
The FAST Methodology for High-Speed SoC/Computer

Simulation

Derek Chiou1, Dam Sunwoo1, Joonsoo Kim1, Nikhil Patil1, William H. Reinhart1, D. Eric Johnson1 and Zheng Xu1,2

1The University of Texas at Austin, 2Freescale Semiconductor, Inc.

{derek,sunwoo,turo,npatil,wreinhar,dejohnso,zxu}@ece.utexas.edu

Abstract—This paper describes the FAST methodology that enables a
single FPGA to accelerate the performance of cycle-accurate computer

system simulators modeling modern, realistic SoCs, embedded systems

and standard desktop/laptop/server computer systems. The methodology
partitions a simulator into (i) a functional model that simulates the
functionality of the computer system and (ii) a predictive model that
predicts performance and other metrics. The partitioning is crafted to
map most of the parallel work onto the hardware-based predictive model,

eliminating much of the complexity and difficulty of simulating parallel

constructs on a sequential platform.
FAST conventions and libraries have been designed to make creating,

modifying, using and measuring such simulators straightforward. We

describe a prototype FAST system: a full-system, RTL-level cycle-

accurate-capable computer system simulator that executes the x86 ISA,
boots unmodified Linux and executes unmodified x86 applications. The

prototype runs two to three orders of magnitude faster than RTL-level

cycle-accurate x86 software-based simulators and about six to seven times

faster than RTL simulation.

I. INTRODUCTION

Predicting behavior of an engineered system is an essential com-

ponent of engineering. Traditionally, behavior prediction has been

performed in a variety of ways ranging from physical modeling to

mathematics. Today, running a simulator on a computer is one of the

most widely used methods to predict behavior. Computer simulation

has been applied to virtually all scientific and engineering fields.

Though one could imagine a day when simulators are considered

fast enough, that day appears to be a long way off. Over time,

however, most simulators have steadily improved in performance due

to host1 performance improvements and efficiency improvements in

the simulators themselves. This paper focuses on improving the host

performance by leveraging a specific partitioning to parallelize the

simulator. Thus, in this paper we do not consider other simulator

efficiency improvements, though such improvements are possible

within our methodology as well.

Improved simulation performance requires additional exploited

host parallelism that can be gotten from the space domain (multiple

processors and/or other host hardware), the time domain (faster

clocked processors and/or other host hardware) or a combination of

the two. To date, parallelizing simulators of tightly coupled targets

across multiple processors has been difficult[1], [2]. We are not aware

of any highly scalable solution. Thus, most host performance im-

provements for such simulators come from the steady (until recently)

performance improvements in uniprocessor computers.

Simulating a next generation computer is, however, one area where

faster host computers do not significantly improve simulation perfor-

mance. The reason is simple; the complexity growth in computers is

generally faster than uniprocessor performance improvements. Thus,

simulating a computer system on a uniprocessor system will generally

not improve in performance if you are always simulating next genera-

tion computers; in fact, it is likely to get slower over time unless there

1We use the term target to refer to the device being simulated and host to
refer to the device that executes the simulation.

Functional
Model

Predictive
Model���������	
����
�������������������������� !��"

Fig. 1. A High-Level View of a FAST simulator

are simulator efficiency improvements. Since parallelism is essential

to improve speeds of simulating computer systems, and success has

been limited when trying to map simulators onto multiprocessors, we

believe that hardware is the only available solution to dramatically

improve simulation performance.

A general hardware simulation platform must be reconfigurable

to accomodate multiple targets. Field programmable gate arrays

(FPGAs) are one such reconfigurable hardware platform and the

hardware platform we assume in this paper. FPGAs today generally

include large amounts of dual-ported memory as well. The largest

support 300K+ logic cells and 200K+ registers along with 10Mb

of dual-ported BlockRAM. They are, of course, very parallel. Since

FPGAs are made from the same silicon as processors, they grow at

the same rate and thus could potentially maintain a high simulator

performance.

This paper describes a methodology that enables SoC/computer

system simulation to be efficiently accelerated using an FPGA. We

first describe our approach and compare it to other current approaches

to FPGA-acceleration of simulators. We then describe in detail how

our approach works. Afterwards, we describe an example of such

a simulator and results from that simulator. We then compare the

simulator to software simulators and conclude.

II. THE FAST METHODOLOGY

Many current simulators either run slowly or are highly optimized

for performance. Performance optimizations often increase complex-

ity, making simulators hard to verify. Ideally, simulators could be

written in a way that is easy to understand and verify, yet provides

high performance. As we argue in the introduction, we believe that

hardware is needed for maximum simulation performance. Thus, the

goal of this paper is to develop a methodology that enables fast and

resource-efficient simulators to be easily created and modified.

The FAST[3], [4] simulation methodology attacks the

speed/complexity issue by first partitioning the simulator into

(i) a functional model that simulates the functionality of the target

system including the instructions being executed on the processor or

processors in the system and peripherals but not the timing and (ii) a

predictive model that simulates the microarchitectural structures that

affect performance but not the functionality of the target machine.

Preprint: To Appear in ICCAD 2007.

Figure 1 is a high-level view of a FAST simulator. The functional

model pipes an instruction stream (we use “instruction” to mean

instructions that a processor would execute as well as memory reads

and writes and other operations from peripherals that implement and

affect system functionality) to the FPGA-based predictive model.

The predictive model only models the microarchitectural struc-

tures that affect the behavior that is being predicted. To predict

performance, arbitration, queuing and associative memories are some

of the structures that should be modeled. Many structures can be

dramatically simplified or even eliminated from the predictive model

with no loss of accuracy. For example, ALUs are pipeline stages and

do no real computation, caches only store tags and not data and so on.

Our predictive models are quickly assembled from simple modules,

such as FIFOs, associative memories and arbiters, that provide almost

all of the models needed for most computer systems. Because of

its simple and modular nature, a predictive model is easy to create,

modify and extend.

This partitioning has significant benefits. The simulator is far more

modular, simpler and more reusable than an integrated simulator. The

functional model does not need to know about the microarchitecture

of the target system. Likewise, the predictive model does not need to

know the functionality of the target. Thus, if the functionality of a

system remains the same, but it is re-architected to improve on some

metric (performance, power, etc.) a previous functional model can be

used as is and only the predictive model needs to change.

The partitioning alone does not improve simulation performance

over a monolithic design when run on a sequential host, since what

needs to be simulated remains fundamentally the same. An important

observation, however, is that the predictive model consumes the

vast majority of the computation cycles since modern targets are

inherently very parallel while the functional model is inherently

sequential. Thus, implementing at least the predictive model on an

FPGA is a logical approach to improving performance. The issue

then becomes one of tolerating the round-trip latency between the

functional model and the predictive model.

Because the predictive model is implemented in hardware, we

take a very simple approach to modeling timing. Rather than using

an event queue to eliminate computation when it is unnecessary,

our current predictive models advance every component every target

cycle. Even when moving a bubble through one pipeline register to

another, some work is performed. Implementing a software-based

simulator in such a way would ensure low performance, but because

we are using parallel hardware, such cycle-by-cycle evaluation can

be done very quickly since it is done in parallel. In addition, the

partitioning eliminates most wide datapaths and thus makes such an

approach tractable in a single FPGA.

A. Existing FPGA simulators/emulators

Several companies such as Cadence (Quickturn/Palladium), Axis,

Mentor/IKOS/VirtualWires and Tharas sell FPGA-based accelerators

or emulators that map RTL to multiple FPGAs to build a cycle-

accurate simulator. Such systems can be fast (up to 100M cycles

per second according to their respective web sites) and accurate

and provide the ability to take performance measurements with little

degradation in performance. Such systems, however, often run in the

millions to tens of millions of dollars.

The FAST system is very different than these approaches. Because

FAST separates the functional model from the predictive model,

it is able to model very complex systems with very few FPGA

resources. For example, we can model an Intel Pentium M-like

system, with a 2MB cache in a single Virtex 4 FPGA. A Quickturn-

like approach would likely require hundreds of FPGAs. A FAST

predictive model does not need to implement the functionality, thus

saving a tremendous amount of FPGA resources. In addition, a

FAST predictive model can be easily constructed from simple, pre-

existing modules with a small amount of custom code to specify

specific arbitration policies. The existing FPGA approaches require

a complete and running version of the RTL making such boxes

inappropriate for early architectural studies, when such simulation

might be very helpful.

There are several projects that implement some components of a

computer system, such as the processor or memory controller[5], [6]

or both[7], [8], in FPGAs and the rest in real hardware. RAMP[9]

reference systems are entirely implemented in FPGAs. Such systems

are fast but are not accurate unless all components are accurately

implemented in FPGAs which would require a tremendous number

of FPGAs (as with the Quickturn solution) if the simulated machine

is complex. All other prior hybrid FPGA/software simulators[10] that

we are aware of are partitioned on target system module boundaries

such as a cache, a floating point unit or even a processor core.

B. Functional/Predictive Consistency

On its own, the functional model produces the right path (which we

also call the functional path) instruction stream while the predictive

model needs a target path (which we also call the correct path)

instruction stream. There are two primary reasons for the functional

path to be different than the target path: branch prediction and parallel

memory accesses.

Our general solution is to make the functional model

speculative[?]. The functional model generates what it expects the

instruction stream to be (the right path) and then modifies that

instruction stream based on feedback from the predictive model

(when the target path is different than the right path). Thus, the

functional model has the ability to rollback to a previously executed

instruction and then change its control flow.

1) Branch Prediction: When a branch-predicted processor mis-

speculates a branch, it executes wrong path instructions until the

mis-speculation is discovered and corrected. The functional model,

however, naturally executes only right path instructions and thus will

not normally produce wrong path instructions. To get the target path

instructions, the predictive model issues commands to the functional

model whenever the functional path is not equal to the target path.

To determine when the functional path is different than the target

path, the predictive model models the branch predictor. It notifies

the functional model when a branch has been mispredicted so that

the functional model can then issue instructions from the wrong

path to drive the predictive model. Nested mispredicted branches are

possible. Once the predictive model resolves a mispredicted branch,

it instructs the functional model to return to the right path. Each

notification requires communication from the predictive model to

the functional model. That path introduces a critical round-trip loop

that directly impacts performance. The shorter the latency from the

predictive model indicating a branch misprediction/resolution to the

functional model rolling back, the better the simulator performance.

The round-trip time is dependent on the size of the messages and the

latency and bandwidth of the communication channel.

However, because branches are generally predicted correctly, the

cost of the round-trip communication can be amortized over a large

number of instructions. Interestingly enough, the better the target

branch predictor, the faster the FAST simulator modeling that system.

More complex processors tend to have better branch predictors

Preprint: To Appear in ICCAD 2007.

since their branch misprediction penalties tend to be higher. Thus,

as long as there are sufficient hardware resources, more complex

microarchitectures will tend to simulate faster than simpler ones.

2) Read/Write Misordering Caused by Parallel Targets: Virtually

all computer systems have multiple components, such as a processor

and an Ethernet card, that can read and write memory. In such cases,

the functional model may execute a read and a write to the same

location in a different order than the predictive model predicts.

One fact that dramatically reduces the complexity of the problem is

that the predictive model back-pressures its corresponding functional

model to keep all of the functional components accessing the same

resources at almost exactly the right time relative to the other

functional components; therefore, memory operations are almost

always executed in the correct relative order. In such a system, it is

impossible for a reader to read a value that should have been written

some n cycles before but has not yet been written because of timing

skew. Thus, we only need to worry about the ordering of memory

operations that are happening within a time window of n cycles.

There are two problems to solve: detection and correction. There

are many solutions to the problems. The solution we present here

addresses both of these problems. It assumes that the functional

model is running on a sequential host. In that case, we have a single,

sequential stream of instructions representing all of the functional

activity of the target system, including both processor and peripheral

activity, that clearly defines the ordering of memory accesses.

Each functional read is tagged with the functional write that

produced the data it read. Each functional write is also tagged

with its functional write order. In our planned implementation, that

tagging is done by FPGA hardware as the instruction stream is fed

into the predictive model. Likewise, the predictive model does the

same thing, associating reads with the writes that produce their data.

The predictive model confirms that the functional reads/writes were

performed in the correct order. If not, the functional models are rolled

back and executed in the predictive tag order until the mis-ordered

instruction. In general, all functional components that depend on the

mis-read data would have to be re-executed as well. As the system

re-executes, the addresses of loads and stores waiting within the

load/store queue in the predictive model might need to be updated if

those addresses depended on the mis-read data.

Note that the predictive model does not need to roll back because

control flow is determined by branch prediction and thus does not

depend on the actual values of data read and because memory

addresses that depend on mis-read data will not have been issued

to the cache because of the dependency on the mis-read data. The

pending memory addresses that depend on the mis-read data must

have their addresses updated by the functional path trace as it is

regenerated based on the correct memory ordering.

C. Making FPGA-based Predictive Models Easy and Economical

Writing reasonable, synthesizable RTL has traditionally been

harder than writing software. There are many reasons for this differ-

ence in difficulty. Hardware is traditionally optimized for performance

while software is often not. Meeting timing in microprocessor design

requires much more time than first pass functionality. Synthesizable

RTL requires knowledge of the underlying hardware to best use

and manage the limited resources while software runs on top of an

operating system and hardware that present a clean, abstract view of

the underlying system.

Certain design decisions can greatly alleviate and even eliminate

these differences between RTL development and software develop-

ment. The first is accepting multiple host cycles to implement a

single target cycle, resulting in lower target performance than the

native FPGA clock frequency. Cleanly designed logic runs well

over 100MHz in modern FPGAs2 If one is willing to take ten host

cycles for every target cycle, for example, the predictive model will

run at 10MHz-20MHz, still much faster than virtually any other

cycle-accurate simulator of complex systems. The functional model

is generally the bottleneck anyways, making the predictive model

performance moot.

In addition, multiple host cycles per target cycle allow us to trade

hardware resources for performance, making FPGA implementation

much more tractable and easier to express. Take, for example, a 16-

way associative cache. A standard implementation would require 8

BlockRAMs and 16 comparators along with an appropriate tree to

summarize the results and additional structures to perform updates.

Using multiple host cycles per target cycle, that cache could be

implemented in a single memory and a pair of comparators by reading

two values from a single memory (Xilinx and Altera BlockRAMs are

dual-ported) and comparing them to the desired tag every cycle for

eight cycles. We have traded a factor of 8 in resources for a factor of

8 in time. If the value is found early, the multi-cycle approach can

exit early and thus increase its average bandwidth.

Thus, if one is willing to sacrifice some performance, hardware

development can be made much easier and less resource-expensive.

A factor of two in cycle time is a giant factor for a shipping product,

but generally does not matter in a FAST simulator. Predictive models

do not need to meet hard timing constraints.

III. FAST MODULES AND CONNECTORS

One way to write the predictive model is to deconstruct it into two

classes of objects: modules and uni-directional connectors. Modules

are only attached to connectors while connectors are only attached

to modules.

In the FAST methodology, modules model behavior and not time

while connectors model time and not behavior. Passing through a

module incurs no target time; all time is counted by the connectors

attached to the module. We describe connectors and modules in more

detail in the rest of the section.

A. Connectors

At the core of the connector is a FIFO buffer. In addition to

transferring data in a FIFO manner, FAST connectors (i) delay data

and back-pressure information by zero or more target-cycles, (ii) use

a local synchronization scheme between the producer and consumer

modules, and (iii) include the ability to profile and record trace

information.

Connectors are universal and parameterizable. They are used to

connect all modules within a predictive model and are customized at

each instantiation using parameters. The input side is connected to

a producer module and the output side is connected to a consumer

module. The producer module enqueues data items of a configurable

type into the input side. The consumer module dequeues data items

of the same type from the output side.

In addition to the data type being passed, connectors are configured

for a fixed minimum delay D, an input side throughput Ti, an output

side throughput To, and a limit on the number of in-flight transactions

TransLimit. The delay specifies the minimum number of target

cycles between the enqueuing and subsequent dequeuing of a data

item. Throughput indicates the maximum number of items that can

be enqueued/dequeued in a single target cycle. The transaction limit

2One of the authors’ professional experience indicates that well designed
RTL code easily synthesizes to over 200MHz in Xilinx Virtex 4 parts.

Preprint: To Appear in ICCAD 2007.

specifies the overall capacity, or depth, of the connector. Connectors

used for collecting statistical information or tracing data also accept

as instantiation arguments the modules to conduct the statistical

compilation or data tracing.

The interface of the connector is very similar to that of a FIFO

interface. Standard FIFO interface methods, Enq, Deq, First, are mir-

rored in the connector but are augmented with methods necessary to

maintain timing synchronization, pDone, pCommit, getPtime, cDone,

cCommit, getCtime as well as those for managing statistics and data

tracing, rtnStats, activateTrace, triggerDump.

1) Buffer Design: The connector buffer is implemented in the

FPGA using either BlockRAM or Distributed RAM. For a given

cycle, the producer module writes to the buffer assuming that there

is no back-pressure. If the buffer is full, then the enqueue method

will be blocked and the producer will not be able to progress.

More advanced back-pressure (i.e. the required receipt of a token

from another module), is implemented using a separate, dedicated

connector for the back-pressure and internal producer module logic

to control processing and progress.

2) Timing and Delay: The connector maintains local time counters

and synchronizes the data movement from producer to consumer

modules locally without communicating or synchronizing with other

components in the system. Therefore, it is possible for different

logical times to exist throughout the model.

a) Time: To delineate time, the connector logically maintains

two target cycle counters, one for producer time, pTime, and one for

consumer time, cTime. Although the processing of data may require

multiple host cycles, target cycle time advances only when a module

commits to the operations. The pTime counter is incremented upon

receipt of a pCommit from the producer and cTime is incremented

upon receipt of a cCommit. Although in a closed system the model

is governed by the slowest module, the decoupling of pTime and

cTime within each connector enables modules, as well as the model

as a whole, to advance as soon as data is ready with no external

synchronization.

b) Delay: The connector maintains a register to record the

number of items that have been resident in the buffer for D delay

cycles and blocks consumer access, Deq and First, when that number

is zero. The register is decremented by the consumer’s Deq and

incremented by use of a small assist-FIFO, of depth D, that records

the number of items enqueued each target cycle. After an initialD−1

cycle delay, the assist-FIFO is read once each target cycle to obtain

the number of additional items available for dequeue for the next

target cycle.

Connectors can be configured to model a zero target time delay.

What is actually modeled is a register that is bypassed in the same

target cycle if the downstream module can accept the output of

the upstream module on the same target cycle. Thus, a module1-

connector-module2 model with a zero delay connector is essentially

a single module1-module2 device with a zero target time delay when

module2 is not back-pressured.

Optionally, timestamp information can be stored in the buffer

along with the data and delay can be accomplished by comparing

cTime with the stored timestamp. Although this option is more

straightforward than using the assist-FIFO, it requires increased

storage capacity for every entry in the buffer.

3) Trace Recording and Statistics Gathering: Connectors can be

configured to trace the data by accepting a trace module as an

argument at instantiation time. Configuration of the tracing module

includes (i) the specification of trace criteria, i.e., which entries to

capture, (ii) the specification of trace packing, i.e., which items of

TABLE I

STEADY STATE PERFORMANCE OF THE CONNECTOR

Configuration host cycles per
(Ti, To, D) target cycle

(1, 1, 0) 4

(4, 4, 0) 7
(1, 1, 1) 3
(4, 4, 1) 6
(1, 1, 10) 3
(4, 4, 10) 6

each entry to store, (iii) the specification of the storage location

and (iv) and whether to automatically dump the contents of the

trace buffer when it becomes full. The connector interface includes

a triggerDump method which enables pre-event trace capture. For

example, by tracing data as it is dequeued into a consumer module

and triggering a trace dump if the module stalls (i.e. if the module

is unable to process the available data), we can capture the sequence

of instructions that led to the stalling condition.

Similar to tracing, connectors through which we desire to capture

statistics can accept as an argument at instantiation a configured

statistics module. The statistics module is configured with a statistics

function and returns its compiled count upon use of the connector

method rtnStats.

4) Operation: The following section describes the interaction be-

tween the connector, producer, and consumer modules. Of particular

interest is the assertion and communication of the Done and Commit

signals between the connector and the modules in order to properly

delineate target cycle boundaries.

Because the connector is the device responsible for tracking actions

in time, it generates the pDone signal if the number of enqueued items

equals the configured Ti. Similarly for the consumer end, it generates

the cDone signal if either the number of dequeued items equals the

configured To or if all the available items for the target cycle have

been consumed. Additionally, either the producer and consumer can

indicate to the connector when, due to internal module processes,

a target cycle has completed by asserting their respective Commit

signal.

Because connectors maintain local times and do not synchronize

externally, modules must Commit to every one of their connectors

each target cycle. This ensures that the target cycle times associated

with the ends of the connectors attached to the module will be the

same. Failure to do so can result in an inconsistent timing state with

a single module existing in numerous logical times (as maintained in

its attached connectors).

5) Connector Performance: Connectors consume one host cycle

for internal calculations, determining Enq and Deq numbers for

the next cycle, as well as for the final commit processing, either

pCommit or cCommit. Additional host cycles required depend upon

the configuration of the connector and resulting ability to conduct

operations concurrent in a single host cycle. Table I displays the

performance for several connector configurations for a producer and

consumer with no back-pressure (i.e. the modules are always ready

to produce and consume). With the 0-delay configurations, because

Deq’s are dependent on Enq’s, the initial Enq consumes a host cycle

alone while subsequent Enq’s can be conducted concurrently with

the Deq of previous data. In general, 0-delay connectors will require

2 + 1 + the connector throughput host cycles to simulate. With the

non-zero delay configurations, all Deq and Enq operations can be

conducted concurrently resulting in 2 + the connector throughput

Preprint: To Appear in ICCAD 2007.

module mkCAM#(ConnectSource#(Tuple2#(addr_t, data_t)) insertQ,

 ConnectSource#(data_t) matchQ,

 ConnectSink#(addr_t) outQ,

 addr_t size)

 (CAM#(addr_t, data_t));

 SPMem#(addr_t, data_t) mem <- mkSPMem(size);

 Reg#(addr_t) addr <- mkReg(0);

 Reg#(State_t) state <- mkReg(MATCH);

 rule match_incr (state == MATCH);

 if (mem.read(addr) == matchQ.first) begin

 matchQ.deq();

 outQ.enq(addr);

 addr <= 0;

 end

 else if (addr != size - 1)

 addr <= addr + 1;

 else begin

 matchQ.deq();

 addr <= 0;

 end

 endrule

 rule match_done (state == MATCH && (outQ.done || matchQ.done));

 matchQ.commit(True);

 outQ.commit(True);

 state <= INSERT;

 endrule

 rule insert (state == INSERT);

 match { .addr, .data } = insertQ.first;

 mem.write(addr, data);

 insertQ.deq();

 endrule

 rule insert_done (state == INSERT && insertQ.done);

 insertQ.commit(True);

 state <= MATCH;

 endrule

endmodule

Fig. 2. A simple CAM Module

host cycles to simulate.

B. Modules

Modules provide the functionality of the predictive model. For

example, modules provide such functionality as CAMs, Caches,

Branch Predictors, Fetch, Decode, Rename, and so on. Modules are

hierarchical and are very configurable. For example, we provide a

CAM module that is used by the Cache module that is, itself, used

by the Branch Predictor module. Such hierarchy promotes code reuse

and thus reduces implementation and verification effort.

Figure 2 shows a CAM module that takes an arbitrary number

of insert and match commands. An insert command inserts into a

specified location in the CAM, and a match command returns the

lowest address in which the specified data word is found. This CAM

can be configured to be of any arbitrary size and can have arbitrarily

long data-words. It assumes that within a (target) clock cycle, match

commands do not conflict with the insert commands.

Algorithmically, for each match command in the match command

queue (matchQ), the CAM module iterates over each entry of a

single-ported memory (mem), until it finds the first successful match,

the address of which it enqueues into the output queue (outQ). It

then inserts data words from the insert command queue (insertQ)

into mem.

Since the above implementation uses only a single-ported memory,

clearly it needs one cycle per memory access. Thus, an insert

command takes one cycle, and a match command takes cycles equal

to however many comparisons it needs to do; e.g., an unsuccessful

match in a CAM of size 32 will take 32 cycles, but if the first entry

in the CAM happens to match, it will only take one cycle. In addition

to the comparison delay, there is an extra overhead due to the hand-

shaking with the connector.

It is much easier to write a module in this fashion because:

1) As mentioned in Section II-C, modules are not as difficult as

regular hardware design because they can take multiple host

cycles to do the job of one target cycle.

2) The connector abstracts away much of the work in connecting

two modules unlike traditional module-connection semantics

$% %& ' () *# $+% +# $+% +, ' () *# $++ +# $++ +
, - (. . /0

$1+ + +# $1+ +& ' () *, ' () *# $11 1& - (. . /0, - (. . / 0# $11 1

+
1 2 3 4 3 2 3 4 32 3 4 35 6 7 89 : ; <= >

8 6 <
8 ? <

& - (. . / 0

Fig. 3. A simple example of the connector

that revolve around “exporting” a set of ports in the interface,

where the instantiating module is expected to connect these

ports appropriately.

3) The connector maintains time, thus preventing modules from

having to do so to avoid getting out of sync.

4) The CAM does not assume anything about the number of ports

into and out of the CAM module, nor does it know about

the number of cycles the request will be processed in on the

simulated machine. The connector enforces the right throughput

at the right latency, by actively telling the module that it is done

and providing only the data for the current target cycle.

C. Simple Example

For an example, consider Figure 3(a) that has a Producer module

connected to a Consumer module via a connector. Throughputs are

configured to be 1 on both the input side of the connector and the

output side of the connector and the delay is configured to be 1 cycle.

The producer attempts to enqueue into the connector. If there

is space in the connector, the producer is allowed to enqueue.

Since throughput is configured to 1, that is the only data item

that can be enqueued and thus the connector generates a pDone

signal. The producer acknowledges with a pCommit signal, thus

incrementing the input producer target cycle by one in the connector.

Similar communication is conducted at the connector output with the

consumer.

Figure 3(b) shows an example of a module that has two source

connectors (each with a To of 2) and one sink connector (with a Ti

of 3). The module is a sorting module; it examines the head value of

Preprint: To Appear in ICCAD 2007.

each of its inputs, dequeues the larger value and forwards it to the

output. The module must either see a cDone on both of its inputs

or a pDone on its output before it completes its target cycle and

asserts cCommit on both of its input connectors and pCommit on its

output connector advancing the target cycle time for its end of each

connector.

The left source connector has one data value enqueued while

the right source connector has two data values enqueued. Neither

source connector cDone signal is asserted. Because there is data on

both inputs, the module examines both, determines the left source

connector’s head value is larger and dequeues it and passes it to the

sink connector. After the left source connector is dequeued, it will

assert the cDone signal since it has no more data for this target clock

cycle.

IV. FAST IMPLEMENTATION STATUS AND PERFORMANCE

Our initial FAST simulator supports the x86 instruction set, boots

Linux and runs unmodified application binaries compiled on real

machines. Our functional model is QEMU[11], a full-system sim-

ulator that we have extensively modified to support instruction trace

and rollback. It runs on both standard workstations as well as on

the embedded processor (an in-order IBM PowerPC 405 running at

300MHz) within Xilinx Virtex 2 Pro FPGAs. Though there is no

reason that the functional model cannot be implemented in hardware,

there are significant benefits to starting with a software-based full-

system functional model that already runs the x86 ISA and boots

Linux and Windows.

We are finishing a processor-core predictive model (Figure 4,

modules are blocks and connectors are FIFOs) that simulates a

branch-predicted superscalar processor core with reservation sta-

tions, multiple functional units, virtual memory and a full memory

hierarchy. We will then augment the model with a memory bus,

DRAM and disks. Our predictive model is being assembled from

composable/configurable modules that include models for CAMs,

caches, arbiters, DRAMs, disks, branch predictors, FIFOs, memories

and ALUs.

The entire predictive model is written in Bluespec[12]. Bluespec’s

ability to pass types permits us to make the module and connector

interfaces very general. Each module has a defined type that is ex-

tendible but also contains additional “pass-through” and “pass-back”

type fields that permit the user to provide additional information

without having to modify the module. The pass-through type provides

information that the consumer module or a future consumer module

might need. The pass-back type provides information that would be

passed back to the producer module when a reply is returned to the

producer module.

Since each connector can be individually configured with Ti, To

and delay and since each module is highly configurable, even starting

from a pre-created predictive model, one can study a wide range of

microarchitectures. For example, through the connectors attached to

the ALU, one can set the latency of the ALU. One can vary the

cache-sizes. The throughput settings on the connectors indicate how

many instructions can be produced and consumed per target cycle for

each connector. Thus, by making the appropriate throughput settings,

one can generate an n-way superscalar processor. Throughputs do not

have to be the same on both sides of a connector. For example, one

could allow the Fetch to enqueue a maximum of four instructions

per cycle, but only allow the Decode to dequeue a maximum of two

instructions per cycle.

@ A B C D E FG H I C D AJ K I L C DM K A NO A C P N AQ A L I R AQ A ST B I B U P L SV W X Y Z Y [\] E FO H I C D A
K̂_UBAK E `H I C D Aa A R P K bQ c J

d H P L L A C B P K

Fig. 4. A Predictive Model of a Superscalar processor

A. Development Platforms

Our first development platform was a stand-alone Xilinx board with

one Virtex 2 Pro 30 FPGA. Depending on the number of connectors

implemented in BlockRAMs, a predictive model for a current general-

purpose out-of-order processor with a 2MB cache can fit in that

FPGA which can also be found on a $600 Xilinx XUP development

board. It is very likely that multiple predictive models could fit in a

single modern FPGA.

We have also ported our implementation to a DRC Computer

prototyping system[13] that consists of an FPGA module, in our case

a Xilinx Virtex 4 LX60, that plugs into one HyperTransport socket in

a dual-socket AMD Opteron system. The other socket is populated

with a standard Opteron 275. This system will eventually provide

very low latencies between the Opteron and the FPGA (but does not

currently, impacting performance).

FPGA utilization results using the DRC platform are presented

in Table II. It is interesting to note that very low area penalty

is incurred for the predictive model when the issue width of the

target processor is increased. This is due to the fact that the critical

connectors are built from BlockRAMs. When the connector size

is increased, the BlockRAM utilization for each connector only

increases when the memory requirement exceeds what is currently

available. If the increased connector size does not require more

memory than is available in the currently allocated BlockRAMs,

then no additional resources are required. Additionally, the connector

enables time multiplexing of modules, meaning that architectural

changes that would typically result in larger modules only results

in larger connectors.

B. Current Performance

Figure 5 shows the FAST simulator performance on the DRC

platform booting unmodified Linux and running SPECINT2000

benchmarks[14] on top of the operating system. The speed of the

simulator is over 1.2 million instructions per second (MIPS) on

average and over 3 MIPS for some benchmarks.

Performance suffers for a variety of reasons. Perhaps the most

important and easiest to fix is the fact that the DRC platform latency

between the Opteron and the FPGA is quite long, about a factor of

four longer than it should be. In addition, by using coherent cache

accesses (not currently supported), average latencies will drop to

approximately a cache hit.

Preprint: To Appear in ICCAD 2007.

TABLE II

UTILIZATION RESULTS FOR VARIOUS ISSUE-WIDTH FAST PREDICTIVE

MODELS IN A XILINX XC4VLX60

1 issue
slice count 8,135 / 26,624 30%
BlockRAMs 117 / 160 73%

4 issue
slice count 8,077 / 26,624 30%
BlockRAMs 121 / 160 75%

8 issue
slice count 8,393 / 26,624 30%
BlockRAMs 121 / 160 75%

Linux b
ootup

164.gzip

175.vpr

176.gcc

181.m
cf

186.crafty

197.parser

252.eon

253.perlb
mk

254.gap

255.vorte
x

256.bzip2

300.tw
olf

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

3.06

S
im

u
la

ti
o

n
 S

p
e
e
d

 (
M

IP
S

)

Fig. 5. Simulation Performance of FAST Simulators on a DRC Computer
prototyping system

Since this is our initial prototype, both the functional model and

predictive model need to be tuned for performance. We do know

that there is a tremendous amount of debug code in our current

implementation of the functional model and that the predictive model

can also be extensively optimized.

Combining the performance benefits of both an improved interface

between the processor and the FPGA with some simple optimizations,

we have reason to believe that the simulator will be significantly faster

than today, perhaps by an order of magnitude or more.

V. RELATEDWORK

The functional/predictive partition itself is not novel. FastSim[15],

Asim[16] and M5[17] are some of the software-only cycle-accurate

or near cycle-accurate simulators that are partitioned in this fashion.

Only FastSim, however, uses a speculative functional model that

rolls back to handle mis-speculation. It uses binary instrumentation

rather than simulation, however, requiring that the host processor

supports the same ISA as the target processor and greatly complicates

simulating OS instructions. We cannot directly compare against those

simulators, however, since FastSim and M5 only support the Alpha

ISA and Asim is not available outside of Intel.

Asim is the only functional/predictive partitoned simulator that

runs the x86 ISA and is trusted within Intel as being truly cycle-

acccurate. It has been our main comparison because it is the basic

simulator used through much of Intel. In cycle-accurate mode,

however, it runs speeds between 1KHz and 10KHz[18] and does not

boot operating systems. Asim has been in development approximately

as long as Simplescalar and has had the benefit of being actively

used within DEC/Compaq/Intel to evaluate real products. The speed

at which Asim runs as compared to other, less accurate academic

simulators, is some evidence that achieving true cycle-accuracy for

x86 is significantly more expensive than 5% level aggregate accuracy.

Simplescalar[19] is the most commonly used academic simulator.

We ran Simplescalar’s sim-outorder, the most accurate model

from the standard 3.0 distribution, on the same DRC machine that we

used to generate the FAST simulated numbers and achieved 500KIPS

to 600KIPS. Simplescalar, however, is well known to be inaccurate.

Even a calibrated version of Simplescalar, sim-alpha[20] is within

6.6% for SPECINT2000 and within 21% for SPECFP2000.

IBM’s Mambo has a cycle-accurate model of a Power4/Power5

processor that runs at about 200KIPS[21] while Freescale has a

cycle-accurate PowerPC simulator that runs at approximately 80KHz

simulating an E500 target which is an OOO, dual-issue processor

with branch prediction[22]. These simulators are close to their peak

performance, however, having been highly optimized. They are also

executing the Power/PowerPC ISA which, though complicated, is still

significantly less complicated than the x86.

PTLSim[23] is the simulator that is closest in performance and

functionality to FAST. PTLSim is a software-only cycle-accurate sim-

ulator that targets the x86 ISA and can run full system software. The

claimed aggregate accuracy is within 5% for the single benchmark

that was calibrated and the speed is very high at around 415KHz or

within a factor of three of the current version of FAST. However, we

believe that PTLSim is already highly optimized while we have not

yet started optimizing FAST. In addition, FAST collects statistics in

FPGA hardware ensuring almost zero performance impact as long

as there are sufficient hardware resources. Also, a single calibration

point cannot accurately determine accuracy, since there are often large

variations within a program and across different programs.

VaST Systems[24] claim in the tens of MHz cycle-accurate simu-

lation performance but only model simple, in-order cores rather than

out-of-order superscalar cores that FAST supports. In addition, their

performance suffers as the number of statistics grows.

We believe we are the first to implement the predictive model in

an FPGA. A recent Intel project, HASim[25], intends to produce a

hardware Asim which is based on a predictive-model-driven func-

tional model. The predictive model tells the functional model when

to fetch, decode, rename, execute and retire each instruction. Thus

functionality is performed at the appropriate time, eliminating the

need for functional model rollback. HASim, however, requires ex-

tensive communication between the predictive model and functional

model and thus the functional model must be implemented on the

FPGA, a difficult task for complex ISAs like x86.

Emer’s Asim[16] is earlier work in the software-only domain that

provided inspiration for the connector described in this paper. Pellauer

and Emer have started to extend that work to the FPGA domain as

well.

VI. CONCLUSIONS

We have described the FAST simulation methodology that enables

very high speed simulation of computer/SoC/embedded systems

by using FPGAs as an accelerator. The methology depends on a

partitioning of the simulator into a functional model and a predictive

model. We also give details on how a predictive model is constructed

using Connectors that model time and Modules that model predictive

model behavior but not time. The successive decomposition simplifies

the resulting simulator and enables it to be partially implemented

in an FPGA, resulting in very high simulation performance. Our

initial results show that a predictive model of eight-issue superscalar

processor can be modeled in a single Xilinx Virtex 4 LX60.

Preprint: To Appear in ICCAD 2007.

VII. ACKNOWLEDGEMENTS

This research was partially funded by a Department of Energy

Early Career Principal Investigator Award, the National Science

Foundation, a Faculty Award from IBM, grants and equipment

donations from Intel, equipment and software donations from Xilinx

and a gift from Freescale.

We would like to acknowledge Dr. Joel Emer of Intel and Michael

Pellauer of MIT for comments and technical discussions.

REFERENCES

[1] T. Li, Y. Guo, and S.-K. Li, “Design and Implementation of a parallel
Verilog simulator: PVSim,” in Proceedings of the 17th International
Conference on VLSI Design, 2004, pp. 329–334.

[2] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. August,
and D. Connors, “Exploiting Parallelism and Structure to Accelerate the
Simulation of Chip Multi-processors,” in 12th International Symposium
on High-Performance Computer Architecture, Feb 2006, pp. 27–38.

[3] D. Chiou, “FAST: FPGA-based Acceleration of Simulator Timing mod-
els,” in Proceedings of the first Workshop on Architecture Research using
FPGA Platforms, held in conjunction with HPCA-11, San Francisco, CA,
Feb. 2005.

[4] D. Chiou, H. Sanjeliwala, D. Sunwoo, J. Z. Xu, and N. Patil, “FPGA-
based Fast, Cycle-Accurate, Full-System Simulators,” in Proceedings of
the second Workshop on Architecture Research using FPGA Platforms,

held in conjunction with HPCA-12, Austin, TX, Feb. 2006.
[5] J. D. Davis, L. Hammond, and K. Olukotun, “A Flexible Architecture
for Simulation and Testing (FAST) Multiprocessor Systems,” in
Proceedings of the Workshop on Architecture Research using

FPGA Platforms, held at HPCA-11, Feb. 2005. [Online]. Available:
http://cag.csail.mit.edu/warfp2005/submissions/33-davis.pdf

[6] S.-L. Lu, E. Nurvitadhi, J. Hong, and S. Larsen, “Memory
Subsystem Performance Evaluation with FPGA based Emulators,”
in Proceedings of the Workshop on Architecture Research using
FPGA Platforms, held at HPCA-11, Feb. 2005. [Online]. Available:
http://cag.csail.mit.edu/warfp2005/submissions/16-lu.pdf

[7] C. Kozyrakis and K. Olukotun, “ATLAS: A Scalable
Emulator for Transactional Parallel Systems,” in Proceedings

of the Workshop on Architecture Research using FPGA

Platforms, held at HPCA-11, Feb. 2005. [Online]. Available:
http://cag.csail.mit.edu/warfp2005/submissions/6-kozyrakis.pdf

[8] E. Nurvitadhi and J. Hoe, “Full-System Architectural Exploration
Sandbox,” in Proceedings of the Workshop on Architecture

Research using FPGA Platforms, held at HPCA-11, Feb. 2005.
[Online]. Available: http://cag.csail.mit.edu/warfp2005/submissions/18-
nurvitadhi.pdf

[9] D. Patterson, Arvind, K. Asanović, D. Chiou, J. C. Hoe, C. Kozyrakis,
S.-L. Lu, , M. Oskin, J. Rabaey, and J. Wawrzynek, “RAMP: Research
Accelerator for Multiple Processors,” in Proceedings of Hot Chips 18,
Palo Alto, CA, Aug. 2006.

[10] T. Suh, H.-H. S. Lee, S.-L. Lu, and J. Shen, “Initial Observations of
Hardware/Software Co-Simulation using FPGA in Architectural Re-
search,” in Proceedings of the Workshop on Architecture Research using
FPGA Platforms, held at HPCA-12, Feb. 2006. [Online]. Available:
http://www.cag.csail.mit.edu/warfp2006/submissions/suh-git.pdf

[11] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
USENIX 2005 Annual Technical Conference, FREENIX Track, 2005, pp.
41–46.

[12] “Bluespec webpage,” http://www.bluespec.com.
[13] “DRC Computer,” http://www.drccomputer.com/.
[14] “SPEC webpage,” http://www.spec.org.
[15] E. Schnarr and J. R. Larus, “Fast out-of-order processor simulation using

memoization,” in Proceedings of the Eight International Conference
on Architectural Support for Programming Languages and Operating

Systems, Oct. 1998, pp. 283–294.
[16] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S.

Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan,
“Asim: A performance model framework,” Computer, vol. 35, no. 2, pp.
68–76, 2002.

[17] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt, “Network-Oriented
Full-System Simulation using M5,” in Sixth Workshop on Computer
Architecture Evaluation using Commerical Workloads (CAECW), Feb.
2003.

[18] J. Emer, “HASim talk at RAMP Retreat, June 2007.” [Online].
Available: http://ramp.eecs.berkeley.edu

[19] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for
Computer System Modeling,” IEEE Computer, vol. 35, no. 2, pp. 59–67,
Feb. 2002.

[20] R. Desikan, D. Burger, and S. W. Keckler, “Measuring
experimental error in microprocessor simulation,” in Proceedings
of the 28th Annual International Symposium on Computer

Architecture (ISCA), 2001, pp. 266–277. [Online]. Available:
citeseer.ist.psu.edu/article/desikan01measuring.html

[21] L. Zhang, “personal email communication,” 2007.
[22] J. Holt, “personal email communication,” 2007.
[23] M. T. Yourst, “PTLSim: A Cycle Accurate Full System x86-64 Microar-

chitectural Simulator,” in Proceedings of ISPASS, Jan. 2007.
[24] “VaST Systems,” www.vastsystems.com.
[25] N. Dave, M. Pellauer, Arvind, and J. Emer, “Implementing a

Functional/Timing Partitioned Microprocessor Simulator with an
FPGA,” in Proceedings of the Workshop on Architecture Research using
FPGA Platforms, held at HPCA-12, Feb. 2006. [Online]. Available:
http://www.cag.csail.mit.edu/warfp2006/submissions/dave-mit.pdf

Preprint: To Appear in ICCAD 2007.

