
PrEsto: An FPGA-Accelerated Power Estimation
Methodology for Complex Systems

Dam Sunwoo, Gene Y. Wu, Nikhil A. Patil and Derek Chiou
Department of Electrical and Computer Engineering

The University of Texas of Austin
{sunwoo, wu, npatil, derek}@ece.utexas.edu

Abstract—Reduced or bounded power consumption has be-
come a first-order requirement for modern hardware design.
As a design progresses and more detailed information becomes
available, more accurate power estimations become possible but
at the cost of significantly slower simulation speeds. Power
simulation that is both sufficiently-accurate and fast would have
a positive impact on architecture and design.

In this paper, we propose PrEsto, a power modeling method-
ology that improves the speed and accuracy of power estima-
tion through FPGA-acceleration. PrEsto automatically generates
FPGA-based power estimators consisting of linear models that
are designed to be integrated into fast, accurate FPGA-based
performance simulators of microprocessors. Our prototype im-
plementation predicts the cycle-by-cycle power dissipation of the
LEON3 core and the ARM Cortex-A8 core to within 6% of
a commercial gate-level power estimation tool, while running
several orders of magnitude faster. The combination of simulation
speed and accuracy is not only useful to architects and designers,
it is fast enough to be useful for power-sensitive operating system
and application developers.

I. INTRODUCTION

Reduced and/or bounded power dissipation has become a
first-order requirement for virtually all engineered systems.
Power has become especially important in microprocessors,
ranging from the lowest-end embedded processors to the
highest-end server processors, due to their ubiquity and ten-
dency to consume a large fraction of any system’s power
budget. Thus, the better the available tools to predict the power
dissipation of a particular design, the better the end-product.

Detailed power simulations using standard EDA tools run
extremely slowly, making running full applications virtually
impossible. Thus, though the simulator itself may be accurate,
the overall results could be inaccurate if what is simulated
is not representative. To improve power simulation speeds,
spreadsheet power modeling, where the number of times the
component is used by a sequence of operations is multiplied
by a pre-computed fixed energy consumption per use, is often
employed. This technique is, however, inaccurate because it
does not account for either timing information or input data.

Detailed power simulations require detailed toggle activity
(traditionally generated by RTL simulation) that itself is tradi-
tionally slow. The emergence of hardware-accelerated simula-
tion technologies, such as Palladium, Quickturn, or academic
projects accelerating computer system simulation [1], [2] have
dramatically sped up the generation of toggle activity, opening
up the opportunity to speed up accurate power simulation. To

do so, however, requires power models that run at roughly
the same speeds and can be tightly integrated into the same
hardware-accelerated platforms.

There is a plethora of work [3]–[7] in the area of regression-
based power estimation. Some model cycle-by-cycle power
[4], and others model system-level power [7], but rarely both.
These models are generally too complex to implement on
hardware-accelerated platforms.

In this paper, we introduce PrEsto (PoweR ESTimatOr), a
new power estimation methodology that systematically gener-
ates fast, accurate, easy-to-implement, and resource-efficient
power models for FPGA platforms. PrEsto models are in-
tended to generate accurately comparable power estimations,
both at the architectural level and design phases, and run fast
enough for even software developers to power-tune operating
systems and applications.

The contributions of this paper are as follows:
• The introduction of a systematic method (PrEsto) to au-

tomatically generate simple, yet accurate, power models
designed to accurately predict cycle-by-cycle power. The
models are driven by actual control and data transitions.
PrEsto power predictions for LEON3 and ARM Cortex-
A8 cores are within 6% of gate-level predictions gener-
ated by commercial tools (Sections III, V).

• Efficient FPGA-based implementations of PrEsto models
that run several orders of magnitudes faster than gate-
level simulation and at least an order of magnitude faster
than software-based architectural power estimation tools
while being more accurate (Sections IV, V).

• The introduction and evaluation of FPGA implementa-
tions of macromodels that can complement the linear
power models for irregular components (Section VI).

II. REDUCING THE COMPLEXITY OF POWER MODELS

Power consumption can be modeled accurately using de-
tailed models with sufficient information. Accelerating SPICE
models with FPGAs have been studied [8], but are impractical
for large designs. Ideally, we would like to have power models
that are very simple and easy to implement on FPGAs, but still
very accurate. The challenge lies in reducing the complexity
of detailed power models without sacrificing accuracy.

The power dissipation of a circuit is more sensitive to
some primary inputs than others [3]. This observation suggests
that the power dissipation of large complex designs, e.g.,

microprocessors, can be accurately estimated using a small
number of key contributor signals. Examples of such signals in
a microprocessor include cache read/write and hit/miss signals,
pipeline stall signals, etc.

Linear Power Models: Given n signals (si) in a module
as predictor variables and the power consumption (Pm) of
the module as the response variable, the relationship between
the response and the predictor variables can be modeled as a
linear equation as follows:

Pm = c0 + c1s1 + c2s2 + ...+ cnsn

+ cn+1(s1s2) + cn+2(s1s3) + ...+ c2n(s1s2...sn) (1)

where ci is the coefficient of each term, capturing the constant
portion (CV 2f) of the CMOS dynamic power, P = αCV 2f .
The activity factor, α, is determined by the actual transitions
of signals, si. The predictor variables in Equation (1) include
all possible crosses of factors, where a cross is the product of
two or more signals, corresponding to certain events within the
modules that are only triggered when more than one control
signals are asserted. Thus, cross terms are also important. The
total number of terms in the equation is 2n. While more signals
and thus more terms in the model will eventually result in a
perfect complete equation, having more terms is costly both
in terms of computation and storage.

We use three approaches to reduce the complexity of the
linear model. First, we reduce the design space by using
fewer signals (e.g., high-level signals such as signals at module
boundaries). Second, for buses, we further reduce the number
of bits by using the Hamming distances from cycle to cycle
instead of using individual bits, since bits in buses are unlikely
to affect power consumption outside the group. Third, we limit
both (i) the maximum number of factors per cross term and
(ii) the total number of terms in the linear model. The degree
of optimization can be adjusted arbitrarily depending on the
complexity of the design, desired accuracy and execution
platform resource constraints.

III. AUTOMATIC POWER MODEL GENERATION IN PRESTO

We propose an automated process that can generate and op-
timize the power models. The algorithm in Figure 1 describes
the Automated Power Model Generation (APMG) process for
PrEsto. A group of high-level signals (S) and buses (B) are
passed in as candidate factors to be used in the power models.
There is no restriction on which signals can be candidate
factors. Signals available in high-level models or input/output
port signals at HDL module boundaries or internal registers
keeping state are good choices for candidate factors. Using
even gross architectural intuition and filtering out some rarely
used signals (e.g., debug ports) from the list of input/output
ports significantly helps reducing the runtime and memory
requirement of APMG. We run a set of short training runs
using detailed tools (e.g., gate-level simulation) and small
training benchmarks. DS , DB and DP are arrays of the data
of the signals, buses, and power, respectively, populated over
time from the training simulation. DS and DB can be multi-
dimensional as they may contain more than one signal/bus.

Input: Candidate signals and training data(S, DS), Candidate buses
and training data(B, DB), Power and training data(P, DP),
Maximum number of terms per module(N), Coverage
Threshold(Thcov)

Output: TotalPowerModel
1: for all module m do
2: lm ← GenLinearModel

(
Pm = (1 +

∑
bi∈Bm

HD(bi))×
(1+

∑
sj∈Sm

sj+
∑

sk∈Sm,sl∈Sm,sk 6=sl
sksl), DSm , DBm ,

DPm

)
3: for all term t in lm do
4: MaxValt = |t .c| ×max (HD(t .b))
5: end for
6: Sort terms by MaxVal and select top N terms
7: T1...N ← selected sorted terms
8: Calculate Coverage using T1...N

9: PowerModelm =
∑N

i=1
Ti

10: if Coverage < Thcov then
11: Add more candidate signals to S and B, increase N , or

refine training benchmark
12: goto line 2
13: end if
14: end for
15: TotalPowerModel =

∑
m

PowerModelm

Fig. 1. Algorithm for Automatic Power Model Generation (APMG)

The function GenLinearModel in line 2 of the algorithm
takes an input formula (without coefficients) and predic-
tor/response variable values as input. It outputs the coefficients
for the linear model using linear least squares regression
methods. For each module in the design, an input formula is
constructed using individual control signals and the Hamming
distances (denoted as HD in the algorithm) of buses, including
the crosses of the factors, as predictor variables and the power
as the response variable. The input formula is shown in a
factorized form in line 2. There is also an intercept (constant)
term in the input formula. The subscripted Bm, Sm and Pm

denote the variables specific to module m. |Bm| denotes
the number of buses in Bm and |Sm| denotes the number
of signals in Sm. If we consider the entire design space
including all cross factors, the number of terms in the linear
model follows O(2|Bm|+|Sm|). Thus, the complexity grows
exponentially with the number of buses and signals given.

To bound the complexity and to make FPGA implementa-
tion practical, we limit the number of factors allowed to form
a cross in a term. For all terms that have two or more HD
factors, additional multiplication operations that cost FPGA
resources will be required, whereas one bit control signals are
more cost-effective to use. For all the experiments shown in
this paper, we limited the cross factors to a three-way product
consisting of at most one bus HD and at most two control
signals as shown in the input formula (line 2). A typical term
in the linear model will have the form of c · HD(bi) · sj · sk ,
where c is the coefficient. By limiting the cross factors, the
complexity of the model is reduced to O(|Bm| · |Sm|2). This
restriction can be adjusted to achieve better accuracy if FPGA
resources and APMG runtimes permit.

APMG further attempts to reduce the number of terms in
the linear model and thus reduce the complexity by keeping

only the terms with larger potential values. Since terms with
an HD component should weigh the coefficients more heavily,
we calculate the maximum value of each term as the absolute
value of the coefficient(t.c) multiplied by the maximum HD
of the bus component in that term (t.b) (line 4), and then select
the top N terms that have greatest maximum values where N
is specified as a parameter (lines 6-7). A larger value of N will
improve the accuracy of the power model at the cost of higher
complexity. Analyses on the impact of different values of N
(both on accuracy and resource) are presented in Section V.

If certain components in the design are not exercised by the
training benchmark, they may not be reflected in the power
model. We measure the static coverage of the power models
to ensure most of the design is covered. Coverage is defined
as the proportion of nets that are reachable when propagating
from the signals/buses that are chosen for the power models.
The fact that a net is covered does not necessarily imply that
we have the correct weightings for that net, but if a net not
covered, its effect cannot be accounted for in the generated
equation. If the resulting coverage of the power model is not
satisfactory, the user can add more candidate signals and/or
refine the training benchmark to exercise the uncovered area,
and then repeat the power modeling for the given module (lines
10-12). Since coverage is generally satisfactory even without
refinement, the coverage detector is just a safety net. Section V
shows that PrEsto initially reaches high coverage. The total
power of the design is estimated as a linear sum of the power
models for all modules (line 15).

PrEsto automatically generates fast power models using
existing power data either generated by a power simulation
of RTL mapped to the appropriate process technology, or
measured from real parts. Designers can extrapolate existing
power models for designs on new process technologies that
reuse existing components. Of course, RTL is not available
for every next-generation component. In such cases, one can
combine PrEsto power models with other power modeling
techniques such as (i) dividing the component into smaller
building blocks that have RTL or other power models, (ii)
analytical models such as those in Wattch [9] or CACTI [10] or
(iii) a combination of the two [11] using such models. The total
power can be calculated by a linear sum of power estimates
modeled by different modeling approaches.

IV. PRESTO POWER MODELS ON FPGAS

Accurate power models require signal toggle information
generated by an accurate simulator. Such simulators are often
slow, in the 1Hz-100Hz range for gate-level simulators, and in
the 1KHz-100KHz range for behavioral RTL or architectural
simulators. However, FPGA-based simulators that run in the
1MIPS-10MIPS range have recently been developed. Although
software implementations of PrEsto models are significantly
faster than gate-level power estimation (Section V), they
were designed to be implemented in FPGA-based simulators,
enabling accurate power estimation at 10MIPS and faster.

✓
Timing Model (TM)

✓

Interface

Functional Model (FM)

FPGA

Trace

Feedback

Fig. 2. A high-level view of a FAST simulator

A. Integrating with FAST Simulators

We integrated PrEsto models into an FPGA-Accelerated
Simulation Technologies (FAST) [1], [2] simulator prototype
to (i) demonstrate that they can be integrated into such
simulators, (ii) measure their simulation performance, and (iii)
determine the FPGA-resources they require.

A high-level view of a FAST simulator is shown in Figure 2.
FAST simulators are partitioned into a Functional Model (FM)
and a Timing Model (TM). The FM executes the functional
aspect of a system, including the behavior of the ISA and
peripherals, while the TM models the timing aspects of the
system. The FM speculatively executes instructions and passes
a trace of those instructions, in the order it fetches and
executes them, to the TM that uses that trace to predict
timing. Any discrepancy between the FM fetch/execute path
and the TM-predicted target fetch/execute path (e.g., branch
misprediction) is addressed by the FM rolling back and re-
executing under the guidance of the TM. The FM runs
efficiently on a microprocessor. The TM is parallelized by
running on an FPGA that can efficiently emulate the parallel
structures found in modern computer systems. The speculative
nature of FAST simulators means the FM and TM can be
fairly decoupled while maintaining excellent simulation speed
as long as divergence occurs infrequently since rollbacks, and
their overhead, only occur when there is divergence.

Since FAST simulators are simulators and not emulators,
modules can take multiple FPGA cycles to model a single
target cycle. For example, instead of trying to squeeze an eight-
entry CAM into a single clock cycle, it can be modeled in eight
FPGA cycles, reducing TM complexity while enabling high
frequencies. By leveraging the multiple FPGA cycle support
needed for flexible simulation, more accurate power models
than would be possible in a single FPGA cycle can be used.

Also, full emulation approaches can consume a huge amount
of FPGA resources. The Intel Atom processor port fills up
a Xilinx Virtex-5 LX330 FPGA, even after removing the
entire L2 cache [12], leaving no room for power models.
The FAST TM is much more efficient, as a great amount
of the functionality can be abstracted away. Thus, FPGA-
based simulators are an ideal environment in which to integrate
PrEsto power models.

B. Implementing PrEsto on FPGAs

Figure 3 illustrates the PrEsto power models designed for
the FPGA. Each term in the linear model (depicted as Ti in

Input Vector

Power

+

0 1

Coeff

×

HD

…

T0 T1 Tn

sksjbi

HD(bi)

Fig. 3. Block diagram of a PrEsto power model implemented for an FPGA

Core (ISA) LEON3 (SPARC V8) Cortex-A8 (ARMv7)
Pipeline Single-issue, 7-stage in-order Superscalar (dual-issue) 13-stage

Branch Pred N/A Two-level dynamic branch pred
L1 I/D-Cache 4KB, 4-way, LRU 32KB, 4-way, Pseudo-random

L2 Cache N/A 256KB, 8-way, Pseudo-random
I/D TLB 8 entries, Increment replc. 32 entries, fully assoc.

TABLE I
LEON3 AND CORTEX-A8 CONFIGURATION USED

the figure) takes at most one bus signal (bi) and two control
signals (sj , sk) as an input. The HD of a bus is calculated
by first XORing the previous and current input vectors, then
counting the number of ones. The HD is then multiplied by
the coefficient when the selected control signals are true. The
HD multiplicand is relatively short (only 6 bits for a 32-
bit bus), requiring few resources. Multiplication can be done
efficiently using the available DSP slices (192 in Virtex-5
LX330 parts) in most modern FPGA devices. If the user needs
more multipliers or chooses not to use the dedicated DSP
slices, the multiplication can be implemented with shifters
and adders using general FPGA resources. The total predicted
power is the sum of the terms.

V. EXPERIMENTAL RESULTS

We applied the PrEsto methodology to two processor im-
plementations. One is the open-source LEON3 [13] core
(SPARC V8) using Chartered 130nm standard cell libraries
and SRAM compilers. The other is the ARM Cortex-A8
[14] core using TSMC 65nm libraries. The configurations
of the cores are shown in Table I. The Cortex-A8 design is
roughly 10 times more complex than the LEON3 design. Both
designs were synthesized using Synopsys Design Compiler.
The Cortex-A8 implementation includes the parasitic capaci-
tances extracted after the place-and-route phase. The gate-level
power is estimated using Synopsys PrimeTime PX with VCD
files generated from full RTL simulation. The PrEsto APMG
algorithm uses the gate-level power and signal transitions from
the VCD to generate power models. PrEsto APMG is currently
implemented using the open-source statistical package R and
Python scripts. The PrEsto training benchmark is a single,
simple microbenchmark that utilizes various components in
the core and executes to completion in 5K∼10K cycles. The
training benchmark is run once to generate power models
that are then used without any additional training. Figure 4
summarizes the tool flow for generating PrEsto power models.

Libraries RTL code Training Benchmark

Synopsys Design Compiler

ModelSimGate-level Netlist

Synopsys PrimeTime PX

PrEsto APMG

VCD

Power Models

Gate-level Power

Fig. 4. Tool flow to generate PrEsto power models

The LEON3 and Cortex-A8 cores were divided into 20
and 50 non-leaf modules, respectively, at microarchitecutral
component boundaries. A subset of the input/output port
signals to each module is considered as candidate signals
for the PrEsto auto-generated power models. Although this
selection process was done manually, it is easy to enforce RTL
designers to annotate rarely used signals/buses to automate the
process. There is no need to repeat the process when reusing
components whose models have already been generated. We
are investigating methods to automate the candidate selection.

To measure the accuracy of the auto-generated PrEsto
models, we used selected benchmarks from the MiBench suite
[15] for the LEON3 core, and benchmarks from the EEMBC
suite [16] for the Cortex-A8 core. We use the same power
model generated by running 5K∼10K cycles on a single
simple training microbenchmark to predict the power of all
benchmarks. For the LEON3 core, one million cycles per
benchmark were simulated generating both average power and
cycle-by-cycle power estimates. For the Cortex-A8 core, we
used five samples of 20K cycles evenly spread out throughout
the entire run of each benchmark (100K cycles total measured
per benchmark) generating the power estimates1. The results
were compared against gate-level power estimates generated
by Synopsys PrimeTime PX for the same simulated period.
Although PrEsto models can predict power very quickly, the
slow speed of simulations and prohibitive size of dump files
needed to validate the accuracies prevented longer runs.

Power models generated from PrEsto were integrated into
a FAST simulator prototype that was augmented to pass data
values for use by the power models. The prototype runs on
a Nallatech ACP system that consists of a four-socket Intel
server system with Intel Xeon 7350 2.93GHz processors,
where one or more of the sockets can be populated with
ACP modules (with a Xilinx Virtex 5 LX110 base module
and two LX330 compute modules) communicating over the
1066MHz FSB at up to 8GB/s. The FAST FM implementation
is based on [17]. Figure 5 shows the high-level block diagram
of FAST simulators implemented on an ACP platform. The
synchronization region is a chunk of memory that the ACP
module snoops on and is kept coherent with the processors.
In our implementation, four 64B cache-lines (two for reads
and two for writes) were used in the synchronization region.

1We used a Palladium platform to accelerate RTL simulation and sample throughout

benchmarks for the Cortex-A8 experiments.

FAST TMFM/TM
Interface

ACP Module (FPGA)

✓
FAST FM
Intel Xeon CPU

Memory Controller
Hub (MCH)

FSB Protocol IP
CLK
gen

Mem R/W Sync I/F

FSB (1066 MHz)

Kernel Module
API Functions

System
Memory

System
Memory

System
Memory(DRAM)

Power Models

Fig. 5. Block diagram of FAST on an ACP platform

!"#$%

&!#'%
(#$%
(#)%
(#(%*%

&*%

!*%

(*%

'*%

+,
-.
/0
,1
2%

+.
1/
34
51
%

6-
37
1%

-1
7.5
8-
9,
7/
2%

:.
;<
-1
7,
%

-2
,%

/7
/(
!% =1

%
.=
1%

,0
9,
5%

!
"
#
$%
&&
'
&$
()

*$

>3?&% >3?!% >3?(% >3?)% >3?&*%

!"#!$

%#&$
'#($
'#'$
'#!$

)$

!)$

')$

*)$

+,
-.
/0
,1
2$

+.
1/
34
51
$

6-
37
1$

-1
7.5
8-
9,
7/
2$

:.
;<
-1
7,
$

-2
,$

/7
/*
'$ =1

$
.=
1$

,0
9,
5$

!
"
#
$%
&
#
'(
$$
)
$'
*+

,'

>3?!$ >3?'$ >3?*$ >3?&$ >3?!)$

(a)

(b)

Fig. 6. Accuracy of modeling (a) average power and (b) cycle-by-cycle
power, of a LEON3 core using different number of terms per module

These cache lines contain control information such as the head
and tail pointers to the circular buffers for traces and statistics,
and commands from the TM to the FM. The pointers are lazily
updated to avoid cache-line ping-ponging and thus achieve
high performance. To efficiently stream out the statistics from
the FPGA at runtime, a statistics network was developed.

A. Power Model Accuracies

Figures 6 and 7 show the accuracy of modeling the average
power and the cycle-by-cycle power of the LEON3 core and
the Cortex-A8 core, respectively. The cycle-by-cycle error is
measured as the RMS error of the power at every cycle.
The figures show the accuracies when varying the number of
terms in the linear models per module (N in Algorithm 1),
is shown. The error bars in Figure 7 represent the best and
the worst case errors out of the five sampled regions for
each benchmark. As expected, more terms result in higher
accuracy, subject to diminishing returns after three terms per
module for the LEON3 core and ten terms per module for
the Cortex-A8 core. For the LEON3 core using three terms
per module, the average difference from PrimeTime for the
average total processor power is 2.6%, while the average
difference in cycle-by-cycle power for the entire processor is
3.9% for the LEON3 core. For Cortex-A8, using ten terms
per module results in 1.7% error for average power and 5.8%

!"#$

%"%$

&"'$

&"&$

#$

($

)$

*$

'$

+#$

+($

+)$

,-
./
0$

12
3$

45
60
78
(/
39
3+
$

/5
60
78
(/
39
3+
$

:
6(
/0
4;
//
39
3+
$

17
<4
:
=>
8(
/3
93
+$

00
:
<4
?/
02
$

3:
03
@$

!
"
#
$%
&&
'
&$
()

*$

A;6B$ A;6&$ A;6+#$ A;6(#$

(b)

!"#$
%"&$

'"#$ '"($

)*$

&$

*$

+$

!$

,$

'&$

'*$

-.
/0
1$

23
4$

56
71
89
*0
4:
4'
$

06
71
89
*0
4:
4'
$

;
7*
01
5<
00
4:
4'
$

28
=5
;
>?
9*
04
:4
'$

11
;
=5
@0
13
$

4;
14
A$

!
"
#
$%
&
#
'(
$$
)
$'
*+

,'

B<7($ B<7%$ B<7'&$ B<7*&$

(a)

Fig. 7. Accuracy of modeling (a) average power and (b) cycle-by-cycle
power, of an ARM Cortex-A8 core using different number of terms per module

0 2000 4000 6000 8000 10000

0 2000 4000 6000 8000 10000

M
od

el
ed

 P
ow

er
Po

w
er

 fr
om

 P
TP

X

cycles

Fig. 8. Comparison of power waveforms (PTPX vs. PrEsto) for Cortex-A8

error for cycle-by-cycle power. However, the Cortex-A8 design
is roughly ten times more complex than the LEON3 design,
uses a newer technology, and the comparison numbers includes
the parasitic capacitances. The worst-case error among the
samples is within 10% when using ten terms, implying that
high accuracy can be achieved even with resource-efficient
power models. Figure 8 shows some cycle-by-cycle power
waveforms modeled for the Cortex-A8.

The coverage (defined in Section III) of power models for
some key modules were measured by propagating the selected
signals through the netlist. Some results are shown in Table II.
As expected, array structures have higher coverage than other
control modules. Cortex-A8 has slightly lower coverage due
to the added complexity. The uncovered nets include debug
ports that are normally unused.

LEON3 Cortex-A8
Module Coverage Module Coverage
RegFile 95.35% RegFile 92.37%

I/D Cache Data 93.67% L2 Ctrl 85.87%
I/D Cache Tag 94.32% LSQ Ctrl 78.83%
I-Cache Ctrl 92.08% Decode 87.20%
D-Cache Ctrl 85.82% Scoreboard 67.12%

Pipeline 84.06% BrPred Ctrl 74.12%

TABLE II
POWER MODEL COVERAGE

of Terms 2 3 5 10

Slice Registers 163 227 317 569
(0.07%) (0.10%) (0.15%) (0.27%)

Slice LUTs 580 899 1464 2915
(0.27%) (0.43%) (0.70%) (1.40%)

TABLE III
FPGA RESOURCE USAGE OF LINEAR POWER MODELS PER MODULE

!"#$%

&%
$%
'%
!%
#%

(&%
($%

)*
+,
-%

(!
'"
./
*0
%

(1
2"
30
4%

(1
!"
.5
5%

(#
("
6
57
%

(#
!"
54
89
:%

(;
1"
08
4<
=4
%

$2
$"
=>
+%

$2
?"
0=
4@A
6
B%

$2
'"
.8
0%

$2
2"
3>
4C
=-
%

$2
!"
A/
*0
$%

?&
&"
CD
>@
7%

EF
GE
H
%

!
"#
$
%

Fig. 9. Speed of PrEsto integrated with FAST

B. Resource Usage of FPGA Implementation

A simple timing model of the LEON3 core was imple-
mented for the Xilinx Virtex-5 LX110 FPGA on the ACP
platform. Although the LEON3 core is relatively simple,
PrEsto can model arbitrarily complex targets as long as a
timing model is available and the FPGA resources permit.
More complex designs can be implemented on the LX330s.
The PrEsto power models were implemented in Bluespec
[18] in a highly parameterizable fashion. Table III shows the
number of FPGA resources required for a set of linear models,
each with a varying number of terms (N in Algorithm 1).
Each term is assumed to include a 32-bit bus as one of the
factors. This is conservative as there were an average of 17
bits of signals/buses for the LEON3 and 9 bits of signals/buses
for the Cortex-A8, used as factors per term in the linear
models. We did not use any DSP slices to implement the
multiplications in these results. Had we done so, we would
have used fewer general FPGA resrouces. As the results show,
each power model takes up very few resources of the FPGA.
The percentages of the resources of the Xilinx Virtex-5 LX330
are shown in parentheses.

C. Simulation Performance and Speedup

As mentioned earlier, the TM takes multiple FPGA cycles
to model a single target cycle. PrEsto power models currently
take seven FPGA cycles to generate a power estimate. This
includes two cycles to enqueue a request to the power model
request FIFO and dequeue the result from the power model
reply FIFO. Our TM currently runs at 133MHz, allowing the
power models to simulate around 19M (=133M/7) target cycles
per second if the TM is not bottlenecked elsewhere. The power
models can be further optimized to take fewer FPGA cycles,
but PrEsto power models are not the current bottleneck.

PrEsto integrated with FAST can boot unmodified operating
systems, including Linux, and run unmodified applications.
The simulation performance of PrEsto while booting Linux
and running the SPEC2000 benchmark suite is shown in
Figure 9. On average, PrEsto is able to run at around 7 MIPS

which is bottlenecked by the speed of the TM.
Synopsys PrimeTime PX simulates the LEON3 core at

100Hz on an Intel Xeon X3230-based 2.66GHz quad-core
with 4GB of memory. Due to the complexity, PrimeTime
simulates the ARM Cortex-A8 core at 10Hz. FAST can
generate toggle information and pipe it to FPGA-based PrEsto
power models at 6.8MIPS, or about around 70,000 times faster
than PrimeTime PX for LEON3, assuming a target IPC of 1.
Assuming a FAST simulator implementation of Cortex-A8 can
also run at 7 MIPS2, PrEsto would be 700,000 times faster
than PrimeTime PX. Additionally, PrEsto is at least an order
of magnitude faster than other architectural power estimation
tools including Wattch (hundreds of KIPS) while potentially
being more accurate.

VI. MACROMODELING

A. Overview

The power dissipation of some modules are not very linear
with respect to only a few signals and thus are not mod-
eled well with linear models. Macromodeling [5], [19] is a
technique specifically designed to model complex irregular
structures, such as ALUs, FPUs, instruction scheduling logic,
etc., that are traditionally modeled poorly with linear models.
These techniques can be adopted into the PrEsto flow in case
the linear models do not perform well for such components.

We evaluate FPGA implementations of macromodeling
technique described in [5] to model irregular structures. The
technique uses input vector statistics including average input
signal probability (Pin), average input transition density (Din)
and average input spatial correlation (SCin). These input
vector statistics are more formally defined as the following:

Pin =
1

n

n∑
i=1

Pi, Din =
1

n

n∑
i=1

Di (2)

SCin =
2

n(n − 1)

n∑
i=1

n∑
j=i+1

P{xi = 1 , xj = 1} (3)

where n is the number of bits in the input vector. Pi is the input
signal probability, or the probability the input is driven high,
and Pin is the average input signal probability. Di is the input
transition density, or the probability the input switches from
cycle to cycle, Din is the average input transition density. SCin

is the average input spatial correlation and P{xi = 1, xj = 1}
denotes the probability both xi and xj are high simultaneously,
where xi and xj are the ith and jth bit in the input vector,
respectively. Pin, Din and SCin are probabilities, ranging
from zero to one.

The Pin, Din and SCin axes between zero and one are
subdivided into intervals of size 0.1 to form a 10×10×10 grid.
For each valid grid point in the (Pin, Din,SCin) space, the
power estimate is characterized by generating blocks of input
vectors such that the average probability, density, and spatial
correlation at the primary inputs are equal to Pin, Din and

2FAST simulators do not necessarily slow down with more complex targets as long

as there are sufficient FPGA resources.

Pin
Gen

Din
Gen

Prev
Input

SCin
Gen

Prev
SCin

Pin

Power
Look-

up
TableDin SCin

BRAM

Input Vector

Power

1

Fig. 10. Block diagram of PrEsto macromodels implemented for an FPGA

SCin , respectively, and obtaining the average power for these
input vectors by feeding them through detailed power simula-
tion. We use the Markov chain sequence generator described
in [20] to generate these specific blocks of input vectors. The
generated power numbers are populated as a look-up table.
Power is then estimated by gathering the three statistics at
run-time and using them to index into the corresponding entry
of the look-up table. The macromodeling technique is slightly
changed from the original version [5] in the following ways:
• We modified the macromodels to enable on-the-fly cycle-

by-cycle power estimation. In the original macromodeling
study [5], which was intended to estimate only average
power, the SCin calculation requires knowledge of av-
erage input probability that depends on the entire input
sequence. We approximate the average input probability
by storing and using the results from the previous cycle.
SCin is calculated as the average of the SC 1

in for the cur-
rent and the previous cycles, where SC 1

in = Pin(Pin−1)
n(n−1)

and n is the number of bits in the input vector.
• In our macromodels, the SCin calculation is approxi-

mated by looking up a pre-computed table in FPGA
block RAMs that is indexed by the significant bits of Pin,
instead of actually computing the value. This results in
better resource usage at the cost of some loss in accuracy.

B. FPGA Implementation of Macromodels

Figure 10 shows the block diagram of the PrEsto macro-
model designed for FPGAs. Generating Pin and Din is done
by counting the number of set bits in a vector. We implemented
bit-counting on an FPGA by partitioning the input vector into
32-bit chunks and operating on each chunk in parallel. The
processing of a 32-bit chunk can be done in a single 133MHz
clock cycle. The results from each chunk are summed up in
the next cycle to obtain the total number of bits set. Din is
computed using the same logic as HD in linear models. SCin

is approximated by looking up a pre-computed table in a Block
RAM that is indexed by the significant bits of Pin. If each
power entry is a 32-bit value and the most significant 3 bits
are used to represent each of the three input statistics (Pin, Din

and SCin), a 512-entry look-up table could be implemented
using only one 18Kb Block RAM per module (29 ·32 < 18K).
In our hardware prototype, SC 1

in is implemented as a look-up
table indexed by Pin. SCin can be better estimated by keeping

Input Width 32-bit 64-bit 96-bit 128-bit

Slice Registers 117 204 283 366
(0.05%) (0.09%) (0.13%) (0.17%)

Slice LUTs 275 431 585 746
(0.13%) (0.20%) (0.28%) (0.35%)

Block RAMs 1 1 2 2
(0.34%) (0.34%) (0.69%) (0.69%)

TABLE IV
FPGA RESOURCE USAGE OF MACROMODELS PER MODULE

!"#$%&

'$"'(%&

)&

')&

*)&

()&

#)&

+'(,,& +'-)$& +*!.)& +(,#)& +#(*& +#--& +,(',& +!*$$& +.,,*& +$$)& /01/2&

!
"
#
$
%&
'
(
)*
++
"
+)
,-

.)

/345674&89:45& ;<+=4>?<>+<+=4&89:45&

Fig. 11. Macromodeling Accuracy on ISCAS-85 Benchmark Circuits

more history, but that would require more resources.
Table IV summarizes the FPGA resource usage for macro-

model with different input widths. The percentages of resource
on the Xilinx Virtex-5 LX330 part are shown in parentheses.
Macromodels generally require more input bits than the linear
models, thus are evaluated with more input bits, roughly
corresponding to the native datapath widths within the target.
The Xilinx tools automatically chose to map the look-up table
for SC 1

in in the macromodel to a block RAM for longer inputs
and LUTs for shorter inputs.

C. Accuracies of Macromodels

The experiments in Section V were conducted using only
linear models. A few small modules (adders, etc.) had slightly
higher errors, but did not affect the overall accuracy much. For
more complex targets with complex functional units, however,
more modules may need macromodels. Thus, to show the
accuracies of the proposed macromodeling technique, we
conducted separate experiments on the ISCAS-85 benchmark
circuits [21]. Synopsys PrimeTime PX with TSMC 0.13µm
standard cell libraries was used to gather detailed gate-level
power estimation to populate the look-up tables. The accura-
cies were validated by applying 2000 random input vectors
to the macromodels and comparing with the gate-level power
estimates for the same vectors.

After the macromodels were generated, random input vec-
tors were used to verify the accuracy of the macromodels.
The same randomly-generated vectors were used both for the
macromodels and detailed RTL power simulation for compar-
ison. Cycle-by-cycle power was estimated by using only the
statistics from the current and previous target cycle. The result
of the experiment is depicted in Figure 11. For average power,
there was a 6.5% error, while a 18.1% error was found for
the cycle-by-cycle power. Although macromodels have higher
errors than linear models, there are no known high-level power
estimation methods that achieve significantly better accuracies
for such irregular modules.

VII. RELATED WORK

Several FPGA-based power estimation methodologies [22]–
[24] have been proposed recently. All are emulation-based,
mapping the entire target RTL, along with power models, on
FPGAs. [25] uses a software/FPGA co-simulation approach
to accommodate larger SoC designs, but the partitioning was
at module boundaries assuming infrequent communication
between modules. The method would suffer from the commu-
nication overhead for tightly-coupled modules such as those
found in a typical microprocessor. These emulation-based
methods have several disadvantages including (i) the difficulty
of porting most full-custom/ASIC designs to FPGAs due to
very different structures, and (ii) the difficulty of integrating
more accurate power models that take several FPGA cycles
into designs implemented assuming a single cycle between
pipeline registers.

Many regression-based power estimation methods exist [3]–
[7], but they either do not model cycle-by-cycle power or
were not evaluated at the system-level. Most methods are too
complex to implement on FPGAs. PrEsto is much simpler than
[4], yet reaches similar accuracies by exploiting knowledge on
the RTL design (differentiating signals vs. buses, etc.) Others
[26] have proposed using statistical methods to generate power
models. PrEsto positions itself between these detailed methods
and architectural tools such as Wattch [9], targeting accelerated
system-level power estimation with simpler heuristics and
reasonable accuracies, and is evaluated with full processor
implementations.

VIII. CONCLUSIONS

We proposed PrEsto, an accelerated power estimation
methodology with automated power model generation. The
resulting tool runs significantly faster than other architectural
or RTL simulators while maintaining high accuracy even when
predicting cycle-by-cycle power. PrEsto models were designed
to be easy to incorporate into FPGA-accelerated simulators,
enabling them to model complex targets whose RTL could not
map onto a single FPGA. We have validated the methodology
on modern industry designs. We are studying how to build
thermal and leakage models using PrEsto.

PrEsto has a wide range of uses, ranging from RTL design-
ers that may want to evaluate the power impact of alternative
designs, to software developers to power-tune their programs.
We believe that such simulators could lead to entire computer
systems that are systematically designed to have optimized
power dissipation.

IX. ACKNOWLEDGMENTS

This material is based upon work supported in part by
the Semiconductor Research Corporation under Grant No.
2676957812 and by the National Science Foundation under
Grant No. 0615352. We thank Jim Holt of Freescale for his
generous support for this work, ARM, Inc. for permission to
use their designs for our experiments, Bluespec for software
donations, and the anonymous reviewers for their feedback.

REFERENCES

[1] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H. Reinhart, D. E. Johnson,
and Z. Xu, “The FAST Methodology for High-Speed SoC/Computer
Simulation,” in ICCAD, Nov. 2007.

[2] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H. Reinhart, D. E.
Johnson, J. Keefe, and H. Angepat, “FPGA-Accelerated Simulation
Technologies (FAST): Fast, Full-System, Cycle-Accurate Simulators,”
in MICRO, Dec. 2007.

[3] Z. Chen, K. Roy, and T. Chou, “Power sensitivity-a new method
to estimate power dissipation considering uncertain specifications of
primary inputs,” ICCAD, 1997.

[4] Q. Wu, Q. Qiu, M. Pedram, and C.-S. Ding;, “Cycle-accurate macro-
models for RT-level power analysis,” IEEE Transactions on VLSI
Systems, vol. 6, no. 4, pp. 520 – 528, Dec. 1998.

[5] S. Gupta and F. Najm, “Power modeling for high-level power estima-
tion,” IEEE Transactions on VLSI Systems, vol. 8, no. 1, pp. 18–29,
2000.

[6] A. Bogliolo, L. Benini, and G. D. Micheli, “Regression-based RTL
power modeling,” ACM Trans. on Design Automation of Electronic
Systems, vol. 5, no. 3, pp. 337–372, 2000.

[7] X. Liu and M. Papaefthymiou, “HyPE: Hybrid power estimation for
IP-based programmable systems,” Proceedings of the Asia and South
Pacific Design Automation Conference, pp. 606–609, Jan. 2003.

[8] N. Kapre and A. DeHon, “Accelerating SPICE Model-Evaluation using
FPGAs,” FCCM, pp. 37–44, 2009.

[9] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” ISCA, Jun. 2000.

[10] S. Wilton and N. Jouppi, “An enhanced access and cycle time model
for on-chip caches,” WRL Research Report 93/5, Jan. 1994.

[11] X. Liang, K. Turgay, and D. Brooks, “Architectural power models
for SRAM and CAM structures based on hybrid analytical/empirical
techniques,” Proceedings of ICCAD, pp. 824–830, Nov. 2007.

[12] P. H. Wang, J. D. Collins, C. T. Weaver, B. Kuttanna, S. Salamian, G. N.
Chinya, E. Schuchman, O. Schilling, T. Doil, S. Steibl, and H. Wang,
“Intel Atom processor core made FPGA-synthesizable,” in FPGA, 2009.

[13] “Aeroflex Gaisler,” http://www.gaisler.com/.
[14] “ARM webpage,” http://www.arm.com/.
[15] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and

R. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” IEEE International Workshop on Workload Charac-
terization, pp. 3 – 14, Nov. 2001.

[16] “The Embedded Microprocessor Benchmark Consortium,”
http://www.eembc.org/. [Online]. Available: http://www.eembc.org/

[17] D. Sunwoo, J. Kim, and D. Chiou, “QUICK: A Flexible Full-System
Functional Model,” in Proceedings of ISPASS, Apr. 2009, pp. 249–258.

[18] “Bluespec webpage,” http://www.bluespec.com.
[19] Z. Chen, K. Roy, and E. Chong, “Estimation of power dissipation

using a novel power macromodeling technique,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 19,
no. 11, pp. 1363–1369, 2000.

[20] X. Liu and M. Papaefthymiou, “A Markov chain sequence generator for
power macromodeling,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 23, no. 7, pp. 1048–1062, 2004.

[21] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
benchmark circuits and a target translator in Fortran,” Proceedings of
ISCAS, pp. 695–698, Jun. 1985.

[22] J. Coburn, S. Ravi, and A. Raghunathan, “Power emulation: a new
paradigm for power estimation,” DAC, pp. 700–705, 2005.

[23] D. Atienza, P. D. Valle, G. Paci, and F. Poletti, “A fast HW/SW
FPGA-based thermal emulation framework for multi-processor system-
on-chip,” DAC, Jan. 2006.

[24] A. Bhattacharjee, G. Contreras, and M. Martonosi, “Full-system chip
multiprocessor power evaluations using FPGA-based emulation,” Pro-
ceedings of ISLPED, Jan. 2008.

[25] M. Ghodrat, K. Lahiri, and A. Raghunathan, “Accelerating System-on-
Chip power analysis using hybrid power estimation,” DAC, pp. 883–886,
2007.

[26] N. Bansal, K. Lahiri, and A. Raghunathan, “Automatic Power Modeling
of Infrastructure IP for System-on-Chip Power Analysis,” Proceedings
of VLSI Design, pp. 513–520, 2007.

