 ≤ gH
i,i,u(k)gi,i,u(k)

(
α2λi,u(k)g

H
i,i,uZ

−1
i,u(k)gi,i,u(k)− γi,u(k)INb

)
(3.40)

= gH
i,i,u(k)

(
α2λi,u(k)gi,i,u(k)g

H
i,i,uZ

−1
i,u(k)− γi,u(k)INb

)
gi,i,u(k). (3.41)
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I equivalently require α2λi,u(k)gi,i,u(k)g
H
i,i,u ⪰ γi,u(k)Zi,u(k). Noting that Zi,u(k) =

αKi,k(ΛΛΛ)−α2λi,u(k)gi,i,u(k)g
H
i,i,u where Ki,k(ΛΛΛ) is the covariance matrix of the

received signal defined as

Ki,k(ΛΛΛ)= (3.42)

Di+α
∑
j,v

λj,v(k)gi,j,v(k)g
H
i,j,v(k)+(1−α)ΨΨΨNb

(k)diag
(
ΨΨΨH

Nb
GiΛΛΛG

H
i ΨΨΨNb

)
ΨH
Nb
(k).

Rearranging the above semidefinite condition allows rewritting the original

problem as

max
Di

min
λi,u(k)

Nc,Nu,K∑
i,u,k

λi,u(k)σ
2 (3.43)

subject to Ki,k(ΛΛΛ) ⪯ α

(
1 +

1

γi,u(k)

)
λi,u(k)gi,i,u(k)g

H
i,i,u(k), (3.44)

Di ⪰ 0, Di ∈ RNb×Nb : diagonal,

tr(Di) ≤ Nb ∀i, u, k

Now, I show that (3.43) is equivalent to the Lagrangian dual of (3.10).

To this end, I first rewrite the per-antenna constraint for antenna m in (3.12)

as [
E[xq,i(k)x

H
q,i(k)]

]
m,m

=

[
α

K

K−1∑
ℓ=0

Wi(ℓ)W
H
i (ℓ)

]
m,m

. (3.45)

I multiply the objective function in (3.10) by a scalar value, KNcNb, which

does not change the fundamental of the primal problem. With Lagrangian

multipliers µi,u(k) and νi,m(k), the Lagrangian of the primal DL problem in
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(3.10) is given as

L (wi,u(k), µi,u(k), νi,m(ℓ)) = KNcNbp0 −
∑
i,u,k

µi,u(k)

(
α2|wH

i,u(k)gi,i,u(k)|2

γi,u(k)

− α2

Nc,Nu∑
(j,v)̸=(i,u)

|gH
j,i,u(k)wj,v(k)|2 −Qi,u(k)− σ2

)

+
∑
i,m,ℓ

νi,m(ℓ)

[ α
K

K−1∑
ℓ=0

Wi(ℓ)W
H
i (ℓ)

]
m,m

− p0

 . (3.46)

To make the Lagrangian tractable, I start by rewriting
∑

i,u,k µi,u(k)Qi,u(k)

in the Lagrangian to manipulate Wi which is deeply embedded in Cqjqj
of

Qi,u(k). By mapping the indices from (i, u, k, j) to (j, v, ℓ, i), I have

∑
i,u,k

µi,u(k)Qi,u(k) =
∑
i,u,k

µi,u(k)
Nc∑
j=1

gH

j,i,u
(k)ΨΨΨNb

Cqj ,qj
ΨΨΨH

Nb
g
j,i,u

(k)

=
∑
j,v,ℓ,i

µj,v(ℓ)g
H

i,j,v
(ℓ)ΨΨΨNb

diag

(∑
u,k

|ψψψH
Nb,m

(n)wi,u(k)|2,∀m,n

)
ΨΨΨH

Nb
g
i,j,v

(ℓ)

(3.47)

where ψψψNb,m
(n) denotes the (m+ (n− 1)Nb)th column of ΨΨΨNb

, i.e., ψψψNb,m
(n) =

[wDFT,n⊗INb
]:,m form = 1, . . . , Nb, n = 1, . . . , K, andwi,u(k) is the (kNu+u)th

column ofWi. LetMi(k) = diag(µi,1(k), . . . , µi,Nu(k)),Mi = blkdiag
(
Mi(0), . . . ,Mi(K−

1)
)
, and M = [M1, . . . ,MNc

]. Recalling that ΨΨΨNb
(k) =

(
[WDFT]k+1,: ⊗ INb

)
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and Gi = [Gi,1, . . . ,Gi,Nc
], (3.47) is rewritten as

∑
j,v,ℓ,i

µj,v(ℓ)
∑
m,n

(∑
u,k

|ψψψH
Nb,m

(n)wi,u(k)|2
(∑

r

g∗
i,j,v,r

(ℓ)ψNb,m,r(n)

)(∑
r′

g
i,j,v,r′

(ℓ)ψ∗
Nb,m,r′(n)

))

=
∑
i,u,k

wH
i,u(k)

(∑
m,n

ψψψNb,m
(n)

(∑
j,v,ℓ

µj,v(ℓ)ψψψ
H
Nb,m

(n)g
i,j,v

(ℓ)gH

i,j,v
(ℓ)ψψψNb,m

(n)

)
ψψψH

Nb,m
(n)

)
wi,u(k)

=
∑
i,u,k

wH
i,u(k)ΨΨΨNb

diag
(
ΨΨΨH

Nb
Gi MGH

i ΨΨΨNb

)
ΨΨΨH

Nb
wi,u(k)

(a)
=
∑
i,u,k

wH
i,u(k)ΨΨΨNb

(k)diag
(
ΨΨΨH

Nb
Gi MGH

i ΨΨΨNb

)
ΨΨΨH

Nb
(k)wi,u(k). (3.48)

Here, (a) comes from wH
i,u(k)ΨΨΨNb

= wH
i,u(k)ΨΨΨNb

(k) since wi,u(k) has nonzero

elements wi,u(k) only in the position that corresponds to the precoder for

subcarrier k, and g
i,j,v,r

(ℓ) and ψNb,m,r(n) are the rth elements of g
i,j,v

(ℓ) and

ψψψNb,m
(n), respectively.

Next, I define D̃i(k) = diag(νi,1(k), . . . , νi,Nb
(k)). By switching the

indices between k and ℓ, I can cast
∑

i,m,k νi,m(k)
[∑K−1

ℓ=0 Wi(ℓ)W
H
i (ℓ)

]
m,m

in

(3.46) to

∑
i,m,ℓ

νi,m(ℓ)

[∑
u,k

wi,u(k)w
H
i,u(k)

]
m,m

=
∑
i,m,ℓ

∑
u,k

w∗
i,u,m(k)νi,m(ℓ)wi,u,m(k)

=
∑
i,u,k

wH
i,u(k)D̃iwi,u(k), (3.49)

where wi,u,m(k) is the mth element of wi,u(k) and D̃i =
∑K−1

ℓ=0 D̃i(ℓ). Further,∑
i,m,ℓ νi,m(ℓ)p0 in (3.46) can be redrafted as

p0
∑
i,m,ℓ

νi,m(ℓ) = p0

Nc∑
i=1

tr(D̃i). (3.50)
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By applying (3.48), (3.49), and (3.50) to the Lagrangian, I have the

reformulated Lagrangian as

L (wi,u(k), µi,u(k), νi,m(ℓ)) =
∑
i,u,k

µi,u(k)σ
2 − p0

∑
i

[
tr(D̃i)−KNb

]
(3.51)

+
∑
i,u,k

wH
i,u(k)

(
α

K
D̃i − α2

(
1 +

1

γi,u(k)

)
λi,u(k)gi,i,u(k)g

H
i,i,u(k)

+ α2
∑
j,v

λj,v(k)gi,j,v(k)g
H
i,j,v(k)

+ α(1− α)ΨΨΨNb
(k)diag

(
ΨΨΨH

Nb
GiΛΛΛGH

i ΨΨΨNb

)
ΨΨΨH

Nb
(k)

)
wi,u(k).

Define the dual objective function as

g(µi,u(k)), νi,m(ℓ)) = min
wi,u(k),p0

L(wi,u(k), µi,u(k), νi,m(ℓ)) (3.52)

and let Di =
1
K
D̃i. To avoid an unbounded objective function, the required

conditions are tr(Di) ≤ Nb and

Ki,k(M)=

Di+α
∑
j,v

µj,v(k)gi,j,v(k)g
H
i,j,v(k)+(1−α)ΨΨΨNb

(k)diag
(
ΨΨΨH

Nb
GiMGH

i ΨΨΨNb

)
ΨΨΨH

Nb
(k)

⪰ α
(
1 + 1/γi,u(k)

)
µi,u(k)gi,i,u(k)g

H
i,i,u(k). (3.53)

Consequently, the Lagrangian dual problem of (3.10) can be formulated as

max
Di

max
µi,u(k)

Nc,Nu,K∑
i,u,k

µi,u(k)σ
2 (3.54)

subject to Ki,k(M) ⪰ α

(
1 +

1

γi,u(k)

)
µi,u(k)gi,i,u(k)g

H
i,i,u(k), (3.55)

Di ⪰ 0, Di ∈ RNb×Nb : diagonal,

tr(Di) ≤ Nb ∀i, u, k.
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The differences between (3.43) and (3.54) are the opposite objective problems

with respect to λi,u(k) and µi,u(k), i.e., min vs. max, and the reversed SQINR

inequality conditions in (3.44) and (3.55). Since (3.43) and (3.54) obtain op-

timal solutions when the SQINR constraints satisfy equality conditions, the

solutions for both problems are indeed equivalent to each other with the active

SQINR constraints. Therefore, (3.43) and (3.54) are equivalent, and λi,u(k)

and µi,u(k) are interchangeable. This completes the proof.

3.8 Proof of Corollary 7

First of all, the identity in (3.45) allows the primal DL problem in (3.10)

to be rewritten as

min
wi,u(k),po

po (3.56)

s.t. Γi,u(k) ≥ γi,u(k), ∀i, u, k (3.57)[
α

K

K−1∑
ℓ=0

Wi(ℓ)W
H
i (ℓ)

]
m,m

≤ po. (3.58)

Let WBD(k) = blkdiag(W1(k), . . . ,WNc(k)), W̃BD(k) = blkdiag((IKNb
⊗

W1(k)), . . . , (IKNb
⊗WNc(k))), W̃BD = blkdiag(W̃BD(0), . . . ,W̃BD(K − 1)),

Ψ̃ΨΨNb
(k) = IKNb

⊗ΨΨΨNb
(k), Ψ̃ΨΨNb

= blkdiag(Ψ̃ΨΨNb
(0), . . . , Ψ̃ΨΨNb

(K − 1)), Ej,i,u(k) =

diag(ΨΨΨNb
g
j,i,u

gH
j,i,u

ΨΨΨH
Nb
), and Ei,u(k) = 1K ⊗ vec(E

1/2
1,i,u(k), . . . ,E

1/2
Nc,i,u

(k)). The
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SQINR constraints in (3.57) can be re-interpreted as

α2

(
1 +

1

γi,u(k)

)
|wH

i,u(k)gi,i,u|2 (3.59)

≥

∥∥∥∥∥∥∥∥∥
αWH

BD(k)vec(g1,i,u, . . . ,gNc,i,u)√
α(1− α)W̃BD(0)Ψ̃ΨΨNb

(0)vec(E
1/2
1,i,u(k),..,E

1/2
Nc,i,u

(k))
...√

α(1− α)W̃BD(K − 1)Ψ̃ΨΨNb
(K − 1)vec(E

1/2
1,i,u(k),..,E

1/2
Nc,i,u

(k))

∥∥∥∥∥∥∥∥∥

2

+ σ2

(3.60)

=

∥∥∥∥αWH
BD(k)vec(g1,i,u, . . . ,gNc,i,u)√
α(1− α)W̃BDΨ̃ΨΨNb

Ei,u(k)

∥∥∥∥2 + σ2, (3.61)

for all i, u, and k. In addition, the per-antenna constraint in (3.58) is rewritten

as[
α

K

K−1∑
ℓ=0

Wi(ℓ)W
H
i (ℓ)

]
m,m

=
α

K

∥∥vec(eHmWi(0), . . . , e
H
mWi(K − 1))

∥∥2 (3.62)

for all m. Accordingly, the primal DL problem in (3.10) can be cast to the

SOCP. Since (3.10) is strictly feasible and convex, strong duality holds between

(3.10) and (3.25).
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3.9 Proof of Corollary 8

I first find the derivative of the Lagrangian in (3.51) with respect to

wi,u(k) as

∂L(wi,u(k), λi,u(k), νi,m(ℓ))

∂wi,u(k)
= 2

(
α

K
D̃i−α2

(
1+

1

γi,u(k)

)
λi,u(k)gi,i,u(k)g

H
i,i,u(k)

+ α2
∑
j,v

λj,v(k)gi,j,v(k)g
H
i,j,v(k)

+α(1− α)ΨΨΨNb
(k)diag

(
ΨΨΨH

Nb
GiΛΛΛGH

i ΨΨΨNb

)
ΨΨΨH

Nb
(k)

)
wi,u(k). (3.63)

I then set the derivative of the Lagrangian to zero, and solve it for wi,u(k) as

wi,u(k) =

(
α2
∑

(j,v)̸=(i,u)

λj,v(k)gi,j,v(k)g
H
i,j,v(k)

+ α(1− α)ΨΨΨNb
(k)diag

(
ΨΨΨH

Nb
GiΛΛΛGH

i ΨΨΨNb

)
ΨΨΨH

Nb
(k)+αDi

)−1

×

α2

γi,u(k)
λi,u(k)gi,i,u(k)g

H
i,i,u(k)wi,u(k) (3.64)

(a)
=

α2

γi,u(k)
λi,u(k)g

H
i,i,u(k)wi,u(k)fi,u(k) (3.65)

where (a) comes from fi,u(k) given in (3.39). As a result, I argue wi,u(k) =√
τi,u(k)fi,u(k) with properly computed τi,u(k).

To satisfy the Karush–Kuhn–Tucker stationarity condition with the

DL constraint in (3.11), Γi,u(k) has to meet the target SQINR constraint with

strict equality. For given i, u, k, define ξi′,u′(n) = 1 if (i′, u′, n) = (i, u, k), and

ξi′,u′(n) = 0 otherwise. I collect ξi,u’s as Ξi(k) = diag(ξi,1(k), . . . , ξi,Nu(k)),

Ξ(k) = blkdiag(Ξ1, . . . ,ΞNc), and Ξ = blkdiag(Ξ(0) . . . ,Ξ(K − 1)). I then
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rewrite the quantization error term in (3.8) in a tractable form as

Qi,u(k)
(a)
= α(1− α)

Nc∑
j=1

gH

j,i,u
(k)ΨΨΨNb

diag
(
ΨΨΨH

Nb
WjW

H
j ΨΨΨNb

)
ΨΨΨH

Nb
g
j,i,u

(k)

= α(1− α)
∑

i′,u′,n,j

ξi′,u′(n)gH

j,i′,u′(n)ΨΨΨNb
diag

(
ΨΨΨH

Nb
WjW

H
j ΨΨΨNb

)
ΨΨΨH

Nb
g
j,i′,u′(n)

= α(1− α)
∑
j,v,ℓ

wH
j,v(ℓ)ΨΨΨNb

(ℓ)diag
(
ΨΨΨH

Nb
Gj ΞGH

j ΨΨΨNb

)
ΨΨΨH

Nb
(ℓ)wj,v(ℓ)

(b)
= α(1− α)

∑
j,v,ℓ

wH
j,v(ℓ)ΨΨΨNb

(ℓ)diag
(
ΨΨΨH

Nb
g
j,i,u

(k)gH

j,i,u
(k)HΨΨΨNb

)
ΨΨΨH

Nb
(ℓ)wH

j,v(ℓ),

(3.66)

where (a) is obtained by substituting (3.5) into (3.9) and (b) comes from the

fact that Gj ΞGH
j = g

j,i,u
(k)gH

j,i,u
(k) since Ξ can activate the (kNu + u)th

column of Gj only.

Accordingly, the active DL SQINR constraint is rewritten as follows:

σ2 =
α2

γi,u(k)
|gH

i,i,u(k)wi,u(k)|2 − α2

Nc,Nu∑
(j,v) ̸=(i,u)

|gH
j,i,u(k)wj,v(k)|2 −Qi,k(k)

(a)
=

α2

γi,u
|gH

i,i,u(k)fi,u(k)|2τi,u(k)− α2
∑

(j,v)̸=(i,u)

|gj,i,u(k)f
H
j,v(k)|2τj,v(k)

− α(1− α)
∑
j,v,ℓ

τj,v(ℓ)f
H
j,v(ℓ)ΨΨΨNb

(ℓ)diag
(
ΨΨΨH

Nb
g
j,i,u

(k)gH

j,i,u
(k)HΨΨΨNb

)
ΨΨΨH

Nb
(ℓ)fHj,v(ℓ),

(3.67)

for all i, u, k where (a) is from (3.66) and wi,u(k) =
√
τi,u(k)fi,u(k). Repre-

senting (3.67) for all i, u, k gives σ21 = Στ , thereby having τi,u(k) by solving

τ = σ2Σ−11.
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3.10 Proof of Corollary 9

(3.32) is obtained by setting the Lagrangian in (3.63) to zero, solving

for λi,u(k), and replacing α
K
D̃i with Di. Thus, the solution of λi,u(k) satisfies

the stationary condition, and I further observe that the UL SQINR constraint

in (3.12) is active at the solution satisfying the complementary slackness con-

dition. Therefore, (3.32) is optimal solution of the UL OFDM problem.

3.11 Proof of Corollary 10

Using the beamforming duality between UL and DL problems shown

in [23] and [15], f(Di) in (3.31) for fixedDi can be transformed to the following

DL beamforming problem:

f(Di) = min
wi,u(k)

Nu,K∑
u,k

wH
i,u(k)Diwi,u(k) (3.68)

subject to Γi,u(k) ≥ γi,u(k) ∀i, u, k.

I introduce two arbitrary diagonal covariance matrices Di and D′
i whose asso-

ciated optimal solution of (3.68) is denoted aswi,u(k) andw′
i,u(k), respectively.

I can then discover the following inequality on the objective function:

f(D′
i)− f(Di) =

∑
u,k

w′H
i,u(k)D

′
iw

′
i,u(k)−

∑
u,k

wH
i,u(k)Diwi,u(k)

(a)

≤
∑
u,k

wH
i,u(k)D

′
iwi,u(k)−

∑
u,k

wH
i,u(k)Diwi,u(k)

(b)
= tr

(
diag

(∑
u,k

wi,k(k)w
H
i,k(k)

)
(D′

i −Di)

)
, (3.69)
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where (a) holds because associating D′
i with wi,u(k) cannot decrease the ob-

jective function from w′
i,u(k), and (b) follows because (D′

i − Di) is diago-

nal. From the definition of a subgradient: A is a subgradient if f(D′
i) ≤

f(Di) + tr(A(D′
i −Di)), (3.34) is a subgradient of f(Di).

3.12 Proof of Corollary 11

Proof. The proof is based on the standard function approach presented in [15,

23, 105]. Let us rewrite (3.32) as λ
(n+1)
i,u (k) = Fi,u,k(ΛΛΛ

(n)). I need to show that

Fi,u,k(ΛΛΛ) is a standard function which satisfies the followings:

• (Positivity) If λi,u(k) ≥ 0 ∀i, u, k, then Fi,u,k(ΛΛΛ) > 0.

Proof. By limiting λ
(n+1)
i,u (k) to be non-negative, I have Ki,k(ΛΛΛ) ≻ 0;

hence K−1
i,k (ΛΛΛ) ≻ 0. This makes the denominator of (3.32) strictly posi-

tive.

• (Monotonicity) If λi,u(k) ≥ λ′i,u(k) ∀i, u, k, then Fi,u,k(ΛΛΛ) ≥ Fi,u,k(ΛΛΛ
′).

Proof. For the sake of brevity, I define the signal and quantization noise

part of the covariance matrix as

R(ΛΛΛ) = (3.70)

α
∑
j,v

λj,v(k)gi,j,v(k)g
H
i,j,v(k) + (1−α)ΨΨΨNb

(k)diag
(
ΨΨΨH

Nb
GiΛΛΛG

H
i ΨΨΨNb

)
ΨΨΨH

Nb
(k).
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Leveraging the fact that ΛΛΛ is a diagonal matrix, the covariance matrix

of the received signal is then rewritten as

Ki,k(ΛΛΛ) = Di +R(ΛΛΛ) (3.71)

= Di +R(ΛΛΛ′) +R(ΛΛΛ−ΛΛΛ′). (3.72)

Since I assume λi,u(k) ≥ λ′i,u(k), I can notice that R((ΛΛΛ −ΛΛΛ′)) ⪰ 0. In

addition, I know Di+R(ΛΛΛ) ⪰ 0 and gH
i,i,u(k) is in the range of Di+R(ΛΛΛ′)

. By Proposition 4 of [102], the following relationship holds:

Fi,u,k(ΛΛΛ) =
1

α
(
1 + 1

γi,u(k)

)
gH
i,i,u(k)

(
Di +R(ΛΛΛ′) +R(ΛΛΛ−ΛΛΛ′)

)−1

gi,i,u(k)

(3.73)

≥ 1

α
(
1 + 1

γi,u(k)

)
gH
i,i,u(k)

(
Di +R(ΛΛΛ′)

)−1

gi,i,u(k)
(3.74)

= Fi,u,k(ΛΛΛ
′) (3.75)

• (Scalability) For ρ > 1, ρFi,u,k(ΛΛΛ) > Fi,u,k(ρΛΛΛ).

Proof. I have (ρ − 1)Di is still a semidefinite matrix. By Proposition 4

of [102], the following relationship holds:

ρFi,u,k(ΛΛΛ) =
1

α
(
1 + 1

γi,u(k)

)
gH
i,i,u(k)

(
(ρ− 1)Di +Di + ρR(ΛΛΛ)

)−1

gi,i,u(k)

(3.76)

≥ 1

α
(
1 + 1

γi,u(k)

)
gH
i,i,u(k) (Di + ρR(ΛΛΛ))−1 gi,i,u(k)

(3.77)

= Fi,u,k(ρΛΛΛ) (3.78)
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Since equality holds when ρ(ρ− 1)Di

(
Di +R(ΛΛΛ)

)−1

gi,i,u(k) = 0. Since

multiplying by gi,i,u(k)
HD−1

i on the left side yields

Combining the three proofs completes the proof of Corollary
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Algorithm 1: Quantization-aware iterative CoMP with per-
antenna constraints (Q-CoMP-PA)

1 Initialize λ
(0)
i,u(k), ∀i, u, k and D

(0)
i , ∀i.

2 while |D(n)
i −D

(n−1)
i | ≥ ϵD, ∀i do

3 while |λ(t)i,u(k)− λ
(t−1)
i,u (k)| ≥ ϵλ, ∀i, u, k do

4 Compute Ki,k(ΛΛΛ
(t)) according to (3.42) using λ

(t)
i,u(k) and

D
(n)
i .

5 Update λ
(t+1)
i,u (k) according to (3.32) as

λ
(t+1)
i,u (k)← 1

α
(
1 + 1

γi,u(k)

)
gH
i,i,u(k)K

−1
i,k (ΛΛΛ

(t))gi,i,u(k)
, ∀i, u, k,

6

t← t+ 1.
7 end

8 Find the UL MMSE equalizer fi,u(k) in (3.39) with D
(n)
i and

λ
(t)
i,u(k).

9 Compute the DL precoder wi,u(k) from Corollary 8.

10 Update D
(n+1)
i using a subgradient ascent method as

D
(n+1)
i ←D

(n)
i +η diag

(∑
u,k

wi,u(k)w
H
i,u(k)

)
,∀i.

Project D
(n+1)
i onto the feasible set (3.27)-(3.28) until

converges as

D
(n+1)
i ← max

0,

(
tr
(
D

(n+1)
i

)
−Nb

)
∥1Nb
∥2

diag(1Nb
)

 ,∀i.

n← n+ 1.
11 end
12 return wi,u(k), ∀i, u, k.
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Table 3.1: Comparison of peak-to-average power ratio (PAPR) for selected
target SQINR values γ.

γ [dB] Q-Percell Q-CoMP Q-CoMP-PA
1 8.21 dB 4.98 dB 2.96 dB
-5 7.99 dB 4.93 dB 2.88 dB

(a) PAPR of the wideband OFDM system with Nb = 32 antennas, Nc = 3
cells, Nu = 2 users per cell, b = 3 bits, and K = 64 subcarriers.

γ Nc = 2 cells
[dB] Q-Percell Q-CoMP Q-CoMP-PA
2 4.02 dB 2.96 dB 2.18 dB
-3 3.97 dB 2.94 dB 2.07 dB

γ Nc = 4 cells
[dB] Q-Percell Q-CoMP Q-CoMP-PA
2 5.35 dB 4.21 dB 2.25 dB
-3 5.58 dB 4.42 dB 2.55 dB

γ Nc = 6 cells
[dB] Q-Percell Q-CoMP Q-CoMP-PA
2 5.49 dB 4.57 dB 2.51 dB
-3 5.96 dB 4.81 dB 3.02 dB

(b) PAPR of the narrowband system with with Nb = 32 antennas,
Nc ∈ {2, 4, 6} cells, Nu = 2 users per cell, and b = 3 bits.
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Chapter 4

Learning-Based Maximum Likelihood

Detection with One-Bit ADCs

In this chapter1, I propose a learning-based detection framework for

uplink massive multiple-input-multiple-output (MIMO) systems with one-bit

analog-to-digital converters (ADCs). The learning-based detection only re-

quires counting the occurrences of the quantized outputs of -1 and +1 for

estimating a likelihood probability at each antenna. Accordingly, the key ad-

vantage of this approach is to perform maximum likelihood detection without

explicit channel estimation which has been one of the primary challenges of

one-bit quantized systems. The learning in the high signal-to-noise ratio (SNR)

regime, however, needs excessive training to estimate the extremely small like-

lihood probabilities. To address this drawback, I propose a dither-and-learning

technique to estimate likelihood functions from dithered signals. First, I add

a dithering signal to artificially decrease the SNR and then infer the likelihood

1This chapter is based on the following submitted paper: Y. Cho, J. Choi, and B. L.
Evans, “Adaptive Learning-Based Maximum Likelihood and Channel-Coded Detection for
Massive MIMO Systems with One-Bit ADCs,” submitted to IEEE Transactions on Vehicu-
lar Technologies, 2023. This work was published in part in the following conference paper: J.
Choi, Y. Cho, and B. L. Evans, “Robust Learning-Based ML Detection for Massive MIMO
Systems with One-Bit Quantized Signals,” in IEEE Global Communications Conference
(Globecom), Dec. 9-13, 2019. This work was supervised by Prof. Brian L. Evans.
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function from the quantized dithered signals by using an SNR estimate derived

from an deep neural network-based offline estimator. I extend the dithering

technique by developing an adaptive dither-and-learning method that updates

the dithering power according the patterns observed in the quantized dithered

signals. The proposed framework is also applied to state-of-the-art channel-

coded MIMO systems by computing a bit-wise and user-wise log-likelihood

ratio (LLR) from the refined likelihood probabilities. Simulation results vali-

date the detection performance of the proposed methods in both uncoded and

coded systems.

4.1 Introduction

Massive MIMO systems for sub-6 GHz wireless communications [46, 66]

and millimeter wave (mmWave) communications [3, 33, 74, 75] have been con-

sidered as one of the emerging technologies for future communications because

of the outstanding gain in spectral efficiency and capacity [56]. As wireless

communication systems continue to grow in popularity and importance, there

is a need to investigate communications systems that are not only reliable and

high-performing, but also energy-efficient for various future wireless applica-

tions such as vehicle-to-everything, internet-of-things, extended reality, and

smart grid [25, 79]. Because of the small wavelength of mmWave signals and

small antenna spacing, the mmWave system allows the installation of more

antennas per unit area, each of which is connected to a RF chain with a pair

of high-precision data converters.
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However, the use of a large number of high-resolution ADCs at re-

ceivers results in prohibitively huge power consumption, which becomes the

main bottleneck in the practical deployment because a high-resolution ADC

is particularly power-hungry as the power consumption of an ADC tends to

scale up exponentially with the number of quantization bits. To overcome

the circuit power issue, deploying low-precision ADCs has been considered as

a low-power solution over the past years [16, 18, 20, 89, 101]. As an extreme

case of the low-resolution data converters, the use of one-bit data convert-

ers has emerged and become particularly attractive due to the ability to en-

hance power efficiency, lower hardware cost, and simplify analog processing

of receivers [14, 21, 22, 58, 62, 63, 71, 100]. Because of the strong nonlinearity,

data detection and channel estimation with one-bit data converters become

more challenging; however, the use of massive antenna arrays can alleviate the

performance loss [51, 84]. Nevertheless, when conventional signal processing

algorithms are applied directly to low-resolution systems, significant perfor-

mance losses can be experienced due to the severe nonlinear distortions that

low-resolution ADCs cause.

4.1.1 Prior Works

State-of-the-art one-bit detection, oversampling, beamforming, and chan-

nel estimation techniques have been developed in the recent decades [14, 21, 22,

39, 55, 71, 100]. Low-complexity symbol-level beamforming methods for one-

bit quantized systems were developed for quadrature-amplitude-modulation
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(QAM) constellations [71]. Taking into account the heavily quantized sig-

nals and antenna correlations, an iterative multiuser detection by using a

message-passing de-quantization algorithm was devised in [100]. In [21], a

high-complexity one-bit ML detection and low-complxity zero-forcing (ZF)-

type detection methods were developed. In terms of MIMO detectors, by con-

verting the ML estimation problem in [21] to convex optimization, the optimal

maximum-likelihood (ML) detector was introduced and the near-ML detector

was also proposed by transforming the ML detection problem into a tractable

convex optimization problem [22]. Successive-interference-cancellation one-bit

receivers that can be applied to modern channel coding techniques was pre-

sented in [14]. However, such detection methods require the estimation of

channel state information (CSI), which is unrealistic with one-bit quantized

signals. Machine learning techniques were also employed for one-bit detec-

tion [5, 67, 68]. It was shown in [68] that support vector machines can be used

for efficient channel estimation and data detection with one-bit quantized ob-

servations. In [5], the conventional orthogonal frequency division multiplexing

precoder and decoder are replaced with artificial neural networks to enable

unsupervised autoencoder-based detection. [67] combined a linear estimator

based on the Bussgang decomposition and a model-based deep neural network

approach to make data detection with one-bit ADCs adaptive to the current

channel. It was shown in [64] that employing oversampling of one-bit ADCs

at the receiver can unlock the improved energy efficiency. The oversampling

technique was further applied to downlink precoding to compensate the loss
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caused by the receiver’s one-bit ADCs. [57]

Accordingly, various channel estimation methods were developed such

as least-square (LS), ML, ZF, and Bussgang decomposition-based methods [22,

52]. Combined with antenna-wise non-zero thresholding for one-bit quantiz-

ers, the majorization-minimization-based ML channel estimator was proposed

in [55]. In [39], it was shown that Bussgang decomposition-based channel es-

timator with linear equalizers can provide reliable performance for high-order

constellations in one-bit ADC systems. Supervised deep learning in learning

a mapping from the one-bit quantized measurements to the channels was uti-

lized in [111]. Such channel estimation schemes with one-bit quantized signals,

however, still suffer degradation in estimation accuracy compared with high-

precision ADC systems. However, such methods are heavily influenced by

channel estimation accuracy. In this regard, I investigate a learning-based de-

tection that replaces one-bit channel estimation with a likelihood probability

learning process.

Learning-based data detection techniques have recently been investi-

gated [41–43, 70]. The authors in [42] applied sphere decoding to the one-bit

quantized system and showed that the detection complexity is reduced while

achieving near-optimal performance. Viewing the one-bit ADC systems as a

classification problem, various supervised-learning-based data detection tech-

niques were provided by estimating effective channels and learning the non-

linear system response [41]. In [43], however, a channel estimation was done to

initialize likelihood functions for ML detection, and a learning-based likelihood
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function was used for post-update of the likelihood functions. In contrast, the

authors in [70] used an estimated channel to generate a noisy training pilots

and developed an expectation-maximization algorithm that facilitates the like-

lihood probability learning process. Unlike previous learning-based approaches

that focused on developing detection mechanisms based on estimation chan-

nels, I rather focus on applying one-bit ML detection and learning likelihood

functions to overcome the problem of the learning process with the limited

amount of training.

4.1.2 Contributions

In this chapter, I propose a learning-based ML detection approach that

replaces a one-bit channel estimation stage with a counting-based learning

process for an uplink multiuser MIMO systems with one-bit ADCs. The main

aim of this work is to estimate the likelihood probability with an acceptable

amount of training by utilizing known dithering noise signals. The contribu-

tions of this work are summarized as follows:

• I propose the dithering and learning technique to infer likelihood func-

tions from dithered signals. Such an approach significantly reduces the

number of zero-valued likelihood functions whereas naive learning-based

one-bit detection suffers from a number of zero-valued likelihood func-

tions. After the dithering process, I obtain a preferable statistical pattern

in the one-bit quantized output sequences with moderate sign changes

thanks to the reduced SNR. Then a denoising phase retrieves the actual

147



likelihood functions without the impact of the dithering noise. The pro-

posed method allows estimating the likelihood functions with a reason-

able training length by drawing meaningful sign patterns in the quantized

output sequence.

• To further improve the learning accuracy, I develop a adaptive dither-

ing and learning for adjusting each antenna element’s dithering power

based on feedback. Since the performance of the proposed dithering-

based learning algorithm is affected by the dithering power, the proposed

feedback-based adaptive algorithm effectively adjusts the dithering noise

power depending on the pattern of the one-bit quantized outputs. A

deep neural network-based offline SNR estimation method is also devel-

oped to enable the denoising phase of the dithering-based learning in the

practical systems.

• In order to further apply the learning-based scheme to modern commu-

nication frameworks rather than being limited to hard-output detection,

I compute the log-likelihood ratio (LLR), i.e., soft output, which is fed

into a channel-decoder. Noting that the LLR needs to be defined for an

individual binary bit of each user, I separate the index set of all possible

symbol vectors into two disjoint subgroups and compare the sum of the

likelihood probabilities over the two subgroups.

• Simulation results validate that, in contrast to the conventional learning-

based one-bit ML detectors and other channel estimation-based one-bit
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detectors, the proposed learning-based one-bit detector can achieve com-

parable performance to the optimal one-bit ML detection that requires

perfect CSI and exhibit more reliable detection performance in both un-

coded and coded simulations.

4.2 System Model

4.2.1 Signal Model

Uplink multiuser MIMO communication systems are considered where

the base station (BS) equipped with Nr receive antennas concurrently com-

municates with Nu single-antenna users. I suppose Nr ≫ Nu in the context

of massive MIMO systems. Each antenna element has its own dedicated RF

chain as well as individual in-phase and quadrature one-bit ADCs. I assume a

block fading channel model whose channel matrix is invariant for Nc coherent

time slots. I then split the uplink transmission into a training phase with Nt

time slots and a data transmission phase with Nd slots, i.e., Nc = Nt + Nd.

During the training phase, each user transmits up to Nt pilot symbols. I use

K to denote the number of possible pilot symbol combinations of Nu users,

e.g., K = 2Nu for binary phase shift keying at all Nu users. I also use Ntr

to represent the number of transmissions of each combination. This implies

Nt ≥ KNtr to learn the characteristics of all possible combinations.

Let QM denote the set of constellation points of M -ary QAM scheme

from which s̄u[t] is generated where s̄u[t] is the complex-valued data symbol of

user u at time t. I assume s̄u[t] ∈ QM to have zero mean and unit variance, i.e.,
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E[s̄u] = 0 and E[|s̄u[t]|2] = 1. A symbol vector s̄[t] = [s̄1[t], . . . , s̄Nu [t]]
T ∈ QNu

M ,

t ∈ {1, . . . , Nc} denotes the collection of the transmitted signals from Nu users

at time t. I consider each user to adopt M -ary QAM constellation and thus,

the number of possible symbol vectors s̄[t] becomes K = MNu . Assuming

that the symbols from users are concurrently received and jointly processed

at the BS, the received analog complex baseband signal vector at time t is

represented as

r̄[t] =
√
ρH̄T s̄[t] + z̄[t], (4.1)

where H̄ ∈ CNu×Nr is the complex-valued channel matrix between the BS

and Nu users, whose ith column vector, i.e., h̄i, indicates the channel vector

defined between all user and the ith antenna element of the BS. The transmit

power is denoted as ρ, and the additive white complex Gaussian noise vector

z̄[t] follows z̄[t] ∼ CN(0Nr , N0INr). Here, I define the SNR as

γ = ρ/N0. (4.2)

Then, each real and imaginary component of the received signals in

(4.1) is quantized with one-bit ADCs which only reveal the sign of the signals,

i.e., either +1 or −1. The quantized signal can be represented as

ȳ[t] = Q(Re{r̄[t]}) + jQ(Im{r̄[t]}) (4.3)

where Q(a) = (−1)1{a≤0} ∈ {−1,+1} is an element-wise one-bit quantizer

which returns +1 if the input is positive, or −1 otherwise. The received signal
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in the complex-vector expression r̄[t] can be rewritten in a real-valued vector

representation as

r[t] =

[
Re{r̄[t]}
Im{r̄[t]}

]
=
√
ρHT s[t] + z[t] (4.4)

where

HT =

[
Re{H̄T} −Im{H̄T}
Im{H̄T} Re{H̄T}

]
, (4.5)

s[t] =

[
Re{s̄[t]}
Im{s̄[t]}

]
, (4.6)

z[t] =

[
Re{z̄[t]}
Im{z̄[t]}

]
. (4.7)

where z[t] ∼ N(02Nr ,
N0

2
I2Nr). Accordingly, I also rewrite the quantized signal

in a real-vector form as

y[t] = Q(r[t]) (4.8)

= Q(
√
ρHT s[t] + z[t]), (4.9)

which is composed of 2Nr real-valued observations of either−1 or +1. Through-

out this chapter, I consider to have 2Nr antennas to denote the real-valued

ports for ease of notation, i.e., the ith antenna in the real-value representation

corresponds to yi[t].

4.2.2 One-Bit ML Detection with CSI

I first introduce the conventional one-bit ML detection with the full CSI.

I define the index set of all possible symbol vectors as K = {1, . . . , K} and

use sk to denote the kth pilot symbol vector in a real-vector form. Let P(β) ∈
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[0, 1]K×2Nr with β ∈ {−1,+1} denote the matrix of likelihood probabilities

whose P
(β)
k,i means the probability that the ith antenna component receives

β when the users transmit the kth symbol vector sk. Assuming uncorrelated

antennas, the likelihood probability of the one-bit quantized signal vector y[t]

for a given channel H and transmit symbol vector sk is given as

P(y[t]|H, sk) =
2Nr∏
i=1

P
(yi[t])
k,i . (4.10)

I remark that the likelihood function for the ith antenna element of an obser-

vation yi[t] ∈ {−1,+1} with the perfect CSI can be computed as

P
(yi[t])
k,i =P(yi[t]|hi, sk) (4.11)

= Φ (yi[t]ψk,i) , (4.12)

where

ψk,i =

√
ρ

N0/2
hT
i sk (4.13)

is the effective output of the ith antenna in real-value representation when

transmitting the kth symbol vector, and Φ(x) =
∫ x

−∞
1√
2π
e−τ2/2dτ is the cu-

mulative distribution function of a standard Gaussian distribution. Based on

(4.10), the one-bit ML detection rule is given as

k⋆[t] = argmax
k∈K

2Nr∏
i=1

P
(yi[t])
k,i . (4.14)

The detected real-valued symbol vector is then defined as ŝ[t] = sk⋆[t] which can

be mapped to ˆ̄s[t] ∈ QNu
M as detected QAM symbols by performing the reverse
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operation of (4.6). Assuming an equal probability for each pilot symbol vector,

(4.14) provides the optimal detection. I note that the ML detection in (4.14)

requires full CSI for computing (4.11). The channel estimation, however, can

be greatly burdensome in massive MIMO systems and much less accurate for

receivers employing one-bit ADCs. In this regard, it is desirable to perform

the optimal detection without requiring explicit channel estimation in one-bit

massive MIMO systems.

4.3 Preliminary: Naive One-bit ML Detection without
CSI

Now, I outline a direct learning-based one-bit ML detection strategy

that does not require channel estimation. Although this approach still requires

Ntr training sequences, the learning principle is greatly simpler than the one-

bit channel estimation, thereby providing robust detection performance. Each

pilot symbol vector sk ∈ QNu
M is transmitted Ntr times throughout the pilot

transmission of length Nt. The BS aims to approximate the true likelihood

probability P
(β)
k,i by observing the frequency of yi[t] = +1 and yi[t] = −1 during

the transmission as

P̂
(β)
k,i =

{
P̂

(+1)
k,i = 1

Ntr

∑Ntr

t=1 1{yi[(k − 1)Ntr + t] = +1}
P̂

(−1)
k,i = 1− P̂

(+1)
k,i

(4.15)

where β ∈ {+1,−1}. The operation in (4.15) measures the number of +1’s

at the ith antenna element out of the Ntr observations triggered by sk. After

learning the likelihood functions, the BS obtains the estimate of the likelihood
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Figure 4.1: Symbol error rate simulation results of the optimal one-bit ML
detection with full CSI against naive learning-based one-bit ML detection for
Nr = 32 receive antennas, Nu = 3 users, 4-QAM, and Ntr ∈ {10, 100, 1000}
pilot signals.

probability for a given data signal y[t] as

P(y[t]|H, sk)≈
2Nr∏
i=1

(
P̂

(+1)
k,i 1{yi[t]=+1}+P̂

(−1)
k,i 1{yi[t]=−1}

)
, (4.16)

and the receiver can perform the ML detection in (4.14) by searching the best

index that maximizes (4.16) over the K possible symbol vectors.

Although such one-bit ML approaches can provide a near-optimal de-

tection performance with simple function learning, they may suffer from crit-
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ical performance degradation due to a limited amount of training as stated in

the following remark:

Remark 2 (Under-trained likelihood functions). At the high SNR, the Ntr

quantized output of each antenna is repeatedly observed to be either all +1’s or

all −1’s due to the low power of the aggregate noise. This phenomenon results

in obtaining a number of zero-valued empirical likelihood functions in (4.15),

e.g., P̂
(β)
k,i = 0 because the one-bit quantized observations at the high SNR

regime become quasi-deterministic such that it is difficult to observe a change

in the sign of the quantized output sequences during the Ntr transmissions of

the symbol vector sk. Such a zero-valued likelihood function, called under-

trained likelihood function, completely ruins the ML detection rule since the

ML computation in (4.16) can be completely negated by any zero probability.

Fig. 4.1 shows the symbol error rates (SERs) of the optimal one-bit

ML detection and the naive approach with the number of training samples

Ntr ∈ {10, 100, 1000} for Nr = 32 receive antennas, Nu = 3 users and 4-QAM

modulation with respect to the SNR. It is observed that although I increase

the number of pilot signals, the naive approach starts to suffer at the medium

to high SNR since the under-trained likelihood functions start to appear more

frequently as the SNR increases. Therefore, such a critical drawback of the

naive learning-based approach needs to be resolved to deploy the one-bit ADC

systems in practice.
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Figure 4.2: A receiver architecture for the pilot transmission phase with dither-
ing signal added before quantization. Based on the feedback information, the
variance of the dithering signal is updated.

4.4 Adaptive Statistical Learning without CSI

In this section, I present an adaptive learning-based ML detection

method for one-bit ADC systems in order to closely achieve the optimal CSI-

aware ML detection performance without suffering the error floor of the naive

learning approach observed in Fig. 4.1 and without requiring explicit estima-

tion of channels. Being identical to the maximum a posteriori estimation, the

ML estimation is optimal in minimizing the probability of detection error when

all possible transmit symbols have an equal probability of being transmitted.

Accordingly, the proposed method can achieve the detection performance close

to optimal without explicit channel estimation.
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Figure 4.3: Communication data frame with a pilot transmission and a data
transmission phases.

4.4.1 Dithering-and-Learning

To resolve the problem of the under-trained likelihood functions, I pro-

pose the dither-and-learning method that can learn the likelihood functions

with a reasonable training length Ntr. As shown in Fig. 4.2, the BS appends

antenna-wise dithering signals di[t] to the analog baseband received signal ri[t]

during the training phase. After dithering, the quantization input for trans-

mitted symbol sk in the real-vector form becomes

rD,k[t] = rk[t] + d[t] (4.17)

=
√
ρHsk + z[t] + d[t]. (4.18)

I let σ2
i /2 denote the variance of the real-valued dithering signal at the ith

antenna and consider d[t] ∼ N(02Nr ,Σ) where Σ = diag(σ2
1/2, . . . , σ

2
2Nr

/2).

The distribution of the dithering signal is controlled at the BS. The dithered

and quantized signal associated with the kth symbol vector becomes

yD,k[t] = Q(
√
ρHsk + z[t] + d[t]) ∈ {+1,−1}2Nr . (4.19)

As a next step, the BS computes the estimated likelihood function for

the dithered signals P̂
(β)
D,k,i as in (4.15) for β ∈ {+1,−1}. Without loss of
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generality, let us fix β = +1 for ease of explanation. Then, P̂
(+1)
D,k,i offers an

estimate of the actual likelihood functions as shown in (4.12) with increased

noise power:

P̂
(+1)
D,k,i ≈ Φ

(√
2ρ

N0 + σ2
i

hT
i sk

)
. (4.20)

Assuming N0 (equivalently, SNR) is known at the BS, the BS can find the

estimate of ψk,i in (4.13) by leveraging (4.20). Such denoising is computed as

ψ̂k,i =

√
1 +

σ2
i

N0

Φ−1
(
P̂

(+1)
D,k,i

)
(4.21)

Finally, the BS uses ψ̃k,i to approximate the true (non-dithered) likeli-

hood function P
(+1)
k,i as

P̃
(+1)
k,i = Φ

(
ψ̂k,i

)
. (4.22)

Since the likelihood function of the dithered signal P̂
(+1)
D,k,i in (4.20) is much

less likely to have zero probability compared with that of the non-dithered

case, the BS can learn the majority of the likelihood functions P̃
(+1)
k,i with a

reasonable training length. When I observe zero likelihood functions after the

dither-and-learning process, I set a very small probability that is lower than

any of the non-zero likelihood functions, i.e.,

P̃
(β)
k,i = pmin, ∀i ∈ A0

k(β), (4.23)

where pmin,k < minj∈Anz
k (β) P̃

(β)
k,j , ∀β, A0

k(β) indicates the index set of zero

likelihood functions for sk and β, and Anz
k (β) is the index set of non-zero

likelihood functions for sk and β.
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For the proposed dither-and-learning method, intuitively, the power of

dithering signals affects the learning performance as stated in Remark 3.

Remark 3. The level of dithering power is important as low dithering power

continues to trigger under-trained likelihood functions, and high dithering

power hinders recovering the symbol information, leading noise term domi-

nant.

Based on Remark 3, I further propose an adaptive dithering power

update method in the following section.

4.4.2 Adaptive Dithering Power Update

Fixing dithering variance does not suitably adjust the dithering power,

and this behavior can cause two fundamental problems: 1) when the dither-

ing power is low and the SNR remains high, it is highly probable to have

undesirably many under-trained likelihood functions and 2) for high dither-

ing power, although the dither-and-learning procedure successfully prevents

the under-trained likelihood functions, the estimate of the effective output in

(4.21) cannot be accurate due to the large randomness of the dithering signals.

In this respect, the BS has to properly determine dithering power considering

the system environment. To this end, I empirically update the dithering power

by leveraging feedback based on the behavior of received observations and pro-

pose the adaptive dither-and-learning (ADL) method that fits the dithering

power into a suitable range.
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As shown in Fig. 4.3, I first divide the Ntr signals of each pilot symbol

sk into Ns disjoint sub-blocks in which each sub-block accommodates N sub
tr =

Ntr/Ns training samples where Ntr is assumed to be a multiple of Ns. Then,

the nth dithered and quantized sub-block observed at the ith antenna when

transmitting sk can be represented as

ỹD,k,i,n =
{
yD,k,i

[
(k − 1)Ntr + (n− 1)N sub

tr + 1
]
,

. . . , yD,k,i

[
(k − 1)Ntr + nN sub

tr

]}T

∈ {+1,−1}N sub
tr , (4.24)

where n ∈ {1, . . . , Ns} and yD,k,i[t] denotes the dithered observation at the

ith antenna at time t for the kth pilot symbol vector sk. When the received

training sequence is either ỹD,k,i,n = +1Nsub
tr

or ỹD,k,i,n = −1Nsub
tr

for antenna i,

the dither power is regarded to be lower than the desirable dithering power for

sk at antenna i in the current system. In such a case, I increase the dithering

noise variance of the ith antenna for the next sub-block by ∆, i.e.,

σ2
i ← σ2

i + Ii∆, (4.25)

where Ii is the indicator function defined for the ith antenna, i.e., Ii = 1 if

ỹD,k,i,n = +1N sub
tr

or ỹD,k,i,n = −1N sub
tr
, and Ii = 0 otherwise. This allows that

the subsequent training sequence is more likely to observe the sign change

within N sub
tr quantized outputs thanks to the increased perturbation.

Upon completing all sub-blocks, the likelihood probability of symbol

vector k is determined by computing the mean of the likelihood probabilities

for all Ns sub-blocks associated with symbol vector sk. Algorithm 2 summa-

rizes the adaptive dithering-and-learning (ADL) process. I note that the fixed
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Algorithm 2: Adaptive Dithering-and-Learning (ADL)

1 Initialize P̃
(+1)
k,i = 0 ∀k, i

2 Fix the increment of the dithering variance, ∆.
3 for k = 1 to K do
4 Initialize σ2

i = σ2 and Ii = 0 ∀i.
5 for n = 1 to Ns do
6 for i = 1 to 2Nr do
7 Observe ỹD,k,i,n (4.24) during N sub

tr slots

8 Compute P̂
(β)
D,k,i of ỹD,k,i,n using (4.15)

9 Compute ψ̂k,i in (4.21)

10 P̃
(+1)
k,i ← P̃

(+1)
k,i + 1

Ns
Φ
(
ψ̂k,i

)
11 Ii ← 1{ỹD,k,i,n = +1Nsub

tr
}+ 1{ỹD,k,i,n = −1Nsub

tr
}

12 σ2
i ← σ2

i + Ii∆

13 end

14 end

15 end

16 return P̃(+1) and P̃(−1) = 1− P̃(+1).

dithering-and-learning method in Section 4.4.1 is the special case of the ADL

method with Ns = 1. I also remark that the ADL method prevents not only

the under-trained likelihood functions but also the undesirably large fluctua-

tions of the received signals since the dithering power update is supervised by

the BS to fit into the appropriate SNR region based on the observations.

4.4.3 SNR Estimation

In spite of the properly managed dithering power, the computation

of likelihood probabilities using the denoising process in (4.21) requires the

perfect knowledge of the SNR γ or equivalently, the AWGN noise variance N0.
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In this work, I also perform the SNR estimation via offline supervised learning

using the deep neural network as shown in Fig. 4.4. The offline training first

collects training data points {y[j]; γ[j]} where y[j] ∈ {+1,−1}2Nr is the jth

one-bit quantized observations and γ[j] is the true SNR at time j. Once

sufficient samples are collected, the BS selects a portion of the data points

as training samples and performs the supervised offline learning with y[j] as

inputs and γ[j] as outputs to be estimated. Assuming that there exist L

hidden layers, the estimated SNR is represented as the scalar output of the

neural network expressed as

γ̂[j] = wT
LaL−1 + bL, (4.26)

where each intermediate vector is defined as aℓ = ϕ (Wℓaℓ−1 + bℓ) for ℓ ∈

{1, . . . , L − 1} with the initial point a0 = y[j] when ϕ(·) is the element-wise

activation function such as rectified linear unit or sigmoid functions. The deep

neural network is updated by minimizing the estimation error, e.g., (γ[j] −

γ̂[j])2, and hence estimates the SNR by extracting meaningful information of

the one-bit observations such as statistical pattern and the number of +1’s or

−1’s.

4.5 Extension to Channel Coding

Even though the one-bit ML detection has attractive aspects, I are

still confined to the uncoded hard-decision scenarios. Modern communication

frameworks should be paired with channel coding that exhibits an impressive
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Figure 4.4: Illustration of the SNR offline training via deep neural networks.

gain and performance calibration; however, soft outputs are needed for the

decoding perspective. In this section, I first introduce a frame structure to

use channel coding, after that I describe how to generate soft metrics from the

previously trained likelihood functions.

4.5.1 Frame Structure

For a channel-coded communication framework, I first assume that a

(κ, η) binary code with the code rate of κ/η is used throughout this chapter. At

the beginning of the framework, each user u then generates uncoded binary

messages of length κ, e.g., mu ∈ {0, 1}κ. Encoding with the pre-arranged

channel coding scheme, I have the codeword for mu ∈ {0, 1}κ, denoted as

cu ∈ {0, 1}η. As the last step, each user combines q (= log2M) pieces of

information together to map the binary bits into an M -ary QAM symbol, and

then the transmitted symbol of the uth user at time slot t is represented as

s̄u[t] = fM ({cu[(t− 1)q + 1], . . . , cu[tq]}) (4.27)
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where fM : {0, 1}q → QM is the constellation mapping function from q binary

bits toM -ary QAM symbols and t ∈ {1, . . . , η/q} where η/q means the number

of channel uses for a data subframe of each user by mapping q bits into a

symbol. The overall communication structure is illustrated in Fig. 4.3. Each

subframe of the data transmission phase is composed of theN sub
d = η/q channel

uses, and the data transmission phase consists of the D subframes, i.e., Nd =

DN sub
d .

4.5.2 Soft Metric

In Section 4.4, I produced a posteriori probabilities (APPs) utilizing

the repeated transmissions with Ntr pilot signals per possible symbol vector

and the ADL technique. Furthermore, from the calculated APPs which are the

likelihood probabilities, I can compute a likelihood ratio for a given observation

yd[t].

I note that the one-bit observation at the tth time slot is held account-

able for the LLR computation of the q positions of each user; as a result, the

LLR needs to be calculated based on the user-wise and bit-wise operation. To

this end, for the ℓth bit of the QAM symbol of user u, I separate the index set

of all possible symbol vectors into two non-overlapping subgroups as follows:

Su
ℓ,b = {k | s̄k,u = fM ({c1, . . . , cq}) , cℓ = b, k ∈ K}, (4.28)

where b ∈ {0, 1} and s̄k,u denotes the uth element of s̄k which is the QAM

symbol of user u. Consequently, each subset in (4.28) is crafted to separate
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K indices into two disjoint sets in terms of the ℓth bit of the uth user’s bit

sequence that corresponds to s̄k,u. By the definition of (4.28), I have Su
ℓ,0∩S

u
ℓ,1 =

∅ and Su
ℓ,0 ∪ Su

ℓ,1 = K for any ℓ and u. Note that the subsets are defined

regardless of current observations and computed only once when the set of

system parameters is configured.

Leveraging the two separated subgroups and the likelihood probabilities

for the given observation, the corresponding LLR of the ℓth bit of the uth user

at time t can be represented as

Λu
(t−1)q+ℓ(yd[t]|H)

(a)
= log

P(cu[(t− 1)q + ℓ] = 0|yd[t],H)

P(cu[(t− 1)q + ℓ] = 1|yd[t],H)

(b)
= log

P(yd[t]|cu[(t− 1)q + ℓ] = 0,H)

P(yd[t]|cu[(t− 1)q + ℓ] = 1,H)

(c)
= log

∑
k∈S

u

ℓ,0
P(yd[t]|sk,H)P(sk)∑

k∈S
u

ℓ,1
P(yd[t]|sk,H)P(sk)

(d)
= log

∑
k∈S

u

ℓ,0

∏2Nr

i=1 P
(yi[t])
k,i∑

k∈S
u

ℓ,1

∏2Nr

i=1 P
(yi[t])
k,i

, (4.29)

where ℓ ∈ {1, . . . , q}, t ∈ {1, . . . , η/q}, (a) is from the definition of LLR, (b)

is from Bayes’ rule with the equiprobability of yd and cu, (c) comes from the

definition of sets defined in (4.28), and (d) is from the equiprobability of sk

and the ML detection rule in (4.10). Finally, the collected LLRs associated

with the uth user, i.e., {Λu
1 , . . . ,Λ

u
η}, are conveyed to a channel decoder to

recover the message mu ∈ {0, 1}κ. Therefore, the ADL-based estimates of the

likelihood functions can be successfully used for computing the LLR of the

channel decoder.
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4.6 Simulation Results

In this section, I evaluate the performance of the proposed learning-

based method in terms of the number of under-trained likelihood functions,

the symbol error probability (SER) for uncoded systems, and the frame error

probability (FER) for coded systems. I consider Rayleigh fading model H̄

whose each element follows CN(0, 1). I initialize the dithering variance as

σ2
i = ρ/2 and the increment as ∆ = ρ/3 for all BS antennas in the ADL case.

4.6.1 Under-trained Likelihood Functions

Fig. 4.5 shows the average number of under-trained likelihood functions,

i.e., P̂
(b)
k,i = 0, out of 2Nr antennas over the wide range of simulated SNR levels.

For the learning-based detectors, I useNtr = 45 and compare the naive learning

and the ADL methods with Ns ∈ {1, 3, 5}. Recall that the ADL method with

Ns = 1 reduces to the case that uses identical and fixed dithering power with-

out adaptation. As the SNR increases, the number of under-trained likelihood

functions for the non-dithering case rapidly approaches 2Nr. For the ADL

case with Ns = 1, i.e., fixed dithering power, however, the number of under-

trained likelihood functions much slowly increases with the SNR and converges

to around 20 thanks to the dithering effect. In addition, for the ADL method

with non-trivial split factor, the number of under-trained likelihood functions

increases only to 17 and 9 when Ns = 3 and Ns = 5, respectively. Since the

ADL method decides whether to increase the dithering noise depending on the

realization of each sub-block, I can further optimize the learning procedure in
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Figure 4.5: The number of under-trained likelihood functions among 2Nr like-
lihood functions for Nu = 4 users, 4-QAM, Nr = 32 antennas, and Ntr = 45 pi-
lot signals with Rayleigh channels. The proposed adaptive dither-and-learning
(ADL) method divides the training period into Ns ∈ {1, 3, 5} sub-blocks for
the feedback-driven update of dithering power.

terms of the number of under-trained likelihood functions. If Ns is properly in-

creased, each antenna is more likely to avoid zero-valued likelihood functions.

As a result, with the adaptive dithering the proposed algorithm can estimate

much more valid likelihood functions, thereby increasing the detection accu-

racy.
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4.6.2 Uncoded System: Symbol Error Rate

To evaluate the data detection performance of the proposed methods

in the multiuser massive MIMO system, I compare the following detection

methods:

1. Naive learning-based one-bit ML

2. ADL-based one-bit ML (proposed)

3. ADL-based one-bit ML with estimated SNR (proposed)

4. Minimum-Center-Distance (MCD) [41]

5. One-bit ZF with perfect CSI [21]

6. One-bit ML with perfect CSI (optimal one-bit detection)

7. One-bit ML with estimated CSI

8. Infinite-bit ML with perfect CSI (optimal detection)

I note that the learning-based methods: 1) Naive one-bit ML, 2) ADL

one-bit ML, 3) ADL one-bit ML with estimated SNR, and 4) MCD, do not

require explicit channel estimation; however, the other methods either assume

perfect CSI or estimate CSI at the BS. The learning-based methods transmit

Ntr pilot signals per each training symbol vector, which requires KNtr pilot

signals in total. Accordingly, I consider that the conventional one-bit ML

detection with an estimated channel also usesKNtr pilot signals to estimate the
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Figure 4.6: Symbol error rate results with Nu = 4 users, Nr = 32 BS antennas,
Ntr = 45 pilot signals, and 4-QAM constellation. The proposed adaptive
dither-and-learning (ADL) uses Ns ∈ {1, 3} split factors.

channel. In the simulations, the one-bit channel estimation method developed

in [22] is adopted to provide the estimated CSI. For readability of the curves,

I compare MCD for the 16-QAM case shown in Fig. 4.8.

Fig. 4.6 presents the SER results for Nr = 32 antennas, Nu = 4 users,

Ntr = 45 pilot signals, and 4-QAM. As expected from Fig. 4.5, the naive-

learning approach shows the catastrophic result from the medium to high SNR

due to the large number of zero-valued likelihood functions. The one-bit ZF de-

tection that applies the pseudo-inverse matrix of the perfectly-known channel
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Figure 4.7: Symbol error rate results with Nu = 4 users, Nr = 32 BS antennas,
Ntr ∈ {45, 90} pilot signals, and 4-QAM constellation. The proposed adaptive
dither-and-learning (ADL) uses Ns ∈ {1, 3} split factors.

matrix onto the one-bit observations shows the large performance degradation

with the error floor at the medium and high SNR regime. The one-bit ML de-

tection with the one-bit estimated channels shows a larger deviation from the

optimal one-bit ML detection with perfect CSI as the SNR increases due to the

channel estimation error. Unlike the above benchmarks, the proposed ADL

one-bit ML methods closely follow the SER performance curve of the optimal

one-bit ML case by avoiding under-trained likelihood functions as shown in

Fig. 4.5 and learning the likelihood functions with high accuracy. In addition,
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the proposed ADL method with Ns = 3 has around 1.0 dB gain over the ADL

method with fixed dithering power, i.e., Ns = 1, which demonstrates the gain

of adaptive dithering based on the feedback. I can also notice that the perfor-

mance gap between the ADL method with the perfect SNR and the ADL with

the estimated SNR is marginal. This observation validates the fact that the of-

fline supervised SNR learning can successfully capture the observation pattern

to estimate the SNR required for the de-noising phase in the ADL method.

Lastly, it is observed that the optimal one-bit ML detection with Nr = 32

achieves similar target SER, e.g., 10−4 to 10−5, as the infinite-resolution ML

detection with Nr = 10 antennas. By deploying ∼ 3× more antennas with the

simple one-bit ADCs, it is possible to compensate for the severe non-linearity

loss caused by one-bit ADCs and to achieve higher detection performance than

the infinite-bit ADC system in the low to medium SNR regime.

Fig. 4.7 shows the SER performance of the one-bit ML algorithms for

different training length, Ntr ∈ {45, 90} with Nr = 32 BS antennas, Nu = 4

users, and 4-QAM. I first observe that both the naive learning-based one-bit

ML and the conventional one-bit ML with the estimated channel still show

the noticeable performance degradation from the proposed methods for both

the short and long training lengths, Ntr ∈ {45, 90}. This implies that to

achieve the optimal one-bit ML performance, it is necessary to use a great

number of training symbols for the naive learning-based one-bit ML and the

conventional one-bit ML with estimated channels. In contrast, the proposed

ADL-based one-bit ML detection offers robust performance in terms of training
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Figure 4.8: Symbol error rate results with Nu = 3 users, Nr = 64 BS antennas,
Ntr = 45 pilot signals, and 16-QAM constellation. The proposed adaptive
dither-and-learning (ADL) method divides the training period into Ns ∈ {1, 3}
sub-blocks.

length. In particular, the SER improvement of increasing Ns = 1 to Ns = 3

for the ADL method with Ntr = 90 is about 0.2 dB which is small compared

with that for the ADL method with Ntr = 45. Therefore, I can claim that

the proposed ADL method is more beneficial for the system with the limited

amount of pilot signals, and using proper adaptation stages further improves

the detection performance. I can also find out that the ADL case with Ns = 3

and Ntr = 45 achieves almost the same performance as the case Ns = 1 and
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Ntr = 90, which emphasizes that adaptive learning can effectively reduce the

amount of training sequences.

Fig. 4.8 shows the SER performance curves for Nr = 64 BS antennas,

Nu = 3 users, and 16-QAM. I use Ntr = 45 training length for the learning-

based approaches. It is remarkable that the proposed ADL method still offers

a robust detection performance whereas the one-bit ZF with perfect CSI and

the one-bit ML with the estimated CSI present largely degraded detection

performance. Although the MCD method shows the lower SER than the other

benchmarks, the performance gap from the proposed method is not trivial and

increases with the SNR. In this regard, the simulation results demonstrate

that the proposed method outperforms the state-of-the-art one-bit detection

methods, is more robust to communication environments, and requires shorter

training sequences.

4.6.3 Coded System: Frame Error Rate

I consider the MIMO system with Nr = 32, Nu = 4, and 4-QAM.

As a sophisticated channel coding, I adopt a rate-1/2 polar code of length

128, i.e., (κ, η) = (64, 128) and a list decoding with list size 8 is used for the

decoding method of the polar code. In the coded system, I also extend the

naive learning-based one-bit ML detection to the coded system and compare

the following methods:

1. Naive learning-based one-bit ML
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2. ADL-based one-bit ML (proposed)

3. One-bit successive cancellation soft-output (OSS) [14]

For the ADL methods, I allocate Ntr = 45 pilot signals to each symbol vector.

Unlike the learning-based methods, the OSS detector assumes perfect CSI to

compute LLRs. Accordingly, it can be regarded as an FER lower bound, and

I include it for providing the performance guideline. Recall that to use state-

of-the-art channel codes, I calculate LLRs using the likelihood probabilities

derived by each method.

Fig. 4.9 illustrates the frame error rate (FER) of the channel-coded

systems. The naive learning one-bit detection no longer experiences the tragic

reverse trend shown in the uncoded systems; however, the performance gap

from the proposed method grows up as SNR increases. In addition, the FER

of the ADL method with Ns = 3 is placed between that of the OSS detector

and the ADL method with Ns = 1, thereby showing the advantage over the

ADL with fixed dithering power. Again, the improvement achieved by the

ADL method with Ns = 3 is because the ADL method can accurately learn

the likelihood probabilities by avoiding zero-valued likelihood functions even

with the limited amount of training sequences. In summary, although the

performance of the naive learning-based approach is devastated by the under-

trained probabilities in the uncoded system, the likelihood probability in (4.16)

is still capable of being computed with the under-trained likelihood functions

for the LLR defined in (4.29) for the coded systems. Regarding the probability
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Figure 4.9: Frame error rate results for Nu = 4 users, Nr = 32 BS antennas,
Ntr = 45, 4-QAM constellation, and a polar code of rate 1/2 where (κ, η) =
(64, 128). The proposed adaptive dither-and-learning (ADL) method learns
the likelihood probability with split factor Ns ∈ {1, 3}. The one-bit successive-
cancellation soft-output (OSS) detector is valid in case of perfect CSI.

learning accuracy, however, the proposed ADL method can perform better

than the naive learning approach, thereby increasing the performance gap

with the SNR.
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4.7 Conclusion

In this chapter, I proposed the statistical learning-based ML detec-

tion method for uplink massive MIMO communication systems with one-bit

ADCs. Since the performance of learning-based one-bit detection approaches

can be severely degraded when the number of training samples is insufficient,

the proposed method handled such challenges by injecting dithering noise to

facilitate the acquisition of statistical patterns. Without requiring explicit

channel knowledge, the dithering-and-learning method performed one-bit ML

detection through learning likelihood functions at each antenna. The pro-

posed method was more robust to the number of training symbols because the

adaptive randomness triggers moderate fluctuation in the change of signs of

the training sequence, thereby successfully extracting the statistical pattern of

one-bit quantized signals. I further adapted dithering power to fit the BS into

the appropriate SNR region in accordance with observations. In addition, deep

neural network-based SNR estimation for denoising and extension to channel-

coded systems were also proposed for more practical scenarios. Simulation

results validated the detection performance of the proposed method. There-

fore, the proposed method can be a potential low-power and low-complexity

multiuser communication solution for 6G applications.
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Chapter 5

Joint Hybrid Beamforming and Power Control

Using Deep Reinforcement Learning

In this chapter1, I investigate a deep reinforcement learning (DRL)-

based solution for joint hybrid beamforming (HB) and power control problems

in case that multiple base stations (BSs) equipped with a massive number of

antennas communicate with multiple user devices in the uplink millimeter wave

band. Unlike the traditional digital-only method, the HB necessitates both

digital and analog beamformers. Analog beamformers employ discrete phase

shifters to project the high-dimensional observation onto the low-dimensional

vector and scale down the number of radio frequency (RF) chains; however,

the inclusion of analog beamformers results in non-convexity which makes the

problem difficult to solve via existing efficient algorithms. In multicell uplink

communication systems, I aim to jointly design the HB at each base station

and transmit power control of the associated users while ensuring that the

received signal-to-interference-and-noise ratio (SINR) constraints. Considering

the use of the DRL-based approach and the primal problem, I formulate the

1This chapter is based on the following paper: Y. Cho, C. Dick, and B. L. Evans, “Joint
Hybrid Beamforming and Power Control for Multicell Millimeter Wave Massive MIMO
Systems Using Deep Reinforcement Learning,” to be submitted to IEEE Access, 2023. This
work was supervised by Dr. Chris Dick and Prof. Brian L. Evans.
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fundamentals to enable reinforcement learning (RL). To synthesize the mixture

of discrete and continuous entries, I use deep deterministic policy gradient

(DDPG) RL whose actor network outputs a valid action that can form a one-

to-one mapping to the design factors. In particular, to unlock the full potential

of phase shifters that constitute the analog beamformer, I aim to individually

control each phase shifter by introducing an intermediate vector and applying

a differentiable argmax function which estimates the phase angle index. Via

simulation results, I evaluate the proposed method in terms of the achieved

SINR.

5.1 Introduction

With growing demand for higher data rate, millimeter wave (mmWave)

systems have been extensively researched for many years as an essential fa-

cilitator of modern and future wireless communication systems. A mmWave

spectrum extends up to 300 GHz to provide a remarkable increment in both

data rates and capacity [4, 91]. Due to the small wavelength of mmWave sig-

nals and small antenna spacing, the mmWave system allows the installation of

more antennas per unit area. Therefore, massive MIMO systems that achieve

significant gain in spectral efficiency and capacity [56] have been naturally

coupled with mmWave systems. However, increasing the number of antennas

and RF chains results in a prohibitively huge power consumption, which be-

comes the main bottleneck of the realistic deployment. Unlike the conventional

digital-only beamforming that connects a separate RF chain per each antenna
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Figure 5.1: Illustration of hybrid beamfomring architecture in a cell.

and hence employs a plethora of power-hungry RF chains, the hybrid beam-

forming architecture combines high-dimensional analog RF beamforming and

low-dimensional digital beamforming to reduce the number of power-hungry

RF chains (see Fig. 5.1).

5.2 Prior Works

Many literatures were published to analyze and solve the hybrid beam-

forming architecture. Leveraging the sparse nature of mmWave channels, the

hybrid architecture design was interpreted as a sparsity-constrained matrix re-

construction and solved in an alternating fashion [26]. The sparse nature of the

mmWave channel was also used in [2] to develop a low-complexity yet efficient

hybrid precoding using a small training and feedback overhead. For MIMO up-

link communications, the authors in [49] developed the Gram-Schmidt-based

analog combiner while still using the minimum mean square error (MMSE)

beamforming for the digital combiner. The authors in [86] showed that the
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hybrid beamforming architecture can achieve the same performance as the con-

ventional digital-only beamforming when the number of RF chains is sufficient.

A near optimal analog combining solution in hybrid MIMO systems with low-

resolution data converters was developed by introducing the two-stage analog

combiner that performs channel gain aggregation and spreading functions sep-

arately [19]. For a wideband multiuser MIMO systems, the authors in [12]

developed the hybrid transmit precoding by leveraging the long-term channel

covariance matrix and the angle-of-departure information.

Recently, the disruptive role of machine learning techniques has been

seen on the design of the hybrid beamforming architecture or power con-

trol. [34, 47, 50, 59, 82, 112] Deep Q-Network (DQN)-based deep reinforcement

learning (DRL) frameworks have been used in designing the analog beam-

former of the hybrid beamforming architecture by selecting codebook index

[59, 82]. The authors in [50] proposed a novel neural network that jointly per-

forms the channel compressive sensing and the prediction of analog beams. For

the 2-tier beam search, supervised learning was utilized in designing a probing

codebook with wide beams to adapt to a particular environment [34]. Relying

only on receive power measurements and using Deep Deterministic Policy Gra-

dient (DDPG) [54], the authors in [112] suggested how to optimize the beam

codebooks to adapt to current communication layout. However, these works

are limited to the analog-only beamforming and the codebook-based grid-of-

beams (GoB) beamforming. Using the spatial features in channel gain, the

authors in [47] developed a frame work based on convolutional neural network
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to learn the autonomous power control scheme.

In this work, I investigate joint hybrid beamforming and power con-

trol problems in multicell multiuser networks with BSs equipped with a large

number of antenna arrays. Accordingly, the non-negligible inter-cell interfer-

ence needs to be taken into account as modern cellular systems operate on

the interference-limited regime [15]. Unlike other approaches that optimize

the digital and analog beamformers in an alternating manner, this approach

jointly design the two beamfomers. Instead of using a GoB-based method,

this approach individually control each phase shifter, i.e., non-grid-of-beams

(NGoB), to unlock the full potential of phase shifters. Considering the design

factors, I present the fine-tuned reward function that aims to satisfy target

SINR. Numerical results show that the proposed approach can satisfy a pre-

determined target SINR.

5.3 Preliminaries

I consider multi-cell MIMO uplink networks with Nc cells where each

BS in the cell center is equipped with Nr receive antennas and BSc denotes

the BS in the cth cell. Each BS also employs NRF RF chains, each of which is

connected to Nr receive antennas via fully-connected analog combiner. There

exist Nu single-antenna user devices per cell, which communicate with the

dedicated BS, i.e., users in cell c are served by BSc.
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Figure 5.2: Illustration of deep reinforcement learning frame work via deep
deterministic policy gradient approach.

5.3.1 Signal Model

The transmit power pu,c and the information source su,c are assigned

to the uth user device in cell c, thereby transmitting signal
√
pu,csu,c over a

wireless channel. The uplink wireless channel vector propagated from user u

in cell c̄ to BSc is represented as hc,c̄,u ∈ CNr . Then, the received signal at BSc

is written as

rc = Hc,cP
1/2
c sc +

Nc∑
c=1
c̸̄=c

Hc,c̄P
1/2
c̄ sc̄ + nc (5.1)

where Hc,c̄ = [hc,c̄,1, . . . ,hc,c̄,Nu ] ∈ CNr×Nu is the complex-valued channel ma-

trix between BSc and users in cell c̄, sc = [sc,1, . . . , sc,Nu ]
T ∈ CNu is the dedi-

cated symbol vector of the Nu users in cell c, Pc = diag(pc,1, . . . , pc,Nu) is the

the transmit power matrix of the users in cell c, and nc ∈ CNr is the addi-

tive white Gaussian noise (AWGN) vector at BSc. I assume that each user

device needs to satisfy the minimum power pmin and maximum power pmax
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constraints, i.e., pu,c ∈ [pmin, pmax]. Throughout this chapter, I consider a nor-

malized variance for AWGN without loss of generality, i.e, nc ∼ CN(0Nr , INr).

I further consider that sc is uncorrelated and has a zero mean and unit vari-

ance, i.e., sc ∼ CN(0Nu , INu).

I consider the deployment of the hybrid beamforming architecture at

BSc whose digital beamformer and analog beamformer are denoted as WBB,c

and WRF,c, respectively. Unlike the conventional digital-only beamforming

that connects a separate RF chain per each antenna and hence employs a

plethora of RF chains, the hybrid beamforming architecture combines high-

dimensional analog RF beamforming and low-dimensional digital beamforming

to reduce the number of RF chains. To produce high beamforming gain and

immunize against large free-space pathloss, the analog beamformer WRF,c ∈

PNRF×Nr manipulates directional propagation paths via unit-modulus phase

shifters, where P = {ejπϕ|ϕ ∈ {−1,−1+ 2
M
, . . . ,+1− 2

M
}} denotes the set of fea-

sible phase shifters with M possible discrete phase angles. The analog beam-

former comprises passive microwave devices used to change the phase angle of

an RF signal. The analog beamformer projects the high-dimensional antenna

ports into the low-dimensional logical RF ports to directly scale down the num-

ber of RF chains. Afterwards, the digital beamformer WBB,c ∈ CNu×NRF per-

forms multi-stream baseband processing with low-dimensional input. There-

fore, the combined signal at BSc is processed as

yc = WH
BB,cW

H
RF,crc. (5.2)
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By defining the hybrid beamforming vector associated with user u in cell c as

wu,c = WRF [WBB,c]u, the uplink SINR of user u in cell c from yc is computed

as

γu,c =
pu,c|wH

u,chc,c,u|2∑(Nc,Nu)
(ū,c̄) ̸=(c,u) pc̄,ū|wH

u,chc,c̄,ū|2 + ∥wu,c∥2
. (5.3)

I note that the digital combiners, the analog combiners, and transmission

powers are complicatedly intertwined in γu,c. Based on the design factors, the

primary problem can be formulated as

P5 1 : min
WRF,c,WBB,c,pc ∀c

∑
u,c

pu,c (5.4)

subject to γu,c ≥ γ̄ (5.5)

WBB,c ∈ CNRF×Nu ∀c (5.6)

WRF,c ∈ PNr×NRF ∀c (5.7)

pc ∈ [pmin, pmax]
Nu ∀c, (5.8)

where γ̄ is the target SINR requirement for all users. The primal problem aims

to satisfy the target SINR for all users while consuming the minimum total

transmit power. The analog and digital beamformers need to be jointly op-

timized to maximize communication performance metrics. However, because

of the unit-modulus and discreteness constraints in (5.7), the entire system is

neither a convex nor a concave function [32].

5.3.2 Channel Model

I adopt a geometric channel model whose channel delay spread is L.

Noting that L is typically small since mmWave signals have high path loss
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and less reflections to the surrounding environment [32], the mmWave channel

propagated from user u in cell c̄ to BSc is expressed as

hc,c̄,u =
√
γc,c̄,u

L∑
ℓ=1

αc,c̄,u(ℓ)u(ϕc,c̄,u(ℓ), Nr), (5.9)

where γc,c̄,u denotes the large-scale fading gain that counts propagation atten-

uation, shadowing, and noise figure between BSc and the uth user in the c̄th

cell; therefore, the mean of γc,c̄,u tends to be smaller when c ̸= c̄ compared to

the case of c = c̄.

The ℓth path between BSc and the uth user in cell c̄ is synthesized by

ϕc,c̄,u(ℓ) ∈
[
−π

2
, π
2

]
which is the azimuth angle of arrival (AoA) and αc,c̄,u(ℓ) ∼

CN(0, 1) that corresponds to the complex path gain.

Parametrized by an azimuth angle ϕ, u(ϕ,N) is the ULA which is the

collection of N evenly spaced phase shifts defined as

u(ϕ,N) =
1√
N

[
1, e−jπ 2d

λ
sinϕ, . . . , e−jπ(N−1) 2d

λ
sinϕ
]
, (5.10)

where λ denotes the signal wavelength and d is the antenna spacing.

5.3.3 Deep Reinforcement Learning

I consider a DRL framework that allows a DRL agent to learn in an in-

teractive yet unknown environment by using experiences and feedback without

any labeled data. The sequential decisions and interactions in the reinforce-

ment learning approach are described by the crucial components [90] defined

as follows:
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• State: A state st is the representative of the current situation of the

given task at time step t.

• Action: An action at is what the DRL agent decides to perform at time

step t after observing the state st.

• Policy: A policy µ(·) : st 7→ at is either stochastic or deterministic

mapping that consists of the valid actions that the DRL agent is required

to take for every possible state to tell which action to take from each

state.

• Reward: A reward Rt is feedback from the environment when the agent

takes an action for a given state at time step t. The DRL agent does not

have direct control over the reward, however, can choose the best action

expected to maximize the reward at its best knowledge.

• Return: A return at time step t is the sum of the discounted rewards

from the current state defined as Gt =
∑∞

i=0 µ
iRt+i where µ ∈ [0, 1] is

the discount factor.

• Action value function: An action value function Q(s, a) is the expected

return from current state by taking specific action. One of the key goals

of DRL is to approximate Gt using a Q-function.

At each time step t, the agent interacting with the environment observes a

state st, selects an action at from the policy, receives an immediate reward,

Rt, and advances toward a next state st+1.
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5.4 Hybrid Beamforming and Power Control via Rein-
forcement Learning: Action Space

Based on the primary problem and the fundamental components of the

hybrid beamforming architecture, a valid action can be defined as the concate-

nated vector that can make the one-to-one mapping to the digital beamform-

ers, the analog beamformers, and transmission powers across all cells. In this

section, I explain how each component is designed via RL and then combine

all things together to create a valid action.

5.4.1 Digital Beamformer

The complex-valued digital beamformer can be decomposed into real

and imaginary parts, i.e.,WBB,c = Re (WBB,c)+jIm (WBB,c), so that an action

contains 2Nc real-valued vectorized matrieces vec (Re (WBB,c)) and vec (Im (WBB,c))

for all c ∈ {1, . . . , Nc}. Therefore, I can combine the decomposed digital

beaformers from all Nc BSs as

w̃BB =vec

([
vec (Re (WBB,1)) , vec (Im (WBB,1)) , (5.11)

. . . , vec (Re (WBB,Nc)) , vec (Im (WBB,Nc))
])
.

After that, w̃BB is normalized to wBB in order to achieve a better convergence.

5.4.2 Analog Beamformer

Taking into account that each phase shifter employs one of M distinct

phases that can be picked evenly from [−π,+π), BSc is equipped with the
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grid-free analog beamformer constructed as

WRF,c = ejπΦc (5.12)

where Φc is the NGoB matrix of phase angles at the BSc defined as

Φc =

 ϕ1,1,c · · · ϕ1,NRF,c
...

. . .
...

ϕNr,1,c · · · ϕNr,NRF,c

 , (5.13)

where ϕi,j,c ∈ {−1,−1 + 2
M
, . . . ,+1 − 2

M
} denotes the normalized reception

phase of the phase shifter connected between the ith antenna and the jth RF

chain at BSc. Rather than using a codebook-based GoB approach, I attempt to

individually regulate the phase shifters to unleash the full potential of employ-

ing a plethora of phase shifters. Since phase angles and analog beamformers

form one-to-one correspondence, encompassing ϕi,j,c for all i, j, c suffices to

reconstruct the analog combiner.

However, directly guessing restricted yet discrete ϕi,j,c’s from a neural

net output is challenging because 1) neural networks have inconsistent output

range and 2) generation of discrete output is via quantization is not differen-

tiable. To resolve the issue, I represent phase element ϕi,j,c by the intermediate

vector of length M , i.e., xi,j,c ∈ RM , and then apply the soft-argmax function

defined as

ψ(x) =
M−1∑
m=0

m

M

eβxm∑M−1
ℓ=0 eβxℓ

, (5.14)

which is differentiable and obtains the same output as the regular argmax

with a sufficiently large β where x has M real-valued entries. In other words,
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x represents each phase element and ψ(·) takes M -dimensional input x to

return the index of the maximum value, thereby connecting the index with the

discrete phase angle. Note that ψ(x) = m∗

M
with a sufficiently large β where

m∗ denotes the index of the largest entry in x. I then define the collection of

intermediate vectors for the cth cell as

Xc =

 x1,1,c · · · x1,NRF,c
...

. . .
...

xNr,1,c · · · xNr,NRF,c

 . (5.15)

I further gather all the intermediate vectors as

X =
[
X1, . . . ,XNc

]
. (5.16)

To make valid phase indices, I can then unite the phase angles of the analog

beamformers from all Nc BSs by applying the vector-wise soft argmax as

wRF = vec

([
vec(Φ1), . . . , vec(ΦNc)

])
, (5.17)

where Φc is extracted as

Φc = ψ (Xc) (5.18)

=

 ψ(x1,1,c) · · · ψ(x1,NRF,c)
...

. . .
...

ψ(xNr,1,c) · · · ψ(xNr,NRF,c)

 . (5.19)

For the inference stage during the practical deployment, the soft-argmax func-

tion can be replaced with the regular argmax since no further update is needed.
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5.4.3 Power Control

Based on the signal model in (5.1), the allocated transmit powers for

Nu users in cell c are collected in Pc. Likewise, I combine the transmit power

across all cells and users as

p̃ = vec

([
diag (P1) , . . . , diag (PNc)

])
. (5.20)

To guarantee that the power constraint in (5.8) is met, p̃ is post-processed as

p = (pmax − pmin)σ (p̃) + pmin, (5.21)

where σ(·) = 1/(1 + e−x) ∈ (0, 1) is the regular sigmoid function.

5.4.4 Action Vector

All things considered, the concatenation of the digital beamformers,

the analog beamformers, and transmit powers associated across all cells is

committed to establishing an action vector represented as

a = vec
([

wBB,wRF,p
])
. (5.22)

Upon handing over the action to the environment, the action vector is sliced

and each BS assembles the HB components associated with the dedicated cell.

Note that the action needs to be valid in terms of the constraints.

190



5.5 Hybrid Beamforming and Power Control via Rein-
forcement Learning: State and Reward

5.5.1 State Space

Since the state is the only measure that the DRL agent relies on in

taking an action, the state needs to include sufficiently rich information on

the environment. I define the current state at the tth iteration, i.e., st, as a

concatenated vector of achieved individual SNRs and the previously refined

action. st =
[
γ1,1, . . . , γNc,Nu , a

T
t−1

]T
. Note that adding the information on

current users’ locations can potentially improve the performance of the DRL

approach since the state can attain a richer representation of the current sit-

uation.

5.5.2 Reward

A reward is feedback from the environment when the DRL agent takes

an action in a given state. The DRL agent does not have a direct control

on the reward; however the DRL agent aims to choose the best action that

can maximize the reward at its best knowledge. Therefore, the reward should

be related with the primal problem P5 1 defined in (5.4)-(5.8). Based on the

objective of the target problem, I define a reward at the tth iteration, i.e., Rt,

as a function of the currently achieved SINR γ
(t)
u,c as follows:
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Rt = δ1

Nc∏
c=1

Nu∏
u=1

1{γ(t)
u,c≥γ̄} + δ2

(
1−

Nc∏
c=1

Nu∏
u=1

1{γ(t)
u,c<γ̄}

)

+ δ3

Nc∏
c=1

Nu∏
u=1

1{γ(t)
u,c≥γ

(t−1)
u,c } − δ4

Nc∑
c=1

Nu∑
u=1

pu,c (5.23)

where the first term is the ultimate goal for all γu,c’s to be higher than the

target SINR, the second term is the intermediate goal activated when at least

one SINR is higher than or equal to the target, the third term is also the

intermediate goal triggered when all γu,c’s at time t are improved compared

with the previous time frame, and the last term is the sum-power penalty

which is proportional to the total transmit power to be minimized. Here, I

enable hierarchical RL that decomposes the challenging goal-oriented RL tasks

into simpler subtasks, thereby accelerating the convergence and improving the

overall performance in practice [72]. The associated weights are described as

δ1, δ2, δ3, and δ4, where δ1 and δ4 are chosen to be significantly greater than

the other weights. Accordingly, the DRL agent eventually updates the policy

in a way that all the SINRs are maintained above the target while minimizing

the total transmit power.

5.6 Policy Gradient Deep Reinforcement Learning

Recently, Deep Q-Network (DQN) has been used in designing the ana-

log beamformer of the hybrid beamforming architecture by selecting beam

index or codebook index [59, 82]. However, because of the value-based nature
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and policy, DQN which aims to find the best action over all possible action-

value pairs of a given state is only able to address a low-dimensional yet discrete

action space even with high-dimensional observation spaces [60]. Considering

the massive MIMO systems, the output dimension of DQN eventually goes up

when deploying a more complicated architecture with many antennas and RF

chains, thereby becoming an infeasible scheme.

DDPG, in contrast to DQN, employs a policy-based actor-critic ap-

proach that directly predicts a deterministic action for a given state. Since an

output of an actor is considered as an action, DDPG can support a mixture of

high-dimensional continuous and discrete elements. The main building blocks

of DDPG include an actor network that generates an action based on the state

input and a critic network that evaluates the pair of the state and the output

taken by the actor network, thereby concurrently learning the policy and the

Q-function. The DDPG can handle the RL components as shown in Fig. 5.2.

5.6.1 Critic Network

The critic network is an approximator of the Q-function that takes

in the state and action as input and outputs the estimated Q-value of the

associated state-action pair. The output of the critic network is written as

Q(st, at; θ
Q). Then, the critic network is updated to minimize the gap between

the true return obtained from interacting with the DRL environment, i.e., Gt

and the approximated value Q(st, at; θ
Q).
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5.6.2 Actor Network

The actor network parametrized by ϕµ maintains the deterministic pol-

icy that directly computes the action for a given state instead of outputting

the probability distribution across a discrete action space. The output of the

actor network is written as at = µ(st; θ
µ). The actor network is updated in a

way that the output of the critic network, i.e., Q(st, at; θ
Q), is maximized via

gradient ascent algorithms.

5.6.3 Replay Buffer

In order to remove the correlation between training samples and hence

achieve stable convergence and improvement, DDPG borrows the notion of

replay buffer from DQN. The replay buffer R collects up to Nmax training

samples over time and discards a random sample if data is overflowing. At

each time step i, the buffer memorizes the footprint of the interaction between

the DRL agent and the environment. To be specific, based on the given state

si, I choose at from the policy, and the current reward ri and next state si+1

are determined. Afterwards, one complete experience, i.e., (si, ai, ri, si+1), is

added to R After collecting sufficiently many data points, I randomly take B

samples from R to train the actor and critic networks.

5.6.4 Network Update

DDPG trains a deterministic policy in an off-policy way. Because the

policy is deterministic, if the agent were to explore on-policy, in the beginning,
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it would probably not try a wide enough variety of actions to find useful

learning signals. To make DDPG policies explore better, I add noise to their

actions at training time.

DDPG employs the use of off-policy data and the Bellman equation to

learn the Q-function which is in turn used to derive and learn the policy.

θµ ← θµ + α∇ϕµ

1

B

B∑
b=1

QϕQ

(st(b), µ(st(b); θ
µ)), (5.24)

θQ ← θQ − β∇ϕQ

1

B

B∑
b=1

(
Rt(b) + γQθQ̄(st(b+1), a

θµ̄

t(b+1))

−QϕQ

(st(b), a
θµ

t(b))

)2

, (5.25)

where t(b) denotes the index of the bth sampled experience from the replay

buffer. Note that the actor network is updated by (5.24) to maximize Q-

function via gradient ascent algorithms and the critic network is updated by

(5.25) to minimize the gap between the approximated one-step Gt and the

approximated Q-function.

To improve the stability during the training step and relieve the moving

target problem, I borrow the notion of target networks on both the actor and

critic networks. The target networks have the same structure and dimension

as the main behavior networks; however, the target networks contain different

neural network parameters θµ̄ and θQ̄ for the target actor and the target critic

networks, respectively. The target networks in DDPG are delayed compared
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to the main behavior networks and updated gradually and continuously in the

following soft-update fashion:

θµ̄ ← τθµ̄ + (1− τ)θµ (5.26)

θQ̄ ← τθQ̄ + (1− τ)θQ (5.27)

where the soft-update rate τ is chosen to be close to 1, e.g., 0.99, in this work.

5.7 Simulation Results

In this section, I validate the proposed DRL-based method in terms of

the achieved SINR. I consider the mmWave communication system assuming

a 24 GHz carrier frequency with 100 MHz bandwidth. The adjacent BSs are

100 m apart and the minimum distance between any BS and user is 10m.

For large scale fading, I adopt the log-distance pathloss model in [1] with the

72 dB intercept, the pathloss exponent of 2.92, and the shadow fading whose

shadowing variance is 8.7 dB. Noise power is computed with −174 dBm/Hz

power spectral density and 5 dB noise figure. I also use the sector antenna

gain of 15 dB.

Fig. 5.3 presents the progress of the achieved SINRs and the reward.

I consider Nr = 16 BS antennas, NRF = 2 RF chains at each BS, Nc = 2

cells, and Nu = 2 users per cell. Each phase shifter of RF chains can take

one of M = 32 equally spaced phase angles. The power constraint of each

user is specifies as pmin = 10 dBm and pmax = 30 dBm. The homogeneous

SINR target of γ̄ = 2 dB is required for all users. For the reward function,
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Figure 5.3: The progress of the achieved SINRs and the reward.

the reward weights are determined as {δ1, δ2, δ3, δ4} = {100, 5, 10, 1}, which

means that the positive reward of 100 is provided if all users are satisfied.

As shown in the figure, the progress of the achieved SINRs and the reward

discloses that the DDPG-based approach can satisfy all NcNu users’ acheieved

SINR after training 700 iterations. Because of the intermediate rewards, the

DRL agent aims to make an effort to make advancement. Even though the

DRL agent fails to achieve the target slightly at around the 750th iteration,

the shock is quickly recovered and the DRL agent can consistently achieve the

pre-determined target SINR.
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5.8 Conclusion

In this chapter, I investigated the DRL-based method for jointly design-

ing the hybrid beamformers and power control in multicell mmWave MIMO

systems Specifically, the aim was to develop a strategy for determining the

hybrid beamformers and transmission power control for users at each base

station in multicell uplink communication systems while minimizing trans-

mit power and satisfying SINR constraints. To tackle the challenge posed by

the non-convex conditions arising from the analog beamformers and achieve

the aforementioned objective, I introduced a DRL-based methodology that

leverages the DDPG algorithm. This approach effectively addresses the inte-

gration of both discrete and continuous inputs and generates an appropriate

action that aligns with the desired design factors. To elaborate further, my

approach involved individual control of each phase shifter via an intermediate

vector and a differentiable soft-argmax function to estimate the phase angle

index. Accordingly, the actor network can be trained continually and the ac-

tion vector was able to construct the beamformers and transmission power

values properly. The effectiveness of this method was assessed by evaluating

the achieved SINR, which was determined through simulation results.
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Chapter 6

Concluding Remarks

This chapter concludes the dissertation with a summary of contribu-

tions in Section 6.1 and potential future research directions in Section 6.2

6.1 Summary and contributions

In this dissertation, I investigated the power-efficient and intelligent

algorithms to re-engineer crucial communication functions when the commu-

nication systems adopt one of the following two low-power architectures: low-

resolution data converters and the HB architecture. Because either the quan-

tization error of low-resolution data converters or the non-convexity and non-

linearity of the HB cannot be disregarded, the existing methods cannot be

directly applied to the low-power systems. Therefore, it is crucial to develop

advanced power-efficient and intelligent communication techniques that have

the ability to satisfy demanding requirements and improve key performance

metrics even in the presence of severe distortion and non-linearity caused by

low-power architectures.

First of all, I developed a joint beamforming and power control design

for the coordinated multicell MIMO systems with low-resolution converters.

199



After formulating the uplink and downlink problems, I showed the uplink-

downlink strong duality which facilitates the problem-solving. It was shown

that the derived results also work for the wideband OFDM systems. I used the

derived results to devise an iterative algorithm that can jointly design beam-

forming and power control design to minimize the total power consumption.

Under homogeneous user requirements, I also proposed a deterministic solution

that can compute the uplink powers immediately. I showed that the proposed

algorithms outperform the existing methods in terms of total transmit power,

target achievement rate, and convergence.

Hereafter, I extended the first contribution in a way that maximum

transmit power is minimized to raise the power efficiency of power-related

components. For a more practical, I formulated the downlink antenna power

minimization problem with target SQINR constraints as a primal problem,

and I derived the associated dual problem which is interpreted as the uplink

problem with known yet controllable noise covariance matrices. Leveraging the

strong duality devised for this particular problem, I addressed the inner and

outer problems of the dual uplink problem in an alternating manner by solving

the inner power control problem via fixed-point iteration and the outer noise

covariance design problem via projected subgradient ascent. The converged

uplink solution is then used for computing the primal downlink problem by

using the linear transformation. It was shown that the proposed algorithms

outperform the existing methods in terms of maximum transmit power, PAPR,

and convergence.
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The third part of this dissertation discussed the learning-based ML de-

tection method for uplink massive MIMO communication systems with one-

bit ADCs. To handle the performance loss of learning-based one-bit detection

when the number of training samples is insufficient, I proposed how to effec-

tively place dithering noise to facilitate the acquisition of statistical patterns.

The proposed method was more robust to the number of training symbols

because the adaptive randomness induces moderate fluctuations in the sign

changes of the training sequence, thereby successfully extracting the statisti-

cal pattern of one-bit quantized signals. The deep neural network-based SNR

estimator also effectively worked for the denoising stage. I further adjusted the

dithering power to match the appropriate SNR range. It was shown that the

learning-based ML detection achieves optimal performance and outperforms

other approaches by a large gap. Further, the derived likelihood probabilities

are used for computing the soft LLR and the simulation results demonstrate

the superiority of the proposed algorithm.

Lastly, I developed the DRL-based approach for jointly designing the

hybrid beamformers and power control in case of multicell mmWave MIMO

systems. In multicell uplink communication systems, I intended to devise

the HB at each BS and the transmission power control for the corresponding

users while consuming the minimal transmit power and ensuring that the

SINR constraints are met. To accomplish this goal while considering the non-

convex conditions caused by the analog beamformers, I proposed the DRL-

based approach that utilizes the DDPG algorithm to handle the combination

201



of discrete and continuous inputs and output a suitable action that corresponds

to the design factors. Specifically, I controlled each phase shifter individually

using an intermediate vector and a differentiable argmax function to estimate

the phase angle index. The performance of the proposed method was evaluated

based on the achieved SINR through simulation results.

6.2 Future work

I present the following future directions related to the topics addressed

in this dissertation.

• Multicell Coordination in Case of Imperfect CSI

The multicell CoMP designs proposed in Chapter 2 and Chapter 3 out-

performed the benchmarks in case of imperfect CSI; however, the pro-

posed algorithms require full CSI and showed the deviation from the

target SQINR when the channel estimation error becomes non-trivial.

A more advanced beamforming and power control design needs to take

the channel estimation error into account as well. Using orthogonal pi-

lot sequences, the MMSE estimation of hj,i,u introduces the estimation

failure error of fj,i,u = hj,i,u− ĥj,i,u whose statistics can be known. With

considering the estimated channel via MMSE estimator, hj,i,u is replaced

with ĥj,i,u + fj,i,u and the received signal with the impact of imperfect
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CSI can be written as

ỹdli,u =α(ĥi,i,u + fi,i,u)
Hwi,us

dl
i,u+α

(Nc,Nu)∑
(j,v)̸=(i,u)

(ĥj,i,v + fj,i,v)
Hwj,vs

dl
j,v (6.1)

+
Nc∑
j=1

(ĥj,i,u + fj,i,u)
Hqdl

j +n
dl
i,u.

In this case, since the channel estimation error is not known at the BS,

the approaches I proposed in Chapter 2 and Chapter 3 cannot be directly

applied. Given that the statistics of fi,i,u are known, i.e., error covariance

matrices, it is possible to rewrite the SQINR expression in terms of the

error covariance matrices, not the error itself, and hence the solutions

can take into account the channel estimation successfully.

• Oversampling of One-Bit ADCs

The proposed one-bit ML detection with artificial dithering noise allows

to train the likelihood functions with an acceptable amount of training

sequences. However, the amount can still be considered as a huge over-

head. One can oversample the one-bit observations in time. In this way,

the receiver takes a very limited amount of pilot signals and generates

many randomly dithered realizations to virtually increase the number

of observations. This method requires a more thorough calibration of

dithering signals.

• Adaptive Change to Decision Threshold of One-Bit ADCs

So far, one-bit ADCs have a fixed decision threshold of zero. Rather

than adding artificial dithering noise at the receiver, one can adaptively
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change the decision threshold so that the one-bit observations can sign

changes within an acceptable amount of training. Based on the fact that

the one-bit observation at the ith antenna is defined as

yi[t] = Q(
√
ρhT

i s[t] + zi[t]), (6.2)

it is easily noticed that the unquantized version is centered at
√
ρhT

i s[t].

Then, one-bit ADCs aim to set the comparator with decision threshold

√
ρhT

i s[t] by an adaptive update as a function of one-bit realizations.

This method will help the receiver see +1 and −1 equally likely.

• Online Learning Based Joint Design of Hybrid Architecture

The joint design of hybrid architectures across multiple BSs needs to take

into account the variant dynamics of the channel; however, implementing

real-time learning is very challenging. Here, online learning can come

into play. Online learning is a subset of machine learning in which fresh

data samples arrive sequentially and the prediction model is continually

updated to adapt to the new data as quickly as possible. However, a

majority of online learning algorithms are based on convex problems.

Therefore, an intelligent idea to apply non-convex online learning to the

multicell hybrid beamforming problems is needed.

• Spectral Efficiency Maximization via Deep Reinforcement Learn-

ing Based Reconfigurable Intelligent Surfaces

To address the challenging behaviors of the mmWave spectrum and the
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demanding requirements of the future 6G and beyond wireless networks,

a brand-new technology called reconfigurable intelligent surfaces (RIS)

has been brought to the attention of the wireless research community in

recent years. The RIS shown in Fig. 6.1 is a programmable man-made

structure that can be used to control the propagation of electromagnetic

waves by changing the electric and magnetic properties of the surface. By

placing these surfaces in a wireless environment, the properties of radio

channels can be reconfigured, thereby improving the quality of signals.

The RIS structure is defined as

R = ej2πdiag(ϕ1,...,ϕNRIS), (6.3)

and the main aim is to dynamically adjust the reflecting panels of the

RIS, where each ϕn takes one of M possible normalized discrete angles

as

ϕn ∈ {0,
1

M
, . . . ,

M − 1

M
}. (6.4)

Each diagonal entry of R in (6.3) needs to satisfy the non-convex unit-

modulus constraint, i.e., |Rn,n| = 1. Because of this restriction and (6.4),

it is challenging to find a solution of the RIS-aided system efficiently.

Therefore, the DRL-based approach can come into play. Especially, the

notion of intermediate vectors and soft-argmax function used to control

the phase shifter of the analog beamformers in Chapter 5 can be utilized

in this problem.
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Figure 6.1: Syetem model with reconfigurable intelligent surfaces.
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