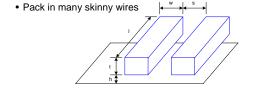
10. Interconnects in CMOS **Technology**

- · Last module:
 - Data path circuits
- This module
 - Wire resistance and capacitance
 - RC delay
 - Wire engineering

D. Z. Pan

10. Interconnects in CMOS Technology

Introduction


- · Chips are mostly made of wires called interconnect
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- · Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally

D. Z. Pan

10. Interconnects in CMOS Technology

Wire Geometry

- Pitch = w + s
- Aspect ratio: AR = t/w
 - Old processes had AR << 1
 - Modern processes have AR ≈ 2

D. Z. Pan

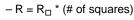
10. Interconnects in CMOS Technolog

Layer Stack

- AMI 0.6 μm process has 3 metal layers
- Modern processes use 6-10+ metal layers
- Example: Intel 180 nm process • M1: thin, narrow (< 3λ)
- High density cells • M2-M4: thicker

- For longer wires

- M5-M6: thickest For V_{DD}, GND, clk
- 00


D. Z. Pan 10. Interconnects in CMOS Technol

Wire Resistance

 $\square \rho = resistivity (\Omega^* m)$

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\Box} \frac{l}{w}$$

- R_{\square} = sheet resistance (Ω/\square)
 - □ is a dimensionless unit(!)
- · Count number of squares

D. Z. Pan

10. Interconnects in CMOS Technology

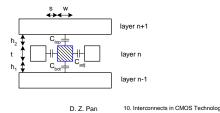
Choice of Metals

- Until 180 nm generation, most wires were aluminum
- · Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal Bu		k resistivity (μΩ*cm)	
Silver (Ag)	1.6		
Copper (Cu)	1.7	_	
Gold (Au)	2.2		
Aluminum (AI)	2.8		
Tungsten (W)	5.3		
Molybdenum (Mo)	5.3		
·	D. Z. Pan	10. Interconnects in CMOS Technology	

Sheet Resistance

• Typical sheet resistances in 180 nm process


Layer	Sheet Resistance (Ω/□)
Diffusion (silicided)	3-10
Diffusion (no silicide)	50-200
Polysilicon (silicided)	3-10
Polysilicon (no silicide)	50-400
Metal1	0.08
Metal2	0.05
Metal3	0.05
Metal4	0.03
Metal5	0.02
Metal6	0.02

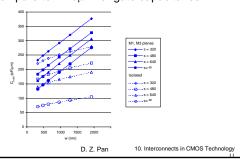
Contact Resistance				
• Contacts and vias also have 2-20 Ω resistance				
 Use many contacts for lower R Many small contacts for current crowding around periphery 				
pi	D. 7. Pan 10. Interconnects in CMOS Technology			

Wire Capacitance

- · Wire has capacitance per unit length
 - To neighbors
 - To layers above and below

•
$$C_{total} = C_{top} + C_{bot} + 2C_{adj}$$

Capacitance Trends


- Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $\varepsilon = k\varepsilon_0$
- $\epsilon_0 = 8.85 \text{ x } 10^{-14} \text{ F/cm}$
- k = 3.9 for SiO₂
- Processes are starting to use low-k dielectrics
 - k ≈ 3 (or less) as dielectrics use air pockets

D. Z. Pan 1

10. Interconnects in CMOS Technology

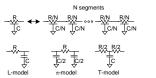
M2 Capacitance Data

- Typical wires have ~ 0.2 fF/μm
 - Compare to 2 fF/µm for gate capacitance

Diffusion & Polysilicon

- Diffusion capacitance is very high (about 2 $fF/\mu m$)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- · Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

D. Z. Pan


10. Interconnects in CMOS Technology

VLSI Design

10. Interconnects in CMOS Technology

Lumped Element Models

- · Wires are a distributed system
 - Approximate with lumped element models

- 3-segment π-model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment π -model for Elmore delay

D. Z. Pan 10. Interconnects in CMOS Technology

Example

- Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 μm wide
- Construct a 3-segment π -model

$$-R_{\square} = 0.05 \ \Omega/\square \qquad => R = 781 \ \Omega$$

$$-C_{permicron} = 0.2 \ fF/\mu m \qquad => C = 1 \ pF$$

167 fF 167 fF 167 fF 167 fF 167 fF

D. Z. Pan 10. Interconnects in CMOS Technology

Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - $-R = 2.5 \text{ k}\Omega^*\mu\text{m}$ for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

$$781 \Omega$$

$$690 \Omega \Rightarrow 500 \text{ fF} 500 \text{ fF}$$

$$-t_{pd} = 1.1 \text{ ns}$$

$$0. \text{ Z. Pan}$$

$$10. \text{ Interconnects in CMOS Technology}$$

Crosstalk

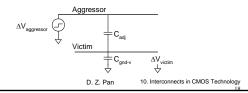
- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- · Crosstalk effects
 - Noise on non-switching wires
 - Increased delay on switching wires

D. Z. Pan

10. Interconnects in CMOS Technology

Crosstalk Delay

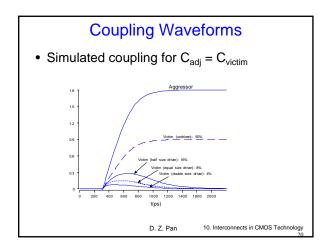
- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- Effective C_{adj} depends on behavior of neighbors


- Miller effect

В	ΔV	C _{eff(A)}	MCF
Constant	V_{DD}	C _{gnd} + C _{adj}	1
Switching with A	0	C _{and}	0
Switching opposite A	$2V_{DD}$	C _{gnd} + 2 C _{adj}	2
	D. Z. Par	10. Interconnects in	CMOS Technology

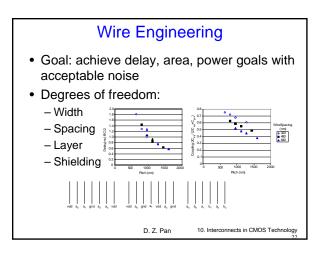
Crosstalk Noise

- Crosstalk causes [functional/voltage] noise on nonswitching wires
- If victim is floating:
 - model as capacitive voltage divider

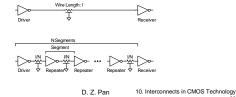

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$

Driven Victims

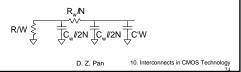
- Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Victim driver is in linear region, aggressor in saturation
 - If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

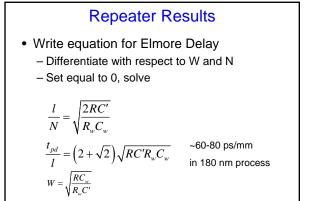


Noise Implications

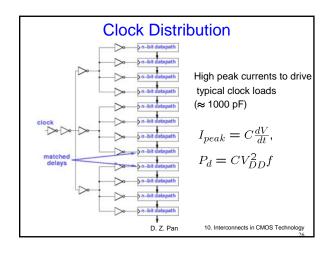

- So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

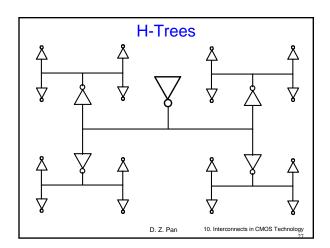
D. Z. Pan 10. Interconnects in CMOS Technolog


Repeaters


- R and C are proportional to I
- RC delay is proportional to P
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

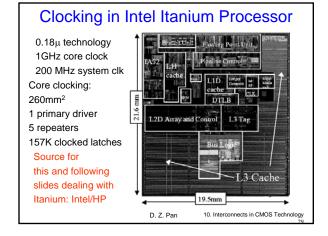
Repeater Design

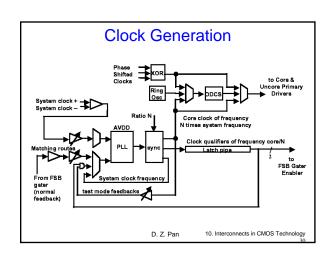

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length /
 - Wire Capacitance C_w*I, Resistance R_w*I
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

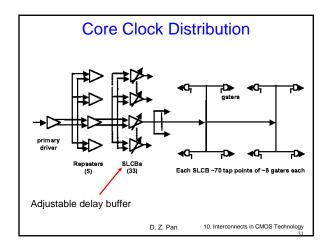


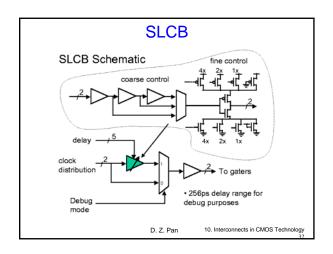
D. Z. Pan

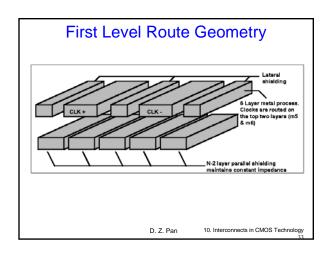
10. Interconnects in CMOS Technology






Matching Delays in Clock Distribution


- · Balance delays of paths
- Match buffer and wire delays to minimize skew
- Issues
 - Load of latch (driven by clock) is datadependent (capacitance depends on source voltage)
 - Process variations
 - IR drops and temperature variations
- Need tools to support clock tree design


D. Z. Pan 10. Interconnects in CMOS Technology

