Enforcing Architectural Contracts in High-level Synthesis

Nikhil A. Patil
University of Texas at Austin

npatil@mail.utexas.edu

ABSTRACT

We present a high-level synthesis technique that takes as
input two orthogonal descriptions: (a) a behavioral archi-
tectural contract between the implementation and the user,
and (b) a microarchitecture on which the architectural con-
tract can be implemented. We describe a prototype compiler
that generates control required to enforce the contract, and
thus, synthesizes the pair of descriptions to hardware.

Categories and Subject Descriptors

B.5.2 [Register Transfer Level Implementation]: De-
sign Aids—Automatic Synthesis; B.1.4 [Control Struc-
tures and Microprogramming]: Microprogram Design
Aids—Machine-independent microcode generation

General Terms
Algorithms, Design, Languages

Keywords

Architecture, microarchitecture, E-unification, synthesis

1. INTRODUCTION

Processor design is a challenging task involving several
man-years of labor. Describing hardware at the RTL-level
is a significant component of this task. One way to reduce
the complexity of describing hardware is to use a high-level
synthesis language.

Computer architects generally make a strong distinction
between architecture and microarchitecture. Architecture
refers to the contract between the designer of a module and
its user, whereas microarchitecture refers to the way an ar-
chitecture is implemented. The instruction-set architecture
(ISA) is conveniently expressed as a behavioral description
of the instruction set, whereas the microarchitecture could
be anything from purely combinational logic to a super-
scalar, out-of-order pipeline. It would therefore be conve-
nient to have a synthesis language that allows the architec-
ture and the microarchitecture to be specified separately. In
fact, such a split description is commonly used during archi-
tectural simulation[18, 6]. This paper describes a compiler
that synthesizes such a split description to hardware.

Most hardware can be (conceptually) partitioned into a
data-path and a control-path. The data-path belongs en-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC’11, June 5-10, 2011, San Diego, California USA

Copyright (©) 2011 ACM 978-1-4503-0636-2/11/06 ...$10.00.

Ankit Bansal
University of Texas at Austin
ankit@mail.utexas.edu

Derek Chiou
University of Texas at Austin

derek@ece.utexas.edu

tirely to the microarchitecture but the control-path is deter-
mined by both, the architecture and the microarchitecture.
We define microarchitectural control as the control required
to implement core microarchitectural ideas like pipelining,
instruction scheduling, arbitration policies etc., and archi-
tectural control as the control required to implement each
instruction on that microarchitecture. Specifying architec-
tural control explicitly is tedious and error-prone, requiring
serious verification; moreover, it may need revision if the
architecture or the microarchitecture changes.

We require the user to specify the behavior of each instruc-
tion as a part of the architectural specification, but do not
require her to specify how that instruction is implemented
on the microarchitecture. This makes the description sub-
stantially simpler, and shifts the burden of generating the
architectural control onto the compiler. Among other things,
this includes generation of microcode. By automating mi-
crocode generation, we can avoid a large class of human er-
rors. Since the architectural description can be reused over
several iterations of the microarchitecture, this also reduces
the amount of work required to roll out an implementation.
In fact, an ISA description is often already present as a part
of the instruction-set simulator. It is very easy to make in-
cremental additions to the ISA—the compiler does the hard
work of implementing them on each microarchitecture.

More significantly, we believe that our technique simpli-
fies processor description to the point that it may eventually
replace software simulation as the staple for design-space ex-
ploration. For example, one can use this technique to im-
plement different ISAs on a common microarchitecture, to
generate Pareto-optimal curves of microarchitectures for a
given ISA, study the performance of benchmarks on different
vector-instruction extensions, etc. Performing design-space
exploration in a synthesizable language is already very at-
tractive[5, 12], since it allows the architect to obtain much
more accurate estimates of area, power and delay from the
downstream synthesis and physical design tools. High-level
synthesis languages are already being marketed for this pur-
pose, but none that we know of attempt to automatically
generate the architectural control.

High-level synthesis research has divided itself into two
fundamental paradigms[3]: (a) behavioral synthesis, which
provides the user with a familiar language (like C) but gives
little or no control over the generated microarchitecture, and
(b) non-behavioral synthesis, which gives full control over
the microarchitecture, but does not support a high-level be-
havioral specification (e.g., Kiwi[9], Bluespec[15]). As ar-
chitects, we want both: a top-level behavioral specification
and full control over the microarchitecture. This suggests
two approaches: (a) start with a C-synthesis tool and add
support for constraining the compiler to a user-specified mi-
croarchitecture, or (b) start with a non-behavioral synthesis

tool and add support for behavioral specification. We take
the latter approach in this paper.

We show that for a common class of microarchitectures, in
which instructions are decoded into microinstructions (uops)
that “flow” with data, it is possible to associate all architec-
tural control with the pop. By abstracting the pop into a
special entity that the compiler automatically generates, we
let the user specify the architecture (§2) and microarchitec-
ture (§3) with almost no information overlap. We describe
a compiler that generates correct architectural control that
automatically enforces the architectural contract.

The crucial insight here is that, modulo certain restric-
tions, the functionality of an instruction can be represented
as a mathematical term, and the functionality of a microar-
chitecture can be represented as a mathematical function.
The inputs to this function are the control-bits in the pop.
Our major contribution is that we reduce the problem of gen-
erating architectural control, to the problem of equational
unification on the terms representing the instruction and
the functionality of the microarchitecture (§4).

We have implemented a prototype compiler that generates
hardware from a split description (§5). Rather that emit
hardware as Verilog, we emit Bluespec SystemVerilog[15],
and then use the Bluespec compiler to synthesize to Ver-
ilog. This gives us the ability to emit high-level constructs,
generate human-readable output, and allows us to leverage
optimizations implemented in the Bluespec compiler. How-
ever, our technique is not specific to Bluespec.

2. ARCHITECTURAL CONTRACT

Unlike interfaces in software, which are procedure calls,
raw hardware interfaces are simply wire-to-wire connections.
High-level synthesis languages sometimes embed a hand-
shake protocol into the interface. For example, Bluespec
associates a ready and an enable signal with each method.
The caller must verify that the ready signal is asserted and
then assert the enable signal (in the same cycle) to make
a call. Thus, an interface specifies a contract between the
“caller” and the “callee”[4]. Rather than imposing the burden
of obeying such interface contracts on the user, the Bluespec
scheduler actually guarantees that they will never be vio-
lated. This philosophy of embedding correctness guarantees
in the compiler, rather than merely verifying that generated
hardware is correct (in the restricted sense that contracts are
not violated), is informally called correct-by-construction.

Such an interface contract is inherently timed because,
the interface protocol is timed. In addition to the timed
interface contract, most interfaces have a semantic contract
associated with them. However, this contract is often only
present in comment blocks and module names. For example,
a module named FIFO is expected to have first-in-first-out
behavior and a module named RippleAdder is expected to
add its inputs. Such contracts are not enforced by a com-
piler, but verified a posteriori.

We define the architecture of a module as the untimed se-
mantic contract between the user and the implementation of
that module: the external user expects a certain functional-
ity, and the internal implementation provides that function-
ality. On the other hand, the timing behavior of the module
is entirely contained within the microarchitecture. Unlike
an interface contract, which must be respected by the exter-
nal user, an architectural contract must be respected by the
internal implementation.

architecture Simple
memory rf = Bit#(32) x 8

memory mem = Bit#(8) x 232 mtsigqusc— Corf
instruction inc (r) Z 77777
rflr] < rflr]+1 Fetch| R Proc.
instruction loadbyte (7,a) H Engine
rf[r] < signExtend(mem]a)) brogram e
instruction jmp (pc, imm) counter| ~~"" - ’

. update
return pc + imm

Figure 1: A simple architecture (pseudocode)

The user specifies this contract as a set of instructions
operating on the architecturally-visible state (Fig. 1), such
as the register file and the virtual memory in a typical pro-
cessor. These are merely abstract notions of what the hard-
ware is operating on, and don’t necessarily have an associ-
ated counterpart in the implementation. For example, the
virtual address space may be vastly greater than the total
physical memory, and the architectural register file may only
exist as a table of pointers, pointing into a larger physical
register file.

An instruction is specified as a set of non-conflicting ac-
tions, where each action is a combinational update on the
architectural state. Actions are said to conflict if they spec-
ify updates that cannot be implemented in parallel, e.g.,
updates to the same register. Such an instruction definition
can be mechanically derived from a behavioral specification,
like that used in instruction-set definitions. The behavioral
specification could contain a loop, as long as it can be stati-
cally unrolled. An explicit architectural contract could also
be used as a “run-time assertion” during simulation.

3. MICROARCHITECTURE

The specific way in which one implements an architecture
is called the microarchitecture. Our language allows the user
to specify the architecture and microarchitecture separately,
and the compiler is responsible for generating hardware such
that the architectural contract is not violated.

Although arbitrary microarchitectures cannot be specified
in an architecture-independent fashion, for a large subset
of microarchitectures, it is possible to do so. We focus on
clocked synchronous hardware with data-stationary control.

Data-stationary control was first introduced to simplify
microprogramming of inorder pipelines[11]. In a data-sta-
tionary pipeline, the instruction is first “decoded” into one
or more microinstructions (pops). Each pop flows through
the microarchitecture, meeting resources like read and write
ports of register files, arithmetic units, memory ports, etc.
Control information that tells each resource what to do is
encoded in the pop. A resource may generate data, which
then flows with the pop to be consumed by a downstream
resource. Data-stationary pipelines are insensitive to the
latency of individual resources, hence they greatly simplify
microprogram generation over other control strategies. This
concept is easily generalized to other kinds of microarchitec-
tures, as long as (a) the decoding happens in the beginning,
(b) each pop flows through the microarchitecture along with
the data, and (c) a pop meets each resource at most once.
We impose no other restrictions on the microarchitecture.

An architect visualizes such a microarchitecture as a di-
rected acyclic graph with the resources as vertices and pops
flowing along the edges (Fig. 3(a)). Implicit in this re-
source graph is the architectural control, which consists of:

architecture Example
memory 7f = Bit#(32) x 8
instruction inc (r1)
rflr] < rflr] +1
instruction mov (r1,r2)
rflr1] <= rf[ro]

(a) An example architecture (pseudocode)

module mkExample implements Example
RegFile#(Bit#(3), Bit#(32)) rf < mkRegFile(8)
RWire#(Bit#(3)) w1, w2 < mMkRWire
FIFO#(UoP) p1,p2, p3 < mkPipelineFIFO
method Action issue (UOP uop)
p1.enq(uop)
let r = Valid(p: .first().read_in())
rule stagel when r # w; and r # w»
let uop = p; first()
uop = uop.read()
p2.enq(uop)
p1.deq()
rule stage2
w1 = po.first().write_in_addr()
ps.enq(pz.first().add())
p2.deq()
rule stage3
wa = pa.first().write_in_addr()
ps.first().write()
ps.deq()

(b) An example microarchitecture (Bluespec pseudocode)
Figure 2: Architecture & Microarchitecture

(a) the logic for decoding an instruction into a pop sequence,
(b) the encoding of the pop, (c) hardware needed to mux the
right data to each resource, and (d) control needed to route
each pop to the appropriate resources. On the other hand,
microarchitectural control is visualized as if superimposed
over the resource graph. This includes pipeline registers,
issue policies, completion buffers—micro-architectural enti-
ties that affect timing. Our goal is that the compiler will
generate all architectural control, and let the user specify
arbitrary microarchitectural control.

3.1 Specifying microarchitectures

Our technique allows the user to specify the microarchi-
tecture using arbitrary Bluespec constructs, but prevents
access to the implementation of the pop.

The pop is encapsulated into an entity called the UOP. The
user is expected to primarily operate on whole U0Ps. This
corresponds very strongly to the resource graph, where not
values but entire pops flow along the edges (Fig. 3(a)). The
user is required to specify the implementation of resources
like register read /write ports, adders, dividers, floating point
units, memory ports etc.

The internal structure of the UOP is determined by the
compiler, and is hidden from the user. Both the control
information and the data in the UOP are only exposed via
public methods. (It will help here to think of UOP as a C++
class with private data and public methods.) The user may
call these public methods from arbitrary Bluespec code.

Fig. 2(a) and Fig. 2(b) show the architecture and microar-
chitecture of a very simple processor. The architecture only

function RC(r1,72)
let z = rf[d]
let y =0+ 0
rfld) < 0O

end function

Hopuopuop

| Register File |
(a) Resource graph expressed as a program

function RC(r1,72,a, 3,7, 0,€)
let © = rf[a(r, r2)]
let y = B(r1, 72, 2) + y(r1,r2, x)
Tf[(s(rla T2,%, y)] <~ €(T17 T2,, y)
end function

b) Resource Configuration: unknowns replaced by labels
a—€). r1,r2 are fields in the instruction.

inc ™ mov (ri,72)

a(ri,r2) —
B(ri,r2,2) — x
y(ri,ro,z) = 1
T1,T2,T,Y) > T1
1,72, L,Y) — Y

(c) Label bindings (‘?" means unconstrained)

a(ri,re) — 1o
B(ri,ra,x) — 7
y(ri,ro,x) — ?
0(ri,r2, z,y) — 11
e(ri,re, z,y) — x

0

3

(
(

> 2 choices — 1 bit
> 1 choice — 0 bits
> 1 choice — 0 bits
> 1 choice — 0 bits
> 2 choices — 1 bit

> Total 2 bits
(d) Bits required to encode labels in the pop

a(ri,r2) = r1 or ro
B(r1,re,x) — x
y(ri,ro,x) — 1
o0(ri,r2, z,y) — r1
e(ry,re,z,y) — y or x

= A

<] read
- D

=

3
O .

] Register
£ File
]

=)

[a

A write

(e) Synthesized hardware (microarchitectural control is not
shown). Shaded hardware can be optimized away. Thick
lines show the generated architectural control.

Figure 3: Resource configuration to hardware

specifies two instructions and a register file. The microarchi-
tecture instantiates a register file and three pipeline registers
(p1,p2,p3). The method issue simply registers the input UOP
into p1. Rule stagel dequeues the UOP in pi, calls its read
method and enqueues it into p2. The call to the read method
of the UOP causes the appropriate value to be read from the
register file and logically appended to the UOP. Similarly,
rules stage2 and stage3 call the add and write methods to
perform the addition and write to the register file.

In addition, stagel needs to stall whenever the its read-
register conflicts with the write-registers of the following two
stages. This computation is done in the when clause of
stagel. These values are obtained by calling the read_in
method of the UOP in p; and and the write_in_addr methods
of the UOPs in p2 and ps.

Configuration, ! (Bluespec) 1
O R i

Control
Compiler,

Our Compiler

Architectural
Control
(Bluespec)

Generated Code

Unmodified commercial toolflow

Verilog RTL

Figure 4: Our toolflow

3.2 Resource Configuration

In addition to the microarchitecture specified using Blue-
spec, our compiler requires the user to specify a resource
configuration that summarizes the functionality of the mi-
croarchitecture. This program is sufficient (along with the
architecture) to generate architectural control. Our toolflow
is shown in Fig. 4. Currently, the user must ensure that the
microarchitecture and resource configuration are consistent.

The resource graph captures what we call the “function-
ality” of the microarchitecture, and crucially, it can be ex-
pressed as a sequential program (as opposed to a concurrent
program). For example, in Fig. 3(a), the first resource sim-
ply reads from the register file, the second does an addition,
and the third writes to the register file. The program ex-
presses the same information. The inputs to each resource
are shown as unknowns (0).

These unknowns must be determined from whatever infor-
mation is available in the pop at that point. A value is only
available at a resource-input, if there is a path from that
value to the resource in the resource graph. In Fig. 3(a), the
read index into the register file must be determined from
the set {r1,r2}, operands to + must be determined from
{r1, 72,2}, and the write index/data to the register file must
be determined from {r1,r2,z,y}.

This information is made explicit in Fig. 3(b). Here, a—¢
are abstract functions that generate the appropriate value to
feed the resource; we call these labels. Typically, a label just
chooses from one of its arguments. However, it could also
return a constant, sign-extend a value, bit-concatenate two
values, etc. Hence, we model labels as abstract functions
that compute the appropriate data for each resource. This
program with explicit labels, along with the definition of
each resource, is called the resource configuration.

The resource configuration could be inferred from the mi-
croarchitecture specified by the user. However, doing so
would require our compiler to understand the semantics of
Bluespec. Instead, we require the user to specify it man-
ually. This has the added benefit of allowing the user to
constrain the specified configuration, e.g., the user can fix a
resource input to be a constant rather than a label, use the
same label in multiple places, etc. This gives the user some
additional control over the generated pops.

An instruction can be emulated by binding each label to
some function; e.g., the user can easily verify that by sub-
stituting the bindings of Fig. 3(c) into the resource config-

uration RC, the two instructions of Fig. 2(a) can be emu-
lated. In §4, we will describe how our compiler determines
the bindings needed to emulate an instruction.

3.3 Synthesis

Each label is translated to hardware at the corresponding
resource-input. Since a label may be bound to different func-
tions to emulate different instructions, multiple functions
may be synthesized at a resource-input. In this case, the pop
would contain control bits to choose the appropriate bind-
ing, and a mux would be synthesized at the resource-input.
Fig. 3(d) shows how the compiler calculates the number of
bits required in the pop to implement the two instructions
of Fig. 3(c).

Since the only input to a microarchitecture is the pop, the
pop must be initialized to contain all the information con-
tained in the arguments of the resource configuration (in-
struction fields and labels). As the pop flows through the
system, it meets resources that logically append data to it.
Thus, the size and structure of the pop depend on where it
is in the microarchitecture.

However, we implement the pop as a single struct UOP,
which reserves space not only for all the instruction fields
and labels, but also for the outputs of each resource. This
makes UOP simple, but rather large in size. This overhead
is easily mitigated by downstream synthesis tools which can
iteratively remove registers and wires (a) which always have
the same value (constant propagation), or (b) whose values
are unused (dead-code elimination). In addition, retiming
can help move muxes across registers.

Fig. 3(e) shows the result of synthesizing the specifica-
tions of Fig. 2 & 3(b). The array of horizontal rectangles
represents a UOP. The shaded rectangles represent redundant
hardware that can be easily removed by downstream synthe-
sis tools. (For clarity, we haven’t shown microarchitectural
control, in particular the pipelining and stalling logic, which
must be specified by the user). The thick lines represent
architectural control that is synthesized by the compiler.
Labels a and e are synthesized to multiplexers and have
corresponding control bits in UOP, whereas 3, v and § are
synthesized to wires. The downstream synthesis tool could
further save registers by retiming the mux generated for ¢
across the pipeline register.

4. GENERATION OF ARCH. CONTROL

To map each instruction to one or more pops, we need to
generate the set of labels that make the resource configura-
tion program equivalent to the instruction. We shall formu-
late this problem of generating the set of labels in terms of
the known problem of equational unification.

4.1 Equational Unification

A term is defined recursively, either as a variable, a symbol,
or a function applied to one or more terms. Here, a symbol
is simply an identifier with an associated meaning, whereas
a variable only serves as a placeholder at which another term
can be substituted.

The goal of wnification is to solve a set of equations in
terms ({s £t,...}), more specifically, to find a variable-to-
term mapping which makes a set of pairs of terms simultane-
ously equal. In syntactic unification, equality is interpreted
structurally—the meaning of a symbol is not used to decide
equality, e.g., z+y and y+x are not syntactically equal. On

the other hand, in equational unification or E-unification,
equality is determined using a set of equations FE specify-
ing axioms like commutativity, associativity, semantics of
if-then-else etc.

The algorithm for syntactic unification[2] essentially walks
the trees formed by the two terms, verifying if the symbols
on each side are exactly the same until it reaches a vari-
able on one of the terms. In this case, it simply creates a
mapping from the variable in one term to the correspond-
ing subterm in the other term, making sure that it does not
contradict any of the existing mappings. The algorithm ter-
minates without a solution if it encounters a symbol clash
or an inconsistent variable-term mapping. A variant of this
basic algorithm has linear-in-time asymptotic complexity.

The strategy for general E-unification is similar, however,
one can no longer require the two symbols on either side to
be structurally identical. Instead, the algorithm must use
the axioms in set E to modify an equation s = ¢ such that
the above approach does succeed. The procedure for “using”
an axiom [= r € E, is quite naive: pick any non-variable
subterm wu present in either s or ¢, and replace it with r; then,
add the additional constraint [= u to the set of equations
to unify. This step is called lazy paramodulation[7]. The
algorithm nondeterministically applies lazy paramodulation
at some subterm using some equation in F, repeatedly, and
then proceeds to syntactically unify the result.

The algorithm implies a search tree in which the root node
is the problem, edges are applications of the lazy paramod-
ulation step and leaf nodes are solutions. This algorithm
is complete—i.e., every unifier is reachable on the search
tree. The search tree is finitely-branching but it has infi-
nite paths. Thus, a breadth-first search will exhaustively
enumerate each solution, however it may never terminate.
Thus, this algorithm is NP-hard in general.

4.2 Problem Formulation

An instruction is just a set of combinational updates on
architectural state, hence, it can be represented as a term.
The arguments to the instruction are represented as con-
stant symbols, and there are no variables in the instruction-
term. Since the resource configuration is acyclic for a data-
stationary microarchitecture, it can also be expressed as a
term, with labels represented as variables.

To map an instruction to a single pop, we need to find
a label-to-term mapping that makes the resource configura-
tion and instruction terms equal. In other words, we need to
E-unify the two terms. (Our problem is somewhat simpler,
since there are no variables on one of the two terms.) The
axioms E represent not only the semantics of the symbols
in each term, but also equations that allow a label to be
replaced by one of many values. For example, a label may
be replaced by a field in the pop, a constant, etc.

An exhaustive solution set can be obtained by a breadth-
first traversal of the search tree, but this is expensive, and
the search may never terminate. Fortunately, like most syn-
thesis problems, we only care about optimality up to a cer-
tain constraint: more solutions don’t have to be inspected
once a good-enough solution is found.

Instead of minimizing the number of control bits in the
pop and the number of multiplexers at the resource-inputs,
we incrementally build a heuristic for choosing a pseudo-
best solution. To limit compiler run-time, we simply use the
number of pops as a coarse-grained cost metric.

Exhaustive enumeration also complicates heuristics. For
example, since + is known to be commutative, if the reg-
ister file has two read and two write ports, a two-register
add instruction can be implemented in eight ways, but all
solutions are only cosmetically different. For instructions
spanning multiple pops, we have seen hundreds of practi-
cally equivalent solutions. Moreover, equivalent solutions
tend to be generated together, thereby delaying a better so-
lution from being evaluated. A probabilistic algorithm may
alleviate this problem, but knowing when to stop remains
difficult, particularly when no solution can be generated.

To investigate the cost of sacrificing optimality, algorithm
in a severely restricted form that does not allow paramodu-
lation to be applied at arbitrary subterms, but only at the
top-level term (at each step of the algorithm). Moreover,
we require that [and u above unify syntactically (thereby
making the paramodulation eager rather than lazy). These
restrictions have the combined effect that multiple axioms
cannot be used at the same subterm. The resulting algo-
rithm is not complete, and to make the algorithm work for
common cases, we had to add additional axioms to our set
of equations F; this was done by trivially composing pairs
of existing axioms.

One way that is guaranteed to prune the search space is
to enforce static type-checking. This allows the compiler to
prove that the labels can never take certain values. For ex-
ample, in Fig. 3(b), if the type of r1 and 72 is RegID and the
type of y is Bit#(32), then we can safely conclude that the
function 8 cannot return the value rq or r2, thereby making
the problem smaller. However, our prototype compiler does
not implement static types yet.

4.3 Multiple pops

When an instruction is translated to multiple pops, we
may need to pass data between pops. To do so, we need some
notion of a “temporary register”. Our language allows the
user to add a temporary register file to the microarchitecture
just like a regular register file. The compiler knows that it
can overwrite the values of a temporary register file, since
it is not part of the architectural state. We provide two
algorithms to map an instruction to multiple pops:

(a) If unification fails to find a single-pop solution, we
compose two instances of the resource configuration together
and attempt to unify again. This composition involves col-
lapsing temporary register write-read pairs. If that fails, we
try three instances, etc. until we succeed or time out.

(b) Another technique is to add an additional variable to
the resource configuration to capture residual actions, when-
ever the algorithm only manages to partially unify the two
terms. Similarly, residual values can be mapped to tempo-
raries. These residual actions and values are then iteratively
re-mapped onto the resource configuration to get the previ-
ous pops. (The pops are generated in reverse order.)

S. IMPLEMENTATION

The instructions in the architectural specification are spec-
ified as a set of Bluespec functions. For simplicity, we let
Bluespec decide the bit-encoding of each instruction. For an
extant architecture like x86, the user would have to manu-
ally translate from the actual instruction format to the bit-
encoding expected by Bluespec to maintain bit-level com-
patibility. The resource configuration is specified using a
custom Haskell eDSL (embedded domain-specific language).

Instruction Num of pops

Actual | Best
add eax, 1234 1
add eax, (eax+ecx)
add (eax*2+4), edx
add ecx, (eax)
push 0x1234

push (0x1234)

pop ebp

call 0x1234

xchg (eax), ebx
xchg eax, ebx
movs

B H NN DN e
W | N e

Figure 5: Comparison of generated pops to the
best possible number; ‘-’ means not implementable;
value in () represents a memory address

We believe the language is powerful enough to conveniently
specify any data-stationary microarchitecture.

Our compiler emits Bluespec to (a) define the UOP struct,
(b) decode the instruction into a list of UOPs, (c¢) wrap re-
source implementations to operate on UOPs, and (d) de-
fine functions that get synthesized to hardware at resource-
inputs. We then use the standard Bluespec toolflow to com-
pile the emitted Bluespec with the specified microarchitec-
ture. Aslong as the user doesn’t try to access the UOP private
data, the user-written code and compiler-generated code is
always compatible.

Fig. 5 shows a few representative x86-like instructions be-
ing mapped onto a resource graph. The number of pops
generated are compared to the optimal number. Condition
codes were not modeled. The compiler was constrained to
run for less than 20 seconds per instruction, with the excep-
tion of movs for which it was given 100 seconds. (movs is a
complex instruction that performs one memory-to-memory
move and three register decrements.) The compiler correctly
detected that the two-register xchg (register swap) cannot
be implemented on this resource configuration (due to the
lack of temporary registers).

6. RELATED WORK

Several synthesizable architecture/microarchitecture de-
scription languages exist[14], but none that we know of al-
low microarchitectures to be specified in a powerful non-
behavioral high-level synthesis language.

MIMOLA[13] is an early '80s behavioral synthesis lan-
guage that allows the instruction set to be separated from
the target declaration, which specifies a set of one-way rules.
The rules match patterns in the instruction-graph and re-
place them with corresponding patterns in the hardware.
Since the technique operates over the entire microarchitec-
tural state, it does not scale to modern microarchitectures.

User-guided HLS[1] attempts to generate hardware accel-
erators from software by automatically mapping the software
onto a “draft data-path” (similar to our resource configura-
tion), by using a coarse-grained and fine-grained scheduler.
However, arbitrary microarchitectures cannot be supported.

Generalized instruction selection[17] uses one-way match-
ing (a restricted form of unification) to compile software onto
a specified instruction set. The Denali super-optimizer[10]
uses F-graph matching and a SAT solver to compile small
software kernels to provably optimal machine code. Similar
techniques could be used to compile an instruction onto our

resource configuration.

NISC[16] avoids the ISA abstraction altogether by map-
ping from software directly onto a specified data-path, and
storing the pops in program memory. Tensilica[8] allows
the user to add instructions and data-path elements to the
Xtensa family of processors.

7. CONCLUSION

We have shown that it is possible not only to decouple
architectural contracts from microarchitectures, but also to
enforce them. We have prototyped a simple compiler that
uses F-unification to generate architectural control required
to enforce the contract, and synthesizes the split description
to hardware. We are currently exploring more efficient FE-
unification algorithms.

8. ACKNOWLEDGMENTS

This material is based upon work supported in part by the
National Science Foundation under grants 0615352, 0747438, and
0917158. We are greatly indebted to the anonymous reviewers for
their comments and corrections.

9. REFERENCES

[1] I. Augé and F. Pétrot. User-Guided High Level Synthesis.
In P. Coussy and A. Morawiec, editors, High-Level
Synthesis. Springer Netherlands, 2008.

[2] F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[3] P. Coussy and A. Morawiec. High-Level Synthesis: from
Algorithm to Digital Circuit. Springer, 2008.

[4] N. Dave, M. C. Ng, M. Pellauer, and Arvind. A design flow
based on modular refinement. In MEMOCODE, 2010.

[5] K. Ekanadham, J. H. Tseng, P. Pattnaik, A. Khan,
M. Vijayaraghavan, and Arvind. A PowerPC Design for
Architectural Research Prototyping. In WARP, 2009.

[6] J. Emer, P. Ahuja, E. Borch, A. Klauser, C. K. Luk,
S. Manne, S. S. Mukherjee, H. Patil, S. Wallace,
N. Binkert, R. Espasa, and T. Juan. Asim: A performance
model framework. Computer, 35(2), 2002.

(7] J. H. Gallier and W. Snyder. Complete sets of
transformations for general E-unification. Theoretical
Computer Science, 67(2-3), 1989.

[8] R. Gonzalez. Xtensa: a configurable and extensible
processor. IEEE Micro, 2000.

[9] D. Greaves and S. Singh. Designing application specific
circuits with concurrent C# programs. In MEMOCODE,
2010.

[10] R. Joshi, G. Nelson, and K. Randall. Denali: a
goal-directed superoptimizer. In PLDI, 2002.

[11] P. M. Kogge. The microprogramming of pipelined
processors. In ISCA, 1977.

[12] S.-L. L. Lu, P. Yiannacouras, R. Kassa, M. Konow, and
T. Suh. An FPGA-based Pentium in a complete desktop
system. In FPGA, 2007.

[13] P. Marwedel. A retargetable microcode generation system
for a high-level microprogramming language. In MICRO’81.

[14] P. Mishra and N. Dutt. Processor description languages.
Morgan Kaufmann Series in Systems on Silicon. 2008.

[15] R. S. Nikhil. Bluespec System Verilog: efficient, correct
RTL from high level specifications. In MEMOCODE, 2004.

[16] M. Reshadi, B. Gorjiara, and D. Gajski. Utilizing
horizontal and vertical parallelism with a no-instruction-set
compiler for custom datapaths. In ICCD, 2005.

[17] T. Richards. Generalized Instruction Selector Generation.
PhD thesis, University of Massachusetts Ambherst, 2010.

[18] E. Schnarr and J. R. Larus. Fast out-of-order processor
simulation using memoization. In ASPLOS, 1998.

