VLSI Design
10. Interconnects in CMOS Technology

10. Interconnects in CMOS
Technology

* Last module:
— Data path circuits
» This module
— Wire resistance and capacitance
— RC delay
— Wire engineering
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Introduction

* Chips are mostly made of wires called
interconnect
— In stick diagram, wires set size
— Transistors are little things under the wires
— Many layers of wires
» Wires are as important as transistors
— Speed
— Power
— Noise
« Alternating layers run orthogonally
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Wire Geometry

* Pittch=w+s
» Aspect ratio: AR = t/w
— Old processes had AR << 1
— Modern processes have AR ~ 2

« Pack in many skinny wires ¢« |

7
fl
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Layer Stack

« AMI 0.6 um process has 3 metal layers
« Modern processes use 6-10+ metal layers
. Examp|e: Layer T(m) W(m S(m AR
Intel 180 nm process 6t w20 D D
e M1: thin, narrow (< 3%) ™
— High density cells PomemeomeE D D

1000

» M2-M4: thicker ¢ mowowow ]
— For longer wires soom @ w22 [
* M5-M6: thickest :oom o @
480 250 20 19 ga
—For Vpp, GND, clk 0
Substrate
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Wire Resistance

[ p = resistivity (Q*m)
ol _pl
tw w

* R = sheet resistance (Q/00)

— DO is a dimensionless unit(!)
» Count number of squares I
- R =Rg* (# of squares) |
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Choice of Metals
< Until 180 nm generation, most wires were
aluminum
« Modern processes often use copper
— Cu atoms diffuse into silicon and damage FETs
— Must be surrounded by a diffusion barrier

Metal Bulk resistivity (uQ*cm)
Silver (Ag) 1.6
Copper (Cu) 1.7
Gold (Au) 2.2
Aluminum (Al) 2.8
Tungsten (W) 5.3
Molybdenum (Mo) 5.3
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Sheet Resistance
* Typical sheet resistances in 180 nm process

Layer Sheet Resistance (Q/0O)
Diffusion (silicided) 3-10

Diffusion (no silicide) 50-200

Polysilicon (silicided) 3-10

Polysilicon (no silicide) |50-400

Metall 0.08
Metal2 0.05
Metal3 0.05
Metald 0.03
Metal5 0.02
Metal6 0.02
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Contact Resistance

» Contacts and vias also have 2-20 Q
resistance

« Use many contacts for lower R

— Many small contacts for current crowding
around periphery

H |
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Wire Capacitance

» Wire has capacitance per unit length
—To neighbors
—To layers above and below

¢ Ctotal = Ctop + Cbot + 2C:adj

layer n+1
2

2Y

h Coop
Y

t v d layer n

h C adj

A
1y bot
layer n-1
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Capacitance Trends

Parallel plate equation: C =¢A/d

— Wires are not parallel plates, but obey trends

— Increasing area (W, t) increases capacitance

— Increasing distance (s, h) decreases capacitance
Dielectric constant

— e=Kkeg

* g =8.85x10" F/cm

* k=3.9for SiO,

» Processes are starting to use low-k dielectrics
— k=~ 3 (or less) as dielectrics use air pockets
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M2 Capacitance Data

» Typical wires have ~ 0.2 fF/um
— Compare to 2 fF/um for gate capacitance

M1, M3 planes
—e—s=320
—m—s=a80
—a—s=6a0
——sw

Coiu (@Ffm).

o szan
o 0---5=480
P,
3 S S—
°

e

o 500 1000 1500 2000
w(om)
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Diffusion & Polysilicon

« Diffusion capacitance is very high (about 2
fF/pum)
— Comparable to gate capacitance
— Diffusion also has high resistance
— Avoid using diffusion runners for wires!
* Polysilicon has lower C but high R
— Use for transistor gates

— Occasionally for very short wires between
gates

D.Z. Pan 10. Interconnects in CMOS Technology
12




VLSI Design
10. Interconnects in CMOS Technology

Lumped Element Models

¢ Wires are a distributed system
— Approximate with lumped element models

N segments
R RIN  R/IN RIN RN
LS ) SEPPPRL, ) S \\)

—W—
Le Jow Tem  “Tom e
R/2 R/2

&

L-model n-model T-model

¢ 3-segment t-model is accurate to 3% in
simulation

¢ L-model needs 100 segments for same accuracy!
¢ Use single segment t-model for EImore delay

b AT
gc "vfc/z —VE:IZ
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Example

» Metal2 wire in 180 nm process
—5mm long
—0.32 um wide
» Construct a 3-segment -model
- Ry =0.050Q/00 =>R=781Q
— Cpermicron = 0.2 fF/um ~ =>C =1pF
260 O 260 Q 260 O

T WL W
—Vﬁ67 fF;gleﬂF @67fF 167 fF 167fF;E167 fF
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Wire RC Delay

» Estimate the delay of a 10x inverter driving
a 2x inverter at the end of the 5mm wire
from the previous example.

—R = 2.5 kQ*um for gates
— Unit inverter: 0.36 um nMOS, 0.72 um pMOS

781 Q
T T T
690 O gsoo fF—stoo fF $4 fF
Driver Wire Load
—ty=1.1ns
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Crosstalk

* A capacitor does not like to change its
voltage instantaneously.
» A wire has high capacitance to its neighbor.

— When the neighbor switches from 1-> 0 or O-
>1, the wire tends to switch too.

— Called capacitive coupling or crosstalk.
* Crosstalk effects

— Noise on non-switching wires

— Increased delay on switching wires
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Crosstalk Delay

» Assume layers above and below on
average are quiet
— Second terminal of capacitor can be ignored
—Model as Cypg = Cip + Cpo

* Effective C,y depends on behavior of

neighbors

— Miller effect S
B AV | Ceiin MCF
Constant Voo [Cqnd * Cagi 1
Switching with A 0 Cand 0
Switching opposite A |2Vpp [Cug+2Cy |12
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Crosstalk Noise

» Crosstalk causes [functional/voltage] noise
on nonswitching wires

* If victim is floating:
— model as capacitive voltage divider

C..
_ adj
AVviclim - C C AVaggr(esscvr
gnd-v + adj
Aggressor
AV,
ggressor
Cag
Victim

—vr Cgr\drv Avwcllm
v
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Driven Victims

* Usually victim is driven by a gate that fights
noise

— Noise depends on relative resistances
— Victim driver is in linear region, aggressor in

saturation
— If sizes are same, Ryggressor = 2-4 X Ryictim
C.i 1
AV, = —— AV, L pessor
victim andiv + Cadj 1+K aggressor N - Agg
— T .
Rijesm Victim
Taggressor Raggressor (andfa +Cay ) Cons Wi
K = = s v
Tictim Rictim (cgndfv + Cadj )
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Coupling Waveforms

» Simulated coupling for C,4 = Cyigim

Aggressor

Victim_(uncriven): 50%

T T T T T T T T T
0 200 400 600 800 1000 1200 1400 1800 2000

(ps)
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Noise Implications

» So what if we have noise?
« If the noise is less than the noise margin,
nothing happens

Static CMOS logic will eventually settle to
correct output even if disturbed by large
noise spikes

— But glitches cause extra delay

— Also cause extra power from false transitions
Dynamic logic never recovers from glitches

Memories and other sensitive circuits also
can produce the wrong answer
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Wire Engineering

» Goal: achieve delay, area, power goals with

acceptable noise

» Degrees of freedom:

— Width

— Spacing 3
2 4

— Layer

— Shielding
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Repeaters

* R and C are proportional to |

* RC delay is proportional to |2
— Unacceptably great for long wires

» Break long wires into N shorter segments
— Drive each one with an inverter or buffer

‘I>° Wire i;gm [ {>y

Driver Receiver

NSegments
Segment

—
E N E N E E UN E

Driver L Repeater Repeater  Repeater ¥ Receiver
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Repeater Design

How many repeaters should we use?
How large should each one be?

Equivalent Circuit

— Wire length |
» Wire Capacitance C,*l, Resistance R,*l

— Inverter width W (nMOS = W, pMOS = 2W)
» Gate Capacitance C*W, Resistance R/W

R,IN
€L L €L
RIW i Ioan Joan Jow
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Repeater Results Clock Distribution
c [>o & n-bit datapath
» Write equation for Elmore Delay Do Sriwdsamin]
— Differentiate with respect to W and N e —>o—pnbi .!m,mu-: High peak currents to drive
— Set equal to 0, solve [>o—prb  — typical clock loads
e Svsibisn] (& 1000 pF)
| 2RC’ clock {0
— = o] _ ~dV
N Rwa Ipeak - CW!
t ~60-80 ps/mm e e Py, =CVZ,f
* = (2++2)/RCR,C - d DD
| ( * \/—) """ in 180 nm process
W= ::ch' i
w Do pn-bit detapath |
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H-Trees Matching Delays in Clock Distribution

— Load of latch (driven by clock) is data-
dependent (capacitance depends on source
voltage)

— Process variations
— IR drops and temperature variations
» Need tools to support clock tree design

» Balance delays of paths

» Match buffer and wire delays to minimize
skew

* Issues
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Clocking in Intel Itanium Processor Clock Generation

0.18p technology
1GHz core clock
200 MHz system clk
Core clocking:
260mm?2
1 primary driver
5 repeaters

to Cora &
Uncore Primary
B

Core clock of frequency
N timas systam fraquency

System clock +
System clock —

P Clock qualifiers of fraquency coraiN

2 to
157K clocked latches e tor
Source fOI’ From FSB Systam clock frequency Enabler

. . gater
this and following {normal test mode feedbacks
. . . feadback)
slides dealing with
Itanium: Intel/HP 19.5mm
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Core Clock Distribution

o> 3
s Hy <G r;:m«-'h o>
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eps—tterg [T
P TR -::[‘,1'»|_1> <

i» <G o>
Repeaters SLCBs

53] / 33) Each SLCE ~70 tap points of ~8 gaters sach

Adjustable delay buffer
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SLCB

SLCB SChemat‘IC. ] “fine contral

coarse control

delay
clock
distribution
» 256ps delay range for
Debug debug purposes
mode
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First Level Route Geometry

Lataral
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Measured Skew
Laser probed SLCB skew (non-loading, valid DC levels)

50ps
final
skew

D.Z. Pan 10. Interconnects in CMOS Technology
4




