16. Deep Submicron Issues

16. Deep Submicron (DSM) Issues

- · Last module:
 - Pass transistor logic
 - Pseudo nMOS logic
 - Dynamic logic
 - Domino circuits
- · This module
 - Transistor I-V Review
 - Nonideal Transistor Behavior
 - Process and Environmental Variations

D. Z. Pan

16. Deep Submicron Issues I

Ideal Transistor I-V

Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t} \right)^{2} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

D. Z. Pan

16. Deep Submicron Issues 2

Ideal nMOS I-V Plot

- 180 nm TSMC process
- Ideal Models
 - $-\beta = 155(W/L) \mu A/V^2$
 - $V_t = 0.4 V$
 - $V_{DD} = 1.8 V$

D. Z. Pan

16. Deep Submicron Issues 3

V_{os} = 1.8

Simulated nMOS I-V Plot

- 180 nm TSMC process
- · BSIM 3v3 SPICE models
- What differs?
 - Less ON current
 - No square law
 - Current increases
 - in saturation

V_{os} = 1.5 V_{gs} = 0.6

D. Z. Pan

16. Deep Submicron Issues

Velocity Saturation

- - $-v = \mu E_{lat} = \mu V_{ds}/L$
- At high fields, this ceases to be true
 - Carriers scatter off atoms
 - Velocity reaches $v_{\rm sat}$
 - Electrons: 6-10 x 106 cm/s
 - Holes: 4-8 x 10⁶ cm/s
 - Better model

$$v = \frac{\mu E_{\text{lat}}}{1 + \frac{E_{\text{lat}}}{E}} \Rightarrow v_{\text{sat}} = \mu E_{\text{sat}}$$

16. Deep Submicron Issues :

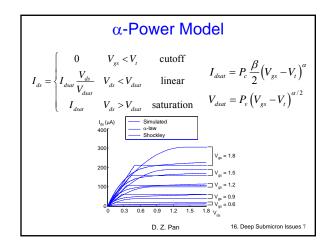
Velocity Saturation I-V Effects

Ideal transistor ON current increases with V_{DD}²

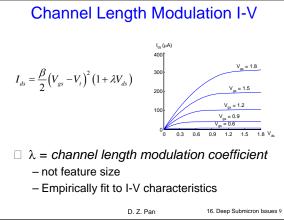
$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{(V_{gs} - V_t)^2}{2} = \frac{\beta}{2} (V_{gs} - V_t)^2$$

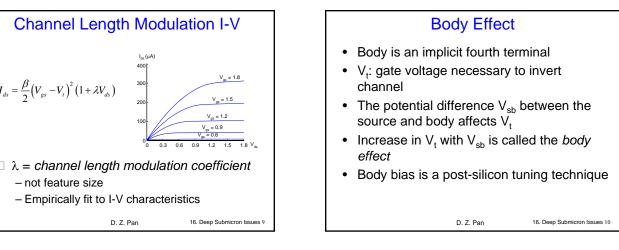
Velocity-saturated ON current increases with V_{DD}

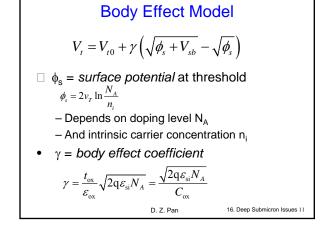
$$I_{ds} = C_{ox}W(V_{gs} - V_t)v_{max}$$

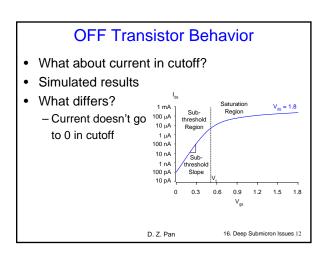

- · Real transistors are partially velocity saturated
 - Approximate with α -power law model
 - $-I_{ds} \propto V_{DD}^{\alpha}$
 - $-1 < \alpha < 2$ determined empirically

D. Z. Pan


16. Deep Submicron Issues 6


VLSI Design


16. Deep Submicron Issues



Channel Length Modulation Reverse-biased p-n junctions form a depletion region - Region between n and p with no carriers - Width of depletion L_d region grows with reverse $-L_{eff} = L - L_{d}$ Shorter L_{eff} = more current $-I_{ds}$ increases with V_{ds} - Even in saturation D. Z. Pan 16. Deep Submicron Issues

16. Deep Submicron Issues

Leakage Sources

- · Subthreshold conduction
 - Transistors can't abruptly turn ON or OFF
- · Junction leakage
 - Reverse-biased PN junction diode current
- Gate leakage
 - Tunneling through ultra-thin gate dielectric
- Subthreshold leakage is the biggest source in modern transistors

D. Z. Pan 16. Deep Submicron Issues 13

Subthreshold Leakage

Subthreshold leakage exponential with V_{qs}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_t}{nv_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}} \right) \quad I_{ds0} = \beta v_T^2 e^{1.8}$$

• n is process dependent, typically 1.4-1.5

D. Z. Pan 16. Deep Submicron Issues 14

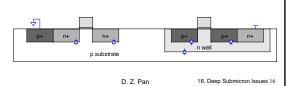
DIBL

- · Drain-Induced Barrier Lowering
 - Drain voltage also affect V_t

$$V_t' = V_t - \eta V_{ds}$$

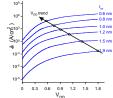
- High drain voltage causes subthreshold leakage to increase
- Effect is especially pronounced in shortchannel transistors

D. Z. Pan


16. Deep Submicron Issues 15

Junction Leakage

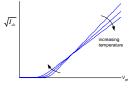
• Reverse-biased p-n junctions have some leakage $\left(\begin{array}{c} \underline{v_p} \end{array}\right)$


 $I_D = I_S \left(e^{\frac{v_D}{v_T}} - 1 \right)$

- I_s depends on doping levels
 - And area and perimeter of diffusion regions
 - Typically $< 1 \text{ fA/}\mu\text{m}^2$

Gate Tunneling Leakage

- · Carriers may tunnel thorough very thin gate oxides
- Predicted tunneling current (from [Song01])


- Negligible for older processes
- · May soon be critically important
 - Intel/IBM high-K dielectric material news 02/07

D. Z. Pan

16. Deep Submicron Issues 17

Temperature Sensitivity

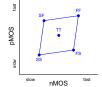
- · Increasing temperature
 - Reduces mobility
 - Reduces V_t
- I_{ON} decreases with temperature
- I_{OFF} increases with temperature

D. Z. Pan

16. Deep Submicron Issues 18

16. Deep Submicron Issues

So What?


- · So what if transistors are not ideal?
 - They still behave like switches.
- But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent/leakage power consumption
 - Pass transistors
 - Temperature of operation

D. Z. Pan

16. Deep Submicron Issues 19

Parameter Variation

- Transistors have uncertainty in parameters
 - Process: L_{eff} , V_{t} , t_{ox} of nMOS and pMOS
 - Vary around typical (T) values
- Fast (F)
 - L_{eff}: short
 - $-V_t$: low
 - $-t_{ox}$: thin
- Slow (S): opposite

Not all parameters are independent for nMOS and pMOS

D. Z. Pan

16. Deep Submicron Issues 20

Environmental Variation

- V_{DD} and Temp also vary in time and space
- Fast:
 - V_{DD}: high
 - Temp: low

Corner	Voltage	Temperature	
F (fast)	1.98	0 C	
T (typical)	1.8	70 C	
S (slow)	1.62	125 C	

D. Z. Pan

16. Deep Submicron Issues 21

Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.
- Describe corner with letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

D. Z. Pan

16. Deep Submicron Issues 22

Important Corners

· Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power	F	F	F	F
Subthreshold	F	F	F	S
leakage				
Pseudo-	S	F	?	?
nMOS				

D. Z. Pan

16. Deep Submicron Issues 23

D. Z. Pan