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10. Interconnects in CMOS 
Technology

• Last module:
– Data path circuits

• This module
– Wire resistance and capacitance
– RC delay
– Wire engineering
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Introduction
• Chips are mostly made of wires called 

interconnect
– In stick diagram, wires set size
– Transistors are little things under the wires
– Many layers of wires

• Wires are as important as transistors
– Speed
– Power
– Noise

• Alternating layers run orthogonally
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Wire Geometry
• Pitch = w + s
• Aspect ratio: AR = t/w

– Old processes had AR << 1
– Modern processes have AR ≈ 2

• Pack in many skinny wires
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Layer Stack
• AMI 0.6 μm process has 3 metal layers
• Modern processes use 6-10+ metal layers
• Example:

Intel 180 nm process
• M1: thin, narrow (< 3λ)

– High density cells
• M2-M4: thicker

– For longer wires
• M5-M6: thickest

– For VDD, GND, clk

Layer T (nm) W (nm) S (nm) AR

6 1720 860 860 2.0

1000

5 1600 800 800 2.0

1000

4 1080 540 540 2.0

700
3 700 320 320 2.2

700
2 700 320 320 2.2

700
1 480 250 250 1.9

800

Substrate
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Wire Resistance
� ρ = resistivity (Ω*m)

• R = sheet resistance (Ω/ )
– is a dimensionless unit(!)

• Count number of squares
– R = R * (# of squares) l

w

t

1 Rectangular Block
R = R  (L/W) Ω

4 Rectangular Blocks
R = R  (2L/2W) Ω
    = R  (L/W) Ω

t

l

w w

l

l lR R
t w w
ρ

= =
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Choice of Metals
• Until 180 nm generation, most wires were 

aluminum
• Modern processes often use copper

– Cu atoms diffuse into silicon and damage FETs
– Must be surrounded by a diffusion barrier

5.3Molybdenum (Mo)
5.3Tungsten (W)
2.8Aluminum (Al)
2.2Gold (Au)
1.7Copper (Cu)
1.6Silver (Ag)
Bulk resistivity (μΩ*cm)Metal
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Sheet Resistance
• Typical sheet resistances in 180 nm process

0.08Metal1
0.05Metal2
0.05Metal3
0.03Metal4

0.02Metal6
0.02Metal5

50-400Polysilicon (no silicide)
3-10Polysilicon (silicided)
50-200Diffusion (no silicide)
3-10Diffusion (silicided)
Sheet Resistance (Ω/ )Layer
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Contact Resistance
• Contacts and vias also have 2-20 Ω 

resistance
• Use many contacts for lower R

– Many small contacts for current crowding 
around periphery
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Wire Capacitance
• Wire has capacitance per unit length

– To neighbors
– To layers above and below

• Ctotal = Ctop + Cbot + 2Cadj

layer n+1

layer n

layer n-1

Cadj

Ctop

Cbot

ws

t

h1

h2
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Capacitance Trends
• Parallel plate equation:  C = εA/d

– Wires are not parallel plates, but obey trends
– Increasing area (W, t) increases capacitance
– Increasing distance (s, h) decreases capacitance

• Dielectric constant
– ε = kε0

• ε0 = 8.85 x 10-14 F/cm
• k = 3.9 for SiO2

• Processes are starting to use low-k dielectrics
– k ≈ 3 (or less) as dielectrics use air pockets
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M2 Capacitance Data
• Typical wires have ~ 0.2 fF/μm

– Compare to 2 fF/μm for gate capacitance
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Diffusion & Polysilicon
• Diffusion capacitance is very high (about 2 

fF/μm)
– Comparable to gate capacitance
– Diffusion also has high resistance
– Avoid using diffusion runners for wires!

• Polysilicon has lower C but high R
– Use for transistor gates
– Occasionally for very short wires between 

gates
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Lumped Element Models
• Wires are a distributed system

– Approximate with lumped element models

• 3-segment π-model is accurate to 3% in 
simulation

• L-model needs 100 segments for same accuracy!
• Use single segment π-model for Elmore delay

C

R

C/N

R/N

C/N

R/N

C/N

R/N

C/N

R/N

R

C

L-model

R

C/2 C/2

R/2 R/2

C

N segments

π-model T-model

D. Z. Pan 10. Interconnects in CMOS Technology  
14

Example
• Metal2 wire in 180 nm process

– 5 mm long
– 0.32 μm wide

• Construct a 3-segment π-model
– R = 0.05 Ω/ => R = 781 Ω
– Cpermicron = 0.2 fF/μm  => C = 1 pF

260 Ω

167 fF 167 fF

260 Ω

167 fF 167 fF

260 Ω

167 fF 167 fF
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Wire RC Delay
• Estimate the delay of a 10x inverter driving 

a 2x inverter at the end of the 5mm wire 
from the previous example.
– R = 2.5 kΩ*μm for gates
– Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

– tpd = 1.1 ns

781 Ω

500 fF 500 fF

Driver Wire

4 fF

Load

690 Ω
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Crosstalk
• A capacitor does not like to change its 

voltage instantaneously.
• A wire has high capacitance to its neighbor.

– When the neighbor switches from 1-> 0 or 0-
>1, the wire tends to switch too.

– Called capacitive coupling or crosstalk.
• Crosstalk effects

– Noise on non-switching wires
– Increased delay on switching wires
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Crosstalk Delay
• Assume layers above and below on 

average are quiet
– Second terminal of capacitor can be ignored
– Model as Cgnd = Ctop + Cbot

• Effective Cadj depends on behavior of 
neighbors
– Miller effect

A B
CadjCgnd Cgnd

2Cgnd + 2 Cadj2VDDSwitching opposite A
0Cgnd0Switching with A
1Cgnd + CadjVDDConstant
MCFCeff(A)ΔVB
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Crosstalk Noise
• Crosstalk causes [functional/voltage] noise 

on nonswitching wires
• If victim is floating:

– model as capacitive voltage divider

Cadj

Cgnd-v

Aggressor

Victim

ΔVaggressor

ΔVvictim

adj
victim aggressor

gnd v adj

C
V V

C C−

Δ = Δ
+
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Driven Victims
• Usually victim is driven by a gate that fights 

noise
– Noise depends on relative resistances
– Victim driver is in linear region, aggressor in 

saturation
– If sizes are same, Raggressor = 2-4 x Rvictim

1
1

adj
victim aggressor

gnd v adj

C
V V

C C k−

Δ = Δ
+ +

( )
( )

aggressor gnd a adjaggressor

victim victim gnd v adj

R C C
k

R C C
τ
τ

−

−

+
= =

+

Cadj

Cgnd-v

Aggressor

Victim

ΔVaggressor

ΔVvictim

Raggressor

Rvictim

Cgnd-a
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Coupling Waveforms

Aggressor

Victim (undriven): 50%

Victim (half size driver): 16%

Victim (equal size driver): 8%
Victim (double size driver): 4%

t (ps)
0 200 400 600 800 1000 1200 1400 1800 2000

0

0.3

0.6

0.9

1.2

1.5

1.8

• Simulated coupling for Cadj = Cvictim
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Noise Implications
• So what if we have noise?
• If the noise is less than the noise margin, 

nothing happens
• Static CMOS logic will eventually settle to 

correct output even if disturbed by large 
noise spikes
– But glitches cause extra delay
– Also cause extra power from false transitions

• Dynamic logic never recovers from glitches
• Memories and other sensitive circuits also 

can produce the wrong answer
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Wire Engineering
• Goal: achieve delay, area, power goals with 

acceptable noise
• Degrees of freedom:

– Width 
– Spacing
– Layer
– Shielding

D
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Repeaters
• R and C are proportional to l
• RC delay is proportional to l2

– Unacceptably great for long wires
• Break long wires into N shorter segments

– Drive each one with an inverter or buffer
Wire Length: l

Driver Receiver

l/N

Driver

Segment

Repeater

l/N

Repeater

l/N

ReceiverRepeater

N Segments
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Repeater Design
• How many repeaters should we use?
• How large should each one be?
• Equivalent Circuit

– Wire length l
• Wire Capacitance Cw*l, Resistance Rw*l

– Inverter width W (nMOS = W, pMOS = 2W)
• Gate Capacitance C’*W, Resistance R/W

R/W C'WCwl/2N Cwl/2N

RwlN
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Repeater Results
• Write equation for Elmore Delay

– Differentiate with respect to W and N
– Set equal to 0, solve

2

w w

l RC
N R C

′
=

( )2 2pd
w w

t
RC R C

l
′= +

w

w

RCW
R C

=
′

~60-80 ps/mm

in 180 nm process
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Clock Distribution

High peak currents to drive
typical clock loads 
(≈ 1000 pF)
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H-Trees
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Matching Delays in Clock Distribution
• Balance delays of paths
• Match buffer and wire delays to minimize 

skew
• Issues

– Load of latch (driven by clock) is data-
dependent (capacitance depends on source 
voltage)

– Process variations
– IR drops and temperature variations

• Need tools to support clock tree design
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Clocking in Intel Itanium Processor

Source for
this and following
slides dealing with
Itanium: Intel/HP

0.18μ technology
1GHz core clock
200 MHz system clk

Core clocking:
260mm2

1 primary driver
5 repeaters
157K clocked latches
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Clock Generation
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Core Clock Distribution

Adjustable delay buffer
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SLCB
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First Level Route Geometry
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Measured Skew
Laser probed SLCB skew (non-loading, valid DC levels)


